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Recall



Reduction of a planar system to a non-
autonomous first order equation
As we saw in the previous lecture, given a system


 


we can write


.


The equation 





is a first order equation and it may be solvable whereas the planar system is not directly solvable. Note that 
by solving the first order equation we can find the shape of the integral curves but not how fast we move 
along these curves. This is because we have eliminated  from the original system.

x′￼ = f(x, y), y′￼ = g(x, y)
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Biomathematics



Lotka-Volterra model

The Lotka-Volterra population model is given by


,


where .


The equilibria are  and .


Then we have the reduced equation


.

x′￼ = Ax − Bxy, y′￼ = − Cy + Dxy

A, B, C, D > 0

(0,0) ( C
D

,
A
B )

dy
dx

=
−Cy + Dxy
Ax − Bxy

=
y(Dx − C)
x(A − By)

=
Dx − C

x
y

A − By



This is a separable equation with


.


Integrating gives


.


Solving for  gives the function


,


which is constant along integral curves.

( A
y

− B) dy = (D −
C
x ) dx

A ln y − By = Dx − C ln x + K

K

K = A ln y + C ln x − By − Dx
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SIR model

Epidemic spread model. 


: fraction of susceptible individuals;


: fraction of currently infected individuals;


: fraction of recovered individuals.


System


.

s(t)

i(t)

r(t)

ds
dt

= − a si,
di
dt

= a si − k i,
dr
dt

= k i



We have  which implies  (constant) and thus


.


Therefore, we can consider only the planar system


,


defined for . We can introduce a fictitious time  so 
that


,


where . This shows that the only essential parameter if we ignore the time 
scale of the epidemic spread (this is allowed in mathematics but not in the real 
world) is .

(s + i + r)′￼ = 0 s + i + r = 1

r = 1 − s − i

s′￼ = − a si, i′￼ = a si − k i

s ≥ 0, i ≥ 0, s + i ≤ 1 τ = at

ds
dτ

= − si,
di
dτ

= si − κi

κ = k/a

κ



The related equation is


, 


and can be trivially integrated to .

di
ds

=
κ
s

− 1

i(s) = κ ln s − s + C
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Physics



Mass on a spring

An equation describing the motion of a mass  attached on a spring with 
spring constant  is given by


, 


where the term  represents friction (energy dissipation). Writing this as 
a planar system by letting  we get 


, 


where  and .

m > 0
k > 0

mx′￼′￼+ bx′￼+ kx = 0

bx′￼, b ≥ 0
x′￼ = y

x′￼ = y, y′￼ = −
1
m

(by + kx) = − 2βy − κx

2β = b/m ≥ 0 κ = k/m



Then the related equation is


.


In the case  (no energy dissipation) we have


,


which gives


.


Therefore, in this case the integral curves are ellipses. Note 
that if we use  as coordinates then the ellipses 
become circles.

dy
dx

= −
2βy + κx

y
= − 2β − κ

x
y

β = 0
dy
dx

= − κ
x
y
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When  it is possible to solve the resulting equation for  but the 
solutions are complicated and difficult to analyze. It is more productive to go 
back to the original second order equation 


.


The solutions will depend on the sign of the discriminant .


β > 0 dy/dx

x′￼′￼+ 2βx′￼+ κx = 0

4(β2 − κ)



If  then the general solution is


 


where . This expression represents an oscillation with period 
 where the amplitude  dies off as time goes by.


Then





If we use as coordinates  then we have


.

0 < β2 < κ

x = e−βt (c1 cos(ωβt) + c2 sin(ωβt)) = Ae−βt cos(ωβt − ϕ)

ωβ = κ − β2

2π/ωβ Ae−βt

y = x′￼ = − Aβe−βt cos(ωβt − ϕ) − Ae−βt sin(ωβt − ϕ) = − βx − Ae−βt sin(ωβt − ϕ)

(x, y + βx)

(x, y + βx) = Ae−βt(cos(ωβt − ϕ), − sin(ωβt − ϕ))



In the expression


 


the terms in the brackets represent clockwise rotation with period  in the 
 plane while the exponential  shows that the solution curve will 

spiral toward the origin as it rotates in the clockwise direction around it. This 
case is called underdamped.

(x, y + βx) = Ae−βt(cos(ωβt − ϕ), − sin(ωβt − ϕ))

2π/ωβ
(x, y + βx) e−βt
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If  then the general solution is


, 


where . 


Then . Here we 
observe that there is no rotation around the 
origin. This case is called overdamped.

β2 > κ

x = c1e−λ1t + c2e−λ2t

λ1,2 = β ± β2 − κ > 0

y = x′￼ = − λ1c1e−λ1t − λ2c2e−λ2t
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Lastly, consider the energy


,


which is a conserved quantity for . In the general case we find


. 


This implies that the energy is a decreasing function when  and therefore 
the distance from the origin decreases, as we also found through the explicit 
solutions to the second order equation.

E(x, y) =
1
2

y2 +
1
2

κx2

β = 0
dE
dt

= yy′￼+ κxx′￼ = − 2βy2 − κxy + κxy = − 2βy2 ≤ 0

β > 0



Simple pendulum

An equation describing the motion of a pendulum of mass  attached to a 
string of length  in the gravitational field  is given by


,


where  represents the angle between the pendulum and the vertical direction. 
Writing this as a planar system by letting  we get 


,


where .

m > 0
ℓ g

θ′￼′￼ = −
g
ℓ

sin θ

θ
x = θ, y = θ′￼

x′￼ = y, y′￼ = − γ sin x

γ = g/ℓ



Then the related equation is


.


Separation of variables and integration gives


.


The integral curves in this case are shown at the right.

dy
dx

= −
γ sin x

y

1
2

y2 − γ cos x = C
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Rigid body

The equations for the rate of change of the components of the angular 
momentum for a free rigid body are


. 


This looks like a system in . However, the Physics of the problem tells us that 
the total angular momentum  must be conserved. 


We can check that


.


This means that each sphere  is invariant.

x′￼ = yz, y′￼ = − 2xz, z′￼ = xy

ℝ3

x2 + y2 + z2

(x2 + y2 + z2)′￼ = 2xx′￼+ 2yy′￼+ 2zz′￼ = 2xyz − 4xyz + 2xyz = 0

x2 + y2 + z2 = L2



Are there more quadratic conserved quantities of the form ? 


If yes, then we would have


,


that is, . From here we also get .


One solution is clearly  giving the conserved quantity 
. Another solution is  giving the conserved 

quantity . 


For any other such conserved quantity we have


 

ax2 + by2 + cz2

2axx′￼+ 2byy′￼+ 2czz′￼ = 2axyz − 4bxyz + 2cxyz = 2(a − 2b + c)xyz = 0

2b = a + c 2(b − c) = a − c

a = b = c
L2 = x2 + y2 + z2 a = 2b, c = 0

F = 2x2 + y2

ax2 + by2 + cz2 = (a − c)x2 + (b − c)y2 + c(x2 + y2 + z2)
= (b − c)F + cL2 .



Since  and  are conserved quantities, the integral curves lie on the 
intersections of their level sets.

L2 F


