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Planar linear systems

We will now focus on a special class of planar systems that have the form


 


Here  are continuous functions for  in some interval 
.


This is a planar non-autonomous system (it becomes autonomous if the 
functions  are constant).


x′￼1 = a11(t)x1 + a12(t)x2 + f1(t),
x′￼2 = a21(t)x1 + a22(t)x2 + f2(t) .

aij(t), fi(t), i, j ∈ {1,2} t
I ⊆ ℝ

aij(t), fi(t)



The system 


 


 can be written in matrix form as


. 


From now on we will denote , , and . 

With this notation, the system can be written as


. 


Systems of this form are called linear.


x′￼1 = a11(t)x1 + a12(t)x2 + f1(t),
x′￼2 = a21(t)x1 + a22(t)x2 + f2(t),

d
dt [x1

x2] = [x′￼1

x′￼2] = [a11(t) a12(t)
a21(t) a22(t)] [x1

x2] + [f1(t)
f2(t)]

x = [x1 x2]t f(t) = [ f1(t) f2(t)]t A(t) = [a11(t) a12(t)
a21(t) a22(t)]

x′￼ = A(t)x + f(t)



-dimensional linear systemsn

The matrix form of the planar linear system given by 





suggests that we can generalize this equation to any dimension , where 
, , and  is an  matrix 

with elements . We will be assuming that  and  are continuous 
functions of  in an interval .


From now on we will be considering such linear systems in arbitrary dimension 
. Actually, what we discuss can be also applied to  but we have 

already discussed how to solve this case.

x′￼ = A(t)x + f(t)

n
x = [x1 x2 … xn]t f(t) = [ f1(t) f2(t) … fn(t)]t A(t) n × n

aij f(t) A(t)
t I ⊆ ℝ

n ≥ 2 n = 1



A solution to the linear system  is a vector-valued function  
defined on  and taking values in .


If  (that is, the constant zero vector) then the linear system is called 
homogeneous. Otherwise, the system is called non-homogeneous.

x′￼ = A(t)x + f(t) x(t)
I ⊆ ℝ ℝn

f(t) ≡ 0



Linear systems from linear differential equations

Suppose that we have a linear differential equation of the form


.


Then define





We then have the linear system

y(n) + pn−1(t)y(n−1) + pn−2(t)y(n−2) + ⋯ + p1(t)y′￼+ p0(t)y = g(t)

x1 = y
x2 = y′￼

⋮
xn = y(n−1)



 


This shows how linear differential equations give rise to equivalent linear 
systems.


x′￼1 = x2

x′￼2 = x3
⋮

x′￼n = − pn−1(t)xn − pn−2(t)xn−1 − p1(t)x2 − p0(t)x1 + g(t)



Existence and Uniqueness

Theorem. If  are continuous functions in an interval  and  
then for any initial vector  there exists a unique solution of 

 in  that satisfies the initial condition .

A(t), f(t) I ⊆ ℝ t0 ∈ I
x0 ∈ ℝn

x′￼ = A(t)x + f(t) I x(t0) = x0



Linearity

We now focus on the homogeneous linear system


.


Such systems have the following important property.


Proposition. If  are solutions of  then any linear 
combination  is also a solution of 

.

x′￼ = A(t)x

x1(t), …, xm(t) x′￼ = A(t)x
x(t) = c1x1(t) + c2x2(t) + ⋯ + cmxm(t)

x′￼ = A(t)x



Linear in-/dependence

Definition. The  vector valued functions  are linearly 
dependent in an interval  if there exist constants , not all zero, 
such that


, for all .


If they are not linearly dependent, they are called linearly independent.

m x1(t), x2(t), …, xm(t)
I c1, c2, …, cm

c1x1(t) + c2x2(t) + ⋯ + cmxm(t) ≡ 0 t ∈ I



Example

Let , , . 


The given functions are linearly dependent since for all  we have


. 

x1(t) =
et

0
et

x2(t) =
3et

0
3et

x3(t) = [
t
0
1]

t ∈ ℝ

3 ⋅ x1(t) + (−1) ⋅ x2(t) + 0 ⋅ x3(t) = 0



Wronskian

Consider  solutions  of the linear system  and consider 
the  matrix  whose columns are the vectors . That is, 


.


Definition. The Wronskian  of the  solutions  is 
the determinant of , that is, 


.

n x1(t), x2(t), …, xn(t) x′￼ = A(t)x
n × n X(t) x1(t), x2(t), …, xn(t)

X(t) = [x1(t) x2(t) … xn(t)] =

x1,1 x2,1 … xn,1
x1,2 x2,2 … xn,2

⋮ ⋮ ⋱ ⋮
x1,n x2,n … xn,n

W[x1, …, xn](t) n x1(t), x2(t), …, xn(t)
X(t)

W[x1, …, xn](t) = det X(t)



Linear in-/dependence and Wronskian

Theorem. Suppose that  are solutions of the linear system 
 in an interval . Then the following statements are equivalent:


(a) The solutions  are linearly dependent in .


(b)  for all .


(c) There is  such that .

x1(t), x2(t), …, xn(t)
x′￼ = A(t)x I

x1(t), x2(t), …, xn(t) I

W[x1, …, xn](t) = 0 t ∈ I

t0 ∈ I W[x1, …, xn](t0) = 0



Proof

First we check that (a) implies (b). If the vector valued functions  
are linearly dependent in  then we know from Linear Algebra that . 
Therefore,


 for all .


Then it is clear that (b) implies (c). 


Finally, we prove that (c) implies (a). The condition for (c) implies that  
which means that the vectors  are linearly dependent. 
Therefore, there are , not all zero, such that


.

x1(t), x2(t), …, xn(t)
I det X(t) = 0

W[x1, …, xn](t) = det X(t) = 0 t ∈ I

det X(t0) = 0
x1(t0), x2(t0), …, xn(t0)

c1, c2, …, cn

c1x1(t0) + c2x2(t0) + ⋯ + cnxn(t0) = 0



Let


.


The function  is a solution for the linear system  since it is a linear 
combination of the solutions . Moreover,


.


Therefore,  solves the initial value problem  with . From 
the uniqueness of solutions in  this implies that  for all  and thus 
that  are linearly dependent in .


z(t) = c1x1(t) + c2x2(t) + ⋯ + cnxn(t)

z(t) x′￼ = A(t)x
x1(t), x2(t), …, xn(t)

z(t0) = c1x1(t0) + c2x2(t0) + ⋯ + cnxn(t0) = 0

z(t) x′￼ = A(t)x z(t0) = 0
I z(t) ≡ 0 t ∈ I

x1(t), x2(t), …, xn(t) I



Fundamental solution & fundamental matrix

Definition. A collection of  linearly independent solutions  
of a linear system  is called a fundamental solution of the system. 


The corresponding matrix   is called a 
fundamental matrix.


Theorem. If  is a fundamental solution of the linear system 
 and  is continuous in  then the general solution of 
 has the form  for some real numbers 

.

n x1(t), x2(t), …, xn(t)
x′￼ = A(t)x

X(t) = [x1(t) x2(t) … xn(t)]

x1(t), x2(t), …, xn(t)
x′￼ = A(t)x A(t) I ⊆ ℝ
x′￼ = A(t)x y(t) = c1x1(t) + ⋯ + cnxn(t)
c1, …, cn



Proof. Suppose that  is any solution of  and for some  let 
. Since the vectors  are  linearly independent 

vectors in , there are  such that


.


Define  . Then clearly  solves the 
initial value problem  with . However,  solves the same 
initial value problem and from uniqueness of solutions we conclude that


  for all .

y(t) x′￼ = A(t)x t0 ∈ I
y(t0) = y0 x1(t0), x2(t0), …, xn(t0) n

ℝn c1, …, cn

y0 = c1x1(t0) + c2x2(t0) + ⋯ + cnxn(t0)

u(t) = c1x1(t) + c2x2(t) + ⋯ + cnxn(t) u(t)
x′￼ = A(t)x x(t0) = y0 y(t)

y(t) = u(t) = c1x1(t) + c2x2(t) + ⋯ + cnxn(t) t ∈ I



Remarks

1. The fundamental matrix  is invertible since .


2. The relation  can also be written in 
matrix form as


,


where .


3. Since each column  of  satisfies  we conclude that 
. This means that a fundamental matrix is a solution of the 

differential equation  where  is a  matrix valued function. 

X(t) det X(t) ≠ 0

y(t) = c1x1(t) + c2x2(t) + ⋯ + cnxn(t)

y(t) = X(t)c

c = [c1 … cn]t

xk(t) X(t) x′￼k(t) = A(t)xk(t)
X′￼(t) = A(t)X(t)

X′￼ = A(t)X X n × n



4. Consider the initial value problem  with . If  is the 
(unique) solution to this problem then  for some . At  
we get .


Since the fundamental matrix is invertible we get . Therefore, the 
solution to the given initial problem is given by


.


x′￼ = A(t)x x(t0) = x0 y(t)
y(t) = X(t)c c ∈ ℝn t = t0

x0 = y(t0) = X(t0)c

c = X(t0)−1x0

y(t) = X(t)X(t0)−1x0



5. Let  be another fundamental matrix for . Then we have


 


which gives  .


Since this relation holds for all  we conclude that
, or , where  is a 

constant matrix. Therefore, 


.


Note that  ( since  and  ). 
Actually, the converse also holds. If  is a matrix with  and  is a 
fundamental matrix then  is also a fundamental matrix.

Y(t) x′￼ = A(t)x

y(t) = X(t)X(t0)−1x0 = Y(t)Y(t0)−1x0

[X(t)X(t0)−1 − Y(t)Y(t0)−1]x0 = 0

x0 ∈ ℝn

X(t)X(t0)−1 = Y(t)Y(t0)−1 X(t)−1Y(t) = X(t0)−1Y(t0) = C C

Y(t) = X(t) C

det C ≠ 0 det Y(t) ≠ 0 det Y(t) = det X(t) det C
C det C ≠ 0 X(t)

X(t) C



6. Since  it is clear that things can be simplified if we take a 
fundamental matrix  such that  (the identity matrix). Then we will 
have 


. 


If we know a fundamental matrix  then we can define  with  by


.


To check this, recall from the previous discussion, that such  is a 
fundamental matrix and


.


y(t) = Y(t)Y(t0)−1x0
Y(t) Y(t0) = 𝕀

y(t) = Y(t)x0

X(t) Y(t) Y(t0) = 𝕀

Y(t) = X(t)X(t0)−1

Y(t)

Y(t0) = X(t0)X(t0)−1 = 𝕀


