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Basic definitions




First-order differential equations

We consider first-order differential equations of the form

dx
— = f(x),

dt
that is, where the right hand side does not depend explicitly on the independent
variable . Such equations are separable and can in principle be solved as

J’ dx
— =1 4 C.
J(x)

However, it turns out that we can understand many things about the properties of the

solutions without explicitly computing x(#). Actually, even if we can compute x(?) the
solution is often so algebraically complicated that it is difficult to understand its

properties by looking at the algebraic expression.



Autonomous equations

Definition. A differential equation where the right hand side does not explicitly
depend on ¢, i.e., of the form x" = f(x), is called autonomous.

We will be assuming that f satisfies the conditions of the Existence and Uniqueness
Theorem (that is, f is continuous and Lipschitz).

Lemma. Let x,(?) be the solution of the initial value problem x" = f(x) with x(0) = x,.
Then the solution to the initial value problem x" = f(x) with x(#)) = X, is

X(1) = x;(t — 1y)-

Remark. The essence of this result is that to find all solutions of the equation
x" = f(x) it is sufficient to consider IVP with 7, = (. Solutions to all other IVP can be

obtained by shifting time. This is not true for non-autonomous equations x’ = f(z, x).



Proof. We have x,(f)) = x;(#y — ty) = x;(0) = X, so x,(¢) indeed satisfies the
given initial condition.

Moreover, x,(t) satisfies the given differential equation since
d(t — 1)

” = x1(t — 1y) = f(x;(t — 1)) = f(x,(2))

d
X5(1) = E[ﬁ(t — 1y)] = x;(t — 1)



Dynamical systems



One-dimensional dynamical systems

Definition. A (smooth) dynamical system is a continuously differentiable
function ¢ : R X R — R that satisfies:

1. 9(0, xy) = x for all x5 € R;

2. p(t + 5,x5) = @1, P(s,xy)) = P(s, P(t, %)) for all 1, 5, x5 € R.

Remark. The idea here is that we have a system which at 1 = 0 is at state x;,
and the function ¢(z, x;) tells us what is the state of the system at time . The
function @ is often called the flow of the system.




Example

Consider the IVP x" = kx with x(0) = x,. We have seen that the solution is

x = xe™

Define (2, xy) = x5e"’. Then we can check that ¢ satisfies the two properties of
a flow.

1. 9(0, xy) = xoeo = X
2. @(t, P(s,xy)) = P(t, xoeks) = xoeksekt — xoek(t“) = (1 + s, Xp).

Therefore, the equation x” = kx gives rise to a dynamical system.



From differential equations to dynamical systems

Lemma. Consider the differential equation x’ = f(x) and define a function @ by

¢(t9 XO) — X(t),

where x(7) is the solution to the IVP x" = f(x) with x(0) = x,. Then ¢ is the flow
of a dynamical system.

Proof. For property (1) we check ¢(0,x,) = x(0) = x

For property (2), we want to show that

P(s + 1, xy) = P(s, P2, xp)).



Let x (7) be the solution to the IVP with x_(0) = x,. Then we want to show that

x,(s+1) = ¢(s,x,(1)).

Fix  and let x; = x_(#). Then notice that x () also satisfies the IVP x (7)) = x;.
The relation x (s + 1) = ¢(s, x (¢)) that we want to prove can be written as
x (s + 1) = x,(s) where x,(¢) is the solution to the IVP with x,(0) = x;.

Then we have x (7) = x,(7 — ) (from the Lemma on the "Autonomous
Equations” slide) so for 7 = 7 + 5 we get

X,(t+s)=x,(t+s5s—1) = x,(5).



From dynamical systems to differential equations

Lemma. Given a smooth dynamical system ¢ define

_%
fx) = —=(0.),

Then ¢(t, x,) is a solution to the IVP x" = f(x) with x(0) = Xx,.

Proof. We have ¢(0,x,) = X, therefore the initial condition is satisfied. We also have

d _ 0 @+ hoxg) — P2, Xp)
EW(L Xo)] = E(t’ Xp) = }ll_f)% ,
h, ¢(t, — @(0,0(t, 0
= lim Ly ; PR a—(’:(o,qb(t,xo)) = fg(t, %))

so we conclude that the differential equation is also satisfied.



Example

Consider the flow ¢(, x,) = x5e"’. Then
0
or
This shows that the differential equation corresponding to this dynamical system is

x' = f(x).
X0

For another example, consider ¢ (¢, x,) = —— . Then
Xg— (xg — e

- 0¢ o x [k(x — 1)e™]
T = O = = e -

J(x) =

(0,x) = kxe*] o = kx.

\ = kx(1 = x).



Phase line




Equilibria

Definition. A point x, € R is called an equilibrium of x" = f(x) if f(x,) = O.

In this case, the constant function x(#) = x, is the solution to the IVP x" = f(x)
with x(0) = x.,.

Outside equilibria we have either f(x) > 0 or f(x) < 0. In the first case, a

solution that passes through the point x increases with time, while in the second
case It decreases with time.



Phase line

For systems of the form x" = f(x) we can represent their dynamics on the
phase line.

The phase line is the real axis where we have marked the positions of the
equilibria and whether a solution increases or decreases with time by drawing
arrows indicating the direction of the solutions as time increases.



Example

Consider the equation x’ = x. Then there is a single equilibrium x = 0 and the

phase line (with the graph of f(x) = x superimposed in blue) is shown below.

The equilibrium in this case is unstable (there are nearby initial conditions that
move away from the equilibrium).




Example

Consider the equation x’ = — x. Then there is a single equilibrium x = 0 and the

phase line (with the graph of f(x) = — x superimposed in blue) is shown below.
The equilibrium in this case is asymptotically stable (there is a neighborhood of
the equilibrium such that all initial conditions in this neighborhood move toward

the equilibrium).



Example

Consider the logistic equation x’ = x(1 — x) where x > 0. Then there are two
equilibria x = 0 and x = 1 and the phase line (with the graph of f(x) = x(1 — x)
for x > 0 superimposed in blue) is shown below. Here x = 0O is unstable and

x = | is asymptotically stable.



Example

Consider the equation x’ = x(1 — x?). Then there are three equilibria x = — 1,
x = 0, and x = 1 and the phase line (with the graph of f(x) = x(1 — x?)
superimposed in blue) is shown below. Here x = 0 is unstable and x = — 1,

x = 1 are asymptotically stable.



Poll

1

Consider the logistic equation with constant harvesting x’ = x(1 — x)—g.

Which of the following is the corresponding phase line?

Give your answer at pollev.com/ke1.



http://pollev.com/ke1

Stability & linearization



More about stability

From the previous examples it is evident that if as x increases f(x) changes sign
from negative to positive at the equilibrium x, then the equilibrium is unstable.

This is true if f'(x,) > 0.

If f(x) changes sign from positive to negative at the equilibrium x, then the
equilibrium is asymptotically stable. This is true if f'(x,) < 0.

Note that in the case f'(x,) = 0 we cannot directly conclude anything about
stability and we have to check how the sign of f(x) changes at x,.



Examples

x/:x2

x, =0

J(x,) =0

Unstable

x' = x>

x,=0

J(x) =0

Unstable

x'=—x°

x,=0

J(x,) =0

Asymptotically stable



Linearization

One method to understand the dynamics near an equilibrium is through linearization.
The idea here is that the dynamics near the equilibrium X, is determined by the first

terms in the Taylor expansion of f at x,. We have
x' = flx,) +f(x,) (x = x,) + O((x — x,)°) = f(x,) (x — x,) + O((x — x,)*).
Let y = X — X, represent the position relative to the equilibrium. Then
V' =x'=fx)y+00?).

The linearization at x, involves ignoring the terms O(yz). Therefore we get the equation

y' =fix,)y.



Solutions of the linearized equation

Let A = f(x,). Then the linearized equation is y' = Ay with solution y = y,e*".

When 4 > 0 we have exponentially growing solutions. This corresponds to an
unstable equilibrium.

A

When A < 0 we have y,e* — 0 as t — oo. This corresponds to asymptotically

stable solutions.

Finally, when 4 = 0 the linearization does not make sense since the higher order
terms O(y?) in the Taylor expansion cannot be ignored.



Poll

What is the linearization of x’ = x — x° at x, =17

Give your answer at pollev.com/ke1.

Ay =y
B.y =2y
C.yy=-—y

D.y' = —2y



http://pollev.com/ke1

