# Lecture 17: Linear Systems with Constant Coefficients

MATH 303 ODE and Dynamical Systems

## Linear systems with constant coefficients

We consider systems of the form

$$\mathbf{x}' = A\mathbf{x}$$

where A is a constant  $n \times n$  matrix and x takes values in  $\mathbb{R}^n$ .

Based on the results of the general theory we need to find a **fundamental** solution  $\mathbf{x}_1(t), \dots, \mathbf{x}_n(t)$ .

## Searching for a solution

We try solutions of the form

$$\mathbf{x}(t) = e^{rt}\mathbf{u}$$

where r is a number and  $\mathbf{u}$  is a non-zero vector that must be determined.

Substituting into the system  $\mathbf{x}' = A\mathbf{x}$  we get

$$(e^{rt}\mathbf{u})' = re^{rt}\mathbf{u} = Ae^{rt}\mathbf{u},$$

Therefore,

$$e^{rt}(A-r\mathbb{I})\mathbf{u}=\mathbf{0}.$$

Since  $e^{rt} \neq 0$  we conclude that r, **u** must satisfy the equation

$$(A - r\mathbb{I})\mathbf{u} = \mathbf{0}.$$

## Eigenvalue problem

The equation  $(A - r\mathbb{I})\mathbf{u} = \mathbf{0}$  is the **eigenvalue equation** for the matrix A. That is, the solutions r,  $\mathbf{u}$  are the eigenvalues and eigenvectors respectively of A.

For the equation  $(A - r \mathbb{I})\mathbf{u} = \mathbf{0}$  to have non-zero solutions  $\mathbf{u}$  we need that r is a root of the n-th degree **characteristic polynomial** 

$$p(r) = \det(A - r\mathbb{I}),$$

that is, r is an eigenvalue of A. Then  $\mathbf{u}$  is the corresponding eigenvector. Note that  $\mathbf{u}$  is not unique but is determined only up to a multiplicative constant, that is, if  $\mathbf{u}$  is an eigenvector for r, then  $s\mathbf{u}$ ,  $s \neq 0$  is also an eigenvector for r.

For 
$$A = \begin{bmatrix} 2 & -3 \\ 1 & -2 \end{bmatrix}$$
 we have that  $A - r \mathbb{I} = \begin{bmatrix} 2 - r & -3 \\ 1 & -2 - r \end{bmatrix}$ .

Then  $p(r) = \det(A - r\mathbb{I}) = r^2 - 1$ .

Therefore, the eigenvalues are  $r_1 = -1$ ,  $r_2 = 1$ .

For the eigenvalue  $r_1 = -1$  we have the eigenvector  $\mathbf{u} = [u_1 \ u_2]^t$  that satisfies

$$(A + \mathbb{I})\mathbf{u} = \begin{bmatrix} 3 & -3 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

The equations  $\begin{bmatrix} 3 & -3 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$  give  $u_1 = u_2$ . Then we can take the corresponding eigenvector to be  $\mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ .

For the eigenvalue  $r_2 = 1$  we have the eigenvector  $\mathbf{u} = [u_1 \ u_2]^t$  that satisfies

$$(A - \mathbb{I})\mathbf{u} = \begin{bmatrix} 1 & -3 \\ 1 & -3 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix},$$

and gives  $u_1 = 3u_2$ . Then we can take the corresponding eigenvector to be

$$\mathbf{u}_2 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}.$$

For 
$$A = \begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix}$$
 we have that  $A - r \mathbb{I} = \begin{bmatrix} 1 - r & -2 \\ 2 & 1 - r \end{bmatrix}$ .

Then  $p(r) = \det(A - r\mathbb{I}) = r^2 - 2r + 5$ .

Therefore, the eigenvalues are  $r_1 = 1 - 2i$ ,  $r_2 = 1 + 2i$ .

For the eigenvalue  $r_1 = 1 - 2i$  we have the eigenvector  $\mathbf{u} = [u_1 \ u_2]^t$  that satisfies

$$(A - r_1 \mathbb{I})\mathbf{u} = \begin{bmatrix} 2i & -2 \\ 2 & 2i \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

The equations  $\begin{bmatrix} 2i & -2 \\ 2 & 2i \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$  give  $iu_1 = u_2$ . Then we can take the corresponding eigenvector to be  $\mathbf{u}_1 = \begin{bmatrix} 1 \\ i \end{bmatrix}$ .

For the eigenvalue  $r_2 = 1 + 2i$  we have the eigenvector  $\mathbf{u} = [u_1 \ u_2]^t$  that satisfies

$$(A - r_2 \mathbb{I})\mathbf{u} = \begin{bmatrix} -2i & -2 \\ 2 & -2i \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix},$$

and gives  $-iu_1 = u_2$ . Then we can take the corresponding eigenvector to be  $\mathbf{u}_2 = \begin{bmatrix} 1 \\ -i \end{bmatrix}$ .

#### Remark

If r is a complex eigenvalue of a real matrix A then  $\overline{r}$  (the complex conjugate of r) is also an eigenvalue.

Moreover, if  ${\bf u}$  is an eigenvector for r then  $\overline{{\bf u}}$  is an eigenvector for  $\overline{r}$ , since

$$A\overline{\mathbf{u}} = \overline{A}\overline{\mathbf{u}} = \overline{r}\overline{u} = \overline{r}\,\overline{\mathbf{u}}.$$

#### Poll

Consider the matrix 
$$A = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix}$$
. The vector  $\mathbf{u} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$  is...

Choose the correct answer at pollev.com/ke1.

- A. ... not an eigenvector of A.
- B. ... an eigenvector of A with eigenvalue 1.
- C. ... an eigenvector of A with eigenvalue 4.
- D. ... an eigenvector of A with eigenvalue -1.



## Linearly independent eigenvectors

**Theorem.** If the  $n \times n$  matrix A has n linearly independent eigenvectors  $\mathbf{u}_1, \ldots, \mathbf{u}_n$  with **real** corresponding eigenvalues  $r_1, \ldots, r_n$  then the general solution of the linear system  $\mathbf{x}' = A\mathbf{x}$  is

$$\mathbf{x}(t) = c_1 e^{r_1 t} \mathbf{u}_1 + \dots + c_n e^{r_n t} \mathbf{u}_n.$$

**Proof.** Based on the results for general linear systems, it is sufficient to show that the vector valued functions  $\mathbf{x}_k(t) = e^{r_k t}\mathbf{u}_k$ , k = 1, ..., n are a fundamental solution. For this to hold it is sufficient to check that the Wronskian  $W[\mathbf{x}_1, ..., \mathbf{x}_n](t_0) \neq 0$  for some  $t_0 \in \mathbb{R}$ . Take  $t_0 = 0$ . Then

$$W[\mathbf{x}_1, ..., \mathbf{x}_n](0) = \det[\mathbf{x}_1(0) ... \mathbf{x}_n(0)] = \det[\mathbf{u}_1 ... \mathbf{u}_n] \neq 0,$$

since the vectors  $\mathbf{u}_1, \dots, \mathbf{u}_n$  are linearly independent.

Consider the linear system  $\mathbf{x}' = A\mathbf{x}$  where  $A = \begin{bmatrix} 2 & -3 \\ 1 & -2 \end{bmatrix}$ . Recall that the eigenvalues are -1 and 1 with corresponding eigenvectors  $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ ,  $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$ .

Then the general solution is

$$\mathbf{x}(t) = c_1 e^{-t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 e^t \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} c_1 e^{-t} + 3c_2 e^t \\ c_1 e^{-t} + c_2 e^t \end{bmatrix}.$$

## Real distinct eigenvalues

**Theorem.** If  $r_1, ..., r_m$  (with  $1 \le m \le n$ ) are real distinct eigenvalues of A then the corresponding eigenvectors  $\mathbf{u}_1, ..., \mathbf{u}_m$  are linearly independent.

**Corollary.** If the matrix A has n real distinct eigenvalues  $r_1, \ldots, r_n$  with corresponding eigenvectors  $\mathbf{u}_1, \ldots, \mathbf{u}_n$  then a fundamental solution of the linear system  $\mathbf{x}' = A\mathbf{x}$  is  $e^{r_1t}\mathbf{u}_1, \ldots, e^{r_nt}\mathbf{u}_n$ .

## Complex eigenvalues

Consider now the case where one of the eigenvalues of A is complex,  $r = \alpha + i\beta$ , with eigenvector  $\mathbf{u} = \mathbf{a} + i\mathbf{b}$ . Recall that this means that then  $\overline{r} = \alpha - i\beta$  is another eigenvalue with eigenvector  $\overline{\mathbf{u}} = \mathbf{a} - i\mathbf{b}$ .

Since  $\mathbf{w}(t) = e^{rt}\mathbf{u}$  and  $\overline{\mathbf{w}}(t) = e^{\overline{r}t}\overline{\mathbf{u}}$  are complex vector valued solutions of the linear system  $\mathbf{x}' = A\mathbf{x}$  we can combine them to create real vector valued solutions:

$$\mathbf{x}_1(t) = \frac{1}{2}(\mathbf{w}(t) + \overline{\mathbf{w}}(t)) = \text{Re}\mathbf{w}(t) \text{ and } \mathbf{x}_2(t) = \frac{1}{2i}(\mathbf{w}(t) - \overline{\mathbf{w}}(t)) = \text{Im}\mathbf{w}(t).$$

We have

$$\mathbf{w}(t) = e^{(\alpha + i\beta)t}(\mathbf{a} + i\mathbf{b}) = e^{\alpha t}(\cos(\beta t) + i\sin(\beta t))(\mathbf{a} + i\mathbf{b})$$
$$= e^{\alpha t}(\cos(\beta t)\mathbf{a} - \sin(\beta t)\mathbf{b}) + ie^{\alpha t}(\sin(\beta t)\mathbf{a} + \cos(\beta t)\mathbf{b})$$

Therefore,

$$\mathbf{x}_1(t) = e^{\alpha t}(\cos(\beta t)\mathbf{a} - \sin(\beta t)\mathbf{b})$$
 and  $\mathbf{x}_2(t) = e^{\alpha t}(\sin(\beta t)\mathbf{a} + \cos(\beta t)\mathbf{b})$ .

It can be proven that these two vector valued functions are linearly independent.

Consider the linear system  $\mathbf{x}' = A\mathbf{x}$  where  $A = \begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix}$ . Recall that one complex eigenvalue is r = 1 + 2i with corresponding eigenvector  $\mathbf{u} = \begin{bmatrix} 1 \\ -i \end{bmatrix}$ .

Therefore, 
$$\alpha = 1$$
,  $\beta = 2$ ,  $\mathbf{a} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ ,  $\mathbf{b} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$ .

Using the relations we obtained earlier we find

$$\mathbf{x}_1(t) = e^t \left( \cos(2t) \begin{bmatrix} 1 \\ 0 \end{bmatrix} - \sin(2t) \begin{bmatrix} 0 \\ -1 \end{bmatrix} \right) = e^t \begin{bmatrix} \cos(2t) \\ \sin(2t) \end{bmatrix}$$

and

$$\mathbf{x}_2(t) = e^t \left( \sin(2t) \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \cos(2t) \begin{bmatrix} 0 \\ -1 \end{bmatrix} \right) = e^t \begin{bmatrix} \sin(2t) \\ -\cos(2t) \end{bmatrix}.$$

Therefore the general solution is

$$\mathbf{x}(t) = c_1 \mathbf{x}_1(t) + c_2 \mathbf{x}_2(t) = e^t \begin{bmatrix} c_1 \cos(2t) + c_2 \sin(2t) \\ c_1 \sin(2t) - c_2 \cos(2t) \end{bmatrix}.$$

**Remark.** It is rather difficult to remember the general expressions for  $\mathbf{x}_1(t)$  and  $\mathbf{x}_2(t)$ . What we do in practice is to write  $\mathbf{w}(t) = e^{(1+2i)t} \begin{bmatrix} 1 \\ -i \end{bmatrix}$  and compute the real and imaginary parts of  $\mathbf{w}(t)$ .

### Poll



Consider the linear system  $\mathbf{x}' = A\mathbf{x}$  where A has eigenvalues  $r_1 = -2, r_2 = -i, r_3 = i$  with corresponding eigenvectors  $\mathbf{u}_1 = [1 \ 0 \ 0]^t$ ,  $\mathbf{u}_2 = [0 \ 1 \ -i]^t$ ,  $\mathbf{u}_3 = [0 \ 1 \ i]^t$ . What is the general solution of the linear system?

Choose the correct answer at pollev.com/ke1.

A. 
$$c_1$$

$$\begin{bmatrix} e^{-2t} \\ 0 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} 0 \\ \cos t \\ \sin t \end{bmatrix} + c_3 \begin{bmatrix} 0 \\ -\sin t \\ \cos t \end{bmatrix}$$

C. 
$$c_1$$
  $\begin{bmatrix} e^{-2t} \\ 0 \\ 0 \end{bmatrix}$   $+ c_2 \begin{bmatrix} 0 \\ \cos t \\ \sin t \end{bmatrix}$   $+ c_3 \begin{bmatrix} 0 \\ \sin t \\ -\cos t \end{bmatrix}$ 

B. 
$$c_1$$
  $\begin{bmatrix} e^{-2t} \\ 0 \\ 0 \end{bmatrix}$   $+ c_2 \begin{bmatrix} 0 \\ \cos t \\ -\sin t \end{bmatrix}$   $+ c_3 \begin{bmatrix} 0 \\ \sin t \\ \cos t \end{bmatrix}$ 

D. 
$$c_1 \begin{bmatrix} e^{-2t} \\ 1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ \cos t \\ \sin t \end{bmatrix} + c_3 \begin{bmatrix} 1 \\ \sin t \\ -\cos t \end{bmatrix}$$

$$-2 \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} e^{-2t} \\ 0 \end{bmatrix} = \begin{bmatrix} e^{-2t} \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} cost + i sint \\ i \end{bmatrix} = \begin{bmatrix} cost \\ -sint \end{bmatrix} = \begin{bmatrix} cost \\ -sint \end{bmatrix}$$

$$= \begin{bmatrix} cost + i sint \\ i cost - sint \end{bmatrix} = \begin{bmatrix} cost \\ -sint \end{bmatrix} + \begin{bmatrix} cost \\ x_{2}(t) \end{bmatrix}$$

$$= \begin{bmatrix} e^{-2t} \\ 0 \end{bmatrix} + C_{2} \begin{bmatrix} cost \\ -sint \end{bmatrix} + C_{3} \begin{bmatrix} cost \\ cost \end{bmatrix}$$