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Definitions and terminology



What are differential equations?

An ordinary differential equation involves an unknown function  and its derivatives


 


Therefore, a differential equation has the general form


.


where  is an arbitrary expression. It is convenient, both from a theoretical and practical point of view, 
to express  in terms of the other derivatives, that is, to isolate  and write


.


The unknown function  is called the dependent variable while  is called the independent 
variable.

y(x)

y′ (x) =
dy
dx

, y′ ′ (x) =
d2y
dx2

, …

F (x, y, y′ , y′ ′ , …, y(n)) = 0

F
y(n) y(n)

y(n) = f(x, y, y′ , y′ ′ , …, y(n−1))

y(x) x



The order of a differential equation is the order of the highest order derivative 
appearing in the equation.


Example 1. Newton's second law of motion for a particle moving in one 
dimension under the influence of a force  is the second order 
differential equation 

.


Example 2. The Bessel equation is a second order differential equation given by 

.


Example 3. The logistic equation in population dynamics is a first order 
equation given by


.

F(t, x, x′ )

mx′ ′ = F(t, x, x′ )

x2y′ ′ + xy′ + (x2 − 1)y = 0

P′ = a P (b − P)



Solutions

Definition. A solution (explicit solution) to the equation 
 or  is any function  

that satisfies these equations.


Example. The function  is a solution of the differential equation . 
However, so is  and any function of the form  where  is a 
constant.


Remark. It is very easy to check if a given function is a solution for a differential 
equation. However, it can be incredibly hard, or even impossible, to find such 
solutions.

F (x, y, y′ , y′ ′ , …, y(n)) = 0 y(n) = f(x, y, y′ , y′ ′ , …, y(n−1)) y(x)

P1 = et P′ = P
P2 = 2et Pa = aet a



Example. Consider the equation  To check that  is a 
solution we compute  and  so we have 


.


We can similarly show that  is also a solution. A differential equation 
will typically have more than one solutions.

y′ ′ + y = 0. y1 = cos x
y′ 1 = − sin x y′ ′ 1 = − cos x

y′ ′ 1 + y1 = − cos x + cos x = 0

y2 = sin x



General solution

Definition. The general solution to a differential equation is the collection of all 
its solutions.


Example. The general solution of  is  where  is an arbitrary 
constant.


Example. The general solution of  is 


 


where  are arbitrary constants.

P′ = P P = c1et c1

y′ ′ + y = 0

y = c1 cos x + c2 sin x

c1, c2



Remark. In the previous examples it is easy to check that the given general 
solutions are indeed solutions. We will see soon in the course methods for 
obtaining such general solutions. 


A more difficult question is how do we know that these are all possible 
solutions? This is related to the existence and uniqueness theorem for solutions 
that we discuss later.



Initial Value Problems

The general solution contains the information about all solutions to a differential 
equation. However, in a practical application we need to know a specific solution. 


For example, when we study a question related to population we want to be able to 
predict the population after some time. For that we need to know what is the 
current population.


If we want to find where a mass on a spring following Newton's second law is going 
to be after 5 seconds then we need to know its current position and velocity. 


The values of the quantities that we need for determining the future evolution of a 
system are called initial conditions. Given specific initial conditions we will see 
later that there is (under certain technical assumptions) a unique solution to the 
differential equation that satisfies these assumptions.



Examples

Population 

Equation ; General solution ; Initial condition . 


To find the specific solution we see that we have  and . Therefore, 
 and the solution is .


Mass on spring 

Equation ; General solution ; Initial condition .


To find the specific solution we note that  and  so  
This gives . Therefore the motion of the mass is given by .

P′ = P P(t) = c1et P(0) = 100

P(0) = c1e0 = c1 P(0) = 100
c1 = 100 P(t) = 100et

x′ ′ = − x x(t) = c1 cos t + c2 sin t x(0) = 1, x′ (0) = 0

x(0) = c1 x′ (t) = − c1 sin t + c2 cos t x′ (0) = c2 .
c1 = 1, c2 = 0 x(t) = cos t



Initial Value Problems

Definition. By an initial value problem for an -th order differential equation 
 we mean the problem of finding a solution to the 

differential equation on an interval  that satisfies at  the  initial 
conditions


, 


where  are given constants.


n
F (x, y, y′ , y′ ′ , …, y(n)) = 0

I x0 ∈ I n

y(x0) = a0, y′ (x0) = a1, …, y(n−1)(x0) = an−1

a0, a1, …, an−1



Poll

Which of the following solves the IVP  with ?


A. 


B. 


C. 


D.

y′ = xy y(1) = 2

y(x) = ex2/2

y(x) = 2e(x2−1)/2

y(x) = 2ex2−1

y(x) = ex2−1



Direction fields



Direction fields

Here we focus on first-order differential equations of the form


.


Consider a point  on the -plane and let  be the solution to the 
equation with . 


Geometrically, we are considering the solution whose graph is a curve on the 
-plane that passes through the point .


We do not assume that we know an expression for  — only that it exists. 

y′ = f(x, y)

(x0, y0) xy ys
ys(x0) = y0

xy
(x0, y0)

ys(x)



Even though we may not know the 
shape of the graph of  we do know 
that at the point  its 
derivative is given by


. 


Therefore, the graph of the solution that 
passes through a point  must 
have slope  at that point.


ys(x)
(x0, y0 = ys(x0))

y′ s(x0) = f(x0, ys(x0)) = f(x0, y0)

(x0, y0)
f(x0, y0)

x0

y0
ys(x)

Straight line with slope f(x0, y0)



Then we can consider each point on the -plane and draw the corresponding 
slope at that point. This is the direction field corresponding to the equation 

.


In practice, we cannot do this for all points but only for a subset of points on the 
plane.


From this geometric point of view, solving the IVP  
means to find the curve  that passes through  and that its slope at 
each point is given by the direction field.

xy

y′ = f(x, y)

y′ = f(x, y), y(x0) = y0
ys(x) (x0, y0)



The plot at the right shows the 
direction field for the equation


.


The red curves represent solutions 
to the same equation with different 
initial condition .

y′ = x2 − y

y(x0) = y0
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The direction field plot at the right 
corresponds to which of the 
following differential equations?


A. 


B. 


C. 


D. 

y′ = xy

y′ = y

y′ = x2 y

y′ =
y
x
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Numerical approximation



Approximate solutions

Consider the equation . We want to compute an approximation to 
the solution to the IVP with  in the interval .


The main idea to compute an approximation is to choose a small step-size  
and then find an approximate value  of the solution at .  Then we can 
repeat this process and compute an approximate value  at  and after  
steps an approximate value  at . We stop this procedure when 

.


The question now is how to define the approximation for each step? 

y′ = f(x, y)
y(x0) = y0 [x0, x1]

h
y1 x0 + h

y2 x0 + 2h k
yk x0 + kh

x0 + kh = x1



Exploration

Let's define the problem as follows. Suppose that  is the solution of  
that satisfies . What is the easiest approximation to  that you 
can come up with?


Implement this approximation in Mathematica for the equation  with 
 as follows. 


1. Define a function step[{x0_,y0_}] that takes as input a list with the values of  
and  and returns a list with the values of  and the approximation . 


2. Then use Mathematica's function Nest (check its documentation!) to compute 
the approximation  at . What value do you find?

y(x) y′ = f(x, y)
y(x0) = y0 y(x0 + h)

y′ = xy
x0 = 1, y0 = 1, h = 0.01

x0
y0 x1 = x0 + h y1

y100 x100 = x0 + 100h = 2



Euler's method

Euler's method is based on the Taylor expansion


 


and defines the approximation  as


.

y(x0 + h) ≊ y(x0) + hy′ (x0) = y0 + h f(x0, y0)

y1

y1 = y0 + h f(x0, y0)



Example

The following code will compute an approximation to the exploration problem 
using Euler's method.


f[x0_, y0_] := x0 y0 

step[{x0_, y0_}] := {x0 + 0.01, y0 + 0.01 f[x0, y0]} 

{x100, y100} = Nest[step, {1, 1}, 100] 

The approximate result is  while the exact value is y100 = 4.40848
y(2) = e3/2 = 4.48169…



At the right you can see a plot of 
the exact solution (red) given by





and the approximation (blue points) 
obtained using Euler's method, the 
function NestList and the plotting 
function ListPlot.

y(x) = e(x2−1)/2
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