Lecture 23: Limit Cycles and
Periodic Solutions
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Example

Consider the planar system
xX'=x—y—x(x*+y°)
V'=x+y =y +y°)
To understand the dynamics we will use polar coordinates
x=rcosf, y=rsmné
We have
= xx"+yy’

7'26, _ xy/ - X/y



We have
= x(x —y —x(x* + y9) + y(x +y — y(x* + y?))

— 52 _ xz(xz n y2) n yz B yz(xz n y2)

= +y) - @y ==
Therefore,

r=r—r =r(l-r.
Moreover,
P20’ = x(x + y — y(x2 + y2) — y(x — y — x(x2 + y?)) = x2 + y2 = /2

Therefore,

0 =1.



From the equation 8’ = 1 we conclude that we have a rotation with constant
angular velocity around the origin, combined with motion in the radial direction.

To understand the radial motion we look at the equation (one-dimensional
autonomous system) ' = (1 — r?).

The equilibria for the radial dynamics are r = 0 and r = 1 (since r > 0, there is
no equilibrium r = — 1).

The equilibrium r = 0 corresponds to x = y = 0 and thus corresponds to the
origin which we can directly see from the original equations that is indeed an

equilibrium.

The equilibrium r = 1 is an equilibrium for the radial dynamics, meaning that r
is constant, but we must remember that @ changes and therefore the solution
curve traces a circle of radius r = 1 in time 2x.



This means that » = 1 corresponds to a periodic
orbit of the original system.

Let's now analyze further the radial dynamics. The 0

corresponding phase line is shown at the top right.
We observe that r = 0 is an unstable equilibrium,
while r = 1 is asymptotically stable.

This implies that (x, y) = (0,0) is an unstable

spiral for the system (this can also be easily 1

obtained from the linear analysis), while r = 1
corresponds to an asymptotically stable periodic
orbit.

The phase portrait of the system is shown at the =l

bottom right.




Limit cycles

Definition. If X(7) is a (hon-constant) 7T-periodic solution of a planar system
X' = f(X) the closed curve L = {x(¢) : O <t < T} is called a limit cycle if there is
at least one other solution X (7) such that

lim d(x,(f),L) = 0 or lim d(x,(?),L) = O.
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Here, d(X, L) = min{||Xx — y|| : y € L} is the distance between the point X and
the set L.

Remark. In the previous example, the periodic solution » = 1 is a limit cycle.

Remark. In the general case, limit cycles are closed curves but they are not circles.



Example

Consider the planar system

X'=x—y—xf(r)
y'=x+y—yfr)

where f(r) = 3r — r* — 1. Then we have

= xx'+ yy = x(x — y — xf(r)) + y(x + y — yf(r)) = r*(1 = f(r))

Therefore,

r'=r(l —f(r) = r(r* = 3r+2).



Moreover,
r° = xy' — x'y = x(x +y — y(r)) —y(x —y — xf(r)) = r*
Therefore, ' = 1.

For the dynamics in the radial direction we have equilibriar =0, r =1, r = 2.

Here, r = 0 corresponds to a fixed point of the system, whiler =1 and r = 2
correspond to periodic orbits. For their stability we check the phase line for the
radial dynamics (shown below).
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Therefore, we see that the origin is an S |

unstable spiral, the periodic orbit r = 1 is
asymptotically stable, and the periodic

orbit r = 2 is unstable.

The phase portrait for the system is shown
at the right.

To draw the flow arrows (not shown here)
recall that all rotations are

counterclockwise since 8’ = 1.




Limit cycles enclose equilibria

Theorem. If L is a limit cycle of the planar system X’ = f(X) then it must

enclose at least one equilibrium of the system. If L encloses exactly one
equilibrium then the equilibrium cannot be a saddle point.



Bendixson's negative criterion

Theorem. Consider a planar system X' = {(X) defined in a simply connected
domain D C R“. Assume that f;, f, have continuous partial derivatives in D,

and that divf = V -t = 9f,/0x; + df,/0dx, does not change sign in D. Then the
system X' = f(X) does not have any (hon-constant) periodic orbits in D.

Proof. Suppose that there is a non-constant 7T-periodic solution X(¢?) in D, let
P = {x(¢) : O <t < T} be the closed curve traced by the periodic solution,

and denote by U the domain enclosed by P. U is simply connected. Then by
Green's Theorem we have

{) fidx, — frdx; = J (a—fl + d_fz) dx,dx,.
P U

ox 1 dxz



Since df,/0x; + df,/0x, does not change sign we can consider, for example,
that it Iis strictly positive. Then

0 0
<J; fidXz —]Czdxl — J (i + i) dxld.x2 > O
p U Oxl dXZ
However, we have
Y dx, dx1 !
o =fv = | (A= frgr )= | (hh =) di =
0

This contradictions leads to the conclusion that no such periodic orbit may
exist.



Example

Consider the damped pendulum

X' =y

y =—>by—sinx
We have

0 o(—by — sin x
9y  9=by )

V. -I= = —b <.
0X dy

Moreover, all functions and their partial derivatives are continuous on |

2

and |

IS simply connected. Therefore, all the conditions of Bendixson's negative
criterion are satisfied and we conclude that the system has no periodic orbit.



Poincare — Bendixson Theorem

Theorem. Consider the planar system X’ = f(X) in a closed bounded region R.
Assume that f,, f, have continuous partial derivatives in R and that the system
has no equilibria in R. Then any solution X(#) of the planar system for which
X(?) € R for all t > O is either periodic or it approaches a limit cycle in R.



Example

Consider the planar system

X =y

V' =4y —x° —4xy — y°
The only equilibrium of the system is (0,0).

We want to prove that the system also has a (hon-constant) periodic solution.
For this, we try to find a closed region R for which we can prove that if a

solution starts in R then it stays in R for all > 0. If we can do this then the
Poincaré-Bendixson theorem ensures that there must be a periodic solution in

R.



1
To find such region R we consider the function V(x,y) = 5)}2 + Zx4.

Then we find
V(x,y) = x°x' + yy' = Xy + y(dy — x° — 4x%y — y°) = — y*(4x* + y* — 4)

We have V < 0 when 4x° + y* > 4 and V > 0 when 4x? + y? < 4. Therefore,
ellipse 4x° + y2 = 4 separates the plane into two regions. In the inner region
the value of V increases along solution curves and in the outer region the value
of V decreases along solution curves.

To define the region R we consider the level set V(x,y) = 1/6 which can be
proved to belong in the inner region, and the level set V(x, y) = 6 which can be

proved to belong in the outer region, and we define R to be the region between
these two level sets.



In the picture at the right, the level sets of
V(x,y) for values 1/6 and 6 are drawn in blue.

The curve V = 0 isdrawn inred, and R is
shaded light yellow.

Since the level set V(x, y) = 1/6 is in the region
where V > 0 we conclude that a solution inside
R cannot cross the level set going toward the
origin since this would need V < 0. v 0
Similarly, since the level set V(x, y) = 6 is in the
region where V < 0 we conclude that a solution
inside R cannot cross the level set going

outward since this would need V > 0.
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Therefore, any solution starting inside R will
stay in R for all t > O.
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Moreover, notice that there are no equilibria of the system in R (the reason we

needed to consider also the inner level set V(x,y) = 1/6 is that we do not want
that the origin is in R).

Since all the conditions of the Poincare-Bendixson theorem are satisfied we

conclude that there must be a periodic orbit in R. The plot in the previous slide
shows the limit cycle (drawn in green) in R.



