Lecture 20: Aimost Linear
Systems

Konstantinos Efstathiou



Planar systems and equilibria

We consider general planar systems of the form
xp = J1(xp, %)
Xy = Jo(xp, X)

We will also use vector notation to write the equation such systems by defining
X = [x; %] and £(x) = [f;(x;, x,) f>(x;,X,)]", so we can write

X' = f(X).

Recall that an equilibrium is a point X, = [x, ; x,,]’ that satisfies f(x,) = 0,
that iS,f‘l(xeal,xe,z) =f2(xe,1,xe,2) — O



Stability of equilibria in planar systems

Definition. Given a point X € | 2 define the open disk of radius o > 0 centered
at x by Bs(x) = {y € R* : ||y — x|| < 6}.

Here ||y — X|| is the Euclidean distance in R?, that is,

ly — x|| = \/ (V1 — x1)2 + (V) — xz)z-



Stable equilibria

Definition. An equilibrium x, of X’ = {(X) is stable if for every € > 0 there is
0 > () such that any solution x(7) with initial condition x(0) € Bs(x,) satisfies
X(t) € B.(x,) forall t > 0.
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Unstable & asymptotically stable equilibria

Definition. An equilibrium x, of X’ = f(X) is unstable if it is not stable, that is, if
there is £y > 0 such that for all 0 > 0 there is a solution X(#) with initial
condition X(0) € By(x,) which satisfies x(#,) & B.(Xx,) for some 7, > O.

Definition. An equilibrium X, of X’ = f(X) is asymptotically stable if it is stable
and if there is 7 > 0 such that for all solutions X(#) with initial condition
x(0) € B,(x,) we have [[x(7) — X,|| > Oas? — 0.
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Examples

Asymptotically stable: stable node, stable spiral.
Stable but not asymptotically stable: center.

Unstable: unstable node, unstable spiral, saddle.



Almost linear systems

Xi, X
Recall that we write f(X) = [fl( ! 2)].
Jr(xy, %)

We define the 2 X 2 Jacobian matrix of f at X by:

of of

_1(361, X)) _l(xp X))

Df(X) _ Oxl @xz
of of

— (X1, %) —(Xx7,x
axl(l ») axz(l )



Definition. Assume that () is an equilibrium of X’ = f(x) and let A = D1(0).

Moreover, assume that f is continuous in a neighborhood of 0, that det A # 0O,
and that

[1(x) — Ax|

— Qas [|x]|| — O.
by

Then the system X’ = f(X) is called an almost linear system.

Remark. If all the partial derivatives df./ @xj are continuous in a neighborhood of

(0,0) then the condition |[f(x) — AX||/||x|| — O as ||x]|| — O is satisfied.

Actually, this condition is the definition of the derivative Df(()) and then one
shows that if the derivative exists then it must be the Jacobian matrix given in
the previous slide.



Proposition. The system X’ = f(X) is an almost linear system if f(0) = 0, f and
the partial derivatives df;/dx; are continuous in a neighborhood of (), and

detA # 0, where A = D1(0).

Suppose now that X, is an equilibrium of X’ = f(X). Then lety = x — x,. We
have

y =x'=1(x) =f(x, +y) =: g(y).

Definition. The system X’ = {(X) is an almost linear system at X, if the system
y' = g(y), where g(y) = (X, + y), is an almost linear system.

Note that g(0) = f(x,) = 0 and Dg(0) = Df(x,).



Hyperbolic linear systems

Definition. A matrix A is called hyperbolic if all the eigenvalues of A have non-
zero real part.

Definition. An equilibrium x, of X" = f(X) is called hyperbolic if Df(x)) is a
hyperbolic matrix.



Main Theorem

Theorem. Assume that the system X’ = f(X) is an almost linear system at x
and X, is hyperbolic. Then there is (non-linear) coordinate transformation

Yy = @(X) near X, so that ¢(x,) = () and the dynamics of the system x’ = {(x)
is transformed to the dynamics of the system y’ = Ay, where A = DI(x).

Remark. This theorem is known as the Hartman-Grobman theorem or the
Linearization theorem.



Example: Duffing equation

Consider the system

X' =y
y=—=2y4+x—x

The equilibria are (—1,0), (0,0), (1,0). Note that f(x,y) = y and
gx,y)=—2y+x — x> are continuous on R? and so are all their first partial
derivatives.

The Jacobian matrix at arbitrary (x, y) is given by

0 1
Do y) = [1 _ 3y —2] |



Therefore,

0 1

] and A, = Df(—1,0) = Df(1,0) = [_02 _12]

We have det Ap = — 1 < 0. Therefore, (0,0) is a saddle in the linearization and
from the Linearization theorem it is a saddle also for the non-linear system.

To find the stable and unstable directions of the saddle we compute the
eigenvectors of A. Theseareu, =[] — \ﬁ 11" with eigenvalue

r=—1- \/5 andu, =[] + \ﬁ 11" with eigenvalue r, = — 1 + \ﬁ
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For (x1,0) we havedetA; =2 > 0QandtrA, = -2 <0. Therefore in the

linearization these points are stable spirals since det A; > (trA1)2 Since the
equilibria are hyperbolic they will be also stable spirals in the non-linear system.

To find the rotation direction of the spirals we need to compute the real and
imaginary part of the eigenvectors of A;.

The eigenvalues are —1 * i and the eigenvector for —1 +iis[1 — 1 + ]’

Therefore,
a = [_11] and b = [(1)]

Therefore, the transformation matrix U = [a b] hasdetU = 1 > 0 and
therefore the rotation must be clockwise.






Example: Lotka-Volterra model

The Lotka-Volterra population model is given by

x'=Ax— Bxy, y = —Cy+ Dxy,

C A
where A, B, C, D > 0. The equilibria are (0,0) and (B, E) . The Jacobian matrix is

A — By —Bx
Dy —C+ Dx

C A
Evaluated at the equilibrium (— —) this gives the matrix M = [

0 —BC/D
D B |

DA/B 0



Here we have tr M = 0 and det M = AC > 0. This shows that in the linear
approximation the equilibrium is a center. However, this is a non-hyperbolic
equilibrium. Therefore, the Linearization theorem does not tell us whether it is
also a center (that is, surrounded by periodic solutions) for the non-linear
system.

As we discussed earlier, and as shown in the phase portrait below, the
equilibrium is a center also for the non-linear system but we cannot deduce this

from the Linearization theorem.
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