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Discrete dynamical systems



Discrete dynamics

A function  defines a discrete dynamical system through repeated applications 
of . That is, if  is an initial condition (or initial point), then for  we 
define


,


where  (  times). If  is invertible then we define  for negative integers 
 by


,


where for  we have  (  times).


 

p : ℝ → ℝ
p x0 ∈ ℝ k = 0,1,2,3,…

xk = p(xk−1) = pk(x0)

pk = p ∘ p ∘ ⋯ ∘ p k p xk
k

xk = p−1(xk+1) = pk(x0)

k < 0 pk = p−1 ∘ p−1 ∘ ⋯ ∘ p−1 |k |



Example

Let  and .


Then ,  ,  , ... ,   for .


Moreover,  so we find 


,  , and in general 
 for .


We conclude that  for all .

p(x) = 2x x0 = 1

x1 = 2x0 = 2 x2 = 2x1 = 22 x3 = 2x2 = 23 xk = 2k k ≥ 0

p−1(x) = x/2

x−1 = x0/2 = 1/2 x−2 = x−1/2 = 1/22

xk = 1/2|k| = 2−|k| = 2k k < 0

xk = 2k k ∈ ℤ



Fixed points

As we have seen before, the dynamics of dynamical systems  with 
continuous time is organized around equilibria.


For discrete dynamical systems a similar role is played by fixed points.


Definition. A point  is called a fixed point of a map  if 
.

x′￼ = f(x)

x0 ∈ ℝ p : ℝ → ℝ
p(x0) = x0



Example

Consider the map . The fixed 
points of  are given by solving 


This gives , so we have .


You can check that .


The fixed points can also be found graphically by 
considering the intersections of the graph of  
with the diagonal  as shown at the right.

p(x) = x+ 3
4 sin x

p p(x) = x .

sin x = 0 x = kπ, k ∈ ℤ

p(kπ) = kπ

p(x)
y = x
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Linearization

To understand the dynamics near a fixed point  we can consider the 
linearization of the map  at . We have





Let  represent the relative position with respect to the fixed point. 
Then the relative position of  with respect to the equilibrium is . 
This allows to define a function  given by .


This means . Assuming that  is small we can neglect 
terms  to get the function  where .

x0
p x0

p(x) = p(x0) + p′￼(x0)(x − x0) + O((x − x0)2) = x0 + p′￼(x0)(x − x0) + O((x − x0)2)

y = x − x0
p(x) p(x) − x0

q : ℝ → ℝ q(y) = p(x0 + y) − x0

q(y) = p′￼(x0)y + O(y2) y
O(y2) q(y) = λy λ = p′￼(x0)



Dynamics of linear maps

The dynamics of the map  is .


If  then  as . This implies that the fixed point is 
unstable.


If  then  as . This implies that the fixed point is 
asymptotically stable.


If  then there are examples where a fixed point is unstable (e.g., the 
fixed point  of ) and examples where it is asymptotically 
stable (e.g., the fixed point  of ).

q(y) = λy yn = λny0

|λ | > 1 |λ |n → ∞ n → ∞

|λ | < 1 λn → 0 n → ∞

|λ | = 1
x = 0 p(x) = x + x3

x = 0 p(x) = x − x3



Poll

Consider the map . What is the linearized equation of the fixed 
point ? Choose the correct answer at pollev.com/ke1.


A. 


B. 


C. 


D. 

p(x) = x+ 3
4 sin x

x = 0

q(y) = 7
4 y

q(y) = 3
4 y

q(y) = y

q(y) = − 3
4 y

http://pollev.com/ke1


Poincaré maps



Time-periodic non-autonomous systems

We consider differential equations of the form


, 


where  is a -periodic function of , that is, . 


Remark. We only consider the case where the period is  but we could have 
chosen any other  as the period.


x′￼ = f(t, x)

f 2π t f(t + 2π, x) = f(t, x)

2π
T > 0



A fundamental property

Recall that for autonomous systems  we have that if  solves the 
IVP  then  solves the IVP . This is not true 
for non-autonomous systems. However, the periodicity of  leads to a similar 
result when .  


Lemma. Consider the differential equation  where 
 and let  be the solution to the initial value problem 

. Then the solution to the initial value problem  is 
given by .

x′￼ = f(x) x1(t)
x(0) = x0 x2(t) = x1(t − t0) x(t0) = x0

f
t0 = 2kπ, k ∈ ℤ

x′￼ = f(t, x)
f(t + 2π, x) = f(t, x) x1(t)
x(0) = x0 x(2kπ) = x0, k ∈ ℤ

x2(t) = x1(t − 2kπ)



Proof. The proof is almost a copy of the corresponding proof for the 
autonomous case.


We have  so  indeed satisfies the 
given initial condition. 


Moreover,  satisfies the given differential equation since





        .

x2(2kπ) = x1(2kπ − 2kπ) = x1(0) = x0 x2(t)

x2(t)

x′￼2(t) =
d
dt

[x1(t − 2kπ)] = x′￼1(t − 2kπ)
d(t − 2kπ)

dt
= x′￼1(t − 2kπ)

= f(t − 2kπ, x1(t − 2kπ)) = f(t − 2kπ, x2(t)) = f(t, x2(t))



Poincaré map

Consider the differential equation  where . Then 
we define a function  in the following way. 


For any , let  be the solution to the initial value problem  
with , and define . 


The function  defined in this way is called the Poincaré map for the system.

x′￼ = f(t, x) f(t + 2π, x) = f(t, x)
P : ℝ → ℝ

x0 ∈ ℝ x(t) x′￼ = f(t, x)
x(0) = x0 P(x0) = x(2π)

P



Poincaré map and solutions of the differential equation

Lemma. Consider the differential equation  where  and 
the corresponding Poincaré map . Let  be the solution to the IVP  with 

. Then for all  we have


.


Proof. For  we use induction. By the definition of the Poincaré map, the required 
relation is true for . Assume that it is true up to some . Then for  we 
have . 


Let  be the solution to the initial value problem  so that .


Then note that  is also the solution to the initial value problem But then 
we know that  so for  we find .

x′￼ = f(t, x) f(t + 2π, x) = f(t, x)
P x(t) x′￼ = f(t, x)

x(0) = x0 k ∈ ℤ

x(2kπ) = Pk(x0)

k ≥ 0
k = 1 k ≥ 1 k + 1

Pk+1(x0) = P(Pk(x0)) = P(x(2kπ)) = P(x1)

xa(t) xa(0) = x1 P(x1) = xa(2π)

x(t) x(2kπ) = x1 .
x(τ) = xa(τ − 2kπ) τ = 2(k + 1)π xa(2π) = x(2(k + 1)π)



Example
Consider the logistic equation with periodic harvesting


.


Below we see the direction field for the given equation and a few solutions. We notice that 
 is still an equilibrium solution but we no longer have the equilibrium at . 


x′￼ = x (1 − x) − h x sin t

x = 0 x = 1

0 2� 4� 6�0

1

2

t

x



Instead of the asymptotically stable equilibrium  we see that the solutions 
as  increases come closer to a solution that appears to be periodic with period 

.


The Poincaré map is very useful for analyzing such periodic solutions. The 
reason is that if a solution is periodic with period  and  then 

. 


Recall that  and we conclude that periodic solutions of period 
 correspond to points  with , that is, fixed points of the 

Poincaré map.

x = 1
t

2π

2π x(0) = x0
x(2π) = x0

x(2π) = P(x0)
2π x0 P(x0) = x0



We have also numerically computed the Poincaré 
map using Mathematica. This is done using the 
following function definition which numerically 
integrates the differential equation from the initial 
condition  for time  and returns 

.

P[h_,x0_] := NDSolveValue[ 
  x'[t] == x[t](1-x[t]) - h x[t] Sin[t] && 
  x[0] == x0,  
  x[2 Pi], {t, 0, 2 Pi}]


The graph of this function for  is shown at 
the right (red curve). In the same plot we show the 
graph of the identity function  (blue line). 
The intersection point of these graphs around 

 is a fixed point of the Poincaré map and thus 
corresponds to the periodic orbit.

x(0) = x0 t = 2π
x(2π)

h = 0.25

id(x) = x

x = 1
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From the numerically computed graph of the Poincaré 
map we observe that there are two fixed points. One 
at  and the other one around .


The second fixed point corresponds to a periodic 
orbit of period  and it is asymptotically stable, since 
the derivative  of the Poincaré map at  can 
be seen in the plot to be close to  (actually, 

), that is, . This means that if we 
start at an initial point close to the fixed point, we will 
approach the fixed point. 


This also means that the corresponding solution for 
the differential equation will approach the periodic 
solution and we conclude that the periodic solution is 
asymptotically stable.

x = 0 x ≊ 1.12

2π
λ x ≊ 1.12

0
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