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Linear differential equations

Until now we have been considering second order linear differential equations 
with constant coefficients. Now we will consider a more general case.


An -th order linear differential equation has the form


,


where the functions  are continuous in some interval .

n

an(x)y(n) + an−1(x)y(n−1) + ⋯ + a1(x)y′￼+ a0(x)y = f(x)

a0, a1, …, an, f I ⊆ ℝ



Existence and uniqueness of solutions

Theorem. The initial value problem 





with , , ..., , where  are given 
real numbers has a unique solution  in the interval  provided that 

 are continuous in  and  for all .

an(x)y(n) + an−1(x)y(n−1) + ⋯ + a1(x)y′￼+ a0(x)y = f(x)

y(x0) = y0 y′￼(x0) = y1 y(n−1)(x0) = yn−1 y0, …, yn−1
y(x) I ⊆ ℝ

a0(x), …, an(x), f(x) I an(x) ≠ 0 x ∈ I



Linear differential operators

Given a function  we denote by  the function


.


Using  the equation that we are considering can be written as .


Lemma. The operator  defined above is linear.


Sketch of the proof. Check that  and 
.

g(x) L[g](x)

L[g](x) = an(x)g(n)(x) + an−1g(n−1)(x) + ⋯ + a1(x)g′￼(x) + a0(x)g(x)

L L[y] = f

L

L[g1 + g2] = L[g1] + L[g2]
L[λg] = λL[g]



Solutions of homogeneous linear equations

Lemma. If  where  are solutions of the homogeneous linear 
equation  then any linear combination


 


is also a solution of .


Proof. We have


 


                       .

y1, y2, …, ym m ≥ 1
L[y] = 0

y = c1y1 + c2y2 + ⋯ + cmym

L[y] = 0

L[y] = L[c1y1 + ⋯cmym] = L[c1y1] + ⋯ + L[cmym]

= c1L[y1] + ⋯ + cmL[ym] = 0 + ⋯ + 0 = 0



Question

Suppose that we are given the homogeneous initial value problem 





with , , ...,  and we have found  solutions 
 of the equation . 


Can we find numbers  such that the solution to the given IVP is


?

L[y](x) = an(x)y(n) + an−1(x)y(n−1) + ⋯ + a1(x)y′￼+ a0(x)y = 0

y(x0) = γ0 y′￼(x0) = γ1 y(n−1)(x0) = γn−1 n
y1, …, yn L[y] = 0

c1, …, cn

y(x) = c1y1(x) + ⋯ + cnyn(x)



This would mean that














We can view these equations as a linear system of equations with unknowns 
.

y(x0) = c1y1(x0) + c2y2(x0) + ⋯ + cnyn(x0) = γ0

y′￼(x0) = c1y′￼1(x0) + c2y′￼2(x0) + ⋯ + cny′￼n(x0) = γ1

⋮

y(n)(x0) = c1y(n−1)
1 (x0) + c2y(n−1)

2 (x0) + ⋯ + cny(n−1)
n (x0) = γn−1

c1, c2, …, cn



The same system in matrix form can be written as


 


We denote the  matrix appearing in the expression above by


 


and we call its determinant


 


the Wronskian of the solutions  at . 

y1(x0) y2(x0) ⋯ yn(x0)
y′￼1(x0) y′￼2(x0) ⋯ y′￼n(x0)

⋮ ⋮ ⋱ ⋮
y(n−1)

1 (x0) y(n−1)
2 (x0) ⋯ y(n−1)

n (x0)

c1
c2
⋮
cn

=

γ0
γ1
⋮

γn−1

n × n

M[y1, …, yn](x0)

W[y1, …, yn](x0) = det M[y1, …, yn](x0)

y1, …, yn x0



From Linear Algebra we then know that the system on the previous slide has a 
unique solution  if and only if .


We can summarize this discussion in the following result.


Theorem. Suppose that  are solutions of the homogeneous equation


,


in an interval  and there is  such that . Then every 
solution of  in  can be written as


 


for a unique choice of .

(c1, …, cn) W[y1, …, yn](x0) ≠ 0

y1, …, yn

L[y](x) = an(x)y(n) + an−1(x)y(n−1) + ⋯ + a1(x)y′￼+ a0(x)y = 0

I x0 ∈ I W[y1, …, yn](x0) ≠ 0
L[y] = 0 I

y(x) = c1y1(x) + ⋯ + cnyn(x)

(c1, …, cn)



Linearly independent functions

Definition. The functions  are linearly dependent in an interval  if 
there are , not all of them zero, such that


  for all .


If the functions  do not satisfy the previous condition they are called 
linearly independent.

y1, …, ym I
λ1, …, λm ∈ ℝ

λ1y1(x) + ⋯ + λmym(x) = 0 x ∈ I

y1, …, ym



Linear in-/dependence and Wronskian

Theorem. Suppose that  are solutions of the homogeneous equation


,


in an interval . Then the following statements are equivalent:


(a) The functions  are linearly dependent in .


(b)  for all .


(c) There is  such that .

y1, …, yn

L[y](x) = an(x)y(n) + an−1(x)y(n−1) + ⋯ + a1(x)y′￼+ a0(x)y = 0

I

y1, …, yn I

W[y1, …, yn](x) = 0 x ∈ I

x0 ∈ I W[y1, …, yn](x0) = 0



Proof. We will first show that (a) implies (b). That is, if the solutions  
are linearly dependent in  then  for all .


Since  are assumed linearly dependent, there are , not 
all of them zero, such that  for all . Taking 
derivatives of the last relation we have for every  that 

 for any . Therefore,


y1, …, yn
I W[y1, …, yn](x) = 0 x ∈ I

y1, …, yn λ1, …, λn ∈ ℝ
λ1y1(x) + ⋯ + λnyn(x) = 0 x ∈ I

x ∈ I
λ1y(k)

1 (x) + ⋯ + λny(k)
n (x) = 0 k ≥ 0

y1(x) y2(x) ⋯ yn(x)
y′￼1(x) y′￼2(x) ⋯ y′￼n(x)

⋮ ⋮ ⋱ ⋮
y(n−1)

1 (x) y(n−1)
2 (x) ⋯ y(n−1)

n (x)

λ1

λ2
⋮
λn

=

0
0
⋮
0



Since the vector  is non-zero, we must have that the determinant of 
the  matrix, that is, the Wronskian  equals zero for all .


It is obvious that (b) implies (c). 


We will finally show that (c) implies (a). Suppose that there is  such that 
 and consider the equation


 


with unknowns .

[λ1, …, λn]t

n × n W[y1, …, yn](x) x ∈ I

x0 ∈ I
W[y1, …, yn](x0) = 0

y1(x0) y2(x0) ⋯ yn(x0)
y′￼1(x0) y′￼2(x0) ⋯ y′￼n(x0)

⋮ ⋮ ⋱ ⋮
y(n−1)

1 (x0) y(n−1)
2 (x0) ⋯ y(n−1)

n (x0)

λ1

λ2
⋮
λn

=

0
0
⋮
0

λ1, …, λn



Since the determinant of the  matrix, that is,  equals zero, 
the equation must have a non-zero solution vector . Let


.


Then 


 for all .


Therefore,  is a solution to the differential equation  (as a linear 
combination of solutions) and . From the 
existence and uniqueness theorem, the solution to this IVP has a unique solution 
in . However, notice that the constant solution  also satisfies the same IVP in . 
We conclude that  for all , that is,


 for all .

n × n W[y1, …, yn](x0)
[λ1, …, λn]t

z(x) = λ1y1(x) + ⋯ + λnyn(x)

z(k)(x0) = λ1y(k)
1 (x0) + ⋯ + λny(k)

n (x0) = 0 k = 0,1,2,…, n − 1

z L[y] = 0
z(x0) = z′￼(x0) = ⋯ = z(n−1)(x0) = 0

I 0 I
z(x) = 0 x ∈ I

λ1y1(x) + ⋯ + λnyn(x) = 0 x ∈ I



Linear in-/dependence and Wronskian

(Equivalent) Theorem. Suppose that  are solutions of the 
homogeneous equation


,


in an interval . Then the following statements are equivalent:


(a) The functions  are linearly independent in .


(b) There is  such that .


(c)  for all .

y1, …, yn

L[y](x) = an(x)y(n) + an−1(x)y(n−1) + ⋯ + a1(x)y′￼+ a0(x)y = 0

I

y1, …, yn I

x0 ∈ I W[y1, …, yn](x0) ≠ 0

W[y1, …, yn](x) ≠ 0 x ∈ I



Example

For the homogeneous second order linear equation with constant coefficients we 
found the following three cases.


(a) Two distinct real roots . In this case two solutions are , 
. To check their linear independence through the Wronskian we compute


.


(b) In the case of a double root  the two solutions are , . Then


.

r1 ≠ r2 y1 = er1x

y2 = er2x

W[y1, y2](x) = y1(x)y′￼2(x) − y′￼1(x)y2(x) = (r1 − r2)e(r1+r2)x ≠ 0

r0 y1 = er0x y2 = xer0x

W[y1, y2](x) = y1(x)y′￼2(x) − y′￼1(x)y2(x) = e2r0x ≠ 0



(c) In the case of complex conjugate roots  we have , 
. Then


.

α ± iβ y1 = eαx cos(βx)
y2 = eαx sin(βx)

W[y1, y2](x) = y1(x)y′￼2(x) − y′￼1(x)y2(x) = βe2αx ≠ 0



Homogeneous linear equations with 
constant coefficients
Consider the equation


,


where  are constant and . The corresponding auxiliary 
equation, obtained by letting  is given by


.


This is a polynomial equation of degree  and therefore it has exactly  roots on 
the complex plane (counting multiplicity).

any(n) + an−1y(n−1) + ⋯ + a1y′￼+ a0y = 0

a0, a1, …, an ∈ ℝ an ≠ 0
y = erx

anrn + an−1rn−1 + ⋯ + a1r + a0 = 0

n n



The structure of the roots will determine the form of the general solution. The 
general solution is a linear combination of solutions of the following form.


(a) For each real root  that appears once we consider the solution .


(b) For each real root  that appears with multiplicity  we consider the  
solutions .


(c) For a complex conjugate pair  that appears once we consider the  
solutions , .


(d) For a complex conjugate pair  that appears with multiplicity  we 
consider the  solutions , , , 

, ..., , .


r ∈ ℝ erx

r ∈ ℝ k k
erx, xerx, …, xk−1erx

α ± iβ 2
eαx cos(βx) eαx sin(βx)

α ± iβ k
2k eαx cos(βx) eαx sin(βx) xeαx cos(βx)

xeαx sin(βx) xk−1eαx cos(βx) xk−1eαx sin(βx)



Example

Suppose that the auxiliary equation has degree  and roots


.


Then the general solution is


               


                      


                      .

11

1, 1, 1, 2, − 3, 1 ± i, 1 ± i, 2 ± i

y = c1ex + c2xex + c3x2ex + c4e2x + c5e−3x

+c6ex cos x + c7ex sin x + c8xex cos x + c9xex sin x

+c10e2x cos x + c11e2x sin x


