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We consider G × R-invariant Hamiltonians H on complex projective 2-space, where
G is a point group and R is the time-reversal group. We find the symmetry-induced
stationary points of H and classify them in terms of their linear stability. We then
determine those points that can undergo a linear Hamiltonian Hopf bifurcation.
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1. Introduction

Consider a Hamiltonian system with s degrees of freedom which is defined on a
smooth 2s-dimensional manifold M . Let this system be invariant under the action
of a symmetry group G on M , that is, let the Hamiltonian H of the system be a
G-invariant function on M . The study of how the presence of symmetry affects the
above system begins with the analysis of what restrictions this symmetry imposes
on possible types, stability and bifurcations of its equilibria (Golubitsky & Stewart
1987).

We characterize the action of G on M by specifying the isotropy group (or stabi-
lizer) Gm ⊆ G of every m ∈ M , which is the maximal subgroup of G that leaves m
fixed, Gm = {g ∈ G : g ·m = m}. A point m ∈ M is called a fixed point of the G action
when Gm = G, that is, when it is fixed by all the elements of G. The G-orbit of m is
the set G · m = {g · m : g ∈ G}. We are primarily interested in points mc ∈ M such
that there is a neighbourhood of mc in which there are no points m with stabilizer
Gm which belongs to the same conjugacy class in G as Gmc . We call such points mc
and the orbit G · mc isolated or critical. For more details see, for example, Michel &
Zhilinskíı (2001). The following theorem of Michel (1971) shows why critical points
are important.

Theorem 1.1. Critical points of the action of a group G on a smooth manifold
M are stationary points of every smooth G-invariant function H on M .

Apart from the existence of special symmetric stationary points mc of H, the
symmetry analysis can derive valuable information on the stability and possible
bifurcations of these points by studying the action of the isotropy group Gmc in the
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neighbourhood of mc. As a particularly characteristic and simple example, consider a
Hamiltonian system with one degree of freedom which is invariant with regard to one
of the finite groups of transformation of the plane R2, a cyclic group Ck of rotations
about the origin 0 ∈ R2 by 2π/k or a dihedral group Dk. Clearly, the origin 0 is a
critical one-point orbit. For all k � 3, the corresponding stationary point of a smooth
function H : R2 → R is stable. If (q, p) are standard symplectic coordinates in R2

and H(q, p) is a generic smooth Ck-invariant Hamiltonian function, then 0 is a stable
equilibrium. Furthermore, it is easy to show that, depending on k, bifurcations of
this equilibrium can be of five and only five possible types. This simple theorem
has important applications in a wide range of systems, including free rotations of
non-rigid bodies, such as molecules (Zhilinskíı & Pavli�chenkov 1987; Pavli�chenkov &
Zhilinskíı 1988), small vibrations of resonant systems with two degrees of freedom†
and bifurcations of periodic orbits of systems with two degrees of freedom (Meyer
1970, 1971, 1986).

In the case of bifurcations of periodic orbits, the study of the periodic solution
is replaced by the study of a reduced Ck-invariant system defined (locally) on the
Poincaré surface of section. In the case of small vibrations, we can normalize the
system globally and study its relative equilibria as stationary points of the reduced
Hamiltonian. In this work, we apply the same principle in the analysis of a 1:1:1
resonant three-mode system with symmetries. Existence of relative equilibria (non-
linear normal modes) of such systems has been already studied in detail by Montaldi
et al . (1988) and in the follow-up paper (Montaldi et al . 1990a) on the example of
tetrahedral symmetry Td. The equivalent approach, based on the reduced system
defined on the CP 2 phase space, was suggested in Zhilinskíı (1989) and detailed in
Sadovskíı & Zhilinskíı (1993). In this paper, we focus on the possible types of linear
stability of these relative equilibria.

The transformations in R3 that leave the equilibrium configuration of a non-
collinear molecule fixed form a finite point group G, that is, a finite subgroup of O(3).
In the study of the small vibrations of a molecule near its equilibrium configuration,
we classify these vibrations according to irreducible representations of the symmetry
group G of the molecule. The small vibrations qi, i = 1, . . . , n, which realize n-
dimensional irreducible representations of G form an n-fold degenerate mode, that
is, n vibrations with the same frequency.

When G has three-dimensional irreducible representations, the molecule can have
one or more triply degenerate vibrational normal modes. Consider a molecule that
has a triply degenerate vibrational mode, like P4 or CH4, which have tetrahedral
symmetry. If a potential for interatomic interactions in this molecule is known, then
one can determine a model Hamiltonian for the triply degenerate mode that will be
a perturbation of the harmonic oscillator

H0 : T ∗R3 → R : (q, p) → H0(q, p) = 1
2(p2

1 + p2
2 + p2

3) + 1
2(q2

1 + q2
2 + q2

3), (1.1)

with equal frequencies. Here, T ∗R3 is the co-tangent bundle of R3 with canonical
coordinates (q, p) = (q1, q2, q3, p1, p2, p3). The perturbed system will generally be of
the form

Hε : T ∗R3 → R : (q, p) → Hε(q, p) = H0(q, p) + εH1(q, p) + ε2H2(q, p) + · · · , (1.2)

† See, for example, Sadovskíı (2001); a different but equivalent approach is discussed in Montaldi et
al . (1990b, § 4).
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where Hj(q, p) are homogeneous polynomials of degree j + 2 in (q, p).
Recall that the variables q span a three-dimensional representation Γ of G. Since

the representation Γ is orthogonal, the co-tangent lift of the action of G from R3 with
variables (q, p) to T ∗R3 with variables (q, p) is such that the momenta p also span the
same representation Γ . Let G̃ be the image of G in the representation Γ ⊕Γ spanned
by (q, p). The Hamiltonian Hε is invariant with respect to G̃. This means that, for
every g ∈ G̃, Hε(g · (q, p)) = Hε(q, p). From now on, we will denote the group and its
image in any representation by the same symbol, if there is no danger of confusion.
In this paper, we consider only the three-dimensional vector representations Γ of
point groups, that is, representations on which the group acts the same way as on
the representation spanned by variables x, y, z of the physical space.

For free molecules, the Hamiltonian Hε is also time-reversal invariant. Here, the
generator T of the time-reversal symmetry acts on T ∗R3 by T (q, p) = (q, −p). The
time-reversal symmetry group is R = {1, T}. The role of the time-reversal symmetry
is very important since its existence modifies the possible types of linear stability of
the relative equilibria.

For small enough values of the perturbation parameter ε (or, alternatively, for small
enough values of the energy), we can study the main qualitative features of the system
in question by normalizing it with respect to H0. This means that we find a canonical
change of coordinates so that the transformed Hamiltonian is invariant under the flow
of the Hamiltonian vector field XH0 of the harmonic oscillator to a sufficiently high
order in ε. Dropping the higher-order terms gives the normalized Hamiltonian H̃ε.
Because H̃ε Poisson commutes with H0, it induces a smooth function Ĥε, called the
reduced Hamiltonian, on the space of orbits of fixed energy of the harmonic oscillator.
In our case, this orbit space is a complex projective 2-space CP 2. Stationary points
of Ĥε (relative equilibria) correspond to periodic orbits of H̃ε. Within the limits of the
validity of the normal-form approximation, they also correspond to periodic orbits
of Hε.

Since the original Hamiltonian Hε is G-invariant, the reduced Hamiltonian Ĥε is
also. Here the action of G on CP 2 is induced from its action on T ∗R3 which we
identify with C3. The critical points of the action of G on CP 2 are by theorem 1.1
stationary points of Ĥε and therefore also equilibria of the reduced system. In this
paper we determine the possible types of linear stability of these equilibria taking
into account their isotropy group. Our program is to find the fixed points of all finite
subgroups of O(3) × R and then to classify them in terms of their linear stability.
Since all the critical points of a group are fixed points of some of its subgroups we
will have also classified all the critical points in terms of their linear stability.

An important bifurcation, which happens only in Hamiltonian systems with two or
more degrees of freedom, is the Hamiltonian Hopf bifurcation (van der Meer 1985).
It is a codimension-one bifurcation that occurs only if a stationary point changes
stability from elliptic–elliptic to complex hyperbolic. In other words, the frequencies
of the linearized system move along the imaginary axis, collide, and then move off
the axis into the complex plane. This pattern of change of linear stability is called a
linear Hamiltonian Hopf bifurcation. If we take into account the nonlinear behaviour
of the system, then a nonlinear Hamiltonian Hopf bifurcation might take place, that
is, a family of periodic orbits either detaches from the stationary point or it shrinks to
the stationary point and disappears. The name Hamiltonian Hopf bifurcation comes
from the fact that the above behaviour is reminiscent of the Hopf bifurcation for
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dissipative systems. Note that the linear bifurcation is necessary but not sufficient
for the nonlinear one.

The Hamiltonian Hopf bifurcation in the presence of symmetry has been studied
in van der Meer (1990) and Chossat et al . (2002). In the first paper, the author
obtains results for the Hamiltonian Hopf bifurcation on the fixed-point space of a
subgroup of the full symmetry group. In the second paper, the authors study the
Hamiltonian Hopf bifurcation on the reduced phase space of Hamiltonian systems
symmetric under the action of a compact Lie group. Since we consider the possibility
of the Hamiltonian Hopf bifurcation on the phase space CP 2 obtained after reduction
of the S1 symmetry generated by the flow of XH0 , this approach is partly related to
ours.

Having studied the linear stability of all the fixed points, we predict which of them
can go through a linear Hamiltonian Hopf bifurcation. These stationary points are
then candidates for a nonlinear Hamiltonian Hopf bifurcation. The main result of
our paper is the enumeration of the points and their isotropy groups that undergo
linear Hamiltonian Hopf bifurcation. The method we use to determine the possible
types of stability of relative equilibria is not particular to the case of point groups
acting on CP 2, but can be extended to cover the case of an arbitrary compact group
acting on a manifold.

We now give an outline of the contents of this paper. In § 2 we describe the reduced
phase space and give a coordinatization. In § 3 we discuss the action of finite point
groups on CP 2. In § 4 we find the fixed points of the action of the finite cyclic
groups Ck on CP 2 and determine their possible linear stability types. In § 5 we find
the fixed points and the linear stability of all the other finite point groups. In § 6
we study the effect of the additional time-reversal symmetry on the above results.
Table 1 summarizes the results obtained in §§ 4, 5 and 6. In § 7 we state and prove the
main theorem, which characterizes those fixed points of finite-point groups extended
by time reversal, which can undergo a linear Hamiltonian Hopf bifurcation. Finally,
in § 8 we present the example of the action of the tetrahedral group Td on CP 2

extended by time reversal and show that it has only one type of critical point for
which a linear Hamiltonian Hopf bifurcation can occur.

2. Normalization of the 1:1:1 resonance

We identify the phase space T ∗R3 having canonical coordinates (q, p), with C3 hav-
ing coordinates z = (z1, z2, z3), where zj = qj + ipj . The flow of the unperturbed
harmonic oscillator Hamiltonian

H0(z) = 1
2 |z|2 = 1

2(|z1|2 + |z2|2 + |z3|2)

induces the S1 action

ϕ : S1 × C3 → C3 : (t, z) �→ ϕt(z) = exp(it)z. (2.1)

For n > 0, the n-level set H−1
0 (n) of H0 is the 5-sphere

S5√
2n

= {z ∈ C3 : |z|2 = 2n} (2.2)

of radius
√

2n (we denote by Sk
r the k-sphere of radius r). The sphere S5√

2n
is in-

variant under ϕ (see (2.1)). The space of orbits of the S1 action ϕ on the n-level
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set of H0 is S5√
2n

/S1. It is well known that this space of orbits is diffeomorphic
to complex projective 2-space, which we denote by CP 2

n = S5√
2n

/S1. We will use
homogeneous coordinates on CP 2

n , that is, coordinates (z1, z2, z3) ∈ C3 with the
restriction |z|2 = 2n taking into account that points on S5√

2n
that differ only by

multiplication by a phase factor correspond to the same point on CP 2. We denote
the equivalence class of (z1, z2, z3) as [z1 : z2 : z3].

For small energies, the perturbed Hamiltonian (1.2) has the approximate symmetry
of the harmonic oscillator. In order to exploit this symmetry, we normalize Hε. In
other words, we make a near-identity symplectic change of variables that takes Hε to
H̃ε, so that H̃ε is ϕ invariant (or, equivalently, {H̃ε, H0} = 0) up to a certain order.
This normalization can be carried out algorithmically using Lie series (Deprit 1969;
Gröbner 1960). Since the normalization transformation is generally divergent, we
normalize the Hamiltonian only up to some finite order. The result of normalization
and truncation is a Hamiltonian

H̃ε(q, p) = H0(q, p) + ε2H̃2(q, p) + · · · + ε2kH̃2k(q, p), (2.3)

where H̃j(q, p) are homogeneous polynomials of degree j +2 such that {H̃j , H0} = 0.
Since the value of H̃ε is constant along the orbits of XH0 , we can properly define
a function Ĥε on the orbit space of the flow of XH0 on H−1

0 (n) (that is, on CP 2
n)

by assigning to each orbit the value of H̃ε on a point of the orbit. The function
Ĥε is called the reduced Hamiltonian.

3. The action of point groups on CP 2 induced by their action on R3

Let G be some point group, that is, some subgroup of O(3), and consider its action
on R3,

ρ : G × R3 → R3 : (g, q = (q1, q2, q3)) → ρ(g, q) = g · q. (3.1)

Note that we consider only three-dimensional vector representations of G. Also note
that point groups are defined up to conjugation in SO(3).

Since G is a subgroup of O(3), we have (g−1)T = g for every g ∈ G. Therefore, the
co-tangent lift of ρ to T ∗R3 = R3 × R3 is

ρ∗ : G × (R3 × R3) → R3 × R3 : (g, (q, p)) → (g · q, g · p). (3.2)

The action of G on C3 with coordinates z = (z1, z2, z3), where zj = qj + ipj , is then

ρ̃ : G × C3 → C3 : (g, z) → g · z. (3.3)

If the Hamiltonian (1.2) is G invariant, that is, for any g ∈ G, we have

Hε(g · (q, p)) = Hε(q, p),

then the normalized Hamiltonian H̃ε and the reduced Hamiltonian Ĥε are also G
invariant. Therefore, by theorem 1.1, a critical point m of the action of the point
group G on CP 2 is also a stationary point of the G-invariant reduced Hamiltonian
Ĥε.

Although the point groups are subgroups of O(3), in order to study their action on
CP 2 it is enough to consider only those point groups that are subgroups of SO(3).
This is due to the fact that the action of inversion on CP 2 is trivial, since

ι[z1 : z2 : z3] = [−z1 : −z2 : −z3] = [z1 : z2 : z3].
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Define a group homomorphism

P : O(3) → SO(3) : g �→ P (g) = det(g)g. (3.4)

Because of the triviality of the action of ι on CP 2, we obtain the following.

Lemma 3.1. The action of a subgroup G of O(3) and the subgroup P (G) of SO(3)
on CP 2 are identical.

We call a subgroup of SO(3) a proper point group. Therefore, it is enough to
study only the actions of the proper point groups instead of all the point groups.
The correspondence between finite point groups and their images under P is listed
below†

P (S4k) = C4k, P (S2(2k+1)) = C2k+1, P (C2k,h) = C2k,

P (C2k+1,h) = C2(2k+1), P (Ck,v) = Dk, P (D2k,h) = D2k,

P (D2k+1,h) = D2(2k+1), P (D2k,d) = D4k, P (D2k+1,d) = D2k+1,

P (Th) = T , P (Td) = O, P (Oh) = O,

P (Yh) = Y.

The finite proper point groups are the group Ck of rotations around an axis by
angle θk = 2π/k, the dihedral groups Dk, the tetrahedron group T , the octahedron
group O and the icosahedron group Y. The group Ck is generated by Ck. We write
Ck = 〈Ck〉. The group Dk is generated by Ck and a rotation by angle π around
an axis perpendicular to the Ck-axis. We denote this latter transformation and the
corresponding axis by U2.

In the problems that we are interested in, we also have time-reversal symmetry
T . This means that the symmetry group of our Hamiltonian is G × R, where G is a
point group and R = 〈T 〉. By lemma 3.1, we need only study the action of the group
P (G) instead of G. Thus we only have to consider the finite subgroups of SO(3) × R
up to conjugation in SO(3).

Lemma 3.2. The finite subgroups of SO(3)×R (up to conjugation in SO(3)) are
as follows.

(1) The cyclic and dihedral groups are

(a) Ck = 〈Ck〉;
(b) Dk = 〈Ck, U2〉.

(2) The time-reversal extended cyclic and dihedral groups are

(c) Ck × R = 〈Ck, T 〉;
(d) Ck ∧ C2kT = 〈Ck, C2kT 〉;
(e) Ck ∧ U2T = 〈Ck, U2T 〉;

† We are using here the standard physics and chemistry notation for finite point groups. The defi-
nitions and descriptions of these groups can be found in many textbooks (see, for example, Landau &
Lifshitz (1958) or Hammermesh (1962)). Note that some of these groups are isomorphic to each other,
but we consider them to be different because their actions on the physical space are different.

Proc. R. Soc. Lond. A (2003)



Symmetric perturbations of the 1 : 1 : 1 resonance 02PA0344/7

(f) Dk × R = 〈Ck, U2, T 〉;
(g) Dk ∧ C2kT = 〈Ck, U2, C2kT 〉.

(3) The cubic groups are

(h) T , T × R, T ∧ U2T , O, O × R, Y, Y × R.

Proof . SO(3) × R and SO(3) × Ci, which is isomorphic to O(3), where Ci = 〈ι〉,
are isomorphic. The isomorphism is given by the map τ : O(3) → SO(3) × R that
is the identity on SO(3) and maps ι to T . This means that the finite subgroups of
SO(3)×R, up to conjugation in SO(3), are the images under τ of the finite subgroups
of O(3) up to conjugation in SO(3), that is, the finite point groups.

Let G ∧ g denote the group generated by G and an element g 
∈ G. Then the finite
point groups can be written as follows:†

(a) Ck = 〈Ck〉;

(b) Dk = 〈Ck, U2〉;

(c) Ck × Ci = 〈Ck, ι〉, which is S2k for k odd and Ckh for k even;

(d) Ck ∧ C2kι = 〈Ck, C2kι〉, which is S2k for k even and Ckh for k odd;

(e) Ck ∧ U2ι = 〈Ck, U2ι〉, which is Ckv;

(f) Dk × Ci = 〈Ck, U2, ι〉, which is Dkh for k even and Dkd for k odd;

(g) Dk ∧ C2kι = 〈Ck, U2, C2kι〉, which is Dkh for k odd and Dkd for k even;

(h) T , T × Ci, Td = T ∧ U2ι, O, O × Ci, Y, Y × Ci.

In the list above, Ck and C2k represent rotations around the same axis, while U2
represents rotations by π around an axis perpendicular to the first one. Substituting
ι in the above list by T , we obtain the lemma. �

4. Fixed points of the Ck action

In this section we determine the fixed points of the point group Ck on CP 2 and their
linear stability type.

(a) Position of fixed points

Positions of fixed points on CP 2 for many point groups that are interesting for
molecular applications are given in Zhilinskíı (1989). Time reversal is not considered
in that reference.

Rotations Ck by angle θk = 2π/k around an axis form a cyclic group of order k,
denoted Ck. Thus

Ck = {1, Ck, C2
k , . . . , Ck−1

k }. (4.1)

† Our notation is somewhat different from that usually used in the description of point groups in
order to make more apparent the role of inversion in each group.
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Geometrically, the axis of rotation of Ck in R3 is given by an arbitrary vector
v = (v1, v2, v3). In order to simplify our study, we perform a rotation by Q = Q(v) ∈
SO(3), so that Qv = (0, 0, 1). We denote the rotated coordinates again by (q1, q2, q3).
The representation of Ck in the rotated coordinates is

Ck =




cos θk sin θk 0
− sin θk cos θk 0

0 0 1


 . (4.2)

From (3.3), we see that the action of Ck on C3 is

ρ̃ : Ck × C3 → C3 : (Cj
k, z) → Cj

kz. (4.3)

The following result is adapted from Zhilinskíı (1989).

Lemma 4.1 (cf. Zhilinskíı). The set of fixed points of the C2 action on CP 2 is
a disjoint union of the critical point Z3 = [0 : 0 : 1] and a 2-sphere S2 of non-critical
fixed points. The fixed points of Ck for k � 3 are Z3 = [0 : 0 : 1] and Z± = [1 : ±i : 0].

Proof . In order to find the fixed points of the Ck action on CP 2, we define new
coordinates u = (u1, u2, u3), where u1 = z1 + iz2, u2 = z1 − iz2, u3 = z3. In these
coordinates, the action becomes diagonal, namely,

ρ̂ : Ck × C3 → C3 : (Cj
k, u) �→ (exp(−ijθk)u1, exp(ijθk)u2, u3). (4.4)

The S1 action ϕ on the u coordinates becomes

ϕ̂ : S1 × C3 → C3 : (t, u) �→ exp(it)u. (4.5)

The fixed points of the action of Ck on CP 2 are the solutions of the equation
Cku = exp(it)u for some t ∈ S1 � R/2πZ. Specifically, the system of equations that
we need to solve is

exp(−iθk)u1 = exp(it)u1,

exp(iθk)u2 = exp(it)u2,

u3 = exp(it)u3.




(4.6)

For k � 3, the solutions of (4.6) are the points u(1) = [1 : 0 : 0], u(2) = [0 : 1 : 0] and
u(3) = [0 : 0 : 1]; while, for k = 2, we have two types of solutions. When u3 
= 0, we
obtain the isolated point u(3) = [0 : 0 : 1]; while, when u3 = 0, we find that |u1|2 +
|u2|2 = 1. The last equation defines a 3-sphere S3 in C2. Points on this 3-sphere
that lie on the same orbit of the S1 action ϕ̂ (see (4.5)) represent the same point.
Therefore, the solutions of (4.6) lie on a manifold S3√

2n
/S1, which is diffeomorphic to

CP 1, that is, the 2-sphere S2. This manifold is dynamically invariant for every C2-
invariant Hamiltonian.

In the original complex variables [z1 : z2 : z3], we find that, for k � 3, the fixed
points are Z+ = [1 : i : 0], Z− = [1 : −i : 0] and Z3 = [0 : 0 : 1]. For k = 2, the
fixed point is Z3 = [0 : 0 : 1] and the invariant sphere as |z1|2 + |z2|2 = 1. Note that
although all the points of the sphere are fixed under the C2 action, they are not, in
general, stationary points of the reduced Hamiltonian, because they are not isolated
and therefore they are not critical. �
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EE EH HH CH

2E 2H NP

Figure 1. Types of linear stability for an equilibrium of a two-degree-of-freedom Hamiltonian.
Starting at the upper left: EE, EH, HH, CH, 2E, 2H and NP.

We introduce a more convenient parametrization of the 2-sphere S2, which will
be useful in what follows. Note that the 2-sphere S2 can be defined as the set of
points (z1, z2) ∈ C2 with |z1|2 + |z2|2 = 1 that are equivalent under the S1 action
(t, (z1, z2)) → exp(it)(z1, z2). We can parametrize the orbit space of this action using
the invariants

s1 = z1z̄1 − z2z̄2, s2 = z1z̄2 + z̄1z2 and s3 = i(z1z̄2 − z̄1z2),

which are subject to the relation

s2
1 + s2

2 + s2
3 = (|z1|2 + |z2|2)2 = 1.

A computation shows that, for k � 3, the induced action of Ck on R3 with coordin-
ates (s1, s2, s3) is

Ck(s1, s2, s3) = (cos(2θk)s1 + sin(2θk)s2,− sin(2θk)s1 + cos(2θk)s2, s3).

When k = 2, we find again that 2θk = 2π. Therefore, all the points on the 2-sphere
S2 remain fixed.

(b) Stability of fixed points

In order to determine the possible types of linear stability of the fixed points of
the action of Ck on CP 2 under the flow of the reduced Ck-invariant Hamiltonian Ĥε,
we need to compute the eigenvalues of the corresponding linearized vector field (the
frequencies) at the fixed point. If one of the frequencies is λ ∈ C, then −λ, λ̄ and
−λ̄ are also frequencies. Therefore, there are generically four types of linear stability
depending on the arrangement of the frequencies on the complex plane (see figure 1).

(a) Elliptic–elliptic (EE) when all the frequencies are on the imaginary axis.

(b) Elliptic–hyperbolic (EH) when two of the frequencies are real and two are
imaginary.
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(c) Hyperbolic–hyperbolic (HH) when all frequencies are real.

(d) Complex hyperbolic (CH) when λ is neither real nor imaginary and the fre-
quencies form a quadruplet λ, −λ, λ̄, −λ̄.

There are also three non-generic cases in the space of all possible quadratic Hamil-
tonians.

(e) Two pairs of equal frequencies on the imaginary axis ±iλ (twice) with λ ∈ R.
We denote this case by 2E.

(f) Two pairs of equal frequencies on the real axis ±λ (twice) with λ ∈ R. We
denote this case by 2H.

(g) All frequencies are zero. We denote this case by NP (nilpotent).

As we will see later, some of these non-generic cases become generic in the presence
of particular symmetries.

Since the procedure that we use in order to determine the possible types of lin-
ear stability of a fixed point can be applied to point groups other than Ck, we
describe it in some generality. Consider a G-invariant reduced Hamiltonian Ĥ and
let m ∈ CP 2 be a critical point with non-trivial isotropy group Gm. Define a local
chart χ : CP 2 → R4 : � → (x1, x2, y1, y2) near m so that χ(m) = 0 and the constant
part of the symplectic form is ω = dx1 ∧ dy1 + dx2 ∧ dy2. The linear action of Gm in
this chart can be determined from its action on C3. Let H loc be the reduced Hamil-
tonian expressed in the local chart. The crucial fact is that H loc is Gm invariant.
The frequencies of the vector field at m are the eigenvalues of Y = DXHloc(0). Let

H loc(x, y) = H loc
0 (x, y) + H loc

1 (x, y) + H loc
2 (x, y) + H loc

3 (x, y) + · · ·
be the Taylor expansion of H loc around 0, where each H loc

j (x, y) is a homogeneous
polynomial of degree j in (x, y). Notice that dH loc(0) = 0, since 0 is a stationary point
for H loc. Similarly, let ω(x, y) = ω0(x, y) + ω1(x, y) + · · · be the Taylor expansion
of the symplectic form, where each ωj(x, y) has coefficients that are homogeneous
polynomials of degree j.

Lemma 4.2. Y is determined by H loc
2 (x, y) and ω0(x, y) = ω(0).

Proof . In this proof, we write H instead of H loc. Notice that dHj(0) = 0 for
j � 2, and hence dH(0) = dH1(0) = 0. This means that H1(x, y) = 0. The vector
field XH is determined by iXH

ω = dH. Taylor expand (the yet unknown) XH(x, y)
around 0: XH(x, y) = X0(x, y) + X1(x, y) + · · · , where each Xj(x, y) has coefficients
that are homogeneous polynomials of order j in (x, y). Then, equating terms of the
same order, we obtain the system of equations

iX0ω0 = dH1 = 0,

iX0ω1 + iX1ω0 = dH2,
...

From the first equation, we find X0 = 0. From the second equation, we can determine
X1. Note that

Y = DXH(0) = DX0(0) + DX1(0) + DX2(0) + · · · .
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Since X0 = 0 and the coefficients of Xj(x, y) for j � 2 are homogeneous polynomials
of degree 2, we have

Y = DXH(0) = DX1(0).

This means that X1 and therefore Y can be determined from H2(x, y) and ω0(x, y)
solving the equation iX1ω0 = dH2. �

Since we know the action of Gm on the local chart, we can write the most gen-
eral Gm-invariant quadratic Hamiltonian H loc

2 in the local chart. From H loc
2 , we can

compute Y = DXHloc(0).
We can now study the linear stability of the fixed points of Ck.

Lemma 4.3. The fixed point Z3 = [0 : 0 : 1] of the action of Ck can have any
type of linear stability.

Proof . For the fixed point Z3 = [0 : 0 : 1], we define local coordinates (x, y) on
CP 2 by w1 = z1/z3 = x1 + iy1, w2 = z2/z3 = x2 + iy2 satisfying the constraints
z3 = 1/(1 + |w1|2 + |w2|2)1/2 and Im(z3) = 0. The constant term of the symplectic
form on CP 2 in these coordinates is ω = dx1 ∧ dy1 + dx2 ∧ dy2.

The action of Ck on w1, w2 can be easily computed as

Ckw1 =
Ckz1

Ckz3
=

cos θkz1 + sin θkz2

z3
= cos θkw1 + sin θkw2

and

Ckw2 =
Ckz2

Ckz3
=

− sin θkz1 + cos θkz2

z3
= − sin θkw1 + cos θkw2.

We now diagonalize this action. Introduce coordinates v1 = x1 + ix2, v2 = y1 + iy2.
Then the action of Ck on (v1, v2) ∈ C2 is

Ck(v1, v2) = (exp(iθk)v1, exp(iθk)v2).

For k � 3, the quadratic invariants of the Ck action are spanned by

v1v̄1, v2v̄2, v1v̄2 and v̄1v2.

If we express these invariants in terms of real variables (x, y), we find that the real
quadratic invariants of Ck are spanned by

x2
1 + x2

2, y2
1 + y2

2 , x1y1 + x2y2 and x1y2 − x2y1.

For k � 3, the most general quadratic Ck-invariant Hamiltonian is

H loc
2 (x, y) = 1

2a(x2
1 + x2

2) + 1
2b(y2

1 + y2
2) + c(x1y1 + x2y2) + d(x1y2 − x2y1), (4.7)

where a, b, c, d ∈ R. The frequencies in this case are ±i(d ±
√

ab − c2).
For k = 2, all quadratic monomials of v1, v2, v̄1 and v̄2 are invariant under C2.

This means that there are no restrictions on the quadratic local Hamiltonian or on
the frequencies at Z3. �

When k � 3 for the fixed points Z± = [1 : ±i : 0], we have the following.
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Lemma 4.4. The fixed points Z± of the action of Ck, k � 5, have linear stability
type EE. For k = 4, the fixed points can have stability type either EE or EH and,
for k = 3, they can have any type of stability.

Proof . It is enough to study the fixed point Z+ = [1 : i : 0]. We define a local
chart on CP 2 by

i + x1 + iy1 = i + w1 =
z2

z1
and x2 + iy2 = w2 =

z3

z1
,

with the constraints z1 = 1/(1 + |i + w1|2 + |w2|2)1/2 and Im(z1) = 0. In the (x, y)
coordinates, the constant term of the symplectic form is ω = dx1 ∧ dy1 + dx2 ∧ dy2.

We compute the action of Ck on w1 up to first-order terms as follows,

i + Ckw1 =
Ckz2

Ckz1

=
− sin θkz1 + cos θkz2

cos θkz1 + sin θkz2

=
− sin θk + cos θk(i + w1)
cos θkz1 + sin θk(i + w1)

=
i exp(iθk) + cos θkw1

exp(iθk) + sin θkw1

=
i + exp(−iθk) cos θkw1

1 + exp(−iθk) sin θkw1

= i + exp(−2iθk)w1 + O(|w1|2) (4.8)

and on w2 as follows,

Ckw2 =
Ckz3

Ckz1

=
z3

cos θkz1 + sin θkz2

=
w2

cos θk + sin θk(i + w1)

=
w2

exp(iθk) + sin θkw1

=
exp(−iθk)w2

1 + exp(−iθk) sin θkw1

= exp(−iθk)w2 + O(|w1||w2|). (4.9)

We now find the invariants of this action for k � 3, since the only isolated fixed
point of the action of C2 on CP 2 is Z3.

For k � 5, the quadratic invariants are spanned by w1w̄1 and w2w̄2. Therefore,
the most general quadratic local Hamiltonian is

H loc
2 (w1, w2) = 1

2aw1w̄1 + 1
2bw2w̄2, (4.10)

with a, b ∈ R. In real coordinates,

H loc
2 (x, y) = 1

2a(x2
1 + y2

1) + 1
2b(x2

2 + y2
2). (4.11)
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The frequencies are ±ia and ±ib. Therefore, the fixed point is always EE.
For k = 4, the quadratic invariants are spanned by w1w̄1, w2w̄2, w2

1 and w̄2
1.

Consequently, the real quadratic invariants are spanned by x2
1, y2

1 , x1y1 and x2
2 + y2

2 .
Therefore, the most general quadratic Hamiltonian is

H loc
2 (x, y) = 1

2ax2
1 + 1

2by2
1 + cx1y1 + 1

2d(x2
2 + y2

2). (4.12)

The frequencies are ±(c2 − ab)1/2 and ±id. Therefore, the stationary point can be
either EE or EH.

For k = 3, the quadratic invariants are spanned by w1w̄1, w2w̄2, w1w2 and w̄1w̄2.
In real coordinates, they are spanned by

x2
1 + y2

1 , x2
2 + y2

2 , x1x2 − y1y2 and x1y2 + x2y1.

Hence we have

H loc
2 (x, y) = 1

2a(x2
1 + y2

1) + 1
2b(x2

2 + y2
2) + c(x1x2 − y1y2) + d(x1y2 + x2y1). (4.13)

The frequencies in this case are ±1
2 i(a − b ±

√
(a + b)2 − 4(c2 + d2)). �

5. Fixed points of other finite proper point groups

We use the results of the preceding section in order to find the fixed points of the
rest of the finite proper point groups, namely, Dk, T , O and Y.

Note that although we are interested in the linear stability type of the critical
points of each finite point group, it is enough to study only the linear stability type
of the fixed points of finite point groups, since each critical point m of a point group
G is a fixed point of its isotropy group Gm, which is a subgroup of G.

The group Dk can be obtained from Ck if we add a U2-axis perpendicular to the
Ck-axis. This induces the appearance of k − 1 more U2-axes perpendicular to the
Ck-axis.

Lemma 5.1. The fixed points of D2 on CP 2 are Z1 = [1 : 0 : 0], Z2 = [0 : 1 : 0]
and Z3 = [0 : 0 : 1]. They can have either EE, EH or HH linear stability type.

Proof . The group D2 has three mutually perpendicular C2-axes. By choosing a
suitable system of coordinates, we can identify these axes with the coordinate axes.
C2 denotes rotations around the axis (0, 0, 1) and U2 denotes rotations around the
axis (1, 0, 0). These rotations generate D2. The fixed points of C2 on CP 2

n are Z3 =
[0 : 0 : 1] and the 2-sphere S2, which we described in § 3 using the variables (s1, s2, s3)
as s2

1+s2
2+s2

3 = 1. The action of U2 on CP 2 is U2[z1 : z2 : z3] = [z1 : −z2 : −z3]. Z3 is
a fixed point of U2, since U2[0 : 0 : 1] = [0 : 0 : −1] = [0 : 0 : 1]. The action of U2 on S2

is U2(s1, s2, s3) = (s1,−s2,−s3). It leaves invariant only the points (±1, 0, 0), which
correspond to the points Z1 = [1 : 0 : 0] and Z2 = [0 : 1 : 0] on CP 2, respectively.
We deduce that the fixed points of D2 are Z1 = [1 : 0 : 0], Z2 = [0 : 1 : 0] and
Z3 = [0 : 0 : 1]. It is enough to study the types of linear stability for any one of them,
since they belong to the same D2 orbit. In § 4 we defined coordinates v1 = x1 + ix2
and v2 = y1 + iy2 near [0 : 0 : 1] and found that the action of C2 is C2v1 = −v1
and C2v2 = −v2. The action of U2 is U2v1 = −v̄1 and U2v2 = −v̄2. Therefore, the
quadratic invariants of the D2 action on the local chart are spanned by

v1v̄1, v2v̄2, v2
1 + v̄2

1 , v2
2 + v̄2

2 , v1v̄2 + v̄1v2 and v1v2 + v̄1v̄2.
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The corresponding real quadratic invariants are spanned by

x2
1, x2

2, y2
1 , y2

2 , x1y1 and x2y2.

Therefore, the most general quadratic local Hamiltonian is

H loc
2 (x, y) = 1

2ax2
1 + 1

2bx2
2 + 1

2cy2
1 + 1

2dy2
2 + ex1y1 + fx2y2. (5.1)

The frequencies in this case are ±(e2−ac)1/2 and ±(f2−bd)1/2. Therefore, the linear
stability type of the fixed point can be either EE, EH or HH. �

For higher-order groups Dk, we have the following.

Lemma 5.2. Dk, for k � 3, has one fixed point on CP 2 with coordinates Z3 =
[0 : 0 : 1]. It can have linear stability type either 2E or 2H.

Proof . Since the group Dk contains Ck as a subgroup, we check to see which of
the fixed points of Ck remain fixed points for the larger group and whether the larger
symmetry has any effect on the linear stability.

The fixed point of Ck with coordinates Z3 = [0 : 0 : 1] is also a fixed point for
every U2 rotation around an axis perpendicular to the Ck-axis, since U2Z3 = [0 : 0 :
−1] = [0 : 0 : 1]. We choose coordinates so that one U2-axis passes through (1, 0, 0)
in configuration space, while the Ck-axis still passes through (0, 0, 1). From now on,
we will always denote by U2 the axis that passes through (1, 0, 0). The action of U2
on the [z1 : z2 : z3] is U2[z1 : z2 : z3] = [z1 : −z2 : −z3]. Its action on the local
variables (x, y) is therefore U2(x1, x2, y1, y2) = (−x1, x2,−y1, y2). We have found
that the quadratic real invariants for the Ck action are spanned by

x2
1 + x2

2, y2
1 + y2

2 , x1y1 + x2y2 and x1y2 − x2y1.

Only the first three of the above are invariant under the U2 action. Therefore, the
most general quadratic Dk-invariant Hamiltonian for k � 3 is

H loc
2 (x, y) = 1

2a(x2
1 + x2

2) + 1
2b(y2

1 + y2
2) + c(x1y1 + x2y2). (5.2)

The frequencies in this case are ±(c2 − ab)1/2 (twice). Therefore, the fixed point can
have either 2E or 2H as linear stability type.

Now consider the fixed points of Ck with coordinates Z± = [1 : ±i : 0]. We have
U2[1 : ±i : 0] = [1 : ∓i : 0]. This means that Z± are not fixed points of Dk for
k � 3. �

Finally, for the tetrahedron, octahedron and icosahedron groups, we obtain the
following.

Lemma 5.3. The actions of T , O and Y on CP 2 do not have any fixed points.

Proof . These groups have intersecting C3-axes. �

Note that this lemma does not say that the action of these groups does not have
any critical points on CP 2, but that there are no critical points of any group action
with these isotropy groups.
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6. The fixed points of time-reversal extended groups

We have found the fixed points and their linear stability types of stability for all
non-trivial finite proper point groups G. If the original G-invariant Hamiltonian has
time-reversal symmetry T , which is the case for Hamiltonians in molecular systems,
then its symmetry group is the extended group G×R. The isotropy group of a critical
point can then be one of the T extended finite subgroups of SO(3)×R that we listed
in § 3. In this section we study the linear stability type of the fixed points of these
groups.

Lemma 6.1. For k � 3, the groups Ck ×R and Dk ×R have only one fixed point,
with coordinates Z3 = [0 : 0 : 1], which has linear stability type either 2E or 2H.
The group C2 × R has one isolated fixed point Z3 = [0 : 0 : 1] that can have any
stability type and a circle of fixed points that are not critical. The group D2 × R
has three isolated fixed points with coordinates Z1 = [1 : 0 : 0], Z2 = [0 : 1 : 0] and
Z3 = [0 : 0 : 1]. They have linear stability type either EE, EH or HH.

Proof . Note that the action of T on the local chart near Z3 is diagonal, since
T (x, y) = (x,−y). In particular, it is diagonal on the space of quadratic monomi-
als in x and y. In order to find the most general G × R-invariant quadratic local
Hamiltonian, we need to consider only the local quadratic Hamiltonians that we
found previously for the different groups G and keep only those monomials that are
invariant under T .

For C2 × R, we find

H loc
2 (x, y) = 1

2ax2
1 + 1

2bx2
2 + 1

2cy2
1 + 1

2dy2
2 + ex1x2 + fy1y2. (6.1)

In this case, the frequencies are ± 1√
2
(−α ± (α2 − 4βγ)1/2)1/2, where there are four

choices of plus or minus signs and α = ac + bd + 2ef , β = e2 − ab and γ = f2 − cd.
The fixed point can have any linear stability type.

The action of T on the sphere S2 of fixed points is T (s1, s2, s3) = (s1, s2,−s3). It
leaves invariant the circle {s3 = 0} on S2.

For Ck × R, Dk × R, and k � 3 from equations (4.7) and (5.2), we find that

H loc
2 (x, y) = 1

2a(x2
1 + x2

2) + 1
2b(y2

1 + y2
2). (6.2)

In this case, the frequencies are ±i
√

ab (twice) and therefore the fixed point can have
linear stability type either 2E or 2H.

For D2 × R, from equation (5.1), we find that

H loc
2 (x, y) = 1

2ax2
1 + 1

2bx2
2 + 1

2cy2
1 + 1

2dy2
2 . (6.3)

The frequencies in this case are ±i
√

ac and ±i
√

bd. Therefore, the fixed point can
have linear stability type either EE, EH or HH. �

Lemma 6.2. The groups Ck ∧ C2kT and Dk ∧ C2kT for k � 2 have a unique fixed
point Z3 = [0 : 0 : 1], which has linear stability type either 2E or 2H.

Proof . We have found that Ck for k � 3 has the fixed points Z3 and Z±. Only Z3
is fixed under the action of C2kT . Therefore, it is the only fixed point of Ck ∧ C2kT .
The quadratic invariants near Z3 for Ck are spanned by

v1v̄1, v2v̄2, v1v̄2 and v̄1v2.
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Therefore, the quadratic invariants of the action C2kT (v1, v2) = exp(iθ2k)(v1,−v2)
are spanned by v1v̄1 and v2v̄2. Consequently,

H loc
2 = 1

2a(x2
1 + x2

2) + 1
2b(y2

1 + y2
2). (6.4)

The frequencies are ±i
√

ab (twice).
For k = 2, the group C2 has the isolated fixed point Z3 and a 2-sphere S2 of fixed

points. The action of C4T on S2 is C4T (s1, s2, s3) = (−s1,−s2,−s3), which does not
have any fixed points on S2. Therefore, the only fixed point of C2 ∧ C4T is Z3. The
quadratic invariants in this case are spanned by

v1v̄1, v2v̄2, v1v2 and v̄1v̄2.

The most general quadratic invariant Hamiltonian is

H loc
2 = 1

2a(x2
1 + x2

2) + 1
2b(y2

1 + y2
2) + c(x1y1 − x2y2) + d(x1y2 + x2y1). (6.5)

The frequencies are ±
√

c2 + d2 − ab (twice).
The only fixed point of the group Dk for k � 3 is Z3. It also remains fixed under

C2kT . The quadratic invariants for Dk are spanned by

v1v̄2, v2v̄2 and v1v̄2 + v̄1v2.

Because of the action of C2kT , only the first two remain invariant under Dk ∧ C2kT .
Therefore, we have

H loc
2 = 1

2a(x2
1 + x2

2) + 1
2b(y2

1 + y2
2). (6.6)

The frequencies are ±i
√

ab (twice).
Finally, for k = 2, the group D2 has the fixed points Z1, Z2 and Z3. The action of

C4T is C4T [z1 : z2 : z3] = [z̄2 : −z̄1 : z̄3]. Therefore, C4T (Z1) = Z2 and C4T (Z2) =
Z1. The only fixed point of D2 ∧ C4T is therefore Z3. Because of the action of C4T ,
the quadratic invariants of D2 ∧ C4T near Z3 are spanned by

v1v̄1, v2v̄2 and v1v2 + v̄1v̄2.

We have
H loc

2 = 1
2a(x2

1 + x2
2) + 1

2b(y2
1 + y2

2) + c(x1y1 − x2y2). (6.7)

The frequencies are ±
√

c2 − ab (twice). �

Lemma 6.3. The groups Ck ∧U2T for k � 3 have fixed points Z3 = [0 : 0 : 1] and
Z± = [1 : ±i : 0]. Z3 can have any type of linear stability. Z± can have any type of
linear stability for k = 3. It can be either EE or EH for k = 4; while, for k � 5, it
can only be EE. The group C2 ∧U2T has a unique isolated fixed point Z3, which can
have any linear stability type.

Proof . We have found that Ck for k � 3 has the fixed points Z3 = [0 : 0 : 1] and
Z± = [1 : ±i : 0]. Since these points are fixed under U2T and Ck is a subgroup of
Ck ∧ U2T , they are fixed points of Ck ∧ U2T . The quadratic invariants of Ck near Z3
are spanned by

v1v̄1, v2v̄2, v1v̄2 and v̄1v2.

The quadratic invariants of the action U2T (v1, v2) = (−v̄1, v̄2) are therefore spanned
by

v1v̄1, v2v̄2 and v1v̄2 − v̄1v2.
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In real coordinates (x, y), these quadratic invariants are spanned by

x2
1 + x2

2, y2
1 + y2

2 and x2y1 − x1y2.

The most general quadratic local Hamiltonian is therefore

H loc
2 (x, y) = 1

2a(x2
1 + x2

2) + 1
2b(y2

1 + y2
2) + c(x1y2 − x2y1). (6.8)

The frequencies in this case are ±i(c ±
√

ab).
The action of U2T is given by U2T [z1 : z2 : z3] = [z̄1 : −z̄2 : −z̄3]. There-

fore, U2T (Z+) = Z+ and U2T (Z−) = Z−. Its action in the local chart near Z+ is
U2T (w1, w2) = −(w̄1, w̄2). For k = 3, we know the quadratic invariants. Taking into
account the U2T action, the quadratic invariants are spanned by

w1w̄1, w2w̄2 and w1w2 + w̄1w̄2.

Thus the most general quadratic invariant local Hamiltonian is

H loc
2 (x, y) = 1

2a(x2
1 + y2

1) + 1
2b(x2

2 + y2
2) + c(x1x2 − y1y2). (6.9)

The frequencies in this case are ±1
2 i(a − b ± ((a + b)2 − 4c2)1/2). All choices of sign

are possible.
For k = 4, we find that

H loc
2 (x, y) = 1

2ax2
1 + 1

2a′y2
1 + 1

2b(x2
2 + y2

2), (6.10)

and the frequencies are ±ib and ±i
√

aa′.
Finally, for k � 5, the most general quadratic Hamiltonian is

H loc
2 (x, y) = 1

2a(x2
1 + y2

1) + 1
2b(x2

2 + y2
2), (6.11)

with frequencies ±ia and ±ib.
For k = 2, the action of C2 has an isolated fixed point Z3 = [0 : 0 : 1] and a

2-sphere S of fixed points. The action of U2T on S is U2T (s1, s2, s3) = (s1,−s2, s3).
It leaves fixed the points on the circle {s2 = 0}. Therefore, the only isolated fixed
point of C2 ∧ U2T is Z3. In local coordinates, the quadratic invariants are spanned
by

v1v̄1, v2v̄2, v1v̄2 − v̄1v2, v1v2 − v̄1v̄2, v2
1 + v̄2

1 and v2
2 + v̄2

2 .

In real coordinates, the quadratic invariants are spanned by

x2
1, x2

2, y2
1 , y2

2 , x1y2 and x2y1.

The most general quadratic local Hamiltonian is

H loc
2 (x, y) = 1

2ax2
1 + 1

2a′x2
2 + 1

2by2
1 + 1

2b′y2
2 + cx1y2 − c′x2y1. (6.12)

In this case, the fixed point can have any linear stability type. �

Lemma 6.4. The T extended cubic groups T × R, T ∧ C4T , O × R and Y × R
do not have any fixed points.
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Table 1. Possible types of stability for fixed points of finite subgroups of SO(3) × R
(Notation follows lemma 4.1; indices 1, 2 and 3 refer to the coordinate axes in R3, axis 3 corre-
sponds to the symmetry axis of the groups Ck. In the fourth column, we give the decomposition
of the representation spanned by (x1, x2, y1, y2) into irreducible representations. Representa-
tions are denoted by B, E and EC if they are one-dimensional, two-dimensional real and two-
dimensional complex, respectively. Different subscripts 1, 2, 3, 4 are used to distinguish between
non-isomorphic representations of the same type.)

group fixed point stability decomposition

C2 Z3 any B(x1) ⊕ B(x2) ⊕ B(y1) ⊕ B(y2)
Ck, k � 3 Z3 any EC(x1, x2) ⊕ EC(y1, y2)
C3 Z± any EC(x1, y1) ⊕ EC(x2, −y2)
C4 Z± EE, EH B(x1) ⊕ B(y1) ⊕ EC(x2, y2)
Ck, k � 5 Z± EE EC

1 (x1, y1) ⊕ EC
2 (x2, y2)

D2 Z1, Z2, Z3 EE, EH, HH B1(x1) ⊕ B2(x2) ⊕ B1(y1) ⊕ B2(y2)
Dk, k � 3 Z3 2E, 2H E(x1, x2) ⊕ E(y1, y2)
C2 × R Z3 any B1(x1) ⊕ B1(x2) ⊕ B2(y1) ⊕ B2(y2)
Ck × R, k � 3 Z3 2E, 2H EC

1 (x1, x2) ⊕ EC
2 (y1, y2)

D2 × R Z1, Z2, Z3 EE, EH, HH B1(x1) ⊕ B2(x2) ⊕ B3(y1) ⊕ B4(y2)
Dk × R, k � 3 Z3 2E, 2H E1(x1, x2) ⊕ E2(y1, y2)
C2 ∧ C4T Z3 2E, 2H EC(x1, x2) ⊕ EC(y2, y1)
Ck ∧ C2kT , k � 3 Z3 2E, 2H EC

1 (x1, x2) ⊕ EC
2 (y1, y2)

D2 ∧ C4T Z3 2E, 2H E(x1, x2) ⊕ E(−y1, y2)
Dk ∧ C2kT , k � 3 Z3 2E, 2H E1(x1, x2) ⊕ E2(y1, y2)
C2 ∧ U2T Z3 any B1(x1) ⊕ B2(x2) ⊕ B2(y1) ⊕ B1(y2)
Ck ∧ U2T , k � 3 Z3 any E(x1, x2) ⊕ E(−y2, y1)
C3 ∧ U2T Z± any E(x1, y1) ⊕ E(x2, −y2)
C4 ∧ U2T Z± EE, EH B1(x1) ⊕ B2(y1) ⊕ E(x2, y2)
Ck ∧ U2T , k � 5 Z± EE E1(x1, y1) ⊕ E2(x2, y2)

Proof . Each one of these groups has one of the proper cubic groups as a subgroup.
Since the proper cubic groups do not have any fixed points, neither do the T extended
groups. �

The results of the three previous sections about the linear stability type of the
relative equilibria are summarized in table 1.

Notice that we have not taken into account the cases for k = 1. One can easily
see that either these groups are identical to one of the groups we already studied or
they do not have any isolated fixed points.

Besides the finite subgroups of SO(3) × R, there are also continuous subgroups
that are interesting in applications. For these groups we have the following result.

Lemma 6.5. The fixed points and their linear stability types are as in table 2.

The method for finding the fixed points and their type of linear stability for the
continuous subgroups of SO(3) × R is the same as that used in this and previous
sections for the finite groups. Notice, in particular, that the quadratic invariants for
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Table 2. Possible types of stability for fixed points of continuous subgroups of SO(3) × R
(Notation in last column is as in table 1.)

group alt. notation fixed point stability decomposition

SO(2) C∞ Z3 any EC(x1, x2) ⊕ EC(y1, y2)
SO(2) C∞ Z± EE EC

1 (x1, y1) ⊕ EC
2 (x2, y2)

SO(2) ∧ U2 D∞ Z3 2E, 2H E(x1, x2) ⊕ E(y1, y2)
SO(2) × R C∞ × R Z3 2E, 2H EC

1 (x1, x2) ⊕ EC
2 (y1, y2)

(SO(2) ∧ U2) × R D∞ × R Z3 2E, 2H E1(x1, x2) ⊕ E2(y1, y2)
SO(2) ∧ U2T C∞ ∧ U2T Z3 any E(x1, x2) ⊕ E(−y2, y1)
SO(2) ∧ U2T C∞ ∧ U2T Z± EE E1(x1, y1) ⊕ E2(x2, y2)

each continuous subgroup of SO(3) × R are spanned by the same invariants as the
quadratic invariants of some finite group for large enough k.

7. Linear Hamiltonian Hopf bifurcation

We have studied the fixed points of all the finite subgroups of SO(3) × R and,
because of lemma 3.1, also of all the finite subgroups of O(3) × R. Note that, in
each case, we have expressed the fixed points in a system of coordinates in which
the Ck-axis of the group is at the direction (0, 0, 1) in R3. In general, the Ck-axis
can be in any direction. We still use the notation Z1,2,3,± for the fixed points of
groups, but we note that the coordinate representation of these points depends on the
direction of the axis. Recall that, by Gmc , we denote the isotropy group of a critical
point mc. Let P̃ : O(3) × R → SO(3) × R be the extension of the homomorphism
P : O(3) → SO(3) in (3.4) defined by P̃ (T ) = T . We can now state and prove the
main theorem of this paper.

Theorem 7.1. Consider a G × R-invariant Hamiltonian defined on CP 2, where
G is a finite point group and the action of G on CP 2 is induced by its action on the
vector representation spanned by q1, q2, q3. A critical point m ∈ CP 2 of the G × R
action can go through a linear Hamiltonian Hopf bifurcation only if

(a) P̃ (Gm) = C2 × R and m is the point Z3 of Gm, or

(b) P̃ (Gm) = C3 or P̃ (Gm) = C3 ∧ U2T and m is one of the points Z± of Gm.

Proof . Instead of studying the action of G × R on CP 2, by lemma 3.1, we can
study the equivalent action of P̃ (G × R) = P (G) × R. A point m ∈ CP 2 is a critical
point of P (G) × R if and only if it is an isolated fixed point of some subgroup
of P (G) × R. In our situation, all subgroups of P (G) × R are finite subgroups of
SO(3) × R. The points that can go through a linear Hamiltonian Hopf bifurcation
are Z3 with isotropy groups Ck (k � 2), D2, C2 × R, Ck ∧ U2T (k � 2) and C2 ∧ C4T
and Z± with isotropy groups C3 and C3∧U2T . Note that, since the original symmetry
is of the form G × R and since TZ3 = Z3, the isotropy group of Z3 always contains
T . Therefore, Ck, D2, Ck ∧ U2T and C2 ∧ C4T cannot be isotropy groups of Z3. We
are now left only with the cases described in the theorem. �
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Remark 7.2. A more general definition of the linear Hamiltonian Hopf bifurcation
is given in Hanßmann & van der Meer (2002). What is described in that paper is
the bifurcation of short periodic orbits that happens when the fixed point Z3 of
the SO(2) × R group changes linear stability type from 2E to 2H. Note that our
results predict this change of linear stability (see table 2). What we describe in this
paper as a linear Hamiltonian Hopf bifurcation is a standard linear Hamiltonian Hopf
bifurcation in Hanßmann & van der Meer (2002).

The main technical problem when studying the bifurcation from 2E to 2H is that,
exactly at the bifurcation, the Hamiltonian vector field is nilpotent. In general, it
would be impossible to normalize with respect to the SO(2) symmetry, as it is usually
done when studying the nonlinear Hamiltonian Hopf bifurcation. Since the Hamilto-
nian in Hanßmann & van der Meer (2002) is already SO(2) invariant, this normal-
ization is not necessary. This permits the authors to study the bifurcation and to
find that the nonlinear behaviour of the system is the same as that for a standard
nonlinear Hamiltonian Hopf bifurcation.

It is possible that this generalized notion of the linear Hamiltonian Hopf bifurcation
that demands the existence of SO(2) symmetry can be extended to the case of a finite
group symmetry Ck, at least in specific examples. For example, for k � 5, the real
invariants of the Ck action on the local chart near Z3 are spanned up to fourth order
by the same invariants as for the SO(2) action. This means that the Hamiltonian is
already normalized up to fourth order with respect to the SO(2) symmetry. Provided
that the normal form for the Hamiltonian Hopf bifurcation is not degenerate at this
order, we can deduce that a generalized nonlinear Hamiltonian Hopf bifurcation is
taking place.

Remark 7.3. Van der Meer (1990) considers some general conditions that a group
G should satisfy in order to be a symmetry group of a Hamiltonian Hopf bifurcation.
In our case, we know all possible groups of interest and we check explicitly whether
this type of bifurcation can happen.

Melbourne & Dellnitz (1993) consider normal forms of linear Hamiltonian vector
fields that commute with the action of a compact Lie group G. Dellnitz et al . (1992)
find under what conditions the imaginary eigenvalues of a Hamiltonian matrix that
meet, move off to the complex plane (split) or go through each other (pass). The main
tool in these papers is the decomposition of the eigenspace of the Hamiltonian matrix
into irreducible representations of G. In a sense, this approach is complementary to
ours.

The authors in the latter paper begin with a specific arrangement of eigenvalues
of the Hamiltonian matrix. We begin with a particular group action and, without
making any assumption on the eigenvalues, we use invariant theory to find the most
general quadratic G invariant Hamiltonian H2 and then we compute the correspond-
ing eigenvalues of the linear Hamiltonian vector field corresponding to H2.

We can also obtain our results in a slightly different way. First we decompose the
vector space spanned by the variables (x1, x2, y1, y2) in irreducible representations
of the group G under consideration and then we find all the quadratic invariants by
coupling these representations in an appropriate manner. In tables 1 and 2, we give
this decomposition for the groups that we have studied. Notice that, in some cases
(for example, the fixed point Z3 of the group SO(2) ∧ U2T ), the decomposition does
not belong to any of the cases that are described in the aforementioned papers as
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Figure 2. The tetrahedral group Td and the octahedron group O.

generic for compact Lie groups when we have resonant eigenvalues on the imaginary
axes.

8. Example: the action of Td × R on CP 2

Here, we study in detail the case of Td × R-invariant Hamiltonians. The example of
tetrahedral molecules was first studied by Montaldi et al . (1988), where they found
the relative equilibria. The method that we use here for finding the relative equilibria
is due to Zhilinskíı (1989). In this section, we find all critical points of the action of
Td on CP 2 and then apply the results in the previous sections to determine their
linear stability type. An application of our techniques in the more complex problem
of coupled rotational-vibrational motions of a tetrahedral molecule can be found in
Efstathiou et al . (2003).

The Td group contains six reflection planes σ, three S4 rotation–reflection axes
and four C3-axes (figure 2). Note that Td (the group of all the symmetries of the
tetrahedron) is not a proper point group, since it contains reflections and rotation–
reflections. The image of Td under the homomorphism P in (3.4) is the octahedral
group O. Therefore, it is sufficient to study the action of O on CP 2 instead of that
of Td.

The octahedron group contains six C2-axes, three C4-axes and four C3-axes (fig-
ure 2). In order to find critical points of O, we have to find fixed points of each one of
these axes. If some axis Ck has C2-axes perpendicular to it, then the isotropy group
of the fixed points of Ck might be larger. Therefore, we have to take into account
the existence of perpendicular C2-axes in order to determine the isotropy group of a
fixed point.

Note that each C2-axis always has two other C2-axes perpendicular to it. They
form the group D2. From lemma 5.1, D2 has three fixed points. Because of the
time-reversal symmetry and lemma 6.1, they can have linear stability type EE, EH
or HH.

Each C3-axis has three C2-axes perpendicular to it. Therefore, to each one of the
four C3-axes correspond three critical points. In a system of coordinates where the
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C3-axis lies along the direction (0, 0, 1), they have coordinates Z± = [1 : ±i : 0] and
Z3 = [0 : 0 : 1]. Because of the perpendicular C2-axes, Z3 is also fixed under D3. Also
taking into account the T symmetry, we conclude that Z3 is fixed under D3 × R.
From lemma 6.1, Z3 for the C3-axis can have linear stability type either 2E or 2H.
The isotropy group of Z± is C3 ∧ U2T . Therefore, these points can have any linear
stability type. In particular, they can be CH.

Finally, the three C4-axes have critical points Z3 = [0 : 0 : 1] and Z± = [1 : ±i : 0]
in a system of coordinates where the C4-axis points in the direction (0, 0, 1). Each
C4-axis has two C2- and two C4-axes perpendicular to it. Since C4-axes are also C2-
axes (because C2

4 = C2), there are four C2-axes perpendicular to it. Therefore, Z3
is fixed under D4 × R and, by lemma 6.1, it can have linear stability type either 2E
or 2H. Just as in the case of the C3-axes, Z± is fixed under the action of C4 ∧ U2T .
By lemma 4.4, the fixed points Z± of C4 ∧ U2T can have linear stability type EE
or EH.

In summary, we have found that the action of Td × R on CP 2 has 27 critical
points (six for the C2-axes, 12 for the C3-axes and nine for the C4-axes), among
which there are eight with isotropy group C3 ∧ U2T . Only these latter can undergo a
linear Hamiltonian Hopf bifurcation.

We can do the same analysis for all the cubic groups T , Td, Th, O, Oh, Y and Yh.
In all these cases, we can easily prove that the only points that can go through a
linear Hamiltonian Hopf bifurcation are the Z± points of the C3-axes. Thus we have
proved the following.

Theorem 8.1. Let H be G ×R-invariant Hamiltonian on CP 2, where the action
of G on CP 2 is induced by its action on the vector representation spanned by q1,
q2, q3. The only critical points of the action of G × R (and thus of H) that can go
through a linear Hamiltonian Hopf bifurcation are the points Z± of the C3-axes of
the image of G under the homomorphism P (see (3.4)).

The authors acknowledge useful discussions with Boris Zhilinskíı. This research was partly sup-
ported by European Union funding for the Research and Training Network MASIE (HPRN-CT-
2000-00113).
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