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Isolated equilibria

Definition. An equilibrium  of a planar system is an isolated equilibrium 
if there is an open disk  of radius  centered at  which 
does not contain any other equilibria.

(xe, ye)
D = Bδ(xe, ye) δ > 0 (xe, ye)



Positive / Negative (semi-)definite
Definition. Let  be an open disk centered at  and consider a function 

 which is continuous in  and satisfies . 


• If  for all  then  is positive 
definite in .


• If  for all  then  is positive semidefinite in .


• If  for all  then  is negative definite in .


• If  for all  then  is negative semidefinite in .


Remark. Clearly  is positive (semi-)definite in  if and only if  is 
negative (semi-)definite in .

D (0,0)
W(x, y) D W(0,0) = 0

W(x, y) > 0 (x, y) ∈ D* = D∖{(0,0)} W(x, y)
D

W(x, y) ≥ 0 (x, y) ∈ D W(x, y) D

W(x, y) < 0 (x, y) ∈ D* W(x, y) D

W(x, y) ≤ 0 (x, y) ∈ D W(x, y) D

W(x, y) D −W(x, y)
D



Derivative
Consider a planar system  and a real-valued function . Let 

 be a solution curve of the given planar system. Then





Given a function  and a planar system  define a new function  
by


. 

x′￼ = f(x) V(x)
x(t) = (x1(t), x2(t))

d
dt

[V(x(t))] =
d
dt

[V(x1(t), x2(t))] =
∂V
∂x1

(x(t))
dx1

dt
+

∂V
∂x2

(x(t))
dx2

dt

=
∂V
∂x1

(x(t)) f1(x(t)) +
∂V
∂x2

(x(t)) f2(x(t))

V(x) x′￼ = f(x) ·V(x)

·V(x) =
∂V
∂x1

(x) f1(x) +
∂V
∂x2

(x) f2(x)



With this notation we have


.


We call  the derivative of  along the flow of . Moreover, notice that


, 


or . The relation above shows that  is the directional derivative of  
along the vector field .


d
dt

[V(x(t))] = ·V(x(t))

·V V f

·V(x) =
∂V
∂x1

(x) f1(x) +
∂V
∂x2

(x) f2(x) = f(x) ⋅ ∇V(x)

·V = f ⋅ ∇V ·V V
f



Lyapunov's Stability Theorem

Theorem. Consider a planar system  for which  is an isolated 
equilibrium.


(a) If there is a function  which is positive definite in an open disk  
centered at  while  is negative definite in  then  is 
asymptotically stable.


(b) If there is a function  which is positive definite in an open disk  
centered at  while  is negative semidefinite in  then  is 
stable.


Remark. A function  satisfying the conditions of (either part of) this theorem is 
called a Lyapunov function. 

x′￼ = f(x) (0,0)

V(x) D
(0,0) ·V(x) D (0,0)

V(x) D
(0,0) ·V(x) D (0,0)

V



Example 1

Consider the system . Then  is an 
isolated equilibrium. 


Let . Then , and  is continuous and positive 
definite on .


Moreover, 


 

x′￼ = y − xy2 − x3, y′￼ = − x − x2y − y3 (0,0)

V(x, y) = x2 + y2 V(0,0) = 0 V
ℝ2

·V =
∂V
∂x

⋅ (y − xy2 − x3) +
∂V
∂y

⋅ (−x − x2y − y3)

= 2x(y − xy2 − x3) + 2y(−x − x2y − y3) = − 2(x4 + y4)



We have  and  is continuous and 
negative definite on . We conclude that  
is asymptotically stable.


Remark. The phase portrait of the system is 
shown at the right.


Remark. The linearization of this system is 
 which corresponds to a center. 

Therefore, the linearization theorem cannot be 
used in this case to determine stability.

·V(0,0) = 0 ·V
ℝ2 (0,0)

x′￼ = y, y′￼ = − x
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Example 2

Consider the system . Then  is an isolated 
equilibrium. 


Consider the function . Then  is positive definite and 
continuous on  with . We have


.


We also have  and  is continuous on , therefore  is negative 
semidefinite on . Therefore, according to the theorem, the origin is stable. 

x′￼ = − 2y3, y′￼ = x − 3y3 (0,0)

V(x, y) = x2 + y4 V(x, y)
ℝ2 V(0,0) = 0

·V =
∂V
∂x

⋅ (−2y3) +
∂V
∂y

⋅ (x − 3y3) = − 4xy3 + 4y3(x − 3y3) = − 12y6 ≤ 0

·V(0,0) = 0 ·V ℝ2 ·V
ℝ2



Actually, the origin is asymptotically stable but the 
theorem cannot ensure this.


The phase portrait of the system is shown at the 
right.
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Example 3

We consider the pendulum with damping:


,


where . Recall that when  the energy





is a conserved quantity. In this case we have


.

x′￼ = y, y′￼ = − by − sin x

b > 0 b = 0

E(x, y) =
1
2

y2 − cos x

·E = y
dy
dt

+ sin x
dx
dt

= − by2 − y sin x + y sin x = − by2 ≤ 0



We want to use  to show that the isolated equilibrium  is stable.


Since we have  we choose


 .


Then  and  is continuous on . Moreover,  is positive 
definite on  and certainly there is a disk  centered at  and 
contained in this set, for example, the open disk with radius . Therefore,  
is positive definite in .


Moreover,  is continuous on , has , and 
 for all . Therefore,  is negative semidefinite on 

. Then Lyapunov's Stability Theorem allows us to conclude that  is (at 
least) stable.

E(x, y) (0,0)

E(0,0) = − 1

V(x, y) = E(x, y) + 1 =
1
2

y2 + (1 − cos x)

V(0,0) = 0 V(x, y) ℝ2 V(x, y)
(−π, π) × ℝ D (0,0)

π V(x, y)
D

·V(x, y) = − by2 ℝ2 ·V(0,0) = 0·V(x, y) = − by2 ≤ 0 (x, y) ∈ D ·V
D (0,0)



Actually, again the equilibrium is not just stable 
but asymptotically stable. The phase portrait of 
the system near the origin is shown at the right.
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Lyapunov's Instability Theorem

Theorem. Consider a planar system  for which  is an isolated 
equilibrium. Assume that there is a function  and an open disk  centered 
at  such that  is continuous in , , and  is positive 
definite in .


If for every open disk  centered at  there exists  such that  
then the origin is unstable.

x′￼ = f(x) (0,0)
V(x) D

(0,0) V(x) D V(0,0) = 0 ·V(x)
D

B (0,0) a ∈ B V(a) > 0



Example 4

Consider the planar system . The only equilibrium is  
which clearly is isolated.


Consider  which is continuous on  and satisfies . 
We have


.


We have  for all . Therefore,  is positive definite on .


Consider now any open disk  centered at . Denote by  the radius of .

x′￼ = − y3, y′￼ = − x3 (0,0)

V(x, y) = − xy ℝ2 V(0,0) = 0

·V =
∂V
∂x

⋅ (−y3) +
∂V
∂y

⋅ (−x3) = y4 + x4

·V > 0 (x, y) ≠ (0,0) ·V ℝ2

B (0,0) r B



Then consider the point . 
We have


.


This shows that the given function  satisfies the 
conditions of Lyapunov's second theorem and 
therefore the equilibrium is unstable.


The phase portrait of the system near the origin is 
shown at the right.

(x, y) = (r/2, − r/2) ∈ B

V( 1
2 r,− 1

2 r) = 1
4 r2 > 0

V
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