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Existence and Uniqueness Theorem

Theorem. Suppose that  is continuous on a rectangle 
 and satisfies 

the Lipschitz condition


 


for all  and some . 


Then there exists  such that the initial value problem 
 with  has a unique solution  defined 

for  in the interval .

f(x, y)
R = [x0 − a, x0 + a] × [y0 − b, y0 + b] ⊆ ℝ2

| f(x, y1) − f(x, y2) | ≤ K |y1 − y2 |

(x, y1), (x, y2) ∈ R K > 0

δ > 0
y′￼ = f(x, y) y(x0) = y0 y(x)

x [x0 − δ, x0 + δ]

(x0, y0)

x0 + ax0 − a
y0 − b

y0 + b



Remarks

The statement in the Textbook differs from the statement here in two ways.


First, it considers a rectangle  where  is not necessarily centered in . 
However, the first step in the proof is to find a smaller rectangle  such that 

.


Second, instead of using a Lipschitz condition, it assumes continuity of  in 
. However, if  is continuous on the closed rectangle , then it must be 

bounded, i.e.,  for some . But then one can show that  must 
satisfy the Lipschitz condition of the Theorem stated here.

R (x0, y0) R
R′￼

(x0, y0) ∈ R′￼

∂f/∂y
R ∂f/∂y R

|∂f/∂y | ≤ L L > 0 f



Poll

Consider the initial value problem  with . Are the conditions 
of the Existence and Uniqueness Theorem satisfied in ?


A. Yes


B. No, the continuity condition fails


C. No, the Lipschitz condition fails


D. No, both the continuity and the Lipschitz conditions fail

y′￼ = |y |1/2 y(1) = 0
R = [0,2] × [−1,1]



Answer

No. The condition that fails here is the Lipschitz condition. 


To see this let  and . Then the Lipschitz condition implies that
for some  which is the same for all .


The last inequality becomes . However, this cannot be satisfied for all 

 since for any choice of  we can find  with .

y1 = y > 0 y2 = 0
|y1/2 − 0 | ≤ K |y − 0 | K > 0 y ∈ (0,1]

y ≥
1

K2

y ∈ (0,1] K y ∈ (0,1] y <
1

K2



Poll

Consider the initial value problem  with . Are the conditions of 
the Existence and Uniqueness Theorem satisfied in ?


A. Yes


B. No, the continuity condition fails


C. No, the Lipschitz condition fails


D. No, both the continuity and the Lipschitz conditions fail

y′￼ = y2 y(0) = 1
R = [−1,1] × [0,2]



Initial value problems as fixed 
point problems



Integral form of initial value problems

We consider the initial value problem  with . If  is a solution then we 
have


.


Integrating both sides from  to some arbitrary  we find


.


The integral at the left hand side gives


.

y′￼ = f(x, y) y(x0) = y0 y(x)

y′￼(x) = f(x, y(x))

x0 x

∫
x

x0

y′￼(s) ds = ∫
x

x0

f(s, y(s)) ds

y(x) − y(x0) = y(x) − y0 = ∫
x

x0

f(s, y(s)) ds



Therefore, we get


.


The equation that we arrived at is equivalent to the initial value problem but is written 
in an integral form.


Another way to write this integral equation is by introducing an operator , that is, an 
object which takes as input a function and returns a new function. In our case, the 
operator  is defined by the following relation:


.


The way to read this relation is that given the function  we define a new function that 
we denote by  and its value at  is given by the relation above.

y(x) = y0 + ∫
x

x0

f(s, y(s)) ds

T

T

T[g](x) = y0 + ∫
x

x0

f(s, g(s)) ds

g
T[g] x



Fixed point problem

Comparing the integral equation  and the definition 

 we see that the right hand side of the integral equation is 

. Therefore, the integral equation can be written 


 


which implies that the function  equals the function , i.e., 


Such a function  is called a fixed point of the operator .


y(x) = y0 + ∫
x

x0

f(s, y(s)) ds

T[g](x) = y0 + ∫
x

x0

f(s, g(s)) ds

T[y](x)

y(x) = T[y](x)

T[y] y T[y] = y .

y T



It may appear that until now we have made no actual progress. We have just 
restated the original initial value problem as the problem of finding a fixed point 
of the operator . 


However, we have actually made huge progress. 


The reason is that fixed point problems are some of the best studied problems 
in Mathematics and there is a huge amount of theoretical results related to such 
problems.


In general, translating a problem to the form of a fixed point problem opens the 
door to using the whole theory associated to fixed point problems.

T



Metric spaces and contractions



Contractions
A very powerful result for fixed point problems is the Banach fixed point theorem. The 
theorem applies to fixed points of functions (or operators) called contractions. We give 
the basic definitions. 


Assume that we have a space  where the distance between two points  in  is 
denoted by . The distance should satisfy the following properties for all 

:


1. ;  if and only if .


2. .


3.  (triangle inequality).


Such a space  is called a metric space.


X g, h X
d(g, h)

g, h, k ∈ X

d(g, h) ≥ 0 d(g, h) = 0 g = h

d(g, h) = d(h, g)

d(g, h) ≤ d(g, k) + d(k, h)

(X, d)



Definition. A function (or operator)  is called a contraction if there is a 
constant  such that for all  we have


 . 


In our case the space  will be the set of continuous functions defined on an interval 
 where  will be determined later.


The "points" in this space are continuous functions.


Given two continuous functions  a distance between them can be defined as


.


You can check that  satisfies the three properties in the previous slide that any 
distance function must satisfy. 

T : X → X
K < 1 g, h ∈ X

d(T[g], T[h]) ≤ K d(g, h)

X
[x0 − δ, x0 + δ] δ > 0

g, h ∈ X

d(g, h) = ∥g − h∥ = max
x∈[x0−δ,x0+δ]

|g(x) − h(x) |

d



Limits

Definition. A sequence  of points in  converges to a limit  in  if
, i.e., if .


Lemma. If a sequence in  converges to a limit then the limit is unique.


Definition. A sequence  of points in  converges is a Cauchy sequence if 
for every  there is  such that  for all .


Definition. A metric space  is complete if every Cauchy sequence 
converges to some point in .


{gn} X y X
limn→∞ d(gn, y) = 0 limn→∞ ∥gn − y∥ = 0

X

{gn} X
ε > 0 N d(gn, gm) = ∥gn − gm∥ < ε n, m ≥ N

(X, d)
X



Banach fixed point theorem

Theorem (Banach fixed point theorem). If  is a complete metric space and 
 is a contraction then  has a unique fixed point in .


Lemma. The space  of continuous functions defined on an interval 
 with  for all  is a complete metric space.

X
T : X → X T X

X
[x0 − δ, x0 + δ] ∥g(x) − y0∥ ≤ b g ∈ X



Sketch of the proof of the Banach fixed point theorem

Start with an arbitrary point  and define recursively the sequence  by .


Then one can show that for  we have


.


Since  we have that  as . This means that  can be made 
arbitrarily small by choosing  large enough. Therefore, the sequence  is Cauchy and, 
since  is complete, it has a limit .


Moreover, it turns out that  is a continuous operator on , therefore . However, 
we must have  and since limits are unique we conclude that . This shows 
that  is a fixed point, i.e., the equation  has a solution.

g0 ∈ X {gn} gn+1 = T[gn]

m > n

∥gn − gm∥ <
Kn

1 − K
∥g1 − g0∥

0 ≤ K < 1 Kn → 0 n → ∞ ∥gn − gm∥
n {gn}

X y ∈ X

T X T[gn] → T[y]
T[gn] → y T[y] = y

y ∈ X T[y] = y



For the uniqueness, suppose that there are two fixed points . Then


.


Since  this is a contradiction unless  which implies 

y1, y2

∥y1 − y2∥ = ∥T[y1] − T[y2]∥ ≤ K∥y1 − y2∥

K < 1 ∥y1 − y2∥ = 0 y1 = y2 .



Sketch of the Proof of the 
Existence and Uniqueness 
Theorem



Existence and Uniqueness Theorem

Theorem. Suppose that  is continuous on a rectangle 
 and satisfies 

the Lipschitz condition


 


for all  and some . 


Then there exists  such that the initial value problem 
 with  has a unique solution  defined 

for  in the interval .

f(x, y)
R = [x0 − a, x0 + a] × [y0 − b, y0 + b] ⊆ ℝ2

| f(x, y1) − f(x, y2) | ≤ K |y1 − y2 |

(x, y1), (x, y2) ∈ R K > 0

δ > 0
y′￼ = f(x, y) y(x0) = y0 y(x)

x [x0 − δ, x0 + δ]

(x0, y0)

x0 + ax0 − a
y0 − b

y0 + b



Complete metric space and contraction

We will show that the operator  is a contraction when restricted to the complete 
metric space  of continuous functions defined on an interval  and 

 for all . Here  is chosen so that


,


where  is the Lipschitz constant and  is the maximal value of  in the 
rectangle .


We will show two things. First, that  maps  into . Second, that  is a 
contraction on .

T
X [x0 − δ, x0 + δ]

∥g(x) − y0∥ ≤ b g ∈ X δ

0 < δ < min {a,
b
M

,
1
K }

K M f(x, y)
R

T X X T
X



 maps  into T X X
Suppose that , that is,  is continuous and . Clearly,


 


is continuous as the integral of a continuous function. Moreover,


.


We have


.


Therefore, .

g ∈ X g ∥g − y0∥ ≤ b

T[g](x) = y0 + ∫
x

x0

f(s, g(s)) ds

∥T[g] − y0∥ = max
x∈[x0−δ,x0+δ]

T[g](x) − y0

|T[g](x) − y0 | = ∫
x

x0

f(s, g(s)) ds ≤ ∫
x

x0

| f(s, g(s)) | ds ≤ M |x − x0 | ≤ Mδ ≤ M
b
M

= b

∥T[g] − y0∥ ≤ b



 is a contraction on T X
We have that 





Using the Lipschitz property we get 





Therefore,





where we note that  so that  is a contraction.

|T[g](x) − T[h](x) | = ∫
x

x0

f(s, g(s))ds − ∫
x

x0

f(s, h(s))ds ≤ ∫
x

x0

| f(s, g(s)) − f(s, h(s)) |ds

|T[g](x) − T[h](x) | ≤ ∫
x

x0

K |g(s) − h(s) |ds ≤ ∫
x

x0

K∥g − h∥ds = K∥g − h∥|x − x0 | ≤ Kδ∥g − h∥

∥T[g] − T[h]∥ = max
x∈[x0−δ,x0+δ]

|T[g](x) − T[h](x) | ≤ Kδ∥g − h∥

Kδ < 1 T



Proof of the existence and uniqueness theorem

Recall that we work in the space  of continuous functions defined on an 
interval  with  for all  which is a complete 
metric space.


Moreover, we have shown that  is a contraction on . 


Therefore, applying the Banach fixed point theorem we conclude that there 
must be a unique fixed point  in .

X
[x0 − δ, x0 + δ] ∥g(x) − y0∥ ≤ b g ∈ X

T : X → X X

T[y] = y X



Picard iteration



Picard iteration
In the proof of the Banach fixed point theorem we saw that the fixed point is the limit of the sequence  
defined by .


The procedure of successively applying the operator  where


 


to an initial function in  is called Picard iteration. We define  (constant). Then 


,


, ...


The limit of this iterative procedure is the solution  of the initial value problem.

{gn}
gn+1 = T[gn]

T

T[g](x) = y0 + ∫
x

x0

f(s, g(s)) ds

X g0(x) = y0

g1(x) = T[g0](x) = y0 + ∫
x

x0

f(s, y0)ds

g2(x) = T[g1](x) = y0 + ∫
x

x0

f(s, g1(s))ds

y(x)


