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Example

Consider the planar system


 


To understand the dynamics we will use polar coordinates 


 


We have


 

x′￼ = x − y − x(x2 + y2)
y′￼ = x + y − y(x2 + y2)

x = r cos θ, y = r sin θ

rr′￼ = xx′￼+ yy′￼

r2θ′￼ = xy′￼− x′￼y



We have





Therefore, 


.


Moreover,





Therefore, 


.

rr′￼ = x(x − y − x(x2 + y2)) + y(x + y − y(x2 + y2))
= x2 − x2(x2 + y2) + y2 − y2(x2 + y2)
= (x2 + y2) − (x2 + y2)2 = r2 − r4

r′￼ = r − r3 = r(1 − r2)

r2θ′￼ = x(x + y − y(x2 + y2)) − y(x − y − x(x2 + y2)) = x2 + y2 = r2

θ′￼ = 1



From the equation  we conclude that we have a rotation with constant 
angular velocity around the origin, combined with motion in the radial direction.


To understand the radial motion we look at the equation (one-dimensional 
autonomous system) .


The equilibria for the radial dynamics are  and  (since , there is 
no equilibrium ).


The equilibrium  corresponds to  and thus corresponds to the 
origin which we can directly see from the original equations that is indeed an 
equilibrium.


The equilibrium  is an equilibrium for the radial dynamics, meaning that  
is constant, but we must remember that  changes and therefore the solution 
curve traces a circle of radius  in time .

θ′￼ = 1

r′￼ = r(1 − r2)

r = 0 r = 1 r ≥ 0
r = − 1

r = 0 x = y = 0

r = 1 r
θ

r = 1 2π



This means that  corresponds to a periodic 
orbit of the original system.


Let's now analyze further the radial dynamics. The 
corresponding phase line is shown at the top right. 
We observe that  is an unstable equilibrium, 
while  is asymptotically stable.


This implies that  is an unstable 
spiral for the system (this can also be easily 
obtained from the linear analysis), while  
corresponds to an asymptotically stable periodic 
orbit.


The phase portrait of the system is shown at the 
bottom right.
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Limit cycles

Definition. If  is a (non-constant) -periodic solution of a planar system 
 the closed curve  is called a limit cycle if there is 

at least one other solution  such that


  or .


Here,  is the distance between the point  and 
the set .


Remark. In the previous example, the periodic solution  is a limit cycle.


Remark. In the general case, limit cycles are closed curves but they are not circles.

x(t) T
x′￼ = f(x) L = {x(t) : 0 ≤ t ≤ T}

x1(t)

lim
t→∞

d(x1(t), L) = 0 lim
t→−∞

d(x1(t), L) = 0

d(x, L) = min{∥x − y∥ : y ∈ L} x
L

r = 1



Example

Consider the planar system


 


where . Then we have


 


Therefore, 


.

x′￼ = x − y − x f(r)
y′￼ = x + y − y f(r)

f(r) = 3r − r2 − 1

rr′￼ = xx′￼+ yy′￼ = x(x − y − xf(r)) + y(x + y − yf(r)) = r2(1 − f(r))

r′￼ = r(1 − f(r)) = r(r2 − 3r + 2)



Moreover, 





Therefore, .


For the dynamics in the radial direction we have equilibria . 
Here,  corresponds to a fixed point of the system, while  and  
correspond to periodic orbits. For their stability we check the phase line for the 
radial dynamics (shown below).

r2θ′￼ = xy′￼− x′￼y = x(x + y − yf(r)) − y(x − y − xf(r)) = r2

θ′￼ = 1

r = 0, r = 1, r = 2
r = 0 r = 1 r = 2

1 2 r0



Therefore, we see that the origin is an 
unstable spiral, the periodic orbit  is 
asymptotically stable, and the periodic 
orbit  is unstable.


The phase portrait for the system is shown 
at the right.


To draw the flow arrows (not shown here) 
recall that all rotations are 
counterclockwise since .
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Limit cycles enclose equilibria

Theorem. If  is a limit cycle of the planar system  then it must 
enclose at least one equilibrium of the system. If  encloses exactly one 
equilibrium then the equilibrium cannot be a saddle point.

L x′￼ = f(x)
L



Bendixson's negative criterion
Theorem. Consider a planar system  defined in a simply connected 
domain . Assume that  have continuous partial derivatives in , 
and that  does not change sign in . Then the 
system  does not have any (non-constant) periodic orbits in .


Proof. Suppose that there is a non-constant -periodic solution  in , let 
 be the closed curve traced by the periodic solution, 

and denote by  the domain enclosed by .  is simply connected. Then by 
Green's Theorem we have 


.

x′￼ = f(x)
D ⊆ ℝ2 f1, f2 D
div f = ∇ ⋅ f = ∂f1/∂x1 + ∂f2/∂x2 D

x′￼ = f(x) D

T x(t) D
P = {x(t) : 0 ≤ t ≤ T}

U P U

∮P
f1dx2 − f2dx1 = ∫U ( ∂f1

∂x1
+

∂f2
∂x2 ) dx1dx2



Since  does not change sign we can consider, for example, 
that it is strictly positive. Then


.


However, we have


.


This contradictions leads to the conclusion that no such periodic orbit may 
exist.

∂f1/∂x1 + ∂f2/∂x2

∮P
f1dx2 − f2dx1 = ∫U ( ∂f1

∂x1
+

∂f2
∂x2 ) dx1dx2 > 0

∮P
f1dx2 − f2dx1 = ∫

T

0 (f1
dx2

dt
− f2

dx1

dt ) dt = ∫
T

0
(f1 f2 − f2 f1) dt = 0



Example

Consider the damped pendulum


 


We have


. 


Moreover, all functions and their partial derivatives are continuous on  and  
is simply connected. Therefore, all the conditions of Bendixson's negative 
criterion are satisfied and we conclude that the system has no periodic orbit.

x′￼ = y
y′￼ = − by − sin x

∇ ⋅ f =
∂y
∂x

+
∂(−by − sin x)

∂y
= − b < 0

ℝ2 ℝ2



Poincaré — Bendixson Theorem

Theorem. Consider the planar system  in a closed bounded region . 
Assume that  have continuous partial derivatives in  and that the system 
has no equilibria in . Then any solution  of the planar system for which 

 for all  is either periodic or it approaches a limit cycle in . 

x′￼ = f(x) R
f1, f2 R

R x(t)
x(t) ∈ R t ≥ 0 R



Example

Consider the planar system


 


The only equilibrium of the system is . 


We want to prove that the system also has a (non-constant) periodic solution. 
For this, we try to find a closed region  for which we can prove that if a 
solution starts in  then it stays in  for all . If we can do this then the 
Poincaré-Bendixson theorem ensures that there must be a periodic solution in 

.

x′￼ = y
y′￼ = 4y − x3 − 4x2y − y3

(0,0)

R
R R t ≥ 0

R



To find such region  we consider the function .


Then we find





We have  when  and  when . Therefore, 
ellipse  separates the plane into two regions. In the inner region 
the value of  increases along solution curves and in the outer region the value 
of  decreases along solution curves.


To define the region  we consider the level set  which can be 
proved to belong in the inner region, and the level set  which can be 
proved to belong in the outer region, and we define  to be the region between 
these two level sets.

R V(x, y) =
1
2

y2 +
1
4

x4

·V(x, y) = x3x′￼+ yy′￼ = x3y + y(4y − x3 − 4x2y − y3) = − y2(4x2 + y2 − 4)
·V ≤ 0 4x2 + y2 ≥ 4 ·V ≥ 0 4x2 + y2 ≤ 4

4x2 + y2 = 4
V

V

R V(x, y) = 1/6
V(x, y) = 6

R



In the picture at the right, the level sets of 
 for values  and  are drawn in blue. 

The curve  is drawn in red, and  is 
shaded light yellow. 


Since the level set  is in the region 
where  we conclude that a solution inside 

 cannot cross the level set going toward the 
origin since this would need . 


Similarly, since the level set  is in the 
region where  we conclude that a solution 
inside  cannot cross the level set going 
outward since this would need .


Therefore, any solution starting inside  will 
stay in  for all .

V(x, y) 1/6 6·V = 0 R

V(x, y) = 1/6·V ≥ 0
R ·V < 0

V(x, y) = 6·V ≤ 0
R ·V > 0

R
R t ≥ 0
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Moreover, notice that there are no equilibria of the system in  (the reason we 
needed to consider also the inner level set  is that we do not want 
that the origin is in ).


Since all the conditions of the Poincaré-Bendixson theorem are satisfied we 
conclude that there must be a periodic orbit in . The plot in the previous slide 
shows the limit cycle (drawn in green) in .

R
V(x, y) = 1/6

R

R
R


