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Planar systems and equilibria

We consider general planar systems of the form





We will also use vector notation to write the equation such systems by defining 
 and , so we can write


.


Recall that an equilibrium is a point  that satisfies , 
that is, .

x′￼1 = f1(x1, x2)
x′￼2 = f2(x1, x2)

x = [x1 x2]t f(x) = [ f1(x1, x2) f2(x1, x2)]t

x′￼ = f(x)

xe = [xe,1 xe,2]t f(xe) = 0
f1(xe,1, xe,2) = f2(xe,1, xe,2) = 0



Stability of equilibria in planar systems

Definition. Given a point  define the open disk of radius  centered 
at  by . 


Here  is the Euclidean distance in , that is, 


.


x ∈ ℝ2 δ > 0
x Bδ(x) = {y ∈ ℝ2 : ∥y − x∥ < δ}

∥y − x∥ ℝ2

∥y − x∥ = (y1 − x1)2 + (y2 − x2)2



Stable equilibria
Definition. An equilibrium  of  is stable if for every  there is 

 such that any solution  with initial condition  satisfies 
 for all .

xe x′￼ = f(x) ε > 0
δ > 0 x(t) x(0) ∈ Bδ(xe)
x(t) ∈ Bε(xe) t ≥ 0

xe

δ ε



Unstable & asymptotically stable equilibria

Definition. An equilibrium  of  is unstable if it is not stable, that is, if 
there is  such that for all  there is a solution  with initial 
condition  which satisfies  for some .


Definition. An equilibrium  of  is asymptotically stable if it is stable 
and if there is  such that for all solutions  with initial condition 

 we have  as .

xe x′￼ = f(x)
ε0 > 0 δ > 0 x(t)

x(0) ∈ Bδ(xe) x(t0) ∉ Bε(xe) t0 ≥ 0

xe x′￼ = f(x)
η > 0 x(t)

x(0) ∈ Bη(xe) ∥x(t) − xe∥ → 0 t → ∞



Poll

A center is:


A. stable but not asymptotically stable


B. asymptotically stable


C. unstable
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Examples

Asymptotically stable: stable node, stable spiral.


Stable but not asymptotically stable: center.


Unstable: unstable node, unstable spiral, saddle.



Almost linear systems

Recall that we write . 


We define the  Jacobian matrix of  at  by:


.

f(x) = [f1(x1, x2)
f2(x1, x2)]

2 × 2 f x

Df(x) =

∂f1
∂x1

(x1, x2)
∂f1
∂x2

(x1, x2)

∂f2
∂x1

(x1, x2)
∂f2
∂x2

(x1, x2)



Definition. Assume that  is an equilibrium of  and let . 
Moreover, assume that  is continuous in a neighborhood of , that , 
and that


 as .


Then the system  is called an almost linear system.


Remark. If all the partial derivatives  are continuous in a neighborhood of 
 then the condition  as  is satisfied. 

Actually, this condition is the definition of the derivative  and then one 
shows that if the derivative exists then it must be the Jacobian matrix given in 
the previous slide.

0 x′￼ = f(x) A = Df(0)
f 0 det A ≠ 0

∥f(x) − Ax∥
∥x∥

→ 0 ∥x∥ → 0

x′￼ = f(x)

∂fi/∂xj
(0,0) ∥f(x) − Ax∥/∥x∥ → 0 ∥x∥ → 0

Df(0)



Proposition. The system  is an almost linear system if ,  and 
the partial derivatives  are continuous in a neighborhood of , and 

, where .


Suppose now that  is an equilibrium of . Then let . We 
have


.


Definition. The system  is an almost linear system at  if the system 
, where , is an almost linear system.


Note that  and .

x′￼ = f(x) f(0) = 0 f
∂fi/∂xj 0

det A ≠ 0 A = Df(0)

xe x′￼ = f(x) y = x − xe

y′￼ = x′￼ = f(x) = f(xe + y) =: g(y)

x′￼ = f(x) xe
y′￼ = g(y) g(y) = f(xe + y)

g(0) = f(xe) = 0 Dg(0) = Df(xe)



Hyperbolic linear systems

Definition. A matrix  is called hyperbolic if all the eigenvalues of  have non-
zero real part.


Definition. An equilibrium  of  is called hyperbolic if  is a 
hyperbolic matrix.

A A

xe x′￼ = f(x) Df(xe)



Main Theorem

Theorem. Assume that the system  is an almost linear system at , 
and  is hyperbolic. Then there is (non-linear) coordinate transformation 

 near  so that  and the dynamics of the system  
is transformed to the dynamics of the system , where .


Remark. This theorem is known as the Hartman-Grobman theorem or the 
Linearization theorem.

x′￼ = f(x) xe
xe

y = φ(x) xe φ(xe) = 0 x′￼ = f(x)
y′￼ = Ay A = Df(xe)



Example: Duffing equation
Consider the system


 


The equilibria are . Note that  and 
 are continuous on  and so are all their first partial 

derivatives.


The Jacobian matrix at arbitrary  is given by


.

x′￼ = y
y′￼ = − 2y + x − x3

(−1,0), (0,0), (1,0) f(x, y) = y
g(x, y) = − 2y + x − x3 ℝ2

(x, y)

Df(x, y) = [ 0 1
1 − 3x2 −2]



Therefore, 


  and  .


We have . Therefore,  is a saddle in the linearization and 
from the Linearization theorem it is a saddle also for the non-linear system.


To find the stable and unstable directions of the saddle we compute the 
eigenvectors of . These are  with eigenvalue 

 and  with eigenvalue . 

A0 = Df(0,0) = [0 1
1 −2] A1 = Df(−1,0) = Df(1,0) = [ 0 1

−2 −2]
det A0 = − 1 < 0 (0,0)

A0 u1 = [1 − 2 1]t

r1 = − 1 − 2 u2 = [1 + 2 1]t r2 = − 1 + 2



Case 1c (saddle)

Case 2a  
(unstable spiral)

Case 2b  
(stable spiral)
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(stable node)

Case 1e Case 1d



For  we have  and . Therefore in the 
linearization these points are stable spirals since . Since the 
equilibria are hyperbolic they will be also stable spirals in the non-linear system.


To find the rotation direction of the spirals we need to compute the real and 
imaginary part of the eigenvectors of .


The eigenvalues are  and the eigenvector for  is . 
Therefore,


 and .


Therefore, the transformation matrix  has  and 
therefore the rotation must be clockwise.

(±1,0) det A1 = 2 > 0 tr A1 = − 2 < 0
det A1 > 1

4 (tr A1)2

A1

−1 ± i −1 + i [1 − 1 + i]t

a = [ 1
−1] b = [0

1]
U = [a b] det U = 1 > 0
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Example: Lotka-Volterra model

The Lotka-Volterra population model is given by


,


where . The equilibria are  and . The Jacobian matrix is


.


Evaluated at the equilibrium  this gives the matrix .

x′￼ = Ax − Bxy, y′￼ = − Cy + Dxy

A, B, C, D > 0 (0,0) ( C
D

,
A
B )

[A − By −Bx
Dy −C + Dx]

( C
D

,
A
B ) M = [ 0 −BC/D

DA/B 0 ]



Here we have  and . This shows that in the linear 
approximation the equilibrium is a center. However, this is a non-hyperbolic 
equilibrium. Therefore, the Linearization theorem does not tell us whether it is 
also a center (that is, surrounded by periodic solutions) for the non-linear 
system.


As we discussed earlier, and as shown in the phase portrait below, the 
equilibrium is a center also for the non-linear system but we cannot deduce this 
from the Linearization theorem.

tr M = 0 det M = AC > 0
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