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Brusselator

We consider the following planar system


 


We want to analyze the dynamics of the system as the parameter  changes.

x′￼ = 1 − (b + 1)x + x2y
y′￼ = bx − x2y

b



Equilibria

If we have a mechanical system then we start by looking at the energy (the 
conserved quantity). This is not the case here. For general planar systems we start 
the analysis by looking at equilibria.


The equilibria here satisfy the equations


 


We start with the second equation and we note that it factors as . 


One solution is  and substituting into the first equation we find , so 
there is no equilibrium with . 

1 − (b + 1)x + x2y = 0
bx − x2y = 0

x(b − xy) = 0

x = 0 1 = 0
x = 0



The second possibility is . Using this to substitute  in the first equation 


 


we get


 


that is, . From  we then get .


Therefore, the only equilibrium is .

xy = b xy

1 − (b + 1)x + x2y = 0

1 − (b + 1)x + bx = 0

x = 1 xy = b y = b

(x0, y0) = (1,b)



Linearization and stability

We now look at the linearization of the system at the equilibrium. The Jacobian 
matrix is


. 


Therefore, at the equilibrium we have


. 

DF(x, y) = [−b − 1 + 2xy x2

b − 2xy −x2]

A := DF(1,b) = [b − 1 1
−b −1]



We have  and .


Placing these values on the trace-determinant plane we find a straight horizontal 
line at . 


The equilibrium is stable when , that is, when . 


It is unstable when , that is, when . 


At  we have .


Moreover, the eigenvalues are complex when , that is, when 

.  It is not difficult to see that this corresponds to .

det A = 1 > 0 tr A = b − 2

det A = 1

tr A < 0 b < 2

tr A > 0 b > 2

b = 2 tr A = 0

det A >
1
4

(tr A)2

1 >
1
4

(b − 2)2 0 < b < 4



Summarizing:


- for  the equilibrium is stable node;


- for  the equilibrium is stable spiral;


- for  the equilibrium is unstable spiral — note here that the transition 
at  is a strong indication of a Hopf bifurcation;


- for  the equilibrium is unstable node.


b < 0

0 < b < 2

2 < b < 4
b = 2

4 < b



Hopf bifurcation

The fact that the stability changes from stable spiral to unstable spiral at  is a 
strong indication that a Hopf bifurcation takes place. 


To locate the limit cycle and the type of the bifurcation (supercritical or subcritical) 
we numerically compute some solutions curves.


First we compute a solution curve starting near the equilibrium for  and close 
to . For example, we can take . Note here that typically the size of 
the limit cycle grows as . Therefore, if we take  we expect to 

find a limit cycle of "radius" . This estimate can guide us in choosing the 
initial condition for the solution curve. Here we can take .

b = 2

b > 2
b0 = 2 b = 2.1

|b − b0 | b = 2.1
≊ 0.3

x = 1.01, y = b



Moreover, notice that since for  the equilibrium is an unstable spiral, then 
the limit cycle (if it exists) will be stable. Therefore, if the cycle exists, integrating 
forward in time the solution will eventually reach it. 


This can be done with the following code.

b > 2



The result is shown in the following picture where we observe that indeed the 
solution curve reaches a limit cycle. The limit cycle is stable and therefore we 
have a supercritical Hopf bifurcation.
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For completeness we also check the case . Here, take . If a limit 
cycle exists, it must be unstable (since the equilibrium is a stable spiral). 
Therefore, it can be reached by a solution curve going backward in time.


If we consider the initial condition  and we integrate backward in 
time then we get





If we integrate until  we get the solution curve in the following slide 
which shows that there is no limit cycle for . The code for this is also 
shown in the following slide.

b < 2 b = 1.9

x = 1.01,y = b

t = − 66
b = 1.9
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Phase portraits

Having done the analysis of the system we can now draw phase portraits for 
different values of  corresponding to different qualitative regions. 


The phase portraits show the "stream plot", the nullclines (that is, the curves 
defined by  or by ), the equilibrium (which is the intersection point 
of the two isoclines), and the limit cycle (if it exists).

b

x′￼ = 0 y′￼ = 0
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Tracking the limit cycle

We have seen that the limit cycle is created at . Often we need to be able 
to be able to find a point on the limit cycle that we can use as an initial condition 
to numerically compute the whole cycle.


For this type of computation the Poincaré map is very useful. This is an 
autonomous system. Therefore, in this case we consider a surface of section. 
There are many choices that can work. Let's take  with . Looking at 
the phase portraits in the previous two slides shows that the limit cycle 
intersects this half line exactly once.


The problem is to find the point where the limit cycle intersects the half line 
 with . 

b = 2

y = b x > 1

y = b x > 1



If we consider an initial condition  on the chosen half line then we can 
integrate the system until the solution hits again the half line at a point . 
This defines the Poincaré map . 


In this system we cannot compute  analytically and we study it numerically. In 
Mathematica this can be implemented using the following function (compare 
this with the function for the Hénon-Heiles system).

(x, b)
(P(x), b)

x ↦ P(x)

P



The graph of the Poincaré map  together with the graph of the identity 
function  is shown below.

P(x)
y = x
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Then the limit cycle corresponds to fixed points of the Poincaré map, that is, 
points  such that . These can be found numerically using the 
function FindRoot. 


For example, the command





starts with the guess  for the fixed point and finds the more accurate 
value . To find the dependence of  on  we need to repeat this 
process for several values of . For example we can start at  and 
continue until  with a step . The guess for each value of  can be 
taken as the  we found for the previous value of . 

x0 P(x0) = x0

x0 = 1.3
x0 = 1.28209 x0 b

b b = 2.01
b = 4 0.01 b

x0 b



This can be done with the following code.





This returns a list of  pairs whose first 10 elements are 
(b, x0)



Plotting the whole list we get the following picture. Note that for values of  
close to ,  increases as . However, this is no longer true for 
larger values of .
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Now that we have the initial conditions of the limit cycles for different values of  
we can track other quantities such as the period of the limit cycle. This is shown 
in the plot below. We notice that for  close to  the period is close to . The 
period for a given value of  can be computed using the code below, assuming 
that  is the point where the limit cycle intersects the half line .
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b 2 2π
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x0 y = b, x > 1
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