Lecture 18: Matrix Exponential
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Definition

For a real number a we define the exponential through the series

1 1 1 — 1
e“=1+a+—a*+—a’+—a*+ =)y —a~
2! 3! 41 k!

Analogously, for a n X n matrix A we define the matrix exponential e through
the (matrix) series

1 1 1 — |
' =1+ A+—A+ —A T+ —At 4 = ) —Ak
TR YR g



Properties

A converges for all A.

1. The series defining e
2. ¢V = [ where O is the n X n zero matrix and [ is the n X n identity matrix.
3. dete? = e > 0, where tr A denotes the trace of A. Recall that

n n
trA = Z a; = Z A, where A are the eigenvalues of A.
i=1 i=1

4. 1f AB = BA then 218 = ¢4e8 = ¢BeA

5. ete™ =1, thatis, (eM) ! = e



More properties

A

6. If Au = ru then e”u = e’u ( follows easily from the series definition ).

7. eUTAU = y-leAy ( follows easily from the series definition and the fact that
(UTAUY = UTIARD).

8. ' = ¢l ( follows easily from the series definition ).

9. e2US) = A4S (follows easily from property 4 in the previous slide ).



Diagonal matrix

k
Consider a diagonal matrix R = a | Then R¥ = [ 0 . We have
0 b 0 bk

co 1 f
— Z_Rk Z 1 [Clk O] _ zk—()k'a 0 _ [ea O]
0 b¥ 0 > oﬂbk 0 e’

Note that the same property holds for diagonal matrices of arbitrary size n X n.

Remark. Recall that e UTAU = U~ 1 LeAU. Therefore, if A = U™ 1RU where R is
diagonal, then we have el = eU RU = U~=lefRU.



What this has to do with linear systems?

Theorem. For a n X n constant matrix A we have

d
E(em) = Ae?! = A

Proof. We have

d d 1 1 1
— () = — (u + AL+ —A" + —A + —AY + )

dt dt 2! 31 4
1 2 1 3,2 1 4.3
= A+ —At+—A1t"+—A"1" + ---
]! 2! 3!

1 1 1
= A ([I +—At+—A+—AP + ) = Ae?V!
]! 2! 3!



Theorem. The unique solution to the initial value problem x" = Ax with x(7,) = X,
IS given by

X(1) = e x,

Proof. We have

d d
X/(t) — E (eA(t—tO)XO) — E(eA(t—tO))XO — AeA(t—fO)XO — AX(t),

and

X(fy) = eM0x, = e"x, = IX, = X,

A(t—

Therefore, X(f) = ¢ o) Xy solves the given initial value problem.

A

Remark. In the particular case where f, = 0 we have x(f) = e”'x,,



e is a fundamental matrix

Recall that we saw earlier that if X(7) is a fundamental matrix for the system
X' = AX and we have the initial condition x(0) = X, then the solution is

x(1) = X()X(0)™!x,.
Moreover, we just saw that
X(1) = e’'x,,
Since these relations hold for arbitrary X, we conclude that

e’ = X(nX(0)~".



This relation
el = X(0)X(0)™!

shows that e is also a fundamental matrix for the system X’ = AX and, more
specifically, it is the fundamental matrix which equals [ at t = 0.

Moreover, the relation
e = X(0)X(0)™!

gives us a recipe for computing e“’. Find any fundamental matrix X(¢) and then
compute X(£)X(0)~!.



Generalized eigenvectors

Definition. A non-zero vector u € C" that satisfies (A — rl)"u = 0 for some
r € C and a positive integer m is called a generalized eigenvector of A
associated with r.

Remark. The case m = 1 corresponds to standard eigenvectors.

Remark. If u is a generalized eigenvector associated with r then r is an
eigenvalue of A. The reason for this is that if m1 is the smallest number for which

(A= rlY™a =0 (i.e., if we have w = (A — )" 'u # 0) then
A=rDw=A—-r[A =" u]l = A = r1)™a = 0,

showing that w Is an eigenvector with eigenvalue r.



Generalized eigenvectors

Theorem. If the n X n matrix A has characteristic polynomial

p(r) =@ —r)" - (r=n)™

with m; + --- + m, = n, then there exist for each j = 1,..., k linearly

Independent generalized eigenvectors g, ..., uj,mj with

A—=rl)y"m,; , =0 for £ =1,...,m.

Moreover, the generalized eigenvectors {W; »},_; ke=1.....m; are linearly
iIndependent.



How to compute ¢

1. Find linearly independent generalized eigenvectors u,, ..., by solving the
corresponding equation for each root of the characteristic polynomial.

2. Compute the solutions X (t) = ¢4 iy ] = 1,...,n. Here we will use the fact
that for each generalized elgenvector u, there Is a number k such that

(A = rm; = 0.
3. Write the corresponding fundamental matrix X(¢) = [x,(¢) ... X (?)].

4. Compute e = X(H)X(0)~!.



Example

We will start with a non-trivial example to demonstrate how to use the previous
theoretical results. Consider the linear system X' = AX where

1 0 O
A=11 3 0
0 1 1

We want to compute e

The characteristic polynomial is

p(r) = —(r—1)*(r = 3).



Because r; = r, = 1 is an eigenvalue with multiplicity 2 we try to find
generalized eigenvectors that satisfy (A — [)?u = 0. We have

0O 0 O 0O 0 O
A-Il=11 2 0| and (A—I])2= 2 4 0

0 1 O 1 2 0

SO we get the equation

0 0 O] |'% 0
A-Du= (2 4 0] || =]0].
1 2 04 |43 0

We only have the equation u; + 2u, = 0, which implies that u, is arbitrary and



Thismeanswecanchoose u; = u, =0, uy=landu; =—-2, u, =1, u3 =0
to get the linearly independent generalized eigenvectors

0 -2
u, = |0l and u, = | 1
| 0
For the solution x(#) with X;(0) = u, we have X(f) = eAtul.

We compute X, (7) using the following trick. We know that u, satisfies
(A — 0)*u; = 0. Therefore,

eAtul _ el]t+(A—|])tu1 _ el]te(A—[l)tul _ ete(A—l])tul_



But then we have

tz
ey, = (u + 1A -1+ E(A —0)* + ) u,

2
=u; + (A — Du, + E(A — Du; + -

=u; + (A — Du,

since (A — I])kul = () for £k > 2. What remains is to compute the last expression. We

have
0 0 0 0] [0 0
eV = ol +t|1 2 0] [0] =|0].
1 0 1 0J L1 1



Therefore,
0
0

et

0
X,() = etu, = eV, = ¢ [O] =
1

We can work similarly to find

A )¢

X,(1) = etu, = e’edVy,,.

Since (A — I])kuz = () for k > 2 we will get, exactly as for u, that

) 0 0 0] [-2 )
ey, =+ A-Du,= [ 1 [+2[1 2 0|1 ]|=]1]
0 01 o0lLO t



Therefore,

) —2e!
X,(1) = eAtuz = ete(A_")tuz =e' |l 1| =] e
[ te'

Finally, for r; = 3 which has multiplicity 1, we search for a standard eigenvector. We find the
eigenvector

0
u; = |2
1
Therefore, the corresponding solution is
0
X;(1) = etuy = ey = [ 2%
3t

€



The corresponding fundamental matrix is

0 =2 0
X(@®) =[x;(0) (1) X301 = |0 e 2eY|.
el‘ tet 632‘
0 -2 0 1 -1 =2 4
Moreover, X(0) = [0 1 2| and X(0)~! = 7 —2 0 0] and we find

1 O 1 1 2 0

| 4e' 0 0
At — Y(NX(0) ! = — Nt 3t 3t

e (H)X(0) 2 2e' + 2e 4e 0

—el 4 e = 2te! —2e' + 2 4e!



Example

1 1

0 1] . We want to

Consider the planar linear system X' = AX where A = [

compute e’

The characteristic polynomial is p(r) = (r — 1)* with r;, = r, = 1. Here we can
look for generalized eigenvectors as solutions of (A — [)’u = 0.

We have (A — I])2 = O and therefore all non-zero vectors are generalized
eigenvectors. Choose u, = [1 0]'andu, = [0 1]~



We have
eAtlll — ete(A_H)tlll — et (lll + t(A — [l)ul)

Similarly,

euy = e'e "V, = e (uy + /(A — Du,) =€ (

We then consider the fundamental matrix

[

€
=)

and we observe that X(0) = [. Therefore, e”

€

— €

[

1

[
0 +

(

0

+ 1
1

= X(OXO0)™' = X(»).



Remark. Note that this example is sufficiently simple so that e/ can be
computed directly through the Taylor series. The crucial fact here is that

1 %k
Ak = .

Remark. Another way to obtain the same result is to observe that

(A — )? = O. This can be verified by a simple computation. However, the way
to realize that this relation holds is from the fact that the characteristic

polynomial of A is p(r) = (r — 1)? and it is known that a matrix is a "root" of its
characteristic polynomial, that is, p(A) = (A — )* = O. Then

tz
eW=&MW:au+wpm+3m—W+m =e' (1+ 1A -1)).



Therefore,



