Lecture 11: Higher-order Linear Differential Equations

MATH 303 ODE and Dynamical Systems

Linear differential equations

Until now we have been considering second order linear differential equations with constant coefficients. Now we will consider a more general case.

An *n*-th order linear differential equation has the form

$$a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y = f(x),$$

where the functions a_0, a_1, \ldots, a_n, f are continuous in some interval $I \subseteq \mathbb{R}$.

Existence and uniqueness of solutions

Theorem. The initial value problem

$$a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y = f(x)$$

with $y(x_0) = y_0$, $y'(x_0) = y_1$, ..., $y^{(n-1)}(x_0) = y_{n-1}$, where y_0, \ldots, y_{n-1} are given real numbers has a unique solution y(x) in the interval $I \subseteq \mathbb{R}$ provided that $a_0(x), \ldots, a_n(x), f(x)$ are continuous in I and $a_n(x) \neq 0$ for all $x \in I$.

Linear differential operators

Given a function g(x) we denote by L[g](x) the function

$$L[g](x) = a_n(x)g^{(n)}(x) + a_{n-1}g^{(n-1)}(x) + \dots + a_1(x)g'(x) + a_0(x)g(x).$$

Using L the equation that we are considering can be written as L[y] = f.

Lemma. The operator L defined above is linear.

Sketch of the proof. Check that $L[g_1 + g_2] = L[g_1] + L[g_2]$ and $L[\lambda g] = \lambda L[g]$.

Solutions of homogeneous linear equations

Lemma. If $y_1, y_2, ..., y_m$ where $m \ge 1$ are solutions of the homogeneous linear equation L[y] = 0 then any linear combination

$$y = c_1 y_1 + c_2 y_2 + \cdots + c_m y_m$$

is also a solution of L[y] = 0.

Proof. We have

$$L[y] = L[c_1y_1 + \cdots + c_my_m] = L[c_1y_1] + \cdots + L[c_my_m]$$
$$= c_1L[y_1] + \cdots + c_mL[y_m] = 0 + \cdots + 0 = 0.$$

Question

Suppose that we are given the homogeneous initial value problem

$$L[y](x) = a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y = 0$$

with $y(x_0) = \gamma_0$, $y'(x_0) = \gamma_1$, ..., $y^{(n-1)}(x_0) = \gamma_{n-1}$ and we have found n solutions $y_1, ..., y_n$ of the equation L[y] = 0.

Can we find numbers c_1, \ldots, c_n such that the solution to the given IVP is

$$y(x) = c_1 y_1(x) + \dots + c_n y_n(x)$$
?

This would mean that

$$y(x_0) = c_1 y_1(x_0) + c_2 y_2(x_0) + \dots + c_n y_n(x_0) = \gamma_0$$

$$y'(x_0) = c_1 y_1'(x_0) + c_2 y_2'(x_0) + \dots + c_n y_n'(x_0) = \gamma_1$$

$$\vdots$$

$$y^{(n)}(x_0) = c_1 y_1^{(n-1)}(x_0) + c_2 y_2^{(n-1)}(x_0) + \dots + c_n y_n^{(n-1)}(x_0) = \gamma_{n-1}$$

We can view these equations as a linear system of equations with unknowns $c_1, c_2, ..., c_n$.

The same system in matrix form can be written as

$$\begin{bmatrix} y_1(x_0) & y_2(x_0) & \cdots & y_n(x_0) \\ y_1'(x_0) & y_2'(x_0) & \cdots & y_n'(x_0) \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-1)}(x_0) & y_2^{(n-1)}(x_0) & \cdots & y_n^{(n-1)}(x_0) \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix} = \begin{bmatrix} \gamma_0 \\ \gamma_1 \\ \vdots \\ \gamma_{n-1} \end{bmatrix}$$

We denote the $n \times n$ matrix appearing in the expression above by

$$M[y_1, ..., y_n](x_0)$$

and we call its determinant

$$W[y_1, ..., y_n](x_0) = \det M[y_1, ..., y_n](x_0)$$

the Wronskian of the solutions $y_1, ..., y_n$ at x_0 .

From Linear Algebra we then know that the system on the previous slide has a unique solution $(c_1, ..., c_n)$ if and only if $W[y_1, ..., y_n](x_0) \neq 0$.

We can summarize this discussion in the following result.

Theorem. Suppose that y_1, \ldots, y_n are solutions of the homogeneous equation

$$L[y](x) = a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y = 0,$$

in an interval I and there is $x_0 \in I$ such that $W[y_1, ..., y_n](x_0) \neq 0$. Then every solution of L[y] = 0 in I can be written as

$$y(x) = c_1 y_1(x) + \dots + c_n y_n(x)$$

for a unique choice of (c_1, \ldots, c_n) .

Linearly independent functions

Definition. The functions $y_1, ..., y_m$ are **linearly dependent** in an interval I if there are $\lambda_1, ..., \lambda_m \in \mathbb{R}$, not all of them zero, such that

$$\lambda_1 y_1(x) + \dots + \lambda_m y_m(x) = 0$$
 for all $x \in I$.

If the functions $y_1, ..., y_m$ do not satisfy the previous condition they are called **linearly independent**.

Linear in-/dependence and Wronskian

Theorem. Suppose that y_1, \ldots, y_n are solutions of the homogeneous equation

$$L[y](x) = a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y = 0,$$

in an interval I. Then the following statements are equivalent:

- (a) The functions $y_1, ..., y_n$ are linearly dependent in I.
- (b) $W[y_1, ..., y_n](x) = 0$ for all $x \in I$.
- (c) There is $x_0 \in I$ such that $W[y_1, ..., y_n](x_0) = 0$.

Proof. We will first show that (a) implies (b). That is, if the solutions $y_1, ..., y_n$ are linearly dependent in I then $W[y_1, ..., y_n](x) = 0$ for all $x \in I$.

Since y_1,\ldots,y_n are assumed linearly dependent, there are $\lambda_1,\ldots,\lambda_n\in\mathbb{R}$, not all of them zero, such that $\lambda_1y_1(x)+\cdots+\lambda_ny_n(x)=0$ for all $x\in I$. Taking derivatives of the last relation we have for every $x\in I$ that $\lambda_1y_1^{(k)}(x)+\cdots+\lambda_ny_n^{(k)}(x)=0$ for any $k\geq 0$. Therefore,

$$\begin{bmatrix} y_{1}(x) & y_{2}(x) & \cdots & y_{n}(x) \\ y'_{1}(x) & y'_{2}(x) & \cdots & y'_{n}(x) \\ \vdots & \vdots & \ddots & \vdots \\ y_{1}^{(n-1)}(x) & y_{2}^{(n-1)}(x) & \cdots & y_{n}^{(n-1)}(x) \end{bmatrix} \begin{bmatrix} \lambda_{1} \\ \lambda_{2} \\ \vdots \\ \lambda_{n} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Since the vector $[\lambda_1, ..., \lambda_n]^t$ is non-zero, we must have that the determinant of the $n \times n$ matrix, that is, the Wronskian $W[y_1, ..., y_n](x)$ equals zero for all $x \in I$. It is obvious that **(b) implies (c)**.

We will finally show that **(c) implies (a)**. Suppose that there is $x_0 \in I$ such that $W[y_1, ..., y_n](x_0) = 0$ and consider the equation

$$\begin{bmatrix} y_1(x_0) & y_2(x_0) & \cdots & y_n(x_0) \\ y_1'(x_0) & y_2'(x_0) & \cdots & y_n'(x_0) \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-1)}(x_0) & y_2^{(n-1)}(x_0) & \cdots & y_n^{(n-1)}(x_0) \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

with unknowns $\lambda_1, \ldots, \lambda_n$.

Since the determinant of the $n \times n$ matrix, that is, $W[y_1, ..., y_n](x_0)$ equals zero, the equation must have a non-zero solution vector $[\lambda_1, ..., \lambda_n]^t$. Let

$$z(x) = \lambda_1 y_1(x) + \dots + \lambda_n y_n(x).$$

Then

$$z^{(k)}(x_0) = \lambda_1 y_1^{(k)}(x_0) + \dots + \lambda_n y_n^{(k)}(x_0) = 0 \text{ for all } k = 0, 1, 2, \dots, n-1.$$

Therefore, z is a solution to the differential equation L[y] = 0 (as a linear combination of solutions) and $z(x_0) = z'(x_0) = \cdots = z^{(n-1)}(x_0) = 0$. From the existence and uniqueness theorem, the solution to this IVP has a unique solution in I. However, notice that the constant solution 0 also satisfies the same IVP in I. We conclude that z(x) = 0 for all $x \in I$, that is,

$$\lambda_1 y_1(x) + \dots + \lambda_n y_n(x) = 0$$
 for all $x \in I$.

Linear in-/dependence and Wronskian

(Equivalent) Theorem. Suppose that $y_1, ..., y_n$ are solutions of the homogeneous equation

$$L[y](x) = a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y = 0,$$

in an interval I. Then the following statements are equivalent:

- (a) The functions y_1, \ldots, y_n are linearly independent in I.
- (b) There is $x_0 \in I$ such that $W[y_1, ..., y_n](x_0) \neq 0$.
- (c) $W[y_1, ..., y_n](x) \neq 0$ for all $x \in I$.

Example

For the homogeneous second order linear equation with constant coefficients we found the following three cases.

(a) Two distinct real roots $r_1 \neq r_2$. In this case two solutions are $y_1 = e^{r_1 x}$, $y_2 = e^{r_2 x}$. To check their linear independence through the Wronskian we compute

$$W[y_1, y_2](x) = y_1(x)y_2'(x) - y_1'(x)y_2(x) = (r_1 - r_2)e^{(r_1 + r_2)x} \neq 0.$$

(b) In the case of a double root r_0 the two solutions are $y_1 = e^{r_0 x}$, $y_2 = xe^{r_0 x}$. Then

$$W[y_1, y_2](x) = y_1(x)y_2'(x) - y_1'(x)y_2(x) = e^{2r_0x} \neq 0.$$

(c) In the case of complex conjugate roots $\alpha \pm i\beta$ we have $y_1 = e^{\alpha x}\cos(\beta x)$, $y_2 = e^{\alpha x}\sin(\beta x)$. Then

$$W[y_1, y_2](x) = y_1(x)y_2'(x) - y_1'(x)y_2(x) = \beta e^{2\alpha x} \neq 0.$$

Homogeneous linear equations with constant coefficients

Consider the equation

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_1 y' + a_0 y = 0,$$

where $a_0, a_1, ..., a_n \in \mathbb{R}$ are constant and $a_n \neq 0$. The corresponding auxiliary equation, obtained by letting $y = e^{rx}$ is given by

$$a_n r^n + a_{n-1} r^{n-1} + \dots + a_1 r + a_0 = 0.$$

This is a polynomial equation of degree n and therefore it has exactly n roots on the complex plane (counting multiplicity).

The structure of the roots will determine the form of the general solution. The general solution is a linear combination of solutions of the following form.

- (a) For each real root $r \in \mathbb{R}$ that appears once we consider the solution e^{rx} .
- (b) For each real root $r \in \mathbb{R}$ that appears with multiplicity k we consider the k solutions e^{rx} , xe^{rx} , ..., $x^{k-1}e^{rx}$.
- (c) For a complex conjugate pair $\alpha \pm i\beta$ that appears once we consider the 2 solutions $e^{\alpha x}\cos(\beta x)$, $e^{\alpha x}\sin(\beta x)$.
- (d) For a complex conjugate pair $\alpha \pm i\beta$ that appears with multiplicity k we consider the 2k solutions $e^{\alpha x}\cos(\beta x)$, $e^{\alpha x}\sin(\beta x)$, $xe^{\alpha x}\cos(\beta x)$, $xe^{\alpha x}\sin(\beta x)$, ..., $x^{k-1}e^{\alpha x}\cos(\beta x)$, $x^{k-1}e^{\alpha x}\sin(\beta x)$.

Example

Suppose that the auxiliary equation has degree 11 and roots

$$1, 1, 1, 2, -3, 1 \pm i, 1 \pm i, 2 \pm i.$$

Then the general solution is

$$y = c_1 e^x + c_2 x e^x + c_3 x^2 e^x + c_4 e^{2x} + c_5 e^{-3x}$$

$$+ c_6 e^x \cos x + c_7 e^x \sin x + c_8 x e^x \cos x + c_9 x e^x \sin x$$

$$+ c_{10} e^{2x} \cos x + c_{11} e^{2x} \sin x.$$