Lecture 22: Lyapunov’s Method
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Isolated equilibria

Definition. An equilibrium (x,, y,) of a planar system is an isolated equilibrium

if there is an open disk D = By(x,,y,) of radius 0 > 0 centered at (x,, y,) which
does not contain any other equilibria.



Positive / Negative (semi-)definite

Definition. Let D be an open disk centered at (0,0) and consider a function
W(x, y) which is continuous in D and satisfies W(0,0) = 0.

e If W(x,y) > Oforall (x,y) € D. = D\{(0,0)} then W(x, y) is positive
definite in D.

o If W(x,y) > 0 forall (x,y) € D then W(x, y) is positive semidefinite in D.
e If W(x,y) < Oforall (x,y) € D. then W(x, y) is negative definite in D.
e If W(x,y) <Oforall (x,y) € D then W(x, y) is negative semidefinite in D.

Remark. Clearly W(x, y) is positive (semi-)definite in D if and only if — W(x, y) is
negative (semi-)definite in D.



Derivative

Consider a planar system X’ = {(X) and a real-valued function V(X). Let
X(#) = (x;(?), x,(¢)) be a solution curve of the given planar system. Then
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Given a function V(X) and a planar system x’ = f(x) define a new function V(x)
oy
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With this notation we have

d .
—[V(x(@))] = V(x(2)).
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We call V the derivative of V along the flow of f. Moreover, notice that
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V(X) = Fw (x)f1(x) + —(X) L(x) = £(x) - VV(X),
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or V =f - VV. The relation above shows that V is the directional derivative of V
along the vector field 1.



Lyapunov's Stability Theorem

Theorem. Consider a planar system X' = {(Xx) for which (0,0) is an isolated
equilibrium.

(a) If there is a function V(X) which is positive definite in an open disk D

centered at (0,0) while V(X) is negative definite in D then (0,0) is
asymptotically stable.

(b) If there is a function V(X) which is positive definite in an open disk D

centered at (0,0) while V(X) is negative semidefinite in D then (0,0) is
stable.

Remark. A function V satisfying the conditions of (either part of) this theorem is
called a Lyapunov function.



Example 1

Consider the system x’ = y — xy? — x°, y' = — x — x*y — y°. Then (0,0) is an
Isolated equilibrium.

Let V(x,y) = x* + y%. Then V(0,0) = 0, and V is continuous and positive
definite on R

Moreover,

oV oV

V=— -(—xy" =) +— - (—x—x°y — y°)
ox dy

= 2x(y —xy° — x°) + 2y(—x — x°y — y°) = = 2(x* + y*)



We have V(0,0) = 0 and V is continuous and

negative definite on R?. We conclude that (0,0)
Is asymptotically stable.

Remark. The phase portrait of the system is |
shown at the right. Y

Remark. The linearization of this system is

x' =1y, yy = — x which corresponds to a center.
Therefore, the linearization theorem cannot be

used in this case to determine stability. PN




Example 2

Consider the system x’ = — 2y°, y' = x — 3y°. Then (0,0) is an isolated
equilibrium.

Consider the function V(x, y) = x* 4+ y*. Then V(x, y) is positive definite and
continuous on R? with V(0,0) = 0. We have

N 174 ; oV 3 ; ;
V = d - (— 2y)+a— (x—3y)——4xy +4y(x—3y)——12y < 0.
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We also have V(0,0) = 0 and Vis continuous on R?, therefore V is negative
semidefinite on R?. Therefore, according to the theorem, the origin is stable.




Actually, the origin is asymptotically stable but the
theorem cannot ensure this.

The phase portrait of the system is shown at the
right.




Example 3

We consider the pendulum with damping:
xX'=y, y =-—by—sinx,

where b > 0. Recall that when b = 0 the energy

1
E(x,y) = Eyz — COS X
IS a conserved quantity. In this case we have
. dy - dx y , , ,
E=y—+simmx— =—-by —ysimmx+ysinx = — by~ < 0.

dt dt



We want to use E(x, y) to show that the isolated equilibrium (0,0) is stable.

Since we have £(0,0) = — 1 we choose

|
Vix,y) =Ex,y)+ 1= Eyz + (1 — cos x).
Then V(0,0) = 0 and V(x, y) is continuous on R?. Moreover, V(x, V) is positive
definite on (—x, 7) X R and certainly there is a disk D centered at (0,0) and

contained in this set, for example, the open disk with radius z. Therefore, V(x, y)
is positive definite in D.

Moreover, V(x,v) = — by? is continuous on R?, has V(0,0) = 0, and
V(x,y) = — by? < O for all (x,y) € D. Therefore, V is negative semidefinite on

D. Then Lyapunov's Stability Theorem allows us to conclude that (0,0) is (at
least) stable.



Actually, again the equilibrium is not just stable
but asymptotically stable. The phase portrait of
the system near the origin is shown at the right.




Lyapunov's Instability Theorem

Theorem. Consider a planar system X' = {(Xx) for which (0,0) is an isolated
equilibrium. Assume that there is a function V(X) and an open disk D centered

at (0,0) such that V(x) is continuous in D, V(0,0) = 0, and V(x) is positive
definite in D.

If for every open disk B centered at (0,0) there exists @ € B such that V(a) > 0
then the origin is unstable.



Example 4

Consider the planar system x’ = — y>, y' = — x°. The only equilibrium is (0,0)
which clearly Is isolated.
Consider V(x, y) = — xy which is continuous on R? and satisfies V(0,0) =
We have
. adV . 0V ;
V=— (=) +— (—x) = y* +x*
ox dy

We have V > 0 for all (x, y) # (0,0). Therefore, V is positive definite on |

Consider now any open disk B centered at (0,0). Denote by r the radius of B.
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