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Discrete dynamical systems



Discrete dynamics

A function p : IR — IR defines a discrete dynamical system through repeated applications

of p. That is, if x, € R is an initial condition (or initial point), then for k = 0,1,2,3,... we
define

X = pX_y) = Pk(x()),

where pk = popo - op(ktimes). If p is invertible then we define x, for negative integers
k by

X = p—l(ka) = pk(x()),

where for k < O we have p* = p~lop~lo ... o p~! (| k| times).



Example

Let p(x) = 2x and x5 = 1.
Thenx; =2xy =2, X, = 2x; = 2%, X3 =2x, = 2°, ..., x, = 2"fork > 0.
Moreover, p~'(x) = x/2 so we find

x_1 =xy/2 =1/2, x_, = x_;/2 = 1/2?, and in general
x, = 1/2M = 271K = 2k for k < 0.

We conclude that x;, = 2k forallk € Z.



Fixed points

As we have seen before, the dynamics of dynamical systems x’ = f(x) with
continuous time Is organized around equilibria.

For discrete dynamical systems a similar role is played by fixed points.

Definition. A point X € IR is called a fixed pointofamap p : R — R if
p(xg) = Xp-




Example

Consider the map p(x) = x+% sin x. The fixed
points of p are given by solving p(x) = x.

This gives sinx = 0, sowe havex = kr, k € Z.

You can check that p(kr) = kx.

The fixed points can also be found graphically by
considering the intersections of the graph of p(x)
with the diagonal y = x as shown at the right. X




Linearization

To understand the dynamics near a fixed point x;, we can consider the
linearization of the map p at x;;. We have

px) = p(xy) + p'(xp)(x — x) + O((x — X())z) = Xo + p'(x%p)(x — xp) + O((x — X())z)

Let y = X — X,y represent the relative position with respect to the fixed point.
Then the relative position of p(x) with respect to the equilibrium is p(x) — x,.

This allows to define a function g : |

_) _

given by q(y) — P(X() T Y) — A0-

This means g(y) = p'(xy)y + O(y?). Assuming that y is small we can neglect
terms O(y?) to get the function g(y) = 1y where 1 = (%)



Dynamics of linear maps

The dynamics of the map g(y) = Ay isy, = 1"y,.

if [A| > 1then |A]" = o0 as n — o0. This implies that the fixed point is
unstable.

If |A| < 1thenA” — 0 asn — o00. This implies that the fixed point is
asymptotically stable.

If |A| = 1 then there are examples where a fixed point is unstable (e.g., the
fixed point x = 0 of p(x) = x + x°) and examples where it is asymptotically
stable (e.g., the fixed point x = 0 of p(x) = x — x°).



Poll

Consider the map p(x) = x+% sin x. What is the linearized equation of the fixed
point x = 0? Choose the correct answer at pollev.com/ke1.

A.q(y) = <y
B. g(y) = >y
C.q(y) =y

3
D. q(y) = =7V



http://pollev.com/ke1

Poincare maps



Time-periodic hon-autonomous systems

We consider differential equations of the form

x' = f(z, %),

where f is a 27-periodic function of ¢, that is, f(1 + 2z, x) = f(t, x).

Remark. We only consider the case where the period is 27 but we could have
chosen any other 7" > () as the period.



A fundamental property

Recall that for autonomous systems x’ = f(x) we have that if x;(¢) solves the
IVP x(0) = x, then x,(¢) = x,(¢ — 1) solves the IVP x(#,) = x,. This is not true
for non-autonomous systems. However, the periodicity of f leads to a similar
result when 1y = 2kr, k € Z.

Lemma. Consider the differential equation x” = f(#, x) where

f(t + 2m, x) = f(¢, x) and let x;(¢) be the solution to the initial value problem
x(0) = Xx,. Then the solution to the initial value problem x(2kx) = xy, k € Z is
given by x,(¢) = x;(t — 2kn).



Proof. The proof is almost a copy of the corresponding proof for the
autonomous case.

We have x,(2kr) = x;(2kn — 2kr) = x;(0) = X s0 x,(7) indeed satisfies the
given initial condition.

Moreover, x,(t) satisfies the given differential equation since

(7) —i[ (t = 2km)| = x;(¢ — 2k )M
XH(1) = ~ X4 )] = X T ”

= f(t — 2km, x,(t — 2kn)) = f(t — 2km, x,(1)) = f(2, x,(1)).

= x;(¢t — 2km)



Poincare map

Consider the differential equation x" = f(¢, x) where f(t + 2z, x) = f(t, x). Then
we define a function P : R — R in the following way.

For any x, € R, let x(¢) be the solution to the initial value problem x" = f(z, x)
with x(0) = x,, and define P(xy) = x(2x).

The function P defined in this way is called the Poincaré map for the system.



Poincare map and solutions of the differential equation

Lemma. Consider the differential equation x" = f(¢, x) where f(¢ + 27, x) = f(f, x) and
the corresponding Poincaré map P. Let x(#) be the solution to the IVP x" = f(t, x) with
x(0) = x,. Then for all k € Z we have

x(2km) = PX(x,).

Proof. For k > O we use induction. By the definition of the Poincaré map, the required
relation is true for k = 1. Assume that it is true up to some k > 1. Then for kK + 1 we

have Pt (x)) = P(P"(x))) = P(x(2kn)) = P(x,).
Let x (#) be the solution to the initial value problem x_(0) = x; so that P(x;) = x (2x).

Then note that x(¢) is also the solution to the initial value problem x(2kx) = x, . But then
we know that x(7) = x (7 — 2kx) so for t = 2(k + 1)m we find x, (27) = x(2(k + 1)n).



Example

Consider the logistic equation with periodic harvesting
xX'=x(1—-x)—hxsint.

Below we see the direction field for the given equation and a few solutions. We notice that
x = 0 is still an equilibrium solution but we no longer have the equilibrium at x = 1.
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Instead of the asymptotically stable equilibrium x = 1 we see that the solutions
as f Increases come closer to a solution that appears to be periodic with period

ATt

The Poincaré map is very useful for analyzing such periodic solutions. The
reason is that if a solution is periodic with period 27 and x(0) = X, then

x(2r) = x.

Recall that x(27) = P(x,) and we conclude that periodic solutions of period

27 correspond to points x, with P(x,) = X, that is, fixed points of the
Poincaré map.



We have also numerically computed the Poincaré
map using Mathematica. This is done using the
following function definition which numerically
integrates the differential equation from the initial

condition x(0) = x, for time 7 = 2z and returns

P[h ,x0 ] := NDSolveValue]
x'[t] == x[t](1-x[t]) - h x[t] Sin[t] &&
X[0] == x0, . . .
, {t, 0, 2 Pi}] X

The graph of this function for i = 0.25 is shown at
the right (red curve). In the same plot we show the
graph of the identity function 1d(x) = x (blue line).
The intersection point of these graphs around

x = | is a fixed point of the Poincaré map and thus
corresponds to the periodic orbit.



From the numerically computed graph of the Poincaré 49

map we observe that there are two fixed points. One

at x = 0 and the other one around x & 1.12. 1.5}

The second fixed point corresponds to a periodic P(x) 1.0f
orbit of period 2z and it is asymptotically stable, since
the derivative A of the Poincaré map at x & 1.12 can
be seen in the plot to be close to 0 (actually,

A = 0.0018), thatis, |A| < 1. This means that if we 0.0
start at an initial point close to the fixed point, we will
approach the fixed point.

0.5}

This also means that the corresponding solution for
the differential equation will approach the periodic
solution and we conclude that the periodic solution is
asymptotically stable.




