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Basic definitions



First-order differential equations
We consider first-order differential equations of the form


,


that is, where the right hand side does not depend explicitly on the independent 
variable . Such equations are separable and can in principle be solved as


.


However, it turns out that we can understand many things about the properties of the 
solutions without explicitly computing . Actually, even if we can compute  the 
solution is often so algebraically complicated that it is difficult to understand its 
properties by looking at the algebraic expression. 

dx
dt

= f(x)

t

∫
dx
f(x)

= t + c

x(t) x(t)



Autonomous equations
Definition. A differential equation where the right hand side does not explicitly 
depend on , i.e., of the form , is called autonomous.


We will be assuming that  satisfies the conditions of the Existence and Uniqueness 
Theorem (that is,  is continuous and Lipschitz).


Lemma. Let  be the solution of the initial value problem  with . 
Then the solution to the initial value problem  with  is 

.


Remark. The essence of this result is that to find all solutions of the equation 
 it is sufficient to consider IVP with . Solutions to all other IVP can be 

obtained by shifting time. This is not true for non-autonomous equations .

t x′￼ = f(x)

f
f

x1(t) x′￼ = f(x) x(0) = x0
x′￼ = f(x) x(t0) = x0

x2(t) = x1(t − t0)

x′￼ = f(x) t0 = 0
x′￼ = f(t, x)



Proof. We have  so  indeed satisfies the 
given initial condition. 


Moreover,  satisfies the given differential equation since


x2(t0) = x1(t0 − t0) = x1(0) = x0 x2(t)

x2(t)

x′￼2(t) =
d
dt

[x1(t − t0)] = x′￼1(t − t0)
d(t − t0)

dt
= x′￼1(t − t0) = f(x1(t − t0)) = f(x2(t))



Dynamical systems



One-dimensional dynamical systems

Definition. A (smooth) dynamical system is a continuously differentiable 
function  that satisfies:


1.  for all ;


2.  for all .


Remark. The idea here is that we have a system which at  is at state  
and the function  tells us what is the state of the system at time . The 
function  is often called the flow of the system.

ϕ : ℝ × ℝ → ℝ

ϕ(0, x0) = x0 x0 ∈ ℝ

ϕ(t + s, x0) = ϕ(t, ϕ(s, x0)) = ϕ(s, ϕ(t, x0)) t, s, x0 ∈ ℝ

t = 0 x0
ϕ(t, x0) t

ϕ



Example

Consider the IVP  with . We have seen that the solution is 
.


Define . Then we can check that  satisfies the two properties of 
a flow.


1. ;


2. .


Therefore, the equation  gives rise to a dynamical system.

x′￼ = kx x(0) = x0
x = x0ekt

ϕ(t, x0) = x0ekt ϕ

ϕ(0, x0) = x0e0 = x0

ϕ(t, ϕ(s, x0)) = ϕ(t, x0eks) = x0eksekt = x0ek(t+s) = ϕ(t + s, x0)

x′￼ = kx



From differential equations to dynamical systems

Lemma. Consider the differential equation  and define a function  by


,


where  is the solution to the IVP  with . Then  is the flow 
of a dynamical system.


Proof. For property (1) we check . 


For property (2), we want to show that


.

x′￼ = f(x) ϕ

ϕ(t, x0) = x(t)

x(t) x′￼ = f(x) x(0) = x0 ϕ

ϕ(0,x0) = x(0) = x0

ϕ(s + t, x0) = ϕ(s, ϕ(t, x0))



Let  be the solution to the IVP with . Then we want to show that


.


Fix  and let . Then notice that  also satisfies the IVP . 
The relation  that we want to prove can be written as 

 where  is the solution to the IVP with . 


Then we have  (from the Lemma on the "Autonomous 
Equations" slide) so for  we get


.

xa(t) xa(0) = x0

xa(s + t) = ϕ(s, xa(t))

t x1 = xa(t) xa(t) xa(t) = x1
xa(s + t) = ϕ(s, xa(t))

xa(s + t) = xb(s) xb(t) xb(0) = x1

xa(τ) = xb(τ − t)
τ = t + s

xa(t + s) = xb(t + s − t) = xb(s)



From dynamical systems to differential equations
Lemma. Given a smooth dynamical system  define 


.


Then  is a solution to the IVP  with .


Proof. We have , therefore the initial condition is satisfied. We also have


      


                          ,


so we conclude that the differential equation is also satisfied.

ϕ

f(x) =
∂ϕ
∂t

(0,x)

ϕ(t, x0) x′￼ = f(x) x(0) = x0

ϕ(0,x0) = x0

d
dt

[ϕ(t, x0)] =
∂ϕ
∂t

(t, x0) = lim
h→0

ϕ(t + h, x0) − ϕ(t, x0)
h

= lim
h→0

ϕ(h, ϕ(t, x0)) − ϕ(0,ϕ(t, x0))
h

=
∂ϕ
∂t

(0,ϕ(t, x0)) = f(ϕ(t, x0))



Example

Consider the flow . Then


.


This shows that the differential equation corresponding to this dynamical system is 
.


For another example, consider . Then


.

ϕ(t, x0) = x0ekt

f(x) =
∂ϕ
∂t

(0,x) = kxekt |t=0 = kx

x′￼ = f(x)

ϕ(t, x0) =
x0

x0 − (x0 − 1)e−kt

f(x) =
∂ϕ
∂t

(0,x) = −
x [k(x − 1)e−kt]

(x − (x − 1)e−kt)2
|t=0 = kx(1 − x)



Phase line



Equilibria

Definition. A point  is called an equilibrium of  if .


In this case, the constant function  is the solution to the IVP  
with .


Outside equilibria we have either  or . In the first case, a 
solution that passes through the point  increases with time, while in the second 
case it decreases with time.

xe ∈ ℝ x′￼ = f(x) f(xe) = 0

x(t) = xe x′￼ = f(x)
x(0) = xe

f(x) > 0 f(x) < 0
x



Phase line

For systems of the form  we can represent their dynamics on the 
phase line. 


The phase line is the real axis where we have marked the positions of the 
equilibria and whether a solution increases or decreases with time by drawing  
arrows indicating the direction of the solutions as time increases.

x′￼ = f(x)



Example

Consider the equation . Then there is a single equilibrium  and the 
phase line (with the graph of  superimposed in blue) is shown below. 
The equilibrium in this case is unstable (there are nearby initial conditions that 
move away from the equilibrium).

x′￼ = x x = 0
f(x) = x



Example

Consider the equation . Then there is a single equilibrium  and the 
phase line (with the graph of  superimposed in blue) is shown below. 
The equilibrium in this case is asymptotically stable (there is a neighborhood of 
the equilibrium such that all initial conditions in this neighborhood move toward 
the equilibrium).

x′￼ = − x x = 0
f(x) = − x



Example

Consider the logistic equation  where . Then there are two 
equilibria  and  and the phase line (with the graph of  
for  superimposed in blue) is shown below. Here  is unstable and 

 is asymptotically stable.

x′￼ = x(1 − x) x ≥ 0
x = 0 x = 1 f(x) = x(1 − x)

x ≥ 0 x = 0
x = 1



Example

Consider the equation . Then there are three equilibria , 
, and  and the phase line (with the graph of 

superimposed in blue) is shown below. Here  is unstable and , 
 are asymptotically stable.

x′￼ = x(1 − x2) x = − 1
x = 0 x = 1 f(x) = x(1 − x2)

x = 0 x = − 1
x = 1



Poll

Consider the logistic equation with constant harvesting . 
Which of the following is the corresponding phase line? 


Give your answer at pollev.com/ke1.


A. B. C. D. 

x′￼ = x(1 − x)− 1
8

http://pollev.com/ke1


Stability & linearization



More about stability

From the previous examples it is evident that if as  increases  changes sign 
from negative to positive at the equilibrium  then the equilibrium is unstable. 
This is true if .


If  changes sign from positive to negative at the equilibrium  then the 
equilibrium is asymptotically stable. This is true if .


Note that in the case  we cannot directly conclude anything about 
stability and we have to check how the sign of  changes at .

x f(x)
xe

f′￼(xe) > 0

f(x) xe
f′￼(xe) < 0

f′￼(xe) = 0
f(x) xe



Examples



 


 

Unstable

x′￼ = x2

xe = 0
f′￼(xe) = 0



 


 

Unstable

x′￼ = x3

xe = 0
f′￼(xe) = 0

 

 


 

Asymptotically stable

x′￼ = − x3

xe = 0
f′￼(xe) = 0



Linearization

One method to understand the dynamics near an equilibrium is through linearization. 
The idea here is that the dynamics near the equilibrium  is determined by the first 
terms in the Taylor expansion of  at .  We have


.


Let  represent the position relative to the equilibrium. Then


. 


The linearization at  involves ignoring the terms . Therefore we get the equation


.

xe
f xe

x′￼ = f(xe) + f′￼(xe) (x − xe) + O((x − xe)2) = f′￼(xe) (x − xe) + O((x − xe)2)

y = x − xe

y′￼ = x′￼ = f′￼(xe) y + O(y2)

xe O(y2)

y′￼ = f′￼(xe) y



Solutions of the linearized equation

Let . Then the linearized equation is  with solution .


When  we have exponentially growing solutions. This corresponds to an 
unstable equilibrium.


When  we have  as . This corresponds to asymptotically 
stable solutions.


Finally, when  the linearization does not make sense since the higher order 
terms  in the Taylor expansion cannot be ignored.


λ = f′￼(xe) y′￼ = λ y y = y0eλt

λ > 0

λ < 0 y0eλt → 0 t → ∞

λ = 0
O(y2)



Poll

What is the linearization of  at ? 


Give your answer at pollev.com/ke1.


A. 


B. 


C. 


D. 

x′￼ = x − x3 xe = 1

y′￼ = y

y′￼ = 2y

y′￼ = − y

y′￼ = − 2y

http://pollev.com/ke1

