Lecture 16: Linear Systems
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Planar linear systems

We will now focus on a special class of planar systems that have the form

x; = ay()x; + a(6)x, + f1(0),
Xy = Ay (D)X + Ay ()X + f5(2) .

Here alj(t), fA1), 1, € { 1,2} are continuous functions for 7 in some interval
I CR.

This is a planar non-autonomous system (it becomes autonomous if the
functions alj(t), 1) are constant).



The system
.Xi — all(t)xl + alz(t)xZ +][1(t),
Xy = Ay (1)X] + ayy (D)X, + f5(1),

can be Writtel | i| 1 1N |atrix forl N as

From now on we will denote X = [x; x, ', f(¢) = [f;(?) /,(D)]', and A(r) = [an(t) alz(t)] .

. . . | ay,(1)  ay(1)
With this notation, the system can be written as

X' = A()x + 1(7).

Systems of this form are called linear.



n-dimensional linear systems

The matrix form of the planar linear system given by
X' =A()X + 1(¢)

suggests that we can generalize this equation to any dimension n, where

X =[x x ... x|, @) =[f,@) f,(t) ... f(O], and A(¢) is an n X n matrix
with elements a;;. We will be assuming that (7) and A(¢) are continuous
functions of ¢ in an interval / C R.

From now on we will be considering such linear systems in arbitrary dimension

n > 2. Actually, what we discuss can be also applied to n = 1 but we have
already discussed how to solve this case.



A solution to the linear system X’ = A(?)X + f(¢) is a vector-valued function x(?)
defined on I C R and taking values in R”.

If f(#) = 0 (that is, the constant zero vector) then the linear system is called
homogeneous. Otherwise, the system is called non-homogeneous.



Linear systems from linear differential equations

Suppose that we have a linear differential equation of the form

YO +p, Oy +p (YD + e+ P ()Y + po(D)y = g(D).

Then define

Xl — y
Xy =Yy’

We then have the linear system



Xy = = Pu_1(Ox, — P2 (0)x,,_1 — p1()xy — po(Dx; + &(1)

This shows how linear differential equations give rise to equivalent linear
systems.



Existence and Unigueness

Theorem. If A(¢), £(¢) are continuous functions in aninterval I C R and ¢, € 1
then for any initial vector X, € R" there exists a unique solution of
X' = A(#)x + 1(7) in I that satisfies the initial condition x(#;) = X,




Linearity

We now focus on the homogeneous linear system
X' = A(7)X.
Such systems have the following important property.

Proposition. If X(7), ..., X () are solutions of X" = A(#)X then any linear
combination X(f) = ¢X;(?) + ¢, X,(¥) + -+ + ¢, X . (7) is also a solution of
X' = A(7)X.



Linear in-/dependence

Definition. The m vector valued functions X(?), X,(?), ..., X (f) are linearly
dependent in an interval [ if there exist constants ¢y, ¢,, ..., ¢, , not all zero,
such that

CiX(1) + o X%(8) + - + ¢, X (1) =0, forall r € I.

If they are not linearly dependent, they are called linearly independent.



Example

e’ 3e! !
Letx ()= |0 ], %0 =10 |, %0 = H.

e’ 3é’ 1
The given functions are linearly dependent since for all r € IR we have

3:x1(0)+(—1)-x%0@)+0-x3(1) = 0.




Wronskian

Consider n solutions X;(?), X,(?), ..., X () of the linear system X" = A(#)Xx and consider
the n X n matrix X(#) whose columns are the vectors X(?), X,(?), ..., X, (7). That is,

xl,l xZ’l xn,l

A2 X2 e A2
X() = [x(0) X5(1) ... X ()] =

Xip Xopu oo Xy,

Definition. The Wronskian W|[X,, ..., X |(7) of the n solutions X, (?), X,(?), ..., X (7) is
the determinant of X(7), that is,

Wix,, ..., x |(r) = det X(7).



Linear in-/dependence and Wronskian

Theorem. Suppose that X,(7), X,(?), ..., X (f) are solutions of the linear system
X' = A(?)X in an interval 1. Then the following statements are equivalent:

(@) The solutions X;(?), X,(?), ..., X () are linearly dependent in /.
b) Wix,,...,x [(#) =0 forall f € I.

(c) There is ty € I such that W[x,, ..., x ](#)) = 0.



Proof

First we check that (a) implies (b). If the vector valued functions X, (?), X,(?), ..., X (f)

are linearly dependent in I then we know from Linear Algebra that det X(7) = O.
Therefore,

WIx,,....,x [(#) = detX(r) =Oforallr € I.
Then it is clear that (b) implies (c).

Finally, we prove that (c) implies (a). The condition for (c) implies that det X(z,) = 0
which means that the vectors X,(#,), X,(Zy), ..., X, (,) are linearly dependent.
Therefore, there are ¢, ¢,, ..., ¢,, not all zero, such that



Let
Z(t) = i X{(t) + X, () + -+ + ¢ X, (7).

The function z(?) is a solution for the linear system X' = A(?)X since it is a linear
combination of the solutions x(7), X,(?), ..., X (7). Moreover,

Z(t()) —_ C1X1(l‘0) + C2X2(t0) + oo + Can(tO) — O

Therefore, z(¢) solves the initial value problem x" = A(7)x with z(f;) = (. From

the uniqueness of solutions in I this implies that z(7) = 0 for all € I and thus
that x,(?), X,(?), ..., X, (¢) are linearly dependent in /.



Fundamental solution & fundamental matrix

Definition. A collection of n linearly independent solutions X, (?), X,(), ..., X (1)
of a linear system X' = A(?)X is called a fundamental solution of the system.

The corresponding matrix X(7) = [X,(?) X,(?) ... X, (?)] is called a
fundamental matrix.

Theorem. If X,(7), X,(?), ..., X () is a fundamental solution of the linear system
X' = A(#)X and A(?) is continuous in I C R then the general solution of
X' = A(#)X has the form y(¢) = ¢;Xx,(¢) + --- + ¢ X, () for some real numbers

Cly nny Cppe




Proof. Suppose that y(?) is any solution of X" = A(#)X and for some 7, € I let
y(fy) =y, Since the vectors X,(%,), X,(Zy), - .-, X, (Z,) are n linearly independent
vectors in R"”, there are ¢, ..., ¢, such that

yO — Clxl(to) —+ C2X2(t0) + - + Can(tO)

Define u(?) = ¢X,(f) + ¢, X,(f) + --- + ¢, X, (¢). Then clearly u(#) solves the
initial value problem x’ = A(#)x with x(#,) = y,. However, y(7) solves the same
initial value problem and from uniqueness of solutions we conclude that

y(?) = u(?) = ¢ X{(?) + &, X5(7) + - + ¢, X, (¢) forallt € 1.



Remarks

1. The fundamental matrix X(?) is invertible since det X(¢) # 0.

2. The relation y(¢) = ¢X(f) + ¢,X,(f) + --- + ¢, X, (¢) can also be written in
matrix form as

y(t) = X(?)c,

wherec = [¢, ... ¢,]’.

3. Since each column X;(¢) of X(¢) satisfies X;(¢) = A(#)X,(#) we conclude that

X'(t) = A(1)X(?). This means that a fundamental matrix is a solution of the
differential equation X’ = A(#)X where X is a n X n matrix valued function.



4. Consider the initial value problem X' = A(#)X with X(7,) = X,. If y(?) is the
(unique) solution to this problem then y(¢) = X(7)c for some ¢ € R". At = 1,
we get X, = y(7,)) = X(¢y)c.

Since the fundamental matrix is invertible we get ¢ = X(to)_lxo. Therefore, the
solution to the given initial problem is given by

y(?) = X()X(1,)"'x,.



5. Let Y(¢) be another fundamental matrix for X’ = A(#)X. Then we have
y() = X()X(1)"'xy, = Y(O)Y(ty)~'x,
which gives [X()X(t)~! — Y()Y(z))"'1x, = 0.

Since this relation holds for all X, € R" we conclude that
X(OX(t) ™' = Y(OY(1) 7L, or X()~1Y(¢) = X(2,)~'Y(ty) = C, where Cis a
constant matrix. Therefore,

Y(r) = X(¢) C.

Note that det C # O ( since det Y(¢) # 0 and det Y(7) = det X(¢) det C).
Actually, the converse also holds. If C is a matrix with det C %= 0 and X(?) is a
fundamental matrix then X(¢) C is also a fundamental matrix.



6. Since y(¢) = Y(t)Y(tO)_lxo it is clear that things can be simplified if we take a

fundamental matrix Y(¢) such that Y(#,) = [ (the identity matrix). Then we will
have

y(?) = Y(1)X,,
If we know a fundamental matrix X(¢) then we can define Y(#) with Y(¢,) = [ by
Y(r) = X()X(1,)~ .

To check this, recall from the previous discussion, that such Y(?) is a
fundamental matrix and

Y(t)) = X(1)X(t5)~' = 1.



