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Systems depending on parameters

We consider one-dimensional dynamical systems





where . Here  is a parameter, that is, it is remains fixed as the 
system evolves.


The main question that we will address is how the dynamics of the system 
changes as the parameter changes. 


Recall that for one-dimensional dynamical systems the dynamics is organized in 
terms of equilibria. For this reason, we focus on the changes in number and 
stability of equilibria as the parameter changes.

x′￼ = f(a, x)

x ∈ ℝ a ∈ ℝ



Implicit function theorem

Theorem. Consider a smooth function  and a point  
such that . If  then there is  and a unique smooth 
function  defined on  such that


  and  


for all .


Notation. We denote partial derivatives using subscripts: 


, , , .

g : ℝ2 → ℝ (x0, y0) ∈ ℝ2

g(x0, y0) = 0 gy(x0, y0) ≠ 0 δ > 0
h(x) (x0 − δ, x0 + δ)

g(x, h(x)) = 0 h(x0) = y0

x ∈ (x0 − δ, x0 + δ)

gy =
∂g
∂y

gx =
∂g
∂x

gxx =
∂2g
∂x2

gxy =
∂2g

∂x∂y



Interpretation

You can think of the expression  as a relation between  and  — an 
equation that must be solved for  in terms of . 


The question that the Implicit Function Theorem answers is when we can solve the 
equation  in terms of , that is, when we can express  as a function of 
. In the theorem, this solution is . 


Moreover, we assume that for a specific  we know that there is a corresponding 
 so that  and we want that the function  satisfies . 


Then the theorem tells us that if  then such a function  exists 
locally (in a neighborhood of ).

g(x, y) = 0 x y
y x

g(x, y) = 0 y y
x y = h(x)

x0
y0 g(x0, y0) = 0 h(x) h(x0) = y0

gy(x0, y0) ≠ 0 h(x)
x0



Example

Let . 


We can check that . Moreover, 
 and, therefore, . 


Therefore, the implicit function theorem tells us 
that there is an interval  and a function 

 defined in this interval such that 


 and .


g(x, y) = x2 + y2 − 1

g(0,1) = 0
gy = 2y gy(0,1) = 2 ≠ 0

(−δ, δ)
h(x)

h(0) = 1 x2 + h(x)2 − 1 = 0

(0,1)

(1,0)(−1,0)

h(x)



In this example, we can compute . Solving the last equation we find


 and since  we finally get . 


Notice that the function  is smooth for . 


At  we have  and therefore . This shows that we cannot 
apply the implicit function theorem at the points  and therefore we cannot extend 
the solution  outside the interval .


Note that if we consider the point  then we can solve for  in terms of . This works 
because the implicit function theorem requires that  to be able to write  

with . In our case,  and . Here .

h(x)

h(x) = ± 1 − x2 h(0) = 1 h(x) = 1 − x2

h(x) = 1 − x2 x ∈ (−1,1)

x = ± 1 y = 0 gy(±1,0) = 0
(±1,0)

h(x) (−1,1)

(1,0) x y
gx(x0, y0) x = j(y)

x0 = j(y0) gx = 2x gx(1,0) = 2 ≠ 0 j(y) = 1 − y2



Remark

A last remark. In this example we were able to solve in terms of  or . The 
strength of the theorem is that it tells us that a unique solution exists even if we 
cannot solve for  or . 


Moreover, the theorem can be applied in general settings where we may not 
even know the function . Later today we will do exactly this in the proof of 
the fold bifurcation theorem.

y x

x y

g(x, y)



Persistence of equilibria

Theorem. Consider the system  where  is a smooth 
function and assume that  is an equilibrium of , that is, 

, and . Then there is  and a unique smooth 
function  defined in  such that


  and  ,


for all , that is, for each  the point  is an equilibrium of 
.

x′￼ = f(a, x) f : ℝ2 → ℝ
x0 x′￼ = f(a0, x)

f(a0, x0) = 0 fx(a0, x0) ≠ 0 δ > 0
g(a) (a0 − δ, a0 + δ)

f(a, g(a)) = 0 g(a0) = x0

a ∈ (a0 − δ, a0 + δ) a g(a)
x′￼ = f(a, x)



Interpretation

The theorem about persistence tells us that an equilibrium  persists (keeps 
existing) as the parameter  changes — provided that . 


This means that we can draw the position of the equilibrium as a function of the 
parameter  on the -plane and this will give a curve which is the graph of a 
function. 

x0
a fx(a0, x0) ≠ 0

a (a, x)



Understanding

If  and  
then for small changes in  the 
equilibrium persists and it does not 
change stability.

f(a0, x0) = 0 fx(a0, x0) ≠ 0
a

x

f(a0, x)

x0

f(a, x)



Fold (saddle-node) bifurcation
When the condition  is not satisfied then we may have a change in 
the number of equilibria as the parameter  changes. 


We will first see an example. Consider the system


.


For the equilibria of the system we need to consider three cases:


 : then there are two equilibria  ;


 : then there is an equilibrium  ;


 : then there are no equilibria.

fx(a0, x0) ≠ 0
a

x′￼ = f(a, x) = a − x2

a > 0 x = ± a

a = 0 x = 0

a < 0



For the stability of the equilibria we check that  and therefore


.


This means that the equilibrium  is asymptotically stable since 
 while the equilibrium  is unstable since 
. 


We can summarize this discussions in the bifurcation diagram on the next slide 
that shows the positions of the equilibria as functions of  and the stability of 
the equilibria (when they exist). Stable equilibria are blue and unstable 
equilibria are red.

fx = − 2x

fx(a, ± a) = ∓ 2 a

a
fx(a, a) = − 2 a < 0 − a
fx(a, − a) = 2 a > 0

a



In the bifurcation diagram we observe that the curves  join at  and 
therefore the theorem on the persistence of equilibria cannot be valid there. Indeed 
we check that  and thus it is not surprising that the equilibria do not 
persist at .

± a a = 0

fx(0,0) = 0
a = 0

0 a

x
x = a

x = − a

stable branch

unstable branch



Fold bifurcation theorem

Theorem. Consider the system  where  is a smooth 
function and assume that:


(i)  ( the point  is an equilibrium at  );


(ii)  ( otherwise the equilibrium persists );


(iii)  ;


(iv)  ( transversality condition ).


[...]

x′￼ = f(a, x) f : ℝ2 → ℝ

f(a0, x0) = 0 x0 a0

fx(a0, x0) = 0

fxx(a0, x0) ≠ 0

fa(a0, x0) ≠ 0



[...] Then the system  undergoes a fold bifurcation at  in the sense 
that there is a smooth curve  defined for  near  such that 

 and 


,  ,  .


Remark. The theorem essentially states that near  the curve of equilibria 
looks like a parabola, just as in the example .

x′￼ = f(a, x) a0
a = h(x) x x0

f(h(x), x) = 0

h(x0) = a0 h′￼(x0) = 0 h′￼′￼(x0) = −
fxx(a0, x0)
fa(a0, x0)

≠ 0

(a0, x0)
f(a, x) = a − x2



Proof
The function  satisfies  and . 


Therefore, we can use the Implicit Function Theorem to assert that there is a 
smooth function  near  such that  and .


We want to show that , , that is, that  looks locally like 
a parabola.


Define . Then


.

f(a, x) f(a0, x0) = 0 fa(a0, x0) ≠ 0

a = h(x) x0 a0 = h(x0) f(h(x), x) = 0

h′￼(x0) = 0 h′￼′￼(x0) ≠ 0 h(x)

g(x) = f(h(x), x) = 0

g′￼(x) = fa(h(x), x)h′￼(x) + fx(h(x), x) = 0



Evaluating   at  we find


 


Since  and  we conclude that .


Then we take the derivative of the relation


 


with respect to . We find


fa(h(x), x)h′￼(x) + fx(h(x), x) = 0 x0

0 = g′￼(x0) = fa(h(x0), x0)h′￼(x0) + fx(h(x0), x0)
= fa(a0, x0)h′￼(x0) + fx(a0, x0) = fa(a0, x0)h′￼(x0)

fa(a0, x0)h′￼(x0) = 0 fa(a0, x0) ≠ 0 h′￼(x0) = 0

g′￼(x) = fa(h(x), x)h′￼(x) + fx(h(x), x) = 0

x

g′￼′￼(x) = faa(h(x), x)[h′￼(x)]2 + fax(h(x), x)h′￼(x) + fa(h(x), x)h′￼′￼(x)
+fxa(h(x), x)h′￼(x) + fxx(h(x), x) = 0



Evaluating at  and using that  we find


. 


Since  and  we can solve for  to find


.


x0 h′￼(x0) = 0

0 = g′￼′￼(x0) = fa(a0, x0)h′￼′￼(x0) + fxx(a0, x0)

fa(a0, x0) ≠ 0 fxx(a0, x0) ≠ 0 h′￼′￼(x0)

h′￼′￼(x0) = −
fxx(a0, x0)
fa(a0, x0)

≠ 0



For the stability of equilibria we note that it is given by the sign of . That is we 
need to compute .


Clearly,  and 


.


Evaluating at  and using that  we find .


Since  and  we conclude that  changes sign at . 


If  then the equilibrium  is stable (i.e., ) and the 
equilibrium  is unstable (i.e., ). For  we have the 
opposite situation.

fx
s(x) = fx(h(x), x)

s(x0) = fx(a0, x0) = 0

s′￼(x) = fxa(h(x), x)h′￼(x) + fxx(h(x), x)

x0 h′￼(x0) = 0 s′￼(x0) = fxx(a0, x0) ≠ 0

s(x0) = 0 s′￼(x0) ≠ 0 s(x) x0

s′￼(x0) > 0 x < x0 s(x) < 0
x > x0 s(x) > 0 s′￼(x0) < 0



(a0, x0) a

x
h′￼′￼(x0) > 0
s′￼(x0) > 0

(a0, x0) a

x
h′￼′￼(x0) < 0
s′￼(x0) > 0

(a0, x0) a

x
h′￼′￼(x0) > 0
s′￼(x0) < 0

(a0, x0) a

x
h′￼′￼(x0) < 0
s′￼(x0) < 0


