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Mechanical systems

We consider planar systems of the form


 


Remark. Such systems appear commonly in physics (classical mechanics) and 
they are often called mechanical systems. However, even if we get a system of 
this type that does not arise from a physics problem we can still use the same 
techniques to analyze its phase portrait. 

x′￼ = y
y′￼ = f(x)



Potential and energy conservation

Given the function  we define the potential  as an antiderivative of . 


Then the energy function 


 


is a conserved quantity.


This can be shown as follows:


.

f(x) U(x) −f(x)

E(x, y) =
1
2

y2 + U(x)

dE
dt

= y
dy
dt

+
dU
dx

dx
dt

= yf(x) + (−f(x))y = 0



Level sets

The fact that  is a conserved quantity allows us to easily derive the phase 
portrait of the original system.


Suppose that we fix the value of  to a value  and we want to draw the 
corresponding level set . 


Solving the equation   for  we get


.

E(x, y)

E(x, y) h
E(x, y) = h

h =
1
2

y2 + U(x) y

y = ± 2(h − U(x))



Remarks

1. The expression for  makes sense only when . Therefore, the 
graph of  is defined only over the subsets of the -axis where .


2. Since we have  the level sets consists of two parts, one 
above the -axis ( ) and one below the -axis ( ), and each one of 
these parts is the reflection of the other.


3. The intersections of the level set  with the -axis are the points 
 where .


4. The absolute value  on a given level set is larger for larger values of 
.

y h − U(x) ≥ 0
y x U(x) ≤ h

y = ± 2(h − U(x))
x y ≥ 0 x y ≤ 0

E(x, y) = h x
(x,0) E(x,0) = U(x) = h

|y |
h − U(x)



Example
Consider the system


 


In this case,  and therefore we can take . The energy is 


.


Clearly, the level sets are ellipses for , a single point for , and are not 
defined for . We will temporarily ignore this fact and try to use the remarks 
from the previous slide to draw the phase portrait. 

x′￼ = y,
y′￼ = − a2x, a > 0.

f(x) = − a2x U(x) =
1
2

a2x2

E(x, y) =
1
2

y2 +
1
2

a2x2

h > 0 h = 0
h < 0



At the right we have drawn the graph of the 
potential  together with different 
values of  (top) and the corresponding 
level curves of  (bottom).


Note that for each value of  the 
corresponding level curve is defined only in 
the region where  is below .


All level curves are symmetric under 
reflections through the -axis (changing  
to ).


Also, the level curves are furthest away 
from the -axis at  since at that point 
the distance between  and  is 
maximal.

U(x)
h

E(x, y)

h

U(x) h

x y
−y

x x = 0
U(x) h

U(x)

x

y



One more remark

Recall that the level set  intersects the -axis at points  with . We will 
show that if  then the corresponding level curve (if defined on one side of ) has 
"infinite slope", that is, it is vertical there.


Consider the upper side of the level curve so that . We find


.


Suppose that for  we have  and . Then


.

E(x, y) = h x xi U(xi) = h
U′￼(xi) ≠ 0 xi

y = 2(h − U(x))

dy
dx

= −
U′￼(x)

2(h − U(x))

x ≤ xi U(x) ≤ U(xi) = h U′￼(xi) > 0

lim
x→x−

i

dy
dx

= − lim
x→x−

i

U′￼(x)
2(h − U(x))

= − ∞



Example
Consider the system


 


In this case,  and therefore we can take . The energy 
is 


.


The level sets are hyperbolas when . For  we have the straight lines 
. 

x′￼ = y,
y′￼ = b2x, b > 0.

f(x) = b2x U(x) = −
1
2

b2x2

E(x, y) =
1
2

y2 −
1
2

b2x2

h ≠ 0 h = 0
y = ± bx



U(x)

x

y

At the right we have drawn the graph of 
the potential  together with different 
values of  (top) and the corresponding 
level curves of  (bottom).


Note again that for each value of  the 
corresponding level curve is defined only 
in the region where  is below .


The level curve for  (blue) does not 
become vertical at the origin. This 
happens because  and 
therefore the previous argument does 
not apply.


U(x)
h

E(x, y)

h

U(x) h

h = 0

U′￼(0) = 0



Equilibria

The equilibria of the system





are the points  for which . Since  we conclude that 
at an equilibrium we have .


This means that critical points of the potential  correspond to equilibria of 
the system. In particular, maxima and minima of  correspond to equilibria.

x′￼ = y
y′￼ = f(x)

(xe,0) f(xe) = 0 U′￼(x) = − f(x)
U′￼(xe) = 0

U(x)
U(x)



Linearization

The Jacobian matrix corresponding to  is given by


.


Assuming that  and  are continuous functions in a neighborhood of a 
point  with , and that  we conclude that the system is 
almost linear at the equilibrium .


F = [y f(x)]t

DF(x, y) = [ 0 1
f′￼(x) 0] = [ 0 1

−U′￼′￼(x) 0]
f(x) f′￼(x)

xe f(xe) = 0 U′￼′￼(xe) ≠ 0
(xe,0)



We distinguish two cases. First, if  then the potential has a minimum 
at .


The eigenvalues of the corresponding linear system are  and 
therefore the equilibrium for the linear system is a center. The linearization 
theorem cannot be used in this case.


The Taylor series of the potential  up to quadratic terms is


.


This quadratic expression is essentially the expression  that we 
met in an earlier example.

U′￼′￼(xe) > 0
xe

±i U′￼′￼(xe)

U(x)

U(x) ≊ U(xe) +
1
2

U′￼′￼(xe)(x − xe)2

U(x) =
1
2

a2x2



Even though the linearization theorem does not allow us to determine the 
stability of the equilibrium, because  is a conserved quantity and near the 
equilibrium it is approximately 


 


we conclude that the level curves near  are approximate ellipses. 

E(x, y)

E(x, y) ≊ U(xe) +
1
2

y2 +
1
2

U′￼′￼(xe)(x − xe)2

(xe,0)



Second, if  then the potential has a maximum at .


The eigenvalues of the corresponding linear system are  and 
therefore the equilibrium for the linear system is a saddle. The linearization 
theorem then ensures that the equilibrium  is also a saddle for the full 
system.


We can work similarly as for the case  to write


.


Since  this quadratic expression is essentially the same as the 

expression  that we also met in an earlier example.

U′￼′￼(xe) < 0 xe

± −U′￼′￼(xe)

(xe,0)

U′￼′￼(xe) > 0

U(x) ≊ U(xe) +
1
2

U′￼′￼(xe)(x − xe)2

U′￼′￼(xe) < 0
U(x) = −

1
2

b2x2



Example
Consider the equations describing the motion 
of a pendulum:


 


In this case,  and therefore we 
can take . The energy is 


.


The level curves for different values of  are 
shown at the right.

x′￼ = y,
y′￼ = − sin x .

f(x) = − sin x
U(x) = − cos x

E(x, y) =
1
2

y2 − cos x

h

U(x)

-� 0 �
x

y



Example

We consider the potential function


.


The graph of  and some level 
curves are shown at the right.

U(x) =
1
4

x4 −
1
2

x2 +
1
10

x

U(x)

U(x)

x

y



Example

We consider the potential function


.


The graph of  and some level 
curves are shown at the right.

U(x) = −
1
4

x4 +
1
2

x2 −
1
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