Lecture 10: Second-Order Non-Homogeneous Linear Equations MATH 303 ODE and Dynamical Systems

Konstantinos Efstathiou

Non-homogeneous equations

We consider now equations of the form

ay'' + by

where f(x) is not identically zero. The method for solving such equations is based on the following considerations.

be called a **particular solution** and will be denoted by $y_p(x)$.

The solution method for non-homogeneous equations is based on the following fact.

$$y' + cy = f(x),$$

Suppose that we find any solution of the equation above. Such a solution will

Lemma. Suppose that $y_p(x)$ is a (known) particular solution of the nonhomogeneous equation ay'' + by' + cy = f(x) and that y(x) is any other (unknown) solution of the same equation. Let

$$y_h(x) = y(x) - y_p(x).$$

Then $y_h(x)$ satisfies the homogeneous equation ay'' + by' + cy = 0. **Proof.** We have

$$ay''_h + by'_h + cy_h = ay'' + by' + cy - (ay''_p + by'_p + cy_p) = f(x) - f(x) = 0.$$

Remark. This lemma means that any solution y(x) of the non-homogeneous equation can be written as $y(x) = y_h(x) + y_p(x)$ where $y_h(x)$ is some solution of the homogeneous equation and $y_p(x)$ is the known particular solution.

Solution method for non-homogeneous equations

- **Step 1.** Find the general solution of the homogeneous equation ay'' + by' + cy = 0 which has the form
 - $y_h(x) = c_1 y_1(x) + c_2 y_2(x).$
- **Step 2.** Find a single particular solution $y_p(x)$ of the non-homogeneous equation ay'' + by' + cy = f(x).

Step 3. Write the general solution of the non-homogeneous equation as

$$y(x) = c_1 y_1(x)$$

- $x) + c_2 y_2(x) + y_p(x).$

Finding a particular solution: the method of undetermined coefficients

Linear differential operators

- Given a function g(x) we denote by L[g](x) the function L[g](x) = ag''(x) + bg'(x) + cg(x).
- Just as the operator T that we introduced when we discussed the existence and uniqueness theorem, L is also an operator: it takes as input a function g and produces a new function L[g].
- Using the operator L, the homogeneous equation we have been considering can be written as L[y] = 0 while the non-homogeneous equation is L[y] = f.

Definition. An operator L is **linear** if $L[g_1 + g_2] = L[g_1] + L[g_2]$ and $L[\lambda g] = \lambda L[g]$ for all functions g, g_1, g_2 and all numbers $\lambda \in \mathbb{R}$. **Lemma.** The operator L defined by L[g] = ag'' + bg' + cg is linear. **Proof.** We have

and

 $L[\lambda g] = a(\lambda g)'' + b(\lambda g)' + c(\lambda g) = \lambda(ag'' + bg' + cg) = \lambda L[g].$

$L[g_1 + g_2] = ag''_1 + bg'_1 + cg_1 + ag''_2 + bg'_2 + cg_2 = L[g_1] + L[g_2],$

Consider now the equation L[y] = f for which we want to find a particular solution.

The method of undetermined coefficients is that if f has a specific type (e.g., polynomial, trigonometric, exponential, or a combination of these) then the particular solution y_p will belong in a space of functions W such that $f \in L[W]$.

We will see how this works in specific cases.

Polynomial f

Suppose that f(x) = P(x) where P(x) is a polynomial of degree deg P = n, that is, the highest power of x in P(x) is n.

Then we notice that if Q(x) is any polynomial of degree n then L[Q](x) will also be a polynomial of degree deg $Q \leq n$ since the derivatives of Q(x) will also be polynomials with degree $\leq n$.

To find $y_p = Q$ such that L[Q] = P we can therefore write down the most general polynomial of degree n,

$$Q = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0,$$

compute L[Q] and find the coefficients a_0, a_1, \ldots, a_n such that L[Q] = P.

Find a particular solution of the equation Here, $f(x) = 2 - x^2$ is a polynomial of degree 2. Therefore, we try $y_p(x) = a_2$ Then $y'_p = 2a_2x + a_1$, $y''_p = 2a_2$, and substituting into the equation we find $2a_2 - (a_2x^2 +$ 7

or

$$-a_2 x^2 - a_1 x + (2a_2 - a_0) = 2 - x^2.$$

$$y'' - y = 2 - x^2$$
.

$$x^2 + a_1 x + a_0$$

$$a_1 x + a_0) = 2 - x^2,$$

From the equation $-a_2x^2 - a_1x + (2a_1x^2 - a_1x^2)$ $-a_2 = -1, -a_3$

with solution $a_2 = 1$, $a_1 = a_0 = 0$.

Therefore, $y_p(x) = x^2$.

In this case, the general solution is

$$y = c_1 e^x + c_2 e^{-x} + x^2,$$

where $c_1e^x + c_2e^{-x}$ is the general solution of the homogeneous equation y'' - y = 0.

$$a_2 - a_0) = 2 - x^2$$
 we get

$$a_1 = 0, \ 2a_2 - a_0 = 2,$$

Exponential *f*

the form $R(x)e^{\lambda x}$ where deg $R \leq n$.

In this case, try

$$y_p = (a_n x^n + \dots + a_1 x + a_0) e^{\lambda x}.$$

But there is a catch that we will see in a moment.

Suppose that $f(x) = P(x)e^{\lambda x}$ where P(x) is again a polynomial with deg P = n. Then we notice that if Q(x) is a polynomial with deg Q = n then $L[Qe^{\lambda x}]$ has

Example 1

Find a particular solution for y'' - y =

Here we try $y_p = (a_1x + a_0)e^{2x}$. Then $y_p'' = (4a_1x + 4a_1 + 4a_0)e^{2x}$.

Substituting into the equation we find $(3a_1x + 4a_1 + 3a_0)e^{2x} = 2xe^{2x}$. Equating coefficients for same powers of x we get the equations $3a_1 = 2$, $4a_1 + 3a_0 = 0$ with solution $a_1 = 2/3$, $a_0 = -8/9$. Therefore, a particular solution is

$$y_p(x) = \left(\frac{2}{3}x - \frac{8}{9}\right)e^{2x}.$$

$$= 2xe^{2x}$$

$$y'_p = (2a_1x + 2a_0 + a_1)e^{2x}$$
 and

Example 2

Find a particular solution for $y'' - y = 2xe^x$.

First, this is what NOT to do. Try $y_p = (a_1x + a_0)e^x$. Then $y_p'' - y_p = 2a_1e^x$ which clearly can't give $2xe^x$. The thing that went wrong here is that e^x is a solution to the homogeneous equation y'' - y = 0 and because of that the degree of the polynomial in front of e^x is reduced by one when we compute y'' - y.

Therefore, to match the polynomial 2x of degree one we need to start with a polynomial of degree 2. The easiest way to achieve this is to try

$$y_p = x(a_1x + a_0)e^x.$$

Then we compute $y_p'' - y_p = (4a_1x + 2a_1 + 2a_0)e^x = 2xe^x$ which gives $a_1 = 1/2, a_0 = -1/2$. Therefore,

 $y_p = -\frac{1}{2}$

$$\frac{1}{2}x(x-1)e^x.$$

Exponential *f* **revisited**

The rules for choosing y_p when $f(x) = P(x)e^{\lambda x}$ are as follows.

where $\deg Q = \deg P$.

them then try $y_p = x Q(x)e^{\lambda x}$ where deg Q = deg P.

then try $y_p = x^2 Q(x)e^{\lambda x}$ where deg $Q = \deg P$.

- (a) If λ is not a root of the associated auxiliary equation then try $y_p = Q(x)e^{\lambda x}$

- (b) If the associated auxiliary equation has two distinct real roots and λ is one of
- (c) If the associated auxiliary equation has a double real root which equals λ

Trigonometric f

The rules for choosing y_p when $f(x) = P_1(x)$ (a) If $\lambda + i\mu$ is not a root of the associated auxiliary equation then try $y_p = Q_1(x)e^{\lambda x}\cos(\theta)$ where deg Q_1 = deg Q_2 = max(deg P_1 , deg P_2). (b) If $\lambda + i\mu$ is a root of the associated auxiliary equation then try $y_p = x \left[Q_1(x) e^{\lambda x} \cos(\mu x) + Q_2(x) e^{\lambda x} \sin(\mu x) \right]$

where deg Q_1 = deg Q_2 = max(deg P_1 , deg P_2).

$$x e^{\lambda x} \cos(\mu x) + P_2(x) e^{\lambda x} \sin(\mu x)$$
 are as follows

$$(\mu x) + Q_2(x)e^{\lambda x}\sin(\mu x)$$

Find a particular solution for $y'' + 2y' + 2y = 5e^{-x} \cos x$. Here $\lambda = -1$, $\mu = 1$, $P_1(x) = 5$, $P_2(x) = 0$. Therefore deg $Q_1 = \deg Q_2 = 0$, that is, constant polynomials with $Q_1(x) = a_1$ and $Q_2(x) = a_2$.

So, the first guess would be

$$y_p(x) = a_1 e^{-x}$$

However, we notice that the auxiliary equation $r^2 + 2r + 2 = 0$ has roots $-1 \pm i = \lambda \pm i\mu$. This means that we should try instead the form

$$y_p(x) = x \left[a_1 e^{-x} \right]$$

 $\cos x + a_2 e^{-x} \sin x.$

 $-x\cos x + a_2 e^{-x}\sin x].$

Some (heavy) computations give

$$y_p'' + 2y_p' + 2y_p = e^{-x}(2a_2)$$

We conclude that $a_2 = \frac{5}{2}$ and $a_1 = 0$.

$\cos x - 2a_1 \sin x) = 5e^{-x} \cos x.$

Which of the following forms you sho $y'' + 2y' + 2y = x \cos x$?

Choose the correct answer at pollev.com/ke1.

A.
$$y_p = (a_1x + a_0)\cos x + (b_1x + b_0)$$

B.
$$y_p = x(a_1x + a_0)\cos x + x(b_1x + a_0)\cos x + x($$

C.
$$y_p = (a_1 x + a_0) \cos x + (a_1 x + a_0)$$

D. $y_p = (a_1 x + a_0) \cos x$

Which of the following forms you should try for finding a particular solution to

) $\sin x$

 b_0)sin x

) sin x

Poll

Which of the following forms you sho $y'' - 3y' + 2y = e^{2x} \cos x$?

Choose the correct answer at pollev.com/ke1.

A.
$$y_p = a_1 e^{2x} \cos x + b_1 e^{2x} \sin x$$

B. $y_p = x(a_1e^{2x}\cos x + b_1e^{2x}\sin x)$

C.
$$y_p = a_1 e^{2x} \cos x$$

D. $y_p = a_1 e^{2x} \cos x + b_1 e^x \sin x$

Which of the following forms you should try for finding a particular solution to

Poll

Which of the following forms you should try for finding a particular solution to $y'' - 3y' + 2y = x^2 e^{2x}$?

Choose the correct answer at <u>pollev.com/ke1</u>.

A.
$$y_p = (a_2 x^2 + a_1 x + a_0)e^{2x}$$

B.
$$y_p = x(a_2x^2 + a_1x + a_0)e^{2x}$$

C.
$$y_p = (a_1 x + a_0)e^{2x}$$

D. $y_p = (a_3x^3 + a_2x^2 + a_1x + a_0)e^{2x}$

Right hand side $f = f_1 + f_2$

that a particular solution corresponding to $f_1(x)$ is $y_{p,1}(x)$ while a particular solution corresponding to $f_2(x)$ is $y_{p,2}(x)$.

- Suppose that the right hand side is a sum of the form $f(x) = f_1(x) + f_2(x)$ and
- Then a particular solution corresponding to f(x) is $y_p(x) = y_{p,1}(x) + y_{p,2}(x)$.

Consider the equation $y'' - y = 2 - x^2$

We have seen that a particular solutio

and a particular solution of y'' - y = 2

Therefore, a particular solution for the

$$y_p = x^2 + \frac{1}{2}x(x-1)e^x.$$

$$x^{2} + 2xe^{x}.$$

on of $y'' - y = 2 - x^{2}$ is $y_{p,1} = x^{2}$,
 $2xe^{x}$ is $y_{p,2} = \frac{1}{2}x(x - 1)e^{x}.$
e equation $y'' - y = 2 - x^{2} + 2xe^{x}$ is