Lecture 26: Bifurcations

Konstantinos Efstathiou



Systems depending on parameters

We consider one-dimensional dynamical systems

X' = fla, x)

where x € R. Here a € R is a parameter, that is, it is remains fixed as the
system evolves.

The main question that we will address is how the dynamics of the system
changes as the parameter changes.

Recall that for one-dimensional dynamical systems the dynamics is organized in
terms of equilibria. For this reason, we focus on the changes in number and
stability of equilibria as the parameter changes.



Implicit function theorem
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Theorem. Consider a smooth function g : R“ — R and a point (xy, y,) € |
such that g(xy, Yy) = 0. If g,(xXp, ¥p) # 0 then there is 6 > () and a unique smooth

function h(x) defined on (x, — 0, Xy + 0) such that
g(x, h(x)) = 0 and h(xp) = ¥,
forall x € (x5 — 0,xy + 0).

Notation. We denote partial derivatives using subscripts:

0g 0g 0°g 0°g

O_y’ 5% = Ox S5 = 0x2’ Sxy = oxdy

8y =



Interpretation

You can think of the expression g(x, y) = 0 as a relation between x and y — an
equation that must be solved for y in terms of x.

The question that the Implicit Function Theorem answers is when we can solve the
equation g(x, y) = 0 in terms of y, that is, when we can express y as a function of
X. In the theorem, this solution is y = /(x).

Moreover, we assume that for a specific X, we know that there is a corresponding
Yo S0 that g(xy, yp) = 0 and we want that the function A(x) satisfies h(x,) = y,.

Then the theorem tells us that if g, (X, ¥p) # O then such a function /(x) exists
locally (in a neighborhood of X).



Example

Let g(x,y) = x* + y* — 1.

We can check that g¢(0,1) = 0. Moreover,
g, = 2y and, therefore, g,(0,1) =2 # 0.

Therefore, the implicit function theorem tells us
that there is an interval (—0, 0) and a function
h(x) defined in this interval such that

h(0) =1andx* + h(x)* =1 = 0.

(0,1)

h(x)

(=1,0)

(1,0)



In this example, we can compute /(x). Solving the last equation we find

h(x) = £V 1 — x? and since h(0) = 1 we finally get i(x) =V 1 — x°.
Notice that the function A(x) = V/ 1 — x? is smooth for x € (—1,1).

Atx = £ 1 we have y = 0 and therefore g, (£ 1,0) = 0. This shows that we cannot

apply the implicit function theorem at the points (£ 1,0) and therefore we cannot extend
the solution /(x) outside the interval (—1,1).

Note that if we consider the point (1,0) then we can solve for x in terms of y. This works
because the implicit function theorem requires that g (x,, ) to be able to write x = j(y)

with xy = j(yy)- In our case, g, = 2x and g (1,0) =2 # 0. Here j(y) = \/1 — y°.




Remark

A last remark. In this example we were able to solve in terms of y or x. The
strength of the theorem is that it tells us that a unique solution exists even if we

cannot solve for x or .

Moreover, the theorem can be applied in general settings where we may not

even know the function g(x, y). Later today we will do exactly this in the proof of
the fold bifurcation theorem.



Persistence of equilibria
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Theorem. Consider the system x’ = f(a, x) where f : R“ — R is a smooth
function and assume that X, is an equilibrium of x" = f(a,, x), that is,

flag, xy) = 0, and f.(ay, xy) # 0. Then there is 6 > 0 and a unique smooth
function g(a) defined in (ay — 0, ay + 0) such that

fla,g(a)) =0 and g(ay) = X,

forall a € (ay — 0, ay + 0), that is, for each a the point g(a) is an equilibrium of

x' = f(a, x).



Interpretation

The theorem about persistence tells us that an equilibrium X;, persists (keeps
existing) as the parameter a changes — provided that f,(a,, xy) # 0.

This means that we can draw the position of the equilibrium as a function of the

parameter a on the (a, x)-plane and this will give a curve which is the graph of a
function.



Understanding

Ma, x)
f(aoa X)

If f(ay, Xo) = 0 and f.(ay, xy) # O

then for small changes in a the
equilibrium persists and it does not X,

change stability.



Fold (saddle-node) bifurcation

When the condition f (a, xy) # 0 is not satisfied then we may have a change in
the number of equilibria as the parameter a changes.

We will first see an example. Consider the system
x' = fla,x) = a— x*

For the equilibria of the system we need to consider three cases:
a > () : then there are two equilibria x = * \/5 :
a = 0 : then there is an equilibrium x = 0 ;

a < 0 : then there are no equilibria.



For the stability of the equilibria we check that f, = — 2x and therefore

fia, £\/a) = £ 2\/a.

This means that the equilibrium ﬁ IS asymptotically stable since
f.(a, ﬁ) = — 24/ a < 0 while the equilibrium —4/a is unstable since

];(a,—\/a)=2 a > 0.

We can summarize this discussions in the bifurcation diagram on the next slide

that shows the positions of the equilibria as functions of a and the stability of
the equilibria (when they exist). Stable equilibria are blue and unstable
equilibria are red.



stable branch

unstable branch

In the bifurcation diagram we observe that the curves i\/a join at a = 0 and
therefore the theorem on the persistence of equilibria cannot be valid there. Indeed

we check that 1,(0,0) = 0 and thus it is not surprising that the equilibria do not
persist at a = 0.



Fold bifurcation theorem

Theorem. Consider the system x’ = f(a, x) where f : |
function and assume that:

(i) flag, Xy) = O (the point x; is an equilibrium at a; );
(i) f.(ap, xy) = O (otherwise the equilibrium persists );
(iii) f,..(ag, Xp) # O ;

(iv) f,(ag, xo) # O (transversality condition ).

]

IS a smooth



[...] Then the system x" = f(a, x) undergoes a fold bifurcation at a; in the sense
that there is a smooth curve a = h(x) defined for x near x;, such that

f(h(x),x) = 0 and

M) = g, W) = 0, W) = — 20X

Ja(ag, Xp)

Remark. The theorem essentially states that near (), x;) the curve of equilibria
looks like a parabola, just as in the example f(a, x) = a — x°.



Proof

The function f(a, x) satisfies f(a,, xy) = 0 and f_(a, xy) # 0.

Therefore, we can use the Implicit Function Theorem to assert that there is a
smooth function a = h(x) near x; such that a, = h(x,) and f(h(x),x) = 0.

We want to show that h'(xy) = 0, h"(xy) # O, that is, that i(x) looks locally like
a parabola.

Define g(x) = f(h(x),x) = 0. Then
g'(x) = f,(h(x), )h'(x) + f(h(x),x) = 0.



Evaluating f_(h(x), x)h'(x) + f.(h(x),x) = 0 at x, we find

0 = g'(xg) = 1,(h(xp), xp)h'(xg) + [ (1(xp), X))
= [ (ap, xo)h'(xg) + [, (ay, Xg) = [ (ag, X)) (Xp)

Since f_(ay, Xo)h'(xy) = 0 and f_(ay, xy) # O we conclude that 4'(x,) = 0.
Then we take the derivative of the relation

g'(x) = f,(h(x), x)h'(x) + f(h(x),x) =0
with respect to x. We find

8"(%) = f,,(h(x), X)W ()] + [, (h(x), )R (x) + £, (h(x), X)h"(x)
+1..(h(x), x)h'(x) + [ (h(x),x) =0



Evaluating at x; and using that /'(x,) = 0 we find

0 = g"(x0) = falag, Xp)h"(xp) + fr.(ag, Xp).
Since f (ay, Xo) # 0 and f,.(ay, xy) # 0 we can solve for h"(x,) to find

Jolags Xp)
h” = ——— £ ().
(XO) f;l(a(b X()) #



For the stability of equilibria we note that it is given by the sign of .. That is we
need to compute s(x) = f.(h(x), x).

Clearly, s(xy) = f(ay, Xy) = 0 and

$'(X) = fro(N(x), X)N'(x) + [ (h(x), X).
Evaluating at x and using that /'(xy) = 0 we find s'(xy) = /. (ay, Xy) # O.
Since s(xy) = 0 and s'(xy) # 0 we conclude that s(x) changes sign at x,,.

If s'(x5) > 0 then the equilibrium x < X, is stable (i.e., s(x) < 0) and the

equilibrium x > X, is unstable (i.e., s(x) > 0). For s'(xy) < 0 we have the
opposite situation.



h"(xy) > 0
s'(xg) > 0

>
(a()a -x()) a
X
h'(x,) < 0
5'(xg) > 0
>
(a()9 x()) a

h"(xg) > 0
s'(xg) < 0

(a09 XO)

h"(xg) <0
s'(xg) <O

(aO, x())



