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Planar linear systems

We now focus on the case of planar linear systems. In particular, we consider 
systems of the form


,


where  is a constant  matrix and .


To understand all possible dynamics of such systems we will consider different 
possible cases for the eigenvalues of , determine the corresponding dynamics, 
and draw phase portraits.

x′￼ = Ax

A 2 × 2 x = [x1 x2]t

A



Characteristic polynomial

Write .


Then the characteristic polynomial of  is


.


That is,


,


where  is the trace of , and  is its determinant.

A = [a b
c d]

A

p(r) = det(A − r𝕀) = det [a − r b
c d − r] = r2 − (a + d)r + (ad − bc)

p(r) = r2 − Tr + D

T A D



Case 1. Real distinct eigenvalues

In this case the discriminant of  is , and there are two real 
eigenvalues  and corresponding linearly independent eigenvectors 

.


Consider the matrix  whose columns are the two eigenvectors, that is, 


.


Then we have  and . Moreover, we have


   and  .

p(r) Δ = T2 − 4D > 0
r1 ≠ r2

u1, u2

U

U = [u1 u2]

Ue1 = u1 Ue2 = u2

AUe1 = Au1 = r1u1 AUe2 = Au2 = r2u2



The relations  and  imply that


,


where we have defined . Therefore,


   or   .


Using the properties of the matrix exponential we get


.


This shows that using the matrix  of eigenvectors we can diagonalize  through 
a similarity transformation and then easily compute the matrix exponential. 

AUe1 = r1u1 AUe2 = r2u2

AU = [r1u1 r2u2] = [u1 u2][r1 0
0 r2] = UR

R = diag(r1, r2)

A = URU−1 R = U−1AU

eAt = UeRtU−1 = U [er1t 0
0 er2t] U−1

U A



To understand the geometric meaning of this similarity transformation, define 
new coordinates  on the plane by


.


Then


.


This means that the linear coordinate transformation  has the effect of 
changing the linear system  to the diagonal system  which can 
be easily solved for  and then the solutions can be expressed in terms of 

.


Therefore, in the case of real distinct eigenvalues  it is sufficient to 
understand the dynamics of such diagonal systems with .

z = [z1 z2]t

x = Uz

z′￼ = U−1x′￼ = U−1Ax = U−1AUz = Rz

x = Uz
x′￼ = Ax z′￼ = Rz

z
x = Uz

r1 ≠ r2
R = diag(r1, r2)



For the diagonal linear system we have the equations


, 


with solutions


 .


Then we can write . Therefore,


.


The behavior and shape of the solutions will depend on the signs (positive, 
negative, zero) of  and . We distinguish several cases.

z′￼1 = r1z1, z′￼2 = r2z2

z1(t) = z1(0)er1t, z2(t) = z2(0)er2t

z1(t)r2 = C1er1r2t, z2(t)r1 = C2er1r2t

z1(t)r2

z2(t)r1
=

C1

C2
= C

r1 r2



Case 1a. 0 < r1 < r2

We have  and therefore 

, where . We have the 
phase portrait in the  plane shown at the right. 


Notice that at the origin, the integral curves become 
tangent to the horizontal axis. This is because 

.


Also note that all flow arrows point away from the 
origin which is an equilibrium.


Such an equilibrium is called an unstable node.

z1(t)r2

z2(t)r1
= C

z2(t) = Kz1(t)r2/r1 r2/r1 > 0
z1, z2

r2/r1 > 1
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After drawing the phase portrait in the 
 plane we can use the matrix 

 to transform the phase 
portrait to the  plane. Here, and in all 
the following examples, we have chosen 

.


The unit vector  is sent by  to 
the vector . 


Similarly,  is sent by  to the 
vector 

z1, z2
U = [u1 u2]

x1, x2

U = [−1 1
2 1]

e1 = [1 0]t U
u1 = [−1 2]t

e2 = [0 1]t U
u2 = [1 1]t
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Case 1b. r2 < r1 < 0

The situation here is exactly the same as in the previous case, except for the 
directions of the flow arrows. Therefore, we have the following phase portraits. 
The equilibrium in this case is called a stable node.
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Case 1c. r1 < 0 < r2

We have  and therefore , where . 
Therefore, the integral curves on the  plane are (generalized) hyperbolas. The 
equilibrium in this case is called a saddle. Notice the existence of a stable direction 
(blue) and an unstable direction (red).

z1(t)r2/z2(t)r1 = C z1(t)r2z2(t)−r1 = C −r1, r2 > 0
z1, z2



Case 1d. 0 = r1 < r2

In this case the system is  with solutions 
. The phase portrait is as follows.

z′￼1 = 0, z′￼2 = r2z2
z1(t) = z1(0), z2(t) = z2(0)er2t
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Case 1e. r2 < r1 = 0

In this case the system is  with solutions 
. The phase portrait is as follows.

z′￼1 = 0, z′￼2 = r2z2
z1(t) = z1(0), z2(t) = z2(0)er2t
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Case 2. Complex conjugate eigenvalues

In this case the discriminant of  is . There are two 
complex conjugate eigenvalues  and corresponding eigenvectors  
such that  are linearly independent.


Then we have


. 


Comparing real and imaginary parts we find


  and  .

p(r) Δ = T2 − 4D < 0
α ± iβ a ± ib

a, b

A(a + ib) = (α + iβ)(a + ib) = (αa − βb) + i(αb + βa)

Aa = αa − βb Ab = βa + αb



Consider the matrix  whose columns are , that is, 


.


Then we have  and . Moreover, we have


   and  .


Therefore,


.


Here we have


.

U a, b

U = [a b]

Ue1 = a Ue2 = b

AUe1 = Aa = αa − βb AUe2 = Ab = βa + αb

AU = [αa − βb βa + αb] = [a b][ α β
−β α] = UR

eRt = eαt [ cos(βt) sin(βt)
−sin(βt) cos(βt)]



Therefore,


.


To understand the dynamics in the  plane, where , we use polar 
coordinates  and .


Then we have


,


and


.

eAt = UeRtU−1 = U (eαt [ cos(βt) sin(βt)
−sin(βt) cos(βt)]) U−1

z1, z2 x = Uz
r = (z2

1 + z2
2)1/2 θ = arctan(z2/z1)

θ′￼ =
z1z′￼2 − z2z′￼1

z2
1 + z2

2
=

z1(−βz1 + αz2) − z2(αz1 + βz2)
z2
1 + z2

2
= − β

r′￼ =
z1z′￼1 + z2z′￼2

(z2
1 + z2

2)1/2
=

z1(αz1 + βz2) + z2(−βz1 + αz2)
(z2

1 + z2
2)1/2

= α(z2
1 + z2

2)1/2 = αr



This means that in the radial direction we have the solution  which 
goes away from the origin ( ) when , approaches the origin when 

, and remains constant (so the solutions move on circles) when .


Moreover, assuming ,  decreases at a constant rate , and we have 
. The decrease corresponds to clockwise rotation.

r(t) = r(0)eαt

r = 0 α > 0
α < 0 α = 0

β > 0 θ −β
θ(t) = θ(0) − βt



Case 2c. α = 0
In the case  all solutions, except for the equilibrium at the origin, are 
closed curves (periodic solution) with period . On the  plane they 
are circles while on the  plane they are transformed to ellipses. The 
equilibrium is called a center. The semiaxes of the ellipses are the eigenvectors 
of the matrix .

α = 0
T = 2π/β z1, z2

x1, x2

UUt
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Case 2a. α > 0

In this case the solutions rotate around the origin while moving away from it. 
The equilibrium is called an unstable spiral. The phase portraits are shown 
below. 
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Case 2b. α < 0

In this case the solutions rotate around the origin while moving toward it. The 
equilibrium is called a stable spiral. The phase portraits are shown below. 
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Rotation direction
In all cases I have drawn the direction of the solutions in the  plane as 
clockwise. The reason for this is that if we choose  (and for consistency, let's 
always choose ) then the rotation is always clockwise since, as we saw 
earlier, we have .


In the  plane I have drawn all rotations to be counterclockwise. However, this 
doesn't have to be the case. The direction of the rotation in the  plane 
depends on the sign of . 


If  then the rotation in the  plane has the same direction as the 
rotation in the  plane, that is, clockwise.


If  then the rotation in the  plane has the opposite direction from 
the rotation in the  plane, that is, counterclockwise. 

z1, z2
β > 0

β > 0
θ′￼ = − β < 0

x1, x2
x1, x2

det U

det U > 0 x1, x2
z1, z2

det U < 0 x1, x2
z1, z2



The deeper reason for this is that the sign of  tells us if the corresponding 
coordinate transformation  keeps ( ) or reverses ( ) the 
orientation on the plane. 


For a more computational proof, we work as follows. Let . Then


.


From the expression for  and assuming that  we find that  
(clockwise rotation) if  and  (counterclockwise rotation) if 

.


In the examples, I have chosen a matrix  with  and this led to the 
change of rotation direction that can be seen in the pictures.

det U
x = Uz det U > 0 det U < 0

ϕ = arctan(x2/x1)

ϕ′￼ =
x1x′￼2 − x2x′￼1

x2
1 + x2

2
= ⋯ = −

β
det U

(a1x2 − a2x1)2 + (b1x2 − b2x1)2

x2
1 + x2

2

ϕ′￼ β > 0 ϕ′￼ < 0
det U > 0 ϕ′￼ > 0

det U < 0

U det U = − 3



Classification on the  planeT, D

Recall that the characteristic polynomial of  is , where  is 
the trace of , and  is its determinant.


We have Case 1 when , i.e., when .


We have Case 2 when , i.e., when .

A p(r) = r2 − Tr + D T
A D

Δ = T2 − 4D > 0 D < 1
4 T2

Δ = T2 − 4D < 0 D > 1
4 T2



Case 1

Case 2



In Case 1 the real eigenvalues are


.


If we assume  then we find that both eigenvalues are 
positive. This is Case 1a (unstable node).


If we assume  then we find that both eigenvalues are 
negative. This is Case 1b (stable node).


If we assume  then we find that one eigenvalue is negative and the 
other one is positive. This is Case 1c (saddle).


If we assume  then we find that one eigenvalue is positive 
and the other one is zero. This is Case 1d. If we assume  
then we find that one eigenvalue is negative and the other one is zero. This is 
Case 1e.

T ± T2 − 4D
2

Δ > 0, D > 0, T > 0

Δ > 0, D > 0, T < 0

Δ > 0, D < 0

Δ > 0, D = 0, T > 0
Δ > 0, D = 0, T < 0



In Case 2 the complex eigenvalues are . Therefore, .


If we assume  then we find that the real part is positive. This is 
Case 2a (unstable spiral).


If we assume  then we find that the real part is negative. This is 
Case 2b (stable spiral).


If we assume  then we find that the real part is zero. This is Case 
2c (center).


We can summarize this classification in the following diagram. The importance 
of the diagram is that it allows us to directly classify a system in terms of its 
stability if we know  and it also allows us to see how we can change the 
parameters of a system to obtain different types of equilibria.

T ± i 4D − T2

2
α = T/2

Δ < 0, T > 0

Δ < 0, T < 0

Δ < 0, T = 0

T, D



Case 1c (saddle)

Case 2a  
(unstable spiral)

Case 2b  
(stable spiral)
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Case 1a 
(unstable node)

Case 1b 
(stable node)

Case 1e Case 1d


