Lecture 11: Higher-order Linear
Differential Equations

Konstantinos Efstathiou



Linear differential equations

Until now we have been considering second order linear differential equations
with constant coefficients. Now we will consider a more general case.

An n-th order linear differential equation has the form

a, (Y™ + a,_ ()" + o+ a () + ay(x)y = fx),

where the functions g, a,, ..., a,, f are continuous in some interval I C R.



Existence and uniqueness of solutions

Theorem. The initial value problem
a, ()" + a,_ ()Y + -+ a (0)y’ + ag(x)y = flx)

with y(xy) = vo, Y'(X) = Vy, o, Y D(x9) = v, _;, Where yy, ..., V,_; are given
real numbers has a unique solution y(x) in the interval I C R provided that
ap(x), ...,a,(x),f(x) are continuous in I and a,(x) # O for all x € 1.




Linear differential operators

Given a function g(x) we denote by L[ g](x) the function

LIgl(x) = a,(x)g™(x) + a,_1g" " V(x) + - + a;(x)g'(x) + ay(x)g(x).

Using L the equation that we are considering can be written as L|y| = .

Lemma. The operator L defined above is linear.

Sketch of the proof. Check that L|g, + g,] = L[g] + L[g,] and
L[Ag] = AL[g].



Solutions of homogeneous linear equations

Lemma. If y;, y,, ..., y, where m > 1 are solutions of the homogeneous linear
equation L|y] = 0 then any linear combination

Yy=C Y+ Gyt 0+ CpVy
is also a solution of L|y] = 0.

Proof. We have

Lly| = L[¢;y; + ---¢,,y,| = Llc;y]l + --- + L[c,y, ]
=¢,L[y,]+ - +¢, L[y, ] =0+ +0=0.



Question

Suppose that we are given the homogeneous initial value problem
LIyl(x) = a,(x)y"™ + a,_jx)y" ™V + - + a;(x)y" + ay(x)y = 0

with y(xp) = 70, Y’ (%) = 715 - Y P(xy) = 7,,_; and we have found n solutions
Vi, ..., Y, Of the equation L[y] = 0.

Can we find numbers ¢, ..., ¢, such that the solution to the given IVP is

y(x) =y (x) + - +¢,y,(x)?



This would mean that
y(xg) = c1y1(xg) + o (xg) + - + ¢, Y, (X)) = Vo

V' (xg) = cy(xg) + o y5(xg) + -+ + ¢,y (x5) = 74

y"(xg) = Clyl(n_l)(xo) T Czyz(n_l)(xo) + 6 (%) = Yy

We can view these equations as a linear system of equations with unknowns
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The same system in matrix form can be written as

y1(Xp) )’2(35()) e yn(x()) C
y1(xp) Y2(Xp) Y,Q(Xo) GOl
Y{n_l)(xo) )én_l)(xo) (n 1)()6) n

We denote the n X n matrix appearing in the expression above by

M[y19 .. °9yn](x())

and we call its determinant

W[yb "'9yn](x0) — detM[yP "'9yn](x0)

the Wronskian of the solutions y,, ..., y, at x,.



From Linear Algebra we then know that the system on the previous slide has a
unique solution (cy, ..., c,) if and only if W[y, ..., y, [(xy5) # O.

We can summarize this discussion in the following result.
Theorem. Suppose that y, ..., y, are solutions of the homogeneous equation
Lylx) = a,(x0)y™ + a,_j()y" ™ + -+ + a;(x)y" + ap(x)y = 0,

in an interval / and there is x; € [ such that W]y, ...,y 1(xg) # 0. Then every
solution of L|y] = O in I can be written as

Y(X) = ¢1y1(x) 4«0 + Y, (%)

for a unique choice of (¢, ..., C,).



Linearly independent functions

Definition. The functions y,, ..., y, are linearly dependent in an interval / if
there are A, ..., 4, € R, not all of them zero, such that

Ayix)+--+4y (x) =0 forallx € I.

If the functions y,, ..., y, do not satisty the previous condition they are called
linearly independent.



Linear in-/dependence and Wronskian

Theorem. Suppose that y, ..., y, are solutions of the homogeneous equation
LIyl(x) = a,)y"™ + a, ;(0)y" ™" + - + a;(x)y + ap(x)y = 0,
in an interval /. Then the following statements are equivalent:

(@) The functions y,, ..., y, are linearly dependent in /.
b) Wiy, ...,y I(x) =0forallx € 1.

(c) There is x, € I such that W[y, ...,y 1(x)) = 0.



Proof. We will first show that (a) implies (b). That is, if the solutions y,, ...
are linearly dependent in [ then Wy, ..

Since yy, ...

, v, are assumed linearly dependent, there are 4, ...,

Ly, ](x) =0forallx € 1.
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all of them zero, such that 4,y,(x) + --- + 4,y,(x) = 0 for all x € I. Taking

derivatives of the last relation we have for every x € [ that

(k)(x) + - + 4 yP(x) = 0 for any k > 0. Therefore,
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Since the vector [4,, ..., 4, ]" is non-zero, we must have that the determinant of
the n X n matrix, that is, the Wronskian W1y, ..., y, ](x) equals zero for all x € 1.

It is obvious that (b) implies (c).

We will finally show that (c) implies (a). Suppose that there is x; € [ such that
Wiy, ..., ¥, 1(xg) = 0 and consider the equation

y1(Xp) V2 (Xp) "o ValXo) A 0
y1(xp) y2(Xp) e yr,z(x()) Ll |0
W) W) ey ”(x) A 0

with unknowns 4., ..., 41 .



Since the determinant of the n X n matrix, that is, Wly,, ..., y.1(xy) equals zero,
the equation must have a non-zero solution vector [44, ..., 4 |’. Let

Z(X) — ﬂlyl(x) + e + ﬂnyn(X)
Then

Z(k)(xo) = /llyl(@(xo) + - + /Iny,,(lk)(xo) =(0forallk=0,1,2,....n— 1.

Therefore, 7z is a solution to the differential equation L|y]| = O (as a linear
combination of solutions) and z(xy) = z'(xy) = -+ = z(”_l)(xo) = (. From the
existence and uniqueness theorem, the solution to this IVP has a unigue solution

in . However, notice that the constant solution () also satisfies the same IVP in 1.
We conclude that z(x) = O for all x € I, that is,

ALyx)+--+4y.(x)=0foralx el



Linear in-/dependence and Wronskian

(Equivalent) Theorem. Suppose that y,, ...,y are solutions of the
homogeneous equation

LIyl(x) = a,)y"™ + a, ;(0)y" ™" + - + a;(x)y + ay(x)y = 0,
in an interval /. Then the following statements are equivalent:

(@) The functions yy, ..., y, are linearly independent in /.
(b) There is x, € I such that W|y,, ...,y 1(xy) # O.

() Wlyy, ..., y,]1(x) # O forall x € 1.



Example

For the homogeneous second order linear equation with constant coefficients we
found the following three cases.

(@) Two distinct real roots r; # r,. In this case two solutions are y; = e,
y, = e'?". To check their linear independence through the Wronskian we compute

Wlyp, y21(0) = y1(0)y5(x) = yi(0)y(x) = (ry = rp)e"*72% £ 0.

(b) In the case of a double root r,, the two solutions are y; = e'?*, y, = xe’*". Then

Wy, y,1(x) = y,(0)y5(x) — ¥ (x)y,(x) = e*0* # 0.



(c) In the case of complex conjugate roots a £ iy we have y, = ™ cos(fx),
y, = e* sin(fx). Then

Wy, y21(X) = y(0)y5(x) — y1(x0)y,(x) = fe*™ # 0.



Homogeneous linear equations with
constant coefficients

Consider the equation

any(n) T an—ly(n_l) + -+ a)y +ayy =0,

where ay, a,, ...,a, € R are constant and a,, # (. The corresponding auxiliary
equation, obtained by letting y = e’ is given by

n n—1 —
ar"+a, v+ - +ar+ay;=>0.

This Is a polynomial equation of degree n and therefore it has exactly n roots on
the complex plane (counting multiplicity).



The structure of the roots will determine the form of the general solution. The
general solution is a linear combination of solutions of the following form.

(@) For each real root r € |

(b) For each real root r € |

that appears once we consider the solution e'*.

that appears with multiplicity k we consider the k

rX xk—lerx_

solutions e’*, xe'*, ...,

(c) For a complex conjugate pair a * i/ that appears once we consider the 2
solutions e™ cos(fx), e™ sin(px).

(d) For a complex conjugate pair a £ i that appears with multiplicity k we

consider the 2k solutions e™* cos(fx), e™ sin(fx), xe™ cos(px),
xe™ sin(fBx), ..., x*"le® cos(px), x*~e™ sin(px).



Example

Suppose that the auxiliary equation has degree 11 and roots
1,1,1,2, =3, 1%, 1 x£1, 2+%1.

Then the general solution is

2 3x

y = c;e’ + coxe* + cyxce + c e + cse”

+Cge” COS X + ¢,€” SIn X + cgxe” COS X + Coxe™ Sin X

2

YCosx + c; e

+cq o€ S1n x.



