Lecture 3: Fundamentals of Differential Equations MATH 303 ODE and Dynamical Systems

Konstantinos Efstathiou

Definitions and terminology

What are differential equations?

An ordinary differential equation involves an unknown function y(x) and its derivatives

$$y'(x) = \frac{dy}{dx},$$

Therefore, a differential equation has the general form F(x, y, y',

to express $y^{(n)}$ in terms of the other derivatives, that is, to isolate $y^{(n)}$ and write

 $y^{(n)} = f(x, y, y', y'', \dots, y^{(n-1)}).$

The unknown function y(x) is called the **dependent variable** while x is called the **independent** variable.

$$y''(x) = \frac{d^2y}{dx^2}, \qquad .$$

• •

$$y'',\ldots,y^{(n)}\big)=0.$$

where F is an arbitrary expression. It is convenient, both from a theoretical and practical point of view,

The order of a differential equation is the order of the highest order derivative appearing in the equation.

Example 1. Newton's second law of motion for a particle moving in one dimension under the influence of a force F(t, x, x') is the second order differential equation

mx'' =

Example 2. The Bessel equation is a second order differential equation given by

 $x^2y'' + xy' -$

Example 3. The logistic equation in population dynamics is a first order equation given by

P' = a P (b - P).

$$= F(t, x, x').$$

$$+(x^2-1)y=0.$$

Solutions

Definition. A solution (explicit solution) to the equation $F(x, y, y', y'', ..., y^{(n)}) = 0$ or $y^{(n)} = f(x, y, y', y'', ..., y^{(n-1)})$ is any function y(x) that satisfies these equations.

Example. The function $P_1 = e^t$ is a solution of the differential equation P' = P. However, so is $P_2 = 2e^t$ and any function of the form $P_a = ae^t$ where a is a constant.

Remark. It is very easy to check if a given function is a solution for a differential equation. However, it can be incredibly hard, or even impossible, to find such solutions.

Example. Consider the equation y'' + y = 0. To check that $y_1 = \cos x$ is a solution we compute $y'_1 = -\sin x$ and $y''_1 = -\cos x$ so we have

will typically have more than one solutions.

- $y_1'' + y_1 = -\cos x + \cos x = 0.$
- We can similarly show that $y_2 = \sin x$ is also a solution. A differential equation

General solution

its solutions.

constant.

Example. The general solution of y'' + y = 0 is

where c_1, c_2 are arbitrary constants.

- **Definition.** The **general solution** to a differential equation is the collection of all
- **Example.** The general solution of P' = P is $P = c_1 e^t$ where c_1 is an arbitrary

- $y = c_1 \cos x + c_2 \sin x$

Remark. In the previous examples it is easy to check that the given general solutions are indeed solutions. We will see soon in the course methods for obtaining such general solutions.

A more difficult question is how do we know that these are *all possible solutions*? This is related to the existence and uniqueness theorem for solutions that we discuss later.

Initial Value Problems

predict the population after some time. For that we need to know what is the current population.

differential equation that satisfies these assumptions.

- The general solution contains the information about all solutions to a differential equation. However, in a practical application we need to know a specific solution.
- For example, when we study a question related to population we want to be able to
- If we want to find where a mass on a spring following Newton's second law is going to be after 5 seconds then we need to know its current position and velocity.
- The values of the quantities that we need for determining the future evolution of a system are called initial conditions. Given specific initial conditions we will see later that there is (under certain technical assumptions) a unique solution to the

Population

Equation P' = P; General solution $P(t) = c_1 e^t$; Initial condition P(0) = 100. To find the specific solution we see that we have $P(0) = c_1 e^0 = c_1$ and P(0) = 100. Therefore,

 $c_1 = 100$ and the solution is $P(t) = 100e^t$.

Mass on spring

Equation x'' = -x; General solution $x(t) = c_1 \cos t + c_2 \sin t$; Initial condition x(0) = 1, x'(0) = 0. To find the specific solution we note that $x(0) = c_1$ and $x'(t) = -c_1 \sin t + c_2 \cos t$ so $x'(0) = c_2$.

This gives $c_1 = 1$, $c_2 = 0$. Therefore the motion of the mass is given by $x(t) = \cos t$.

Initial Value Problems

differential equation on an interval I that satisfies at $x_0 \in I$ the n initial conditions

$$y(x_0) = a_0, y'(x_0) = a_1, \dots, y^{(n-1)}(x_0) = a_{n-1},$$

where $a_0, a_1, \ldots, a_{n-1}$ are given constants.

Definition. By an **initial value problem** for an *n*-th order differential equation $F(x, y, y', y'', \dots, y^{(n)}) = 0$ we mean the problem of finding a solution to the

Which of the following solves the IVP y' = xy with y(1) = 2?

A.
$$y(x) = e^{x^2/2}$$

B. $y(x) = 2e^{(x^2-1)/2}$
C. $y(x) = 2e^{x^2-1}$
D. $y(x) = e^{x^2-1}$

Direction fields

Direction fields

Here we focus on first-order differential equations of the form

Consider a point (x_0, y_0) on the xy-plane and let y_s be the solution to the equation with $y_s(x_0) = y_0$.

-plane that passes through the point (x_0, y_0) .

y' = f(x, y).

- Geometrically, we are considering the solution whose graph is a curve on the xy
- We do not assume that we know an expression for $y_s(x)$ only that it exists.

Even though we may not know the shape of the graph of $y_s(x)$ we do know that at the point $(x_0, y_0 = y_s(x_0))$ its derivative is given by

$$y'_s(x_0) = f(x_0, y_s(x_0)) = f(x_0, y_0).$$

Therefore, the graph of the solution that passes through a point (x_0, y_0) must have slope $f(x_0, y_0)$ at that point.

y' = f(x, y).

plane.

From this geometric point of view, solving the IVP $y' = f(x, y), y(x_0) = y_0$ each point is given by the direction field.

Then we can consider each point on the xy-plane and draw the corresponding slope at that point. This is the **direction field** corresponding to the equation

- In practice, we cannot do this for all points but only for a subset of points on the
- means to find the curve $y_s(x)$ that passes through (x_0, y_0) and that its slope at

The plot at the right shows the direction field for the equation

$$y' = x^2 - y.$$

The red curves represent solutions to the same equation with different initial condition $y(x_0) = y_0$.

X

The direction field plot at the right corresponds to which of the following differential equations?

A.
$$y' = xy$$

B. $y' = y$
C. $y' = x^2 y$
D. $y' = \frac{y}{x}$

Numerical approximation

Approximate solutions

the solution to the IVP with $y(x_0) = y_0$ in the interval $[x_0, x_1]$.

steps an approximate value y_k at $x_0 + kh$. We stop this procedure when $x_0 + kh = x_1$.

The question now is how to define the approximation for each step?

- Consider the equation y' = f(x, y). We want to compute an approximation to
- The main idea to compute an approximation is to choose a small step-size h and then find an approximate value y_1 of the solution at $x_0 + h$. Then we can repeat this process and compute an approximate value y_2 at $x_0 + 2h$ and after k

Exploration

Let's define the problem as follows. Suppose that y(x) is the solution of y' = f(x, y)that satisfies $y(x_0) = y_0$. What is the easiest approximation to $y(x_0 + h)$ that you can come up with?

Implement this approximation in Mathematica for the equation y' = xy with $x_0 = 1, y_0 = 1, h = 0.01$ as follows.

1. Define a function step[$\{x0_, y0_\}$] that takes as input a list with the values of x_0 and y_0 and returns a list with the values of $x_1 = x_0 + h$ and the approximation y_1 .

2. Then use Mathematica's function Nest (check its documentation!) to compute the approximation y_{100} at $x_{100} = x_0 + 100h = 2$. What value do you find?

Euler's method

- Euler's method is based on the Taylor expansion $y(x_0 + h) \cong y(x_0) + hy'(x_0) = y_0 + hf(x_0, y_0)$
- and defines the approximation y_1 as

 $y_1 = y_0 + hf(x_0, y_0).$

- using Euler's method.
- f[x0, y0] := x0 y0
- step[{x0, y0}] := {x0 + 0.01, y0 + 0.01 f[x0, y0]}
- $\{x100, y100\} = Nest[step, \{1, 1\}, 100]$

The approximate result is $y_{100} = 4.40848$ while the exact value is $y(2) = e^{3/2} = 4.48169...$

The following code will compute an approximation to the exploration problem

Comparison

At the right you can see a plot of the exact solution (red) given by

$$y(x) = e^{(x^2 - 1)/2}$$

and the approximation (blue points) obtained using Euler's method, the function NestList and the plotting function ListPlot.

