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Definition

For a real number  we define the exponential through the series


.


Analogously, for a  matrix  we define the matrix exponential  through 
the (matrix) series


.
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Properties
1. The series defining  converges for all .


2.  where  is the  zero matrix and  is the  identity matrix.


3. , where  denotes the trace of . Recall that  
 

, where  are the eigenvalues of .


4. If  then  ( follows from the series definition 
and the formula for the Cauchy product of two series ).


5. , that is,  ( follows easily from property 4 ).

eA A

e𝕆 = 𝕀 𝕆 n × n 𝕀 n × n
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λi λi A

AB = BA eA+B = eAeB = eBeA

eAe−A = 𝕀 (eA)−1 = e−A



More properties

6. If  then  ( follows easily from the series definition ).


7.  ( follows easily from the series definition and the fact that 
 ).


8.  ( follows easily from the series definition ).


9.  ( follows easily from property 4 in the previous slide ).

Au = ru eAu = eru

eU−1AU = U−1eAU
(U−1AU)k = U−1AkU

e𝕀t = et𝕀

eA(t+s) = eAteAs



Diagonal matrix

Consider a diagonal matrix . Then . We have





Note that the same property holds for diagonal matrices of arbitrary size . 


Remark. Recall that . Therefore, if , where  is 
diagonal, then we have .

R = [a 0
0 b] Rk = [ak 0

0 bk]
eR =

∞

∑
k=0

1
k!

Rk =
∞

∑
k=0

1
k! [ak 0

0 bk] =
∑∞

k=0
1
k! ak 0

0 ∑∞
k=0

1
k! bk

= [ea 0
0 eb]
n × n

eU−1AU = U−1eAU A = U−1RU R
eA = eU−1RU = U−1eRU



What this has to do with linear systems?
Theorem. For a  constant matrix  we have


.


Proof. We have


 

n × n A
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dt
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Theorem. The unique solution to the initial value problem  with  
is given by


.


Proof. We have


,


and


. 


Therefore,  solves the given initial value problem.


Remark. In the particular case where  we have .

x′￼ = Ax x(t0) = x0

x(t) = eA(t−t0) x0

x′￼(t) =
d
dt (eA(t−t0)x0) =

d
dt

(eA(t−t0))x0 = AeA(t−t0)x0 = Ax(t)

x(t0) = eA(t0−t0)x0 = e𝕆x0 = 𝕀x0 = x0

x(t) = eA(t−t0) x0

t0 = 0 x(t) = eAtx0



 is a fundamental matrixeAt

Recall that we saw earlier that if  is a fundamental matrix for the system 
 and we have the initial condition  then the solution is


.


Moreover, we just saw that


.


Since these relations hold for arbitrary  we conclude that


.

X(t)
x′￼ = Ax x(0) = x0

x(t) = X(t)X(0)−1x0

x(t) = eAtx0

x0

eAt = X(t)X(0)−1



This relation 


 


shows that  is also a fundamental matrix for the system  and, more 
specifically, it is the fundamental matrix which equals  at . 


Moreover, the relation





gives us a recipe for computing . Find any fundamental matrix  and then 
compute .

eAt = X(t)X(0)−1

eAt x′￼ = Ax
𝕀 t = 0

eAt = X(t)X(0)−1

eAt X(t)
X(t)X(0)−1



Generalized eigenvectors
Definition. A non-zero vector  that satisfies  for some 

 and a positive integer  is called a generalized eigenvector of  
associated with .


Remark. The case  corresponds to standard eigenvectors.


Remark. If  is a generalized eigenvector associated with  then  is an 
eigenvalue of . The reason for this is that if  is the smallest number for which 

 ( i.e., if we have  ) then


,


showing that  is an eigenvector with eigenvalue .

u ∈ ℂn (A − r𝕀)mu = 0
r ∈ ℂ m A

r

m = 1

u r r
A m

(A − r𝕀)mu = 0 w = (A − r𝕀)m−1u ≠ 0

(A − r𝕀)w = (A − r𝕀)[(A − r𝕀)m−1u] = (A − r𝕀)mu = 0

w r



Generalized eigenvectors

Theorem. If the  matrix  has characteristic polynomial 


 


with , then there exist for each  linearly 
independent generalized eigenvectors  with


  for  .


Moreover, the generalized eigenvectors  are linearly 
independent.

n × n A

p(r) = (r − r1)m1 ⋯ (r − rk)mk

m1 + ⋯ + mk = n j = 1,…, k
uj,1, …, uj,mj

(A − rj𝕀)mjuj,ℓ = 0 ℓ = 1,…, mj

{uj,ℓ}j=1,…,k;ℓ=1,…,mj



How to compute eAt

1. Find linearly independent generalized eigenvectors  by solving the 
corresponding equation for each root of the characteristic polynomial.


2. Compute the solutions . Here we will use the fact 
that for each generalized eigenvector  there is a number  such that 

.


3. Write the corresponding fundamental matrix .


4. Compute .

u1, …, un

xj(t) = eAtuj, j = 1,…, n
uj kj

(A − rj𝕀)kjuj = 0

X(t) = [x1(t) … xn(t)]

eAt = X(t)X(0)−1



Example

We will start with a non-trivial example to demonstrate how to use the previous 
theoretical results. Consider the linear system  where 


. 


We want to compute . 


The characteristic polynomial is


.


x′￼ = Ax

A = [
1 0 0
1 3 0
0 1 1]

eAt

p(r) = − (r − 1)2 (r − 3)



Because  is an eigenvalue with multiplicity 2 we try to find 
generalized eigenvectors that satisfy . We have


  and  


so we get the equation


.


We only have the equation , which implies that  is arbitrary and 
.

r1 = r2 = 1
(A − 𝕀)2u = 0

A − 𝕀 = [
0 0 0
1 2 0
0 1 0] (A − 𝕀)2 = [

0 0 0
2 4 0
1 2 0]

(A − 𝕀)2u = [
0 0 0
2 4 0
1 2 0]

u1
u2
u3

= [
0
0
0]

u1 + 2u2 = 0 u3
u1 = − 2u2



This means we can choose  and  
to get the linearly independent generalized eigenvectors


 and  .


For the solution  with  we have . 


We compute  using the following trick. We know that  satisfies 
. Therefore,


.


u1 = u2 = 0, u3 = 1 u1 = − 2, u2 = 1, u3 = 0

u1 = [
0
0
1] u2 = [

−2
1
0 ]

x1(t) x1(0) = u1 x1(t) = eAtu1

x1(t) u1
(A − 𝕀)2u1 = 0

eAtu1 = e𝕀t+(A−𝕀)tu1 = e𝕀te(A−𝕀)tu1 = ete(A−𝕀)tu1



But then we have


 


since  for . What remains is to compute the last expression. We 
have 


. 

e(A−𝕀)tu1 = (𝕀 + t(A − 𝕀) +
t2

2
(A − 𝕀)2 + ⋯) u1

= u1 + t(A − 𝕀)u1 +
t2

2
(A − 𝕀)2u1 + ⋯

= u1 + t(A − 𝕀)u1

(A − 𝕀)ku1 = 0 k ≥ 2

e(A−𝕀)tu1 = [
0
0
1] + t [

0 0 0
1 2 0
0 1 0] [

0
0
1] = [

0
0
1]



Therefore,


.


We can work similarly to find


.


Since  for  we will get, exactly as for , that 


.


x1(t) = eAtu1 = ete(A−𝕀)tu1 = et [
0
0
1] =

0
0
et

x2(t) = eAtu2 = ete(A−𝕀)tu2

(A − 𝕀)ku2 = 0 k ≥ 2 u1

e(A−𝕀)tu2 = u2 + t(A − 𝕀)u2 = [
−2
1
0 ] + t [

0 0 0
1 2 0
0 1 0] [

−2
1
0 ] = [

−2
1
t ]



Therefore,


.


Finally, for  which has multiplicity 1, we search for a standard eigenvector. We find the 
eigenvector


.


Therefore, the corresponding solution is


 .

x2(t) = eAtu2 = ete(A−𝕀)tu2 = et [
−2
1
t ] =

−2et

et

tet

r3 = 3

u3 = [
0
2
1]

x3(t) = eAtu3 = e3tu3 =
0

2e3t

e3t



The corresponding fundamental matrix is


. 


Moreover,  and  and we find


.

X(t) = [x1(t) x2(t) x3(t)] =
0 −2et 0
0 et 2e3t

et tet e3t

X(0) = [
0 −2 0
0 1 2
1 0 1] X(0)−1 =

1
4 [

−1 −2 4
−2 0 0
1 2 0]

eAt = X(t)X(0)−1 =
1
4

4et 0 0
−2et + 2e3t 4e3t 0

−et + e3t − 2tet −2et + 2e3t 4et



Example

Consider the planar linear system  where . We want to 

compute . 


The characteristic polynomial is  with . Here we can 
look for generalized eigenvectors as solutions of .


We have  and therefore all non-zero vectors are generalized 
eigenvectors. Choose  and .

x′￼ = Ax A = [1 1
0 1]

eAt

p(r) = (r − 1)2 r1 = r2 = 1
(A − 𝕀)2u = 0

(A − 𝕀)2 = 𝕆
u1 = [1 0]t u2 = [0 1]t



We have





Similarly,





We then consider the fundamental matrix


,


and we observe that . Therefore, .

eAtu1 = ete(A−𝕀)tu1 = et (u1 + t(A − 𝕀)u1) = et ([1
0] + t [0 1

0 0] [1
0]) = [et

0]

eAtu2 = ete(A−𝕀)tu2 = et (u2 + t(A − 𝕀)u2) = et ([0
1] + t [0 1

0 0] [0
1]) = [tet

et ]

X(t) = [et tet

0 et ]
X(0) = 𝕀 eAt = X(t)X(0)−1 = X(t)



Remark. Note that this example is sufficiently simple so that  can be 
computed directly through the Taylor series. The crucial fact here is that 

.


Remark. Another way to obtain the same result is to observe that 
. This can be verified by a simple computation. However, the way 

to realize that this relation holds is from the fact that the characteristic 
polynomial of  is  and it is known that a matrix is a "root" of its 
characteristic polynomial, that is, . Then


.

eAt

Ak = [1 k
0 1]

(A − 𝕀)2 = 𝕆

A p(r) = (r − 1)2

p(A) = (A − 𝕀)2 = 𝕆

eAt = ete(A−𝕀)t = et (𝕀 + t(A − 𝕀) +
t2

2
(A − 𝕀)2 + ⋯) = et (𝕀 + t(A − 𝕀))



Therefore,


.eAt = et (𝕀 + t(A − 𝕀)) = et [1 t
0 1] = [et tet

0 et ]


