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Planar systems depending on a parameter

We consider planar systems of the form

x'=fla,x,y),
y' = gla,x,y),

where a € R is a parameter.



Persistence of equilibria

If (X, ¥p) is an equilibrium for a, then the corresponding version of the implicit

function theorem tells us that the equilibrium persists for small changes of a
provided that
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Bifurcations in planar systems

There are two important types of bifurcations in planar systems: the fold
bifurcation which is a simple generalization of the one-dimensional fold
bifurcation, and the Hopf bifurcation which is related to the appearance of limit
cycles.



Fold (saddle-node) bifurcation



Fold (saddle-node) bifurcation in planar systems

We first discuss the fold bifurcation through two examples.

First, consider the planar system

x'=a—x?

y=-y.

We know that the one-dimensional system x’ = a — x“ undergoes a fold
bifurcation at a = (. For a < 0 there are no equilibria in the x-direction while for

a > 0 there are two equilibria x = = 1/a where \/a is stable and —\/a is
unstable.

2



Therefore, the planar system has the equilibria (ﬁ,()) and (—ﬁ,O) when
a > () and it has no equilibria when a < 0.

It Is easy to determine the stability of these equilibria.

(\/5,0) is stable in the x-direction and also stable in the y-direction (since
y' = — y). Therefore it is a stable node.

(—\ﬁ,()) is unstable in the x-direction and stable in the y-direction. Therefore it
IS a saddle.

This means that when a becomes positive we have the appearance of two
equilibria, one of which is a node while the other one is a saddle. For this
reason, this planar fold bifurcation is also called a saddle-node bifurcation.



The stability of the equilibria can also be determined -0

through linearization. The Jacobian matrix at (x, y) is
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At the equilibrium (\/E,O) the Jacobian matrix becomes
—2/a 0
0 —1
eigenvalues and the equilibrium is a stable node.
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] . Therefore, there are two negative

-1.0

At the equilibrium (—\/E,O) the Jacobian matrix becomes

lZ\/Z 0 . Therefore, there is one positive and one
0 -1
negative eigenvalue and the equilibrium is a saddle.
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We now see a second example. Consider the planar o
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Nothing changed in the x-direction. However, the :/;;/ \§§§§?\ ,?j

equilibrium y = 0 in the y-direction is now unstable.  -0s ?//////v\\\\\\\\%s\\\\“/?// |
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Therefore, (\/5,()) is stable in the x-direction but _1_(32///{/ _i \\ \\\\>\\\\:f / // .
unstable in the y-direction. Therefore it is a saddle. X

(—ﬁ,O) IS unstable in both the x-direction and the y-direction. Therefore it is an
unstable node.

This means that again when a becomes positive we have the appearance of two
equilibria, one of which is a node while the other one is a saddle.



Remarks

Remark. Note that in both of the previous examples at (a, x, y) = (0,0,0) the
Jacobian matrix becomes

O O

0 1|

The determinant of this matrix is 0 and therefore according to the "planar”
implicit function theorem the equilibria may not persist.

Remark. For a matrix A with eigenvalues 4,1, we have detA = A4;4,. [f A is
the Jacobian matrix of the system at (), X, V) then to have a change in the

number of equilibria we need det A = 0 and therefore at least one of the
eigenvalues should become 0.



Hopf bifurcation



Another remark

In one-dimensional systems x" = f(a, x) an equilibrium changes stability when f,
changes sign. For this to occur we must have f.(ay, x,) = 0.

However, this Is exactly the situation where we cannot apply the Implicit
Function Theorem to ensure the persistence of the equilibria. Therefore, typically
IN one-dimensional systems the change of stability of an equilibrium is
accompanied by a change of the number of equilibria.

In planar systems, if we denote by A the Jacobian matrix at the equilibrium, we
can have a change of stability from stable spiral to unstable spiral, when

tr(A) = 0 and det(A) > 0. In this case, since det(A) # 0 we conclude that the
equilibrium persists while its stability changes.
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Recall that in the region of interest T2 — 4D < 0 and D > 0 the eigenvalues are

given by
, T N /4D — T?
= — T ]—.
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As T increases and crosses the axis T'= 0 with D > 0 the real part of A also
increases and changes from negative to positive. For T' = 0O we have A = £ 1/ D.
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Example

Consider the planar system
X' = ax —y + kx(x* + y?),
v =x+ay+ ky(x* +y?).

Here a € R is a parameter that changes continuously while k takes the values
+ 1.

It is easy to check that this system has the unique equilibrium (0,0).



The linearization of this system at the origin is

X' =ax—y,
y=x+ay.
a —1

The corresponding matrix is A = [ ] . We compute that

1 a
T=trA=2a and D =detA =a*+ 1.

The corresponding eigenvalues are

T N4D-T°

N=—*x|——=a=*1i.
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For a < 0 the origin is a stable spiral while for a > 0 it becomes an unstable spiral.
At a = 0 the eigenvalues *i are on the imaginary axis (and 7= 0, D = 1).



To understand the full dynamics of the system we use polar coordinates. Recall
that we use the equations 7’ = xx’' + yy’and r’0’ = xy’ — x'y.

Computing the expressions for " and 6’ gives

r' = r(a + kr?),
0 = 1.

In the radial direction we have the equilibrium r = 0 which corresponds to the
origin in the original planar system.

For k = — 1, another equilibrium in the radial direction is given by the solutions
ofa+kr’=a—-r>=0.

For a < 0 there are no solutions; for a > 0 there is a single solution r = ﬁ.



The equilibrium r = \ﬁ of the radial dynamics corresponds to a periodic
solution (actually, a limit cycle) of the planar system with r = \/5 and period 2.

For the stability of the periodic solution we check in more detail the radial
dynamics and we find r = ﬁ Is asymptotically stable. The latter implies that

other solutions approach the limit cycle r = ﬁ .

We can summarize this discussion in the bifurcation diagram shown in the next
slide.

This type of bifurcation is called a supercritical Hopf bifurcation. The name
supercritical corresponds to the limit cycle being stable.



Bifurcation diagram (supercritical)

stable limit cycle
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For Kk = 1 we have the equilibrium r = 0 and also the equation a + r*> = 0. The
latter has the solution r =4/ —a fora < 0 and it has no solutions for a > 0.

Note that in terms of stability nothing changes for the origin (since this is
determined by the linearization and there is no k in the linearized system).

However, analyzing the radial dynamics we find that » = 4/ —a is unstable and

therefore it corresponds to an unstable limit cycle. The bifurcation diagram is
shown on the next slide.

This Is called a subcritical Hopf bifurcation. The name subrcritical corresponds
to the limit cycle being unstable.



Bifurcation diagram (subcritical)
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