Lecture 5: Applications; Substitutions

MATH 303 ODE and Dynamical Systems

Population Dynamics

Exponential growth

The first, rather naïve, population model assumes that the rate of increase of the population is proportional to the population level. This is described by the **differential equation**

$$\frac{dP}{dt} = kP.$$

We have seen that the general solution to this equation is

$$P = Ae^{kt}$$

where A is an arbitrary constant. Usually, we need to predict the population at time t, if we know the population P_0 at t=0. Then the **initial value problem** $P(0)=P_0$ gives $A=P_0$ and the solution is

$$P = P_0 e^{kt}$$
.

Logistic model

The logistic population model was proposed by Pierre-François Verhulst around 1840. It tries to take into account that in a specific environment the population cannot grow without bound but there is a maximal population that can be supported by the environment, the **carrying capacity** M.

Verhulst came up with a model described by the differential equation

$$\frac{dP}{dt} = kP\left(1 - \frac{P}{M}\right).$$

We will solve this equation in a moment but before doing that let's see some of the properties of the solutions. The solutions of the equation P' = kP(1 - P/M) have the following properties:

- A. P=0 and P=M are solutions. Such solutions that are constant in time are called **equilibrium solutions**.
- B. When 0 < P < M the solution increases with time (since P' > 0).
- C. When P > M the solution decreases with time (since P' < 0).

To solve the logistic equation we start with a simplifying substitution. Define

$$x = \frac{P}{M}.$$

Then

$$\frac{dx}{dt} = \frac{1}{M} \frac{dP}{dt} = k \frac{P}{M} \left(1 - \frac{P}{M} \right) = kx(1 - x).$$

The equation for x is a separable equation which can be written as

$$\frac{dx}{x(1-x)} = k \, dt \, .$$

The integral at the left hand side can be done using partial fractions as

$$\int \frac{dx}{x(1-x)} = \int \frac{dx}{x} - \int \frac{dx}{x-1} = \ln|x| - \ln|x-1| = \ln\left|\frac{x}{x-1}\right|.$$

Therefore,
$$\ln \left| \frac{x}{x-1} \right| = kt + c$$
 and from here $\frac{x}{x-1} = (\pm e^c) e^{kt} = Ae^{kt}$,

where to allow for the solution x=0 we have replaced $\pm e^c$ by $A \in \mathbb{R}$.

Then, solving for x gives the solution

$$x = \frac{A}{A - e^{-kt}} \quad (*).$$

Recall that to solve the equation we divided by x(x-1). The solution x=0 is expressed by setting A=0. However, the solution x=1 formally corresponds to $A=\infty$ and it is not included in the last expression. Therefore, we can say that the general solution is the solution (*) together with x=1.

Consider now the IVP $x(0) = x_0$. We have for t = 0 the equation $x_0 = \frac{A}{A-1}$ which gives

$$A = \frac{x_0}{x_0 - 1}.$$

Substituting back into the solution (*), and multiplying numerator and denominator by $x_0 - 1$, we find

$$x = \frac{x_0}{x_0 - (x_0 - 1)e^{-kt}} \quad (\dagger).$$

Note that we do not need to separately consider the solution x = 1 since for $x_0 = 1$ we get x = 1.

This means that the solution (\dagger) to the IVP can also be considered as the general solution if x_0 is considered as an arbitrary constant.

Translating this solution back in terms of P we have

$$P = Mx = \frac{Mx_0}{x_0 - (x_0 - 1)e^{-kt}} = \frac{M(Mx_0)}{Mx_0 - (Mx_0 - M)e^{-kt}}$$

and finally

$$P = \frac{MP_0}{P_0 - (P_0 - M)e^{-kt}}.$$

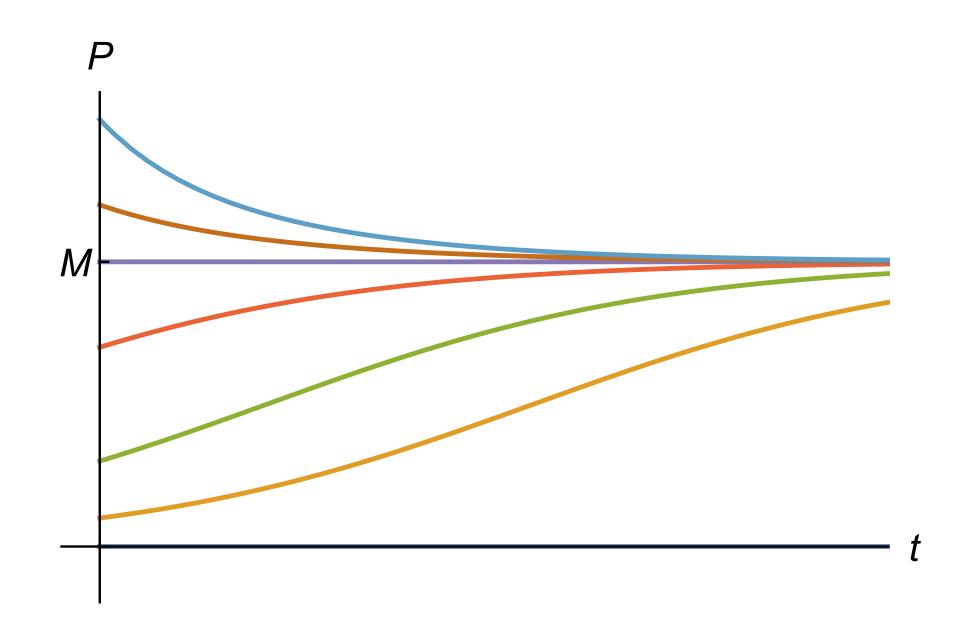
Note that as $t \to \infty$ we have $P \to M$.

Moreover, for $P_0=0$ we find P=0, and for $P_0=M$ we find P=M.

The graph of the solutions

$$P = \frac{MP_0}{P_0 - (P_0 - M)e^{-kt}}$$

for different P_0 is the following.



Constant harvesting

A variation of the previous model is to assume that the population is reduced at a constant rate (harvesting). Then the logistic model can be modified to

$$\frac{dP}{dt} = kP\left(1 - \frac{P}{M}\right) - h.$$

Then by defining again x = P/M we get

$$\frac{dx}{dt} = kx(1-x) - a,$$

where a = h/M.

This problem can be solved using the same methods used for the logistic model without harvesting (a=0) but one should be careful that for a>k/4 the expression kx(1-x)-a has no real roots. We will later revisit this model from the point of view of dynamical systems.

Cooling and Heating of Buildings

Newton's law of cooling

Temperature inside building: T(t)

Outside temperature: M(t)

Additional heating or cooling factors (e.g., central heating, air conditioning, etc.) induce a rate of change of the temperature T(t) given by a function F(t).

Rate of change of the temperature inside the building:

$$\frac{dT}{dt} = k(M - T) + F.$$

The equation

$$T' = k(M - T) + F.$$

can be written as

$$T' = -kT + (kM + F).$$

This is a linear equation with standard form

$$T' + kT = kM + F$$
.

The integrating factor is $\mu=e^{kt}$ and multiplying both sides by it we get

$$(e^{kt}T)' = e^{kt}(kM + F).$$

Then the solution is

$$T = e^{-kt} \left(c + \int e^{kt} (kM + F) dt \right).$$

Initial Value Problem

Another way to write the solution

$$T(t) = e^{-kt} \left(c + \int e^{kt} (kM(t) + F(t)) dt \right),$$

is in the form

$$T(t) = e^{-kt} \left(c + \int_{t_0}^t e^{ks} (kM(s) + F(s)) ds \right).$$

Consider now the IVP $T(t_0) = T_0$. Then we have

$$T_0 = T(t_0) = e^{-kt_0} \left(c + \int_{t_0}^{t_0} e^{ks} (kM(s) + F(s)) \, ds \right) = ce^{-kt_0},$$

giving $c = e^{kt_0}T_0$. Therefore, the solution to the given IVP is

$$T(t) = T_0 e^{-k(t-t_0)} + \int_{t_0}^t e^{k(s-t)} (kM(s) + F(s)) ds.$$

Constant M, F

If we assume that M, F are constant then we find

$$T = ce^{-kt} + M + \frac{F}{k}.$$

In this case, we can also solve the equation T' = k(M - T) + F without using an integrating factor. If we make the substitution

$$D = T - M - \frac{F}{k}$$

we get

$$D' = T' = -k\left(T - M - \frac{F}{k}\right) = -kD.$$

with solution $D = ce^{-kt}$ so that $T = ce^{-kt} + M + F/k$.

Substitutions

Poll

Which of the following equations is obtained by making the substitution u=1/y to the equation

$$y' - 5y = xy^2.$$

Select the correct answer at pollev.com/ke1.

A.
$$u' - 5u = x$$

B.
$$u' + 5xu = x^2$$

C.
$$u' + 5u = -x$$

D.
$$u' + 5u/x = x$$

Bernoulli Equation

Exploration

The Bernoulli equation has the form

$$\frac{dy}{dx} + P(x)y = Q(x)y^n,$$

where n is a real number and P,Q are continuous functions in an interval $I\subseteq\mathbb{R}$.

This is similar to a linear equation, except for the y^n term at the right hand side. The idea here is to make a substitution $u = y^a$ for an appropriately chosen a so that the transformed equation for u will be a linear equation.

Determine a and give the differential equation satisfied by u.

Solution

We have $u = y^a$ so

$$\frac{du}{dx} = ay^{a-1}\frac{dy}{dx} = ay^{a-1}\left(-Py + Qy^n\right) = -aPy^a + aQy^{n+a-1}.$$

Expressing y^a in terms of u we find

$$\frac{du}{dx} = -aPu + aQy^{n+a-1}.$$

This is again almost a linear equation except for the term y^{n+a-1} . However, now we can control a so let's choose a=1-n so that $y^{n+a-1}=1$.

Then we find that in terms of u we have the linear equation

$$\frac{du}{dx} + aPu = aQ.$$