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Abstract

A method is proposed for accurate evaluation of the rotation and the twist numbers of invariant circles in two degrees of
freedom Hamiltonian systems or two-dimensional symplectic maps. The method uses the recurrence of orbits to overcome
the problems usually arising because of the multivalued character of the angles (due to modulo 2π ) that have to be added in
order to evaluate the above numbers. Furthermore, best convergent demoninators Qn of these numbers can be estimated and
we show that under a proper treatment of the sequences of Qn iterations the accuracy is of the order of 1/Q4
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1. Introduction

The computation of the rotation number (frequency) of invariant circles plays a prominent role in the study of
the organized motions in chaotic systems. For the standard map, the breakup hierarchy of the invariant circles
is conjectured to be connected with the number theoretical properties of their rotation number [1,2]. Also the
non-monotonicity of the frequency map has been used as an indicator of the non-existence of invariant circles in a
region of the phase space [3].

For these applications, one needs to compute the rotation number of the invariant circles with high precision.
With the direct method for the computation of the rotation number (Section 2), i.e. as the mean value of the rotation
angles, the accuracy is of order 1/N , where N is the number of iterations of the map. A method based on the
continued fraction approximations, described in [4], can improve this precision.

When we are interested in the direct computation of the rotation number of invariant circles around a fixed point,
a problem is that angles are not determined uniquely, but only up to an integer multiple of 2π . One has to be careful
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about this ambiguity because it can affect the determination of the rotation number and can lead to incorrect results.
The same problem also appears in the computation of the twist number [5], i.e. the mean value of the angles between
successive vectors tangent to the invariant curve. Usually, in order to determine the rotation or the twist angles, one
fixes an interval [a, a + 2π) and defines the angles inside this interval. In Section 2, we explain how we can find
such an interval if it exists and also explain what we can do when such an interval does not exist. In [6], the notion
of the self-rotation number was used in order to overcome these problems.

In this paper, we propose a new method that we call improved continued fraction (ICF) method that (i) allows
us to overcome the problem of the correct determination of the rotation or of the twist angles, and (ii) improves the
accuracy of the computation of the rotation or the twist numbers, respectively, to the order of 1/N4. This is achieved
by adding the small angles introduced in Section 3, that are always inside the interval (−π, π) and, therefore, there
is no ambiguity in their computation. The same order of accuracy can be obtained by Laskar’s method [3] which is
based on the Fourier analysis of the orbit using a Hanning filter.

In Section 2, we describe the direct method for the computation of the rotation and twist numbers, and explain
how we should determine the angles in all possible cases. In Section 3, we define the small angles, describe the
ICF method, and give numerical results concerning its accuracy. Finally, in Section 4, we explain the asymptotic
properties of the ICF method.

2. Problems in the computation of the rotation and twist numbers

We consider a two-dimensional symplectic map of the plane, f : R
2 → R

2 that sends the point z = (x, y)

to the point z′ = (x′, y′) = f (x, y). If the map has an elliptic fixed point zc = (xc, yc), then the well-known
theorem of Moser [7] ensures that under certain non-resonance conditions the fixed point will be surrounded by
invariant curves. These invariant curves are referred in many contexts as librational [8–10], they can, however, be
characterized locally as rotational with respect to the fixed point.

Given an initial point z0 = (x0, y0) on such an invariant curve I, successive applications of the map f , produce
the orbit

O(z0) = {z0, z1, . . . , zn, . . . }, (1)

where zn = f n(z0).
At each point z ∈ I, let r(z) be the vector z − zc, i.e. the position vector of the point z with respect to the fixed

point zc. We define the rotation angle wθ(z1, z2) between two points z1 and z2 on I, as the angle between the two
position vectors r(z1) and r(z2) (Fig. 1), inside an appropriate definition interval of the form [a, a + 2π). The
rotation number of f on I is given by

νθ = lim
N→∞

1

2π

∑N−1
j=0 wθ(zj , zj+1)

N
. (2)

At each point z ∈ I we can define a unit vector v(z) ∈ TzR
2 ∼= R

2 tangent to the invariant curve, where TzR2 is
the tangent space at z, i.e. the space of all vectors with their base points at z. We define the twist angle wφ(z1, z2)

between two points z1 and z2 on I as the angle between the two tangent vectors v(z1) and v(z2) (Fig. 1), inside an
appropriate definition interval of the form [a′, a′ + 2π). The twist number of f on I is given by

νφ = lim
N→∞

1

2π

∑N−1
j=0 wφ(zj , zj+1)

N
. (3)
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Fig. 1. Illustration of the rotation (wθ ) and the twist (wφ ) angles and the respective vectors for a librational invariant curve.

Note that in order to compute the twist angles, we need to know the tangent vector v(z) at each point z of the
invariant curve. Since this is not always an easy task, we can consider some other vector ṽ ∈ TzR

2. After some
iterations of the map the image of the vector ṽ will become almost tangent to the invariant curve [5] and, therefore,
we can use the images of ṽ as a good approximation of the correct tangent vector.

The direct method for the computation of the rotation number involves the computation of the quantity

µN(z0) = 1

2π

∑N−1
j=0 wθ(zj , zj+1)

N
(4)

for some finite N . This is an approximation of the exact rotation number, which was defined in Eq. (2) as νθ =
limN→∞µN(z0). The twist number can also be computed using the analog of Eq. (4), the only difference being that
we must first iterate the map several times in order for the vector ṽ to become tangent to the invariant curve as we
had explained previously.

Notice that, the twist and rotation numbers are equal for librational invariant circles, but they are different for
higher order islands around the fixed point and for chaotic regions. The equality of the rotation and the twist number
can be used as an indicator of the existence of invariant circles around a fixed point [11] and, therefore, it is important
to know the values of these numbers with high accuracy.

In Eq. (4), the rotation angles (or the twist angles in the respective case) are defined inside an interval [a, a+2π).
In order to understand how we can find such an interval, we need a definition of the rotation and the twist an-
gles that does not depend on the selection of some interval. For this purpose, we consider a segment ON of an
orbit on the invariant curve, consisting of N iterates of the map. After fixing a definite orientation for traversing
the curve, we can sort the iterates of the orbit along the curve. To be more precise, suppose that we begin at a
point z of ON and following the previously fixed orientation we proceed along the curve until we find another
iterate z′ of ON . Then the two first points of the sorted orbit are z and z′. Continuing from z′ towards the same
direction we will find another iterate z′′ of the orbit. This will be the third point of the ordered orbit, and we con-
tinue the procedure above until we return to z. Points that are in adjacent places in the sorted orbit will be called
adjacent points.

By making N large enough, we can ensure that the rotation angle between two adjacent points of the orbit will
be small and, therefore, inside the interval (−π, π). This means that there is no ambiguity in the computation of
the rotation angle between adjacent points. Now we can define the rotation angle between any two points z1 and z2

on the invariant curve as

wθ(z1, z2) = wθ(z1, z
(1))+ wθ(z

(1), z(2))+ · · · + wθ(z
(M−1), z(M))+ wθ(z

(M), z2), (5)
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where {z(j)}j=1,M is the sequence of points of the sorted orbit ON , that we find between z1 and z2 when traversing
the invariant curve from z1 to z2 following the previously fixed orientation. A similar definition can be used for
the twist angles. It would be perhaps more natural to give the above definition using an integral along the invariant
curve instead of the sum in Eq. (5), but Eq. (5) also proposes a practical way of using our definition.

In order to determine the proper definition interval for the angleswθ andwφ , we will use the notion of the angular
dynamical spectra [5,11,12], that we denote by Sθ for the rotation angles and Sφ for the twist angles. This is the
distribution function of the angles, namely

Sθ (w) = lim
N→∞
δw→0

1

δw

δN(w,w + δw)

N
,

where δN(w,w + δw) is the number of angles wθ(zn, zn+1) in the small interval (w,w + δw) after N iterations
of the map f . Assuming that Sθ (w) is integrable, we can express the rotation number as the integral

νθ = 1

2π

∫
R

wSθ (w) dw, (6)

and a similar relation holds for the twist number. It is easy to see that the angular dynamical spectra on invariant
circles do not have any gaps and do not extend to infinity.

Proposition 1. The support of the spectrum of the angles is compact and connected.

In order to see this, consider the mapping δ that to each point of the circle associates the corresponding rotation
angle, i.e. δ(z) = wθ(z, f (z)). This mapping is continuous. Notice that the support of the spectrum is equal to the
image of the circle under δ. Since the invariant circle is compact and connected so is its image under δ. For our
purposes, this limits considerably the possible forms of the spectra.

As we already mentioned, we define wθ inside an interval of the form [a, a + 2π). If a belongs in the support
of the spectrum, then by defining angles inside [a, a + 2π), a part of the spectrum will appear near a, another part
of the spectrum will appear near a + 2π and there will be a gap between these two parts. The same happens when
a+2π is inside the support of the spectrum. Since Proposition 1 gaps are not admissible, the particular choice would
be evidently wrong. Therefore, we must define the angles inside an interval of the form [a, a + 2π) such that it
contains completely the whole spectrum. It is easy to construct an algorithm that can take care of this automatically.

One case where the above method is not applicable is when the spectrum has width greater than 2π , thus it is
not contained completely in any interval of the form [a, a + 2π). A case like this can be identified numerically by
computing the angles inside some interval of the form [a, a + 2π). If the width of the spectrum is larger than 2π
then this interval will be completely covered by the spectrum. Notice, that methods based on the Fourier analysis of
the orbit may fail in this case, due to the problem of selecting the correct peak of the Fourier spectrum. A solution
in this case is to sort the iterates of the orbit along the invariant curve and then apply Eq. (5) in order to compute
the angles.

3. Small angles and the ICF method

As we have mentioned in Section 2, one computes the rotation number using Eq. (4) for some finite but large N .
If we know a best convergent Pn/Qn [13] of the rotation number νθ we can write

µQn(z0) = 1

2π

2πPn + uQn(z0)

Qn

= Pn

Qn

+ 1

2π

uQn(z0)

Qn

, (7)
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where we have expressed the numerator of (4) as a sum of Pn circles and a small angle uQn(z0). Obviously, the
small angle is the rotation angle between the vectors r(z0) and r(zQn).

The numerators and denominators of the best convergents will be called best numerators and best denominators,
respectively. We denote by [a0, a1, a2, . . . ] the continued fraction expansion of νθ [13]. The best numerators of νθ
satisfy the recursive relation

Pn = anPn−1 + Pn−2 (8)

with P−2 = 0 and P−1 = 1. The recursive relation

Qn = anQn−1 +Qn−2, (9)

holds for the best denominators with Q−2 = 1 and Q−1 = 0.
It is well known that if the dynamics on the invariant curve are diffeomorphically conjugate to a rigid rotation, then

uQn is of the same order as |Qnνθ−Pn|. From the theory of best convergents [13], we know that |Qnνθ−Pn| < 1/Qn.
This means that uQn is of the order of 1/Qn, thus for a large enoughQn we can ensure that uQn is inside the interval
[−π, π).

Eq. (7) is the basis of the ICF method, therefore the method relies heavily on the correct determination of the best
convergent Pn/Qn of the rotation number νθ . In order to determine Qn we are using the fact that the dynamics on
a circle with an irrational rotation number νθ , are always topologically conjugate to a rigid rotation by 2πνθ [14].
This means that if an orbit begins at a point z0 of an invariant curve I, the points of the orbit O(z0) that will come
closer to z0 are the iterates fQn(z0). Thus by recording the points of the orbit that minimize the distance with z0

we can compute the best denominators Qn. According to [4], this method was originally proposed by Hénon.
Once we have determined Qn, we also need to determine Pn. In this case, we want to find how many times the

orbit winds around the invariant curve in Qn iterations. The determination of Pn can be simplified by the fact that if
we determine two consecutive best convergents Pn−1/Qn−1 and Pn/Qn of the rotation number then the rest of the
best convergents can be determined if we just determine the best denominators Qn+1,Qn+2, . . . Specifically, if we
compute Qn+1 then by Eq. (9), we get an+1 = (Qn+1 −Qn−1)/Qn and then Pn+1 can be computed from Eq. (8).

An important benefit of selecting best denominators of νθ as the number of iterations to use, is that the difference
|µQN

(z0)− νθ |, i.e. the error of the approximation, is of the same order as |νθ −Pn/Qn| < 1/Q2
n. This means that

without any significant extra computational effort we have a method for the computation of the rotation number
that is accurate up to a quantity of order 1/Q2

n, which is much better than 1/N which is the guaranteed accuracy if
we select at random a number of iterations N .

This can be seen clearly in Fig. 2a–c where we have plotted the logarithm of the error of the approximation
|µN − νθ | as a function of logN for three invariant curves IA, IB, IC of the standard map

(x, y) → (x′, y′) =
(
x + y + K

2π
sin(2πx), y + K

2π
sin(2πx)

)
mod 1,

where x, y ∈ [0, 1). These invariant curves are rotational and the rotation angle ∆θ is equal to 2π(x′ − x) =
2πy −K sin(2πx).

The invariant curve IA has initial conditions

x0 = 0, y0 = 0.6604939698315303

for K = 0.9. The rotation number of IA is equal (up to numerical error) to the golden number

ϕ = [0, (1)∞] = 1
2 (

√
5 − 1)
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Fig. 2. The error of the approximation |µN −νθ |. (a–c) Log–log diagrams of |µN −νθ | vs.N for the invariant curves IA, IB and IC, respectively.
The straight lines have slope −1. (d) Log–log diagram of |µN −νθ | vs. |νθ −M/N | for values ofN that are best denominators of the corresponding
rotation numbers for the three invariant curves. The slope of the three lines is equal to 1.

The invariant curve IB has initial condition

x0 = 0, y0 = 0.54783921738192783921

for K = 0.5 and rotation number

νθB = [0, 1, 1, 8, 1, 7, 9, 1, 3, 13, 1, 1, 169, 1, 18, 1, . . . ].
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Finally, the invariant curve IC has initial conditions

x0 = 0, y0 = 0.86356172536726678432

for K = 0.5 and rotation number

νθC = [0, 1, 4, 3, 1, 1, 6, 1, 1, 1, 2, 2, 3, 22, 1, 8, 17, 1, 2, . . . ].

All the computations were performed using multiprecision numbers from the LiDIA C++ library [15] with 50
accurate digits.

One important feature of these figures is that the error, in all three cases, is bounded above by a quantity proportional
to 1/N (the dashed lines in Fig. 2a–c). The constant of proportionality is different for the three invariant curves. The
most striking feature of the graphs, though, are the data points that we have plotted with squares. These correspond
to values of N that are best denominators of the corresponding rotation numbers. We see that the error for these
values of N is consistently smaller than for most other values of N and, in fact, it falls much faster than 1/N .

In Fig. 2d, we have plotted the logarithm of the error of the approximation as a function of log|νθ −M/N |, only
for those values of N that are best denominators of the corresponding rotation numbers. We can see that the error
is proportional to |νθ −M/N | in all three cases.

The ICF method is completed by going one step further. Specifically, we can improve the accuracy of the
computation of the rotation number from 1/Q2

n to 1/Q4
n. This can be achieved by defining a small angle uQn(zj )

for each point zj of the orbit, where Qn is a best denominator of the rotation number. It is clear that the average
of the small angles over these Qn points will be much closer to the exact value than the value of the small angle at
only one point. This is happening because the values of uQn appear alternately above and below their mean value
and, therefore, they cancel each other in order to give a much more accurate result. Therefore, instead of computing
µQn(z0) from Eq. (7) as an approximation of the rotation number, we can substitute the small angle uQn(z0) that
appears in Eq. (7) with the mean value

〈uQn〉Qn(z0) = 1

2π

∑Qn−1
j=0 uQn(zj )

Qn

(10)

of the small angles over the first Qn points of the orbit. Notice here, that we need 2Qn points of the orbit in order
to compute 〈uQn〉Qn(z0). This way we define a new approximation νQn,Qn(z0) to the rotation number that is more
accurate than µQn(z0). Explicitly, the new approximation is given by the relation

νQn,Qn(z0) = Pn

Qn

+ 〈uQn〉Qn(z0)

Qn

, (11)

and as we will see the accuracy of the method, i.e. |νQn,Qn − νθ | is of order (νθ −Pn/Qn)
2 (or 1/Q4

n) for large Qn.
In Fig. 3, we have plotted log|νQn,Qn − νθ | as a function of log|Qn| for the three invariant curves IA, IB,

IC. We can see that the error is of the order 1/Q4
n for large Qn. Note that by computing νQn,Qn , instead of

µQn , we increased the accuracy of the determination of νθ from 1/Q2
n to 1/Q4

n by only doubling the number of
iterations.

We must notice that if the rotation number νθ is close to a rational, then the best denominators of νθ are distributed
sparsely among the integers, in the sense that for a given positive integerN we expect to find fewer best denominators
of νθ that are smaller than N than if the rotation number is “very irrational”. This means that for rotation numbers
close to rationals it will be harder to find an appropriate best denominator from which we will be able to compute
the rotation number with very high accuracy.
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Fig. 3. Log–log diagram of the error of the approximation |νQn,Qn −νθ | vs.Qn, where Pn/Qn are best convergents of the corresponding rotation
numbers. The straight line has slope −4.

4. Explanation of the asymptotic behavior of the ICF method

In order to understand the asymptotic behavior of the method, we express uQn(z) as 2π(Qnνθ −Pn)(1+vQn(z))

and substituting in Eq. (7) we get

µQn(z) = νθ +
(
νθ − Pn

Qn

)
vQn(z). (12)

Since the rotational circles of the standard map are graphs over x (i.e. there is a function J such that y = J (x))
we can describe points on a circle using only x instead of z = (x, y) and we can define the restriction FI of the
standard map on a circle I as

FI(x) = πxFsm(x, J (x)),

where πx is the projection on x.
We consider a lift F of FI , i.e. a continuous function F : R → R such that

F(x)mod 1 = FI(x mod 1),

and for which F(x + 1) = F(x) + 1 [16]. We will also assume that F is a C∞ diffeomorphism with diophantine
rotation number and, therefore, there is a C∞ diffeomorphism H such that FH = HFνθ , where Fνθ is the rigid
rotation Fνθ : R → R: x → x + νθ [17].

We will use the following theorem that we prove in Appendix A.
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Theorem 2. Consider a C∞ function G: R → R, such that G(x + 1) = G(x), and a C∞ diffeomorphism
F : R → R, such that F(x + 1) = F(x) + 1 with diophantine rotation number νθ . If Qn is a best denominator of
νθ then

〈G〉FQn
(x)− 〈G〉F = gQn(x)

Qnνθ − Pn

Qn

,

where gQn : R → R is a C∞ function with 〈g〉Qn = 0 and gQn(x + 1) = gQn(x). Also the family gQn converges
pointwise to a C∞ function.

Here, where 〈G〉FN(x) is the finite time average of G on the orbit of F with initial point x

〈G〉FN(x) = 1

N

N−1∑
j=0

G(Fj (x)), (13)

and

〈G〉F = lim
N→∞

〈G〉FN(x). (14)

Remark. We have implicitly assumed that the time average of G exists and is independent of x. In Appendix A,
we prove that this is true under the same conditions as Theorem 2.

In order to apply the last theorem, we define ∆(x) = F(x) − x and we notice that νθ = 〈∆〉F and µQn(x) =
〈∆〉FQn

(x). Then applying Theorem 2 with G = ∆ we have that

µQn(x)− νθ = 〈∆〉FQn
(x)− νθ = vQn(x)

Qnνθ − Pn

Qn

.

According to Theorem 2, the sequence vQn(x) converges pointwise to a C∞ function v∞. In this particular case, it
is easy to see (following the argument given in the proof of Theorem 2 in Appendix A) that

v∞(x) = H ′(H−1(x))− 1,

where H ′(x) = dH(x)/dx.
Averaging Eq. (12) over the first Qn points of the orbit we get

νQn,Qn(x)− νθ =
(
νθ − Pn

Qn

)
〈vQn〉Qn(x), (15)

where 〈vQn〉FQn
(x) = ∑Qn−1

j=0 vQn(F
j (x))/Qn.

The functions vQn are C∞ and we have that 〈vQn〉 = 0 and vQn(x+ 1) = vQn(x). Therefore, we can apply again
Theorem 2, this time with G = vQn and we get

〈vQn〉Qn(x) = cQn(x)
Qnνθ − Pn

Qn

. (16)

This behavior is also evident in Fig. 4, where we have plotted the value of |〈vQn〉Qn | as a function of |νθ −Pn/Qn|.
Substituting the last result in Eq. (15) we find

νQn,Qn(x)− νθ = cQn(x)

(
νθ − Pn

Qn

)2

. (17)
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Fig. 4. Log–log diagram of 〈vQn 〉Qn vs. |νθ − Pn/Qn| for the invariant curve IA of the standard map. The slope of the curve is asymptotically
equal to 1.

The sequence cQn(x) is bounded since it converges pointwise to the C∞ function c∞(x). This means that there is
a positive number M such that

|cQn(x)| < M. (18)

We find that

|νQn,Qn(x)− νθ | < M

(
νθ − Pn

Qn

)2

<
M

Q4
n

. (19)

We conclude that the accuracy of νQn,Qn is of order O(1/Q4
n).

5. Summary and conclusions

We investigated the problem of the definition of the angles used for the correct computation of the rotation and
twist numbers. We showed that in some cases one can find an interval of the form [a, a+ 2π) and define the angles
inside this interval. This can be done using the spectrum of the angles. However, there are cases where such an
interval does not exist. In this case, one can sort the points on the invariant curve and compute the individual rotation
(twist) angles as a sum of rotation (twist) angles between adjacent points of an orbit on the invariant curve.

Another way of bypassing the above problem is by defining and adding the small angles (Section 3). The
computation of the mean value of the small angles is more accurate, compared to the computation of the mean value
of the rotation angles. The result is that the proposed ICF method has an accuracy of order |νθ −P/Q|2 if P/Q is a
best convergent of νθ . Since |νθ − P/Q| < 1/Q2 the accuracy of the method is better than 1/Q4. We have proven
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that this asymptotic behavior is true for any invariant curve that has diophantine rotation number and on which the
dynamics is diffeomorphic to a rigid rotation.

Although in Sections 3 and 4 we described the application of the ICF method in the case of the computation of
the rotation number, we notice that we can also use the ICF method in order to compute the twist number, provided
that we have an accurate approximation of the initial tangent vector.
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Appendix A. Proof of Theorem 2

1. Since F is C∞ and its rotation number is diophantine there is a C∞ diffeomorphism H : R → R, such that
FH = HFνθ and H(x + 1) = H(x)+ 1 [17] (we denote the composition of functions by concatenation of their
symbols).

2. We seek a periodic function K , such that

K(x + νθ )−K(x) = G(H(x))− 〈GH〉s , (A.1)

where for a periodic function f , we denote the space average by

〈f 〉s =
∫ 1

0
f (x) dx.

Eq. (A.1) is the homological equation. It has a C∞ solution, when the right-hand side of the equation is C∞

and has zero space average and the number νθ is diophantine [17]. These conditions obviously hold, therefore,
Eq. (A.1) has a C∞ solution K , such that K(x + 1) = K(x).

3. We have

Qn〈G〉FQn
(x) =

Qn−1∑
j=0

GFj (x) =
Qn−1∑
j=0

GHFj
νθ
(H−1(x)). (A.2)

Solving Eq. (A.1) for GH(x) and substituting into the previous equation we find

Qn〈G〉FQn
(x) =

Qn−1∑
j=0

(KFj+1
νθ

(H−1(x))− KFj
νθ
(H−1(x))+ 〈GH〉s)

= KFQn
νθ
(H−1(x))−K(H−1(x))+Qn〈GH〉s

= K(H−1(x)+Qnνθ )−K(H−1(x))+Qn〈GH〉s
= K(H−1(x)+Qnνθ − Pn)−K(H−1(x))+Qn〈GH〉s = gn(x)(Qnνθ − Pn)+Qn〈GH〉s ,

where we have defined

gn(x) = K(H−1(x)+Qnνθ − Pn)−K(H−1(x))

Qnνθ − Pn
. (A.3)
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Making the above computation with Qn substituted by N we find that

〈G〉FN(x) = K(H−1(x)+Nνθ −MN)−K(H−1(x))

N
+ 〈GH〉s ,

where MN is an integer (that depends on N ), such that Nνθ − MN ∈ [0, 1). Letting N → ∞, we see that
limN→∞〈G〉FN(x) = 〈GH〉s for all x ∈ R.

4. From Eq. (A.3), we easily deduce that gQn is C∞ and gQn(x + 1) = gQn(x). We also have

〈gQn〉F = lim
N→∞

1

N

N−1∑
j=0

gQn(F
j (x)) = lim

N→∞
1

N

N−1∑
j=0

K(H−1(F j (x))+Qnνθ − Pn)−K(H−1(F j (x)))

Qnνθ − Pn

= lim
N→∞

1

N

N−1∑
j=0

K(F
j
νθH

−1(x)+Qnνθ − Pn)−K(F
j
νθH

−1(x))

Qnνθ − Pn

= lim
N→∞

1

N

N−1∑
j=0

K(H−1(x)+Qnνθ − Pn + jνθ )−K(H−1(x)+ jνθ )

Qnνθ − Pn

= 〈K〉Fνθ − 〈K〉Fνθ
Qnνθ − Pn

= 0,

where in the last equation we used the fact that

〈K〉Fνθ = lim
N→∞

1

N

N−1∑
j=0

K(x + jνθ )

is independent of x provided that νθ is irrational.
5. What remains to be proven is that the family {gQn}n=1,∞ converges pointwise to a C∞ function. This follows

directly from the definition of gQn (A.3), the fact that limn→∞(Qnνθ −Pn) = 0 and that K is C∞. Specifically,
we have that

lim
n→∞gQn(x) = K ′(H−1(x)).
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