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Planar systems depending on a parameter

We consider planar systems of the form


 


where  is a parameter.


x′￼ = f(a, x, y),
y′￼ = g(a, x, y),

a ∈ ℝ



Persistence of equilibria

If  is an equilibrium for  then the corresponding version of the implicit 
function theorem tells us that the equilibrium persists for small changes of  
provided that 


.

(x0, y0) a0
a

det [
fx(a0, x0, y0) fy(a0, x0, y0)
gx(a0, x0, y0) gy(a0, x0, y0)] ≠ 0



Bifurcations in planar systems

There are two important types of bifurcations in planar systems: the fold 
bifurcation which is a simple generalization of the one-dimensional fold 
bifurcation, and the Hopf bifurcation which is related to the appearance of limit 
cycles.



Fold (saddle-node) bifurcation



Fold (saddle-node) bifurcation in planar systems

We first discuss the fold bifurcation through two examples.


First, consider the planar system


 


We know that the one-dimensional system  undergoes a fold 
bifurcation at . For  there are no equilibria in the -direction while for 

 there are two equilibria  where  is stable and  is 
unstable.

x′￼ = a − x2,
y′￼ = − y .

x′￼ = a − x2

a = 0 a < 0 x
a > 0 x = ± a a − a



Therefore, the planar system has the equilibria  and  when 
 and it has no equilibria when . 


It is easy to determine the stability of these equilibria. 


 is stable in the -direction and also stable in the -direction (since 
). Therefore it is a stable node.


 is unstable in the -direction and stable in the -direction. Therefore it 
is a saddle.


This means that when  becomes positive we have the appearance of two 
equilibria, one of which is a node while the other one is a saddle. For this 
reason, this planar fold bifurcation is also called a saddle-node bifurcation.

( a,0) (− a,0)
a > 0 a < 0

( a,0) x y
y′￼ = − y

(− a,0) x y

a



The stability of the equilibria can also be determined 
through linearization. The Jacobian matrix at  is 

.


At the equilibrium  the Jacobian matrix becomes 

. Therefore, there are two negative 

eigenvalues and the equilibrium is a stable node.


At the equilibrium  the Jacobian matrix becomes 

. Therefore, there is one positive and one 

negative eigenvalue and the equilibrium is a saddle.
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We now see a second example. Consider the planar 
system


 


Nothing changed in the -direction. However, the 
equilibrium  in the -direction is now unstable.


Therefore,  is stable in the -direction but 
unstable in the -direction. Therefore it is a saddle.

x′￼ = a − x2,
y′￼ = y .

x
y = 0 y

( a,0) x
y

-2 -1 0 1 2
-1.0

-0.5

0.0

0.5

1.0

x

y

 is unstable in both the -direction and the -direction. Therefore it is an 
unstable node.


This means that again when  becomes positive we have the appearance of two 
equilibria, one of which is a node while the other one is a saddle.

(− a,0) x y

a



Remarks
Remark. Note that in both of the previous examples at  the 
Jacobian matrix becomes


.


The determinant of this matrix is 0 and therefore according to the "planar" 
implicit function theorem the equilibria may not persist.


Remark. For a matrix  with eigenvalues  we have . If  is 
the Jacobian matrix of the system at  then to have a change in the 
number of equilibria we need  and therefore at least one of the 
eigenvalues should become 0. 

(a, x, y) = (0,0,0)

[0 0
0 ±1]

A λ1, λ2 det A = λ1λ2 A
(a0, x0, y0)

det A = 0



Hopf bifurcation



Another remark

In one-dimensional systems  an equilibrium changes stability when   
changes sign. For this to occur we must have . 


However, this is exactly the situation where we cannot apply the Implicit 
Function Theorem to ensure the persistence of the equilibria. Therefore, typically 
in one-dimensional systems the change of stability of an equilibrium is 
accompanied by a change of the number of equilibria.


In planar systems, if we denote by  the Jacobian matrix at the equilibrium, we 
can have a change of stability from stable spiral to unstable spiral, when 

 and . In this case, since  we conclude that the 
equilibrium persists while its stability changes.

x′￼ = f(a, x) fx
fx(a0, x0) = 0

A

tr(A) = 0 det(A) > 0 det(A) ≠ 0



Case 1c (saddle)

Case 2a  
(unstable spiral)

Case 2b  
(stable spiral)

Case 1a 
(unstable node)

Case 1b 
(stable node)

Case 1e Case 1d



Recall that in the region of interest  and  the eigenvalues are 
given by


.


As  increases and crosses the axis  with  the real part of  also 
increases and changes from negative to positive. For  we have .

T2 − 4D < 0 D > 0

λ =
T
2

± i
4D − T2

2
T T = 0 D > 0 λ

T = 0 λ = ± i D

Re λ

Im λ

i D

−i D



Example

Consider the planar system


 


Here  is a parameter that changes continuously while  takes the values 
.


It is easy to check that this system has the unique equilibrium .

x′￼ = ax − y + kx(x2 + y2),
y′￼ = x + ay + ky(x2 + y2) .

a ∈ ℝ k
±1

(0,0)



The linearization of this system at the origin is


 


The corresponding matrix is . We compute that 


   and   .


The corresponding eigenvalues are 


 


For  the origin is a stable spiral while for  it becomes an unstable spiral. 
At  the eigenvalues  are on the imaginary axis (and ).

x′￼ = ax − y,
y′￼ = x + ay .

A = [a −1
1 a ]

T = tr A = 2a D = det A = a2 + 1

λ =
T
2

± i
4D − T2

2
= a ± i .

a < 0 a > 0
a = 0 ±i T = 0, D = 1



To understand the full dynamics of the system we use polar coordinates. Recall 
that we use the equations  and .


Computing the expressions for  and  gives


 


In the radial direction we have the equilibrium  which corresponds to the 
origin in the original planar system.


For , another equilibrium in the radial direction is given by the solutions 
of . 


For  there are no solutions; for  there is a single solution .

rr′￼ = xx′￼+ yy′￼ r2θ′￼ = xy′￼− x′￼y

r′￼ θ′￼

r′￼ = r(a + kr2),
θ′￼ = 1.

r = 0

k = − 1
a + kr2 = a − r2 = 0

a < 0 a ≥ 0 r = a



The equilibrium  of the radial dynamics corresponds to a periodic 
solution (actually, a limit cycle) of the planar system with  and period . 


For the stability of the periodic solution we check in more detail the radial 
dynamics and we find  is asymptotically stable. The latter implies that 
other solutions approach the limit cycle .


We can summarize this discussion in the bifurcation diagram shown in the next 
slide.


This type of bifurcation is called a supercritical Hopf bifurcation. The name 
supercritical corresponds to the limit cycle being stable.

r = a
r = a 2π

r = a
r = a



Bifurcation diagram (supercritical)

a

r

 unstable spiralr = 0 stable spiralr = 0

r = astable limit cycle



For  we have the equilibrium  and also the equation . The 
latter has the solution  for  and it has no solutions for .


Note that in terms of stability nothing changes for the origin (since this is 
determined by the linearization and there is no  in the linearized system).


However, analyzing the radial dynamics we find that  is unstable and 
therefore it corresponds to an unstable limit cycle. The bifurcation diagram is 
shown on the next slide.


This is called a subcritical Hopf bifurcation. The name subrcritical corresponds 
to the limit cycle being unstable.

k = 1 r = 0 a + r2 = 0
r = −a a ≤ 0 a > 0

k

r = −a



Bifurcation diagram (subcritical)

a

r

 unstable spiralr = 0 stable spiralr = 0

r = −a
unstable limit cycle


