Lecture 14: Examples and
Applications

Konstantinos Efstathiou



Recall



Reduction of a planar system to a non-
autonomous first order equation

As we saw In the previous lecture, given a system

x'=flx,y), y =gk, y)
we can write

dy dydt dyldt y gx,y)

dx dtdx dxldt x  fix,y)

The equation

dy  g(x,y)

dx  f(x,y)

IS a first order equation and it may be solvable whereas the planar system is not directly solvable. Note that
by solving the first order equation we can find the shape of the integral curves but not how fast we move

along these curves. This is because we have eliminated 7 from the original system.




Biomathematics



Lotka-Volterra model

The Lotka-Volterra population model is given by
x'=Ax— Bxy, y = —Cy+ Dxy,
where A, B, C,D > O.

C A
The equilibria are (0,0) and
D’ B

Then we have the reduced equation

dy —Cy+ Dxy y(Dx— C) Dx—-C y

dx Ax — Bxy x(A By) x A—-By
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Integrating gives

Alny—By=Dx—-Clnx+ K.

Solving for K gives the function

K=Alny+ Clnx— By — Dx,

which Is constant along integral curves.



SIR model

Epidemic spread model.
s(?): fraction of susceptible individuals;
1(1): fraction of currently infected individuals;

r(1): fraction of recovered individuals.

System



We have (s + i + r)’ = 0 which implies s + i + r = 1 (constant) and thus
r=1—-—s—1.

Therefore, we can consider only the planar system

/

s'=—asi, i'=asi—ki,

definedfors > 0,1 > 0, s +1 < 1. We can introduce a fictitious time 7 = at so
that

ds o di

_— Sl, _—
dr ar

where k = k/a. This shows that the only essential parameter if we ignore the time
scale of the epidemic spread (this is allowed in mathematics but not in the real

world) Is K.
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The related equation is

di K
MR —
ds s

and can be trivially integrated to i(s) = xkIns — s + C.
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Mass on a spring

An equation describing the motion of a mass m > 0 attached on a spring with
spring constant k > 0 is given by

mx" + bx'+ kx = 0,

where the term bx’, b > 0 represents friction (energy dissipation). Writing this as
a planar system by letting x’ = y we get

1
x' =y, y’=—z(by+kx)=—2ﬁy—1<x,

where 2 = b/m > 0 and k = k/m.



Then the related equation is

d 20y + Kx X
@y _ I ER K
dx y y
In the case ff = 0 (no energy dissipation) we have
dy X
—_— K_,
dx y N
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When [ > 0 it is possible to solve the resulting equation for dy/dx but the
solutions are complicated and difficult to analyze. It is more productive to go
back to the original second order equation

X"+ 20x"+kx = 0.

The solutions will depend on the sign of the discriminant 4(3% — ).



f 0 < 3% < Kk then the general solution is

x=e " ((:1 cos(wgt) + ¢, sin(a)ﬁt)) = Ae V! cos(wgt — ¢h)
where Wy = \/K——,BZ . This expression represents an oscillation with period
Zﬂ/wﬂ where the amplitude Ae ' dies off as time goes by.
Then
y=x'=—Afe " cos(wgt — ¢h) — Ae~ " sin(wgt — ¢p) = — Px — Ae~ " sin(wgt — ¢)
If we use as coordinates (x, y + fx) then we have

(x,y + px) = Ae P(cos(wyt — @), — sin(wyt — ).



In the expression
(x,y + px) = Ae P (cos(wyt — ), — sin(wyt — ¢P))

the terms in the brackets represent clockwise rotation with period 27/ Wg In the

(x,y + x) plane while the exponential e ' shows that the solution curve will
spiral toward the origin as it rotates in the clockwise direction around it. This
case Is called underdamped.
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If 32 > k then the general solution is |
0.5/
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Theny = x"= — A,cye ,Cre~ 2. Here we

observe that there I1s no rotation around the
origin. This case is called overdamped.



Lastly, consider the energy

E(x,y) = ly2 + lkxz,
2 2
which is a conserved quantity for # = 0. In the general case we find
dE , , 5 ,
— =y +kxx' = — 20y —kxy+ kxy = — 20y < 0.

This implies that the energy is a decreasing function when f/ > 0 and therefore
the distance from the origin decreases, as we also found through the explicit
solutions to the second order equation.



Simple pendulum

An equation describing the motion of a pendulum of mass m > 0 attached to a
string of length £ in the gravitational field g is given by

9" = — 2 gino.
7

where @ represents the angle between the pendulum and the vertical direction.
Writing this as a planar system by letting x = 6, y = 60’ we get

xX'=y, y =—ysinx,

where y = g/ .



Then the related equation is

dy y S1n X |
dx  y y
Separation of variables and integration gives !
| _
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Rigid body

The equations for the rate of change of the components of the angular
momentum for a free rigid body are

xX'=vyz, vy =-2xz, 7 = xy.

This looks like a system in | 3. However, the Physics of the problem tells us that
the total angular momentum X + y2 + 7% must be conserved.

We can check that
(xX? + y* 4+ 7% = 2xx' 4+ 2yy' + 277’ = 2xyz — 4xyz + 2xyz = 0.

This means that each sphere X% 4 y2 + 72 = L% is invariant.



Are there more quadratic conserved quantities of the form ax’ + by2 + 777

If yes, then we would have
2axx"+ 2byy' + 2cz7' = 2axyz — 4bxyz + 2cxyz = 2(a — 2b + ¢)xyz = 0,
that is, 2b = a + c¢. From here we also get 2(b — ¢) = a — c.

One solution is clearly a = b = ¢ giving the conserved quantity
L =x*+ y2 + z°. Another solution is a = 2b, ¢ = 0 giving the conserved
quantity F = 2x% + y°.

For any other such conserved quantity we have

ax® + by* +cz> = (a —o)x* + (b — o)y* + c(x* + y* + 7°)
= (b—=c)F + cL*.



Since L* and F are conserved quantities, the integral curves lie on the
intersections of their level sets.




