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Abstract. Many physical systems can be modeled as scattering problems. For example, the motions
of stars escaping from a galaxy can be described using a potential with two or more escape routes.
Each escape route is crossed by an unstable Lyapunov orbit. The region between the two Lyapunov
orbits is where the particle interacts with the system. We study a simple dynamical system with
escapes using a suitably selected surface of section. The surface of section is partitioned in different
escape regions which are defined by the intersections of the asymptotic manifolds of the Lyapunov
orbits with the surface of section. The asymptotic curves of the other unstable periodic orbits form
spirals around various escape regions. These manifolds, together with the manifolds of the Lyapunov
orbits, govern the transport between different parts of the phase space. We study in detail the form of
the asymptotic manifolds of a central unstable periodic orbit, the form of the escape regions and the
infinite spirals of the asymptotic manifolds around the escape regions. We compute the escape rate
for different values of the energy. In particular, we give the percentage of orbits that escape after a
finite number of iterations. In a system with escapes one cannot define a Poincaré recurrence time,
because the available phase space is infinite. However, for certain domains inside the lobes of the
asymptotic manifolds there is a finite ‘minimum recurrence time’. We find the minimum recurrence
time as a function of the energy.
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1. Introduction

The problem of escapes from a dynamical system has been discussed by many
authors. The most recent aspect of this problem is the subject of chaotic escapes,
or chaotic scattering (Bleher et al., 1988; Eckhardt, 1988; Ott and Tél, 1993).
Particular cases refer to the encounters of two satellites around a planet (Petit and
Hénon, 1986), the interactions of particles in the rings of Saturn (Hénon, 1989),the
scattering of particles in a magnetic dipole (Jung and Scholz, 1988), the scattering
of photons or particles by two fixed black holes (Contopoulos, 1990b, 1991), the
escapes of stars from a galaxy (Contopoulos, 1990a; Contopoulos and Kaufmann,
1992) and the escapes in the restricted three-body problem (Benet et al., 1997,
1998).
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There are indications that escapes from simple galactic models follow a univer-
sal pattern (Siopis et al., 1997; Kandrup et al., 1999). In particular the escape rate
p∞ in strongly chaotic systems seems to follow a law p∞ ∼ (ε − εcrit)

a , where ε is
the perturbation, εcrit is a critical perturbation, and a is a universal constant, close
to a = 0.5.

Of special interest is the study of the various domains of escape. Such do-
mains in general form infinite spirals around some limiting asymptotic curves
(Contopoulos, 1990a; Contopoulos and Kaufmann, 1992; Contopoulos and
Polymilis, 1993; Henrard and Navarro, 2001). In the present paper we study in
more detail the escape domains in a simple dynamical system that has been used
as a model of the central region of a galaxy.

In Section 2 we find the escape domains and show that they form infinite spirals
around the asymptotic manifolds of some particular unstable periodic orbits called
Lyapunov orbits. We find the intersections of the escape domains in the forward
and the backward time directions. In Section 3 we study the rate of escapes of the
orbits. Then, in Section 4, we study the asymptotic curves of the central unstable
periodic orbit. The forms of these asymptotic curves are related to the shape of
the escape domains. In Section 5 we find the minimum Poincaré recurrence time
for various energies. For large energies the minimum recurrence time decreases
and reaches one iteration. In Section 6 we consider the resonant case 1:1 and we
describe the similarities and the differences between this and the previous case.
Finally, in Section 7 we write our conclusions.

2. Escapes

We consider a Hamiltonian

H(x, y, px, py) = 1
2(p

2
x + p2

y + Ax2 + By2) − εxy2 = h, (1)

where A =ω2
1 = 1.6, B =ω2

2 = 0.9 and ε = 0.08. This is a higher order resonance
case (4:3), but in most respects it represents also the nonresonant cases.

This Hamiltonian is symmetric with respect to the transformation y →−y.
When the isoenergetic surface is compact, that is, for values of the energy smaller
than the escape energy, almost all orbits intersect the surface y = 0 transversally
because of this symmetry. Thus, the surface y = 0 is a Poincaré surface of section.
The only exception is the x-axis family (y = 0, py = 0) that stays on the surface
y = 0. This orbit is the boundary of the phase space on the surface of section y = 0.
The areas on the Poincaré surface of section are preserved.

However, when we have escapes (Figure 1), the surface y = 0 is not a Poincaré
surface of section. Some orbits may not intersect this surface, or intersect it only a
finite number of times and then escape to infinity. One consequence of this fact
is that the areas may not be preserved on this surface. The measure m′ of the
image of an area of measure m on the surface y = 0 is in general smaller than
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Figure 1. Equipotentials for various values of the energy h. The Lyapunov orbits for h = 29 are O1
and O2. The main axes are x and y. The straight lines are y = ± αx, where α = (2A/B)1/2. These
lines are periodic orbits for energies smaller than hesc.

m. Nevertheless, the study of the intersections of the orbits by the surface y = 0
is of interest, since it allows us to understand a large part of the dynamics. The
surface y = 0 is then a ‘local surface of section’ (Birkhoff, 1927).

The escape energy in the case (1) is equal to

hesc = AB2

8ε2
. (2)

In the present case hesc = 25.31.
When the value of the energy h becomes larger than the escape energy hesc, the

equipotentials are open and extend to infinity. Then two unstable periodic orbits,
called Lyapunov orbits, are formed, crossing the openings of the equipotentials
(Figure 1). We denote the Lyapunov orbits by O1 and O2. Lyapunov orbits are
important for the escapes from the system, since if an orbit intersects any one of
these orbits outwards it escapes to infinity without any further intersections with
the surface of section (Churchill et al., 1975).

For a fixed value of the energy h= 29, the initial conditions of orbits on the
surface (x, px) with y = 0 and py > 0, that escape immediately or after one inter-
section with the surface y = 0 are denoted by different shades of gray in Figure 2(a).
The elliptical boundary surrounding Figure 2(a) represents the curve y =py = 0,
therefore it is given by the equation

p2
x + Ax2 = 2h. (3)

No motion is possible outside this curve.
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Figure 2. The escape regions E(Oi,+0) and E(Oi, +1) (i = 1, 2) in the space (x, px) for y = 0,
py > 0 and h= 29 (gray). (b) The escape regions of (a) plus the symmetric escape regions
E(Oi,−0) and E(Oi,−1) (hached). Near the boundary of the figures we have drawn several
invariant curves that surround the escape regions (some of them are so close that they form a
black ribbon). Most of the points of the white regions, between the escape regions above, escape after
longer times.

The regions E(Oi +n), i = 1, 2 of Figure 2(a) represent regions of initial condi-
tions of orbits that escape to infinity in the forward time direction after intersecting
n times the surface y = 0, besides the initial point. By E(Oi,+0) we denote the
regions of orbits that escape to infinity in the forward time direction without any
further intersection with the surface y = 0. Notice here that, by definition, the in-
tersections of an orbit by the (local) surface of section y = 0 are considered only
when py > 0.

Furthermore, we distinguish the escape regions by the Lyapunov orbit through
which the orbits escape. We denote by E(O1,+n) the initial conditions of orbits
that escape to infinity through O1 and by E(O2,+n) the initial conditions of or-
bits that escape to infinity through O2. In a similar way we consider the regions
E(Oi,−n) that escape in the backward time direction after n intersections besides
the initial point. In Figure 2(b) we give both regions E(O1,2,±0) and E(O1,2,±1).
We note that the regions E(O2,−n) and E(O2,+n) are symmetric to the regions
E(O1,+n) and E(O1,−n), respectively.

The boundaries of the regions E(O1,+0) and E(O1,−0) are the first inter-
sections of the stable and unstable manifold, respectively, of the Lyapunov orbit
O1 with the surface of section y = 0. Similarly, the boundaries of the regions
E(O2,+0) and E(O2,−0) are the first intersections of the stable and unstable
manifolds of O2 with the surface of section. Furthermore, we have checked that
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the area of E(O1,+0) is equal to the area of E(O2,+0), as it should be expected,
because of the symmetry of the system (1).

In Figure 2(a) we see also the regions E(O1,2,+1). The region E(O1,+1) is
a single connected piece. The region E(O2,+1), on the other hand, is composed
of two pieces that make infinite spiral rotations around the region E(O1,+0). We
have checked that the area of E(O1,+1) is equal to the area of E(O1,+0), while
the sum of the areas of the two spiraling regions E(O2,+1) is smaller than the area
of E(O2,+0).

We can understand this difference as follows. The region E(O1,+0) after one
iteration in the backward time direction is mapped into the region E(O1,+1). No
orbits from the region E(O1,+0) escape between the times t = 0 and t =−1 be-
cause the region E(O1,+0) does not intersect either one of the regions E(O1,2,−0)

(Figure 2(b)). Therefore, the orbits starting in the region E(O1,+0) reach the
region E(O1,+1) and as a consequence the areas of these regions are equal. How-
ever, if we start orbits in the region E(O2,+0) backward in time, only part of
them intersect again the plane (x, px) at t =−1 inside the regions E(O2,+1).
These orbits belong to the two parts of E(O2,+0) outside the region E(O1,−0).
But the orbits starting at the intersection of E(O1,−0) and E(O2,+0), escape
immediately, backwards in time, before t =−1 and are not mapped to E(O2,+1).
As a consequence the total area of the regions E(O2,+1) is smaller than the area
of E(O2,+0) by an amount equal to the area of E(O1,−0) ∩E(O2,+0).

Another consequence of the intersection of E(O1,−0) with E(O2,+0) is the
existence of infinite spiral rotations of the regions E(O2,+1) around E(O1,+0).
This can be explained as follows. The boundary of E(O1,−0) is on the unstable
manifold of the Lyapunov orbit O1. Orbits inside this boundary escape for negative
times directly from O1 (without any further intersection with the plane (x, px)). On
the other hand, orbits close but outside E(O1,−0) approach O1 for negative times,
but do not reach O1. Instead, they deviate later (for larger −t) from O1, staying
close to the stable manifold of O1, and reach the plane (x, px) close to the boundary
of E(O1,+0) (which is the first intersection of the stable manifold of O1 with the
surface of section) but outside it. If the initial point is very close to the boundary
of E(O1,−0), the next intersection with the plane (x, px) after approaching O1

(for negative t always), is very close to E(O1,+0). Thus, the parts of E(O2,+0)

very close but outside E(O1,−0), give images on the (x, px) plane that approach
arbitarily closely the boundary of E(O1,+0). Moreover, as the initial condition on
E(O2,+0) approaches E(O1,−0) the time the orbit needs to intersect the plane
(x, px) goes to infinity and so does the number of revolutions around the stable
manifold of O1 and around E(O1,+0). Because of this the images of the points of
E(O2,+0) close to the boundary of E(O1,−0) form spirals around E(O1,+0).

For a larger value of the energy h the regions E(O1,+0) and E(O1,−0) in-
tersect (the situation for h= 40 is depicted in Figure 3) and then the areas of the
corresponding regions E(O1,+1) and E(O1,−1) are smaller. We notice that in
this case the regions of escape E(O2,+0) and E(O1,−0) form infinite rotations
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Figure 3. The escape regions E(O1,2, ±0) in the space (x, px) for h= 40. The region E(O1,+0)

intersects the axis px = 0, therefore it intersects also the symmetric region E(O2,−0).

around the regions E(O1,+0) and E(O2,−0), respectively. Similar considerations
apply to regions that escape after two or more intersections with the (x, px) plane.
These are represented by thinner filaments, and their areas are smaller, for the same
reason as above.

Finally, in Figure 2(a) and (b) we see an outer ring of orbits that never escape.
These are orbits that form smooth invariant curves, surrounding the regions of
escape. These orbits remain close to the axis y = 0 because the values of py along
them are small (the outer boundary represents the orbit y =py = 0, i.e. the x-axis).
Between these invariant curves there are small higher order islands of stability and
very small chaotic zones between them. (These are not conspicuous in Figure 2(a)
and (b).)

As the energy h decreases the whole escaping area decreases. If h becomes
smaller than hesc there are no escapes at all, but a large part of the surface of section
(x, px) is chaotic. This is seen in Figure 4, where we mark the chaotic and ordered
domains for h = 25.2, a value smaller than the escape energy hesc = 25.31. In this
case the chaotic domain contains some islands of stability. Two islands 2:1 belong
to the same orbit that makes two oscillations in the x-direction while making one
oscillation in the y-direction. Two more islands 2:1 correspond to orbits symmetric
to the above (white regions in Figure 4). There are also two islands corresponding
to resonant 1:1 orbits. One of them is marked in Figure 4, while the other is a
white region symmetric to the first with respect to the axis px = 0. When h goes
just beyond hesc it seems that almost all chaotic orbits escape to infinity after a
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Figure 4. Invariant curves and a large chaotic domain on the surface of section (x, px) for h= 25.2
(<hesc = 25.31). In some islands inside the chaotic domain we have drawn a few invariant curves.

number of intersections with the plane (x, px). But, as we will see below, the
time of escape is large if h is only slightly above hesc. On the other hand, when
h becomes larger the escapes are faster and the escaping domains become larger.
At the same time the islands of stability of the chaotic domain (Figure 4) become
smaller and beyond some critical value h =hcrit they practically disappear. Thus
most of the orbits starting in the central domain of Figure 2(b) escape.

The main orbits in the escape domain that do not escape are the periodic or-
bits. The stable periodic orbits are surrounded by islands of stability, but these
are very small, especially for large h. On the other hand the unstable periodic
orbits are accompanied by stable and unstable asymptotic curves. Orbits starting
on a stable asymptotic curve never escape as t →+∞, and orbits starting on an
unstable asymptotic curve never escape as t →−∞. Furthermore, the intersections
of the stable and the unstable manifolds of unstable periodic orbits (homoclinic or
heteroclinic points) do not lead to orbits that escape for t →±∞. The measure of
these asymptotic orbits is zero. Nevertheless, the structure of the asymptotic curves
is of special interest, because they limit various regions of escaping orbits. We will
study the asymptotic curves in detail in Section 4.

3. Rate of Escapes

We studied the rate at which the orbits escape to infinity for energies slightly above
the escape energy hesc. For each value of the energy we considered a grid of initial
conditions on the (x, px) plane and determined the escape time for each orbit.
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For this purpose we iterated each orbit for at most n = 200 crossings with the
surface of section. If after that time (number of crossings) the orbit had not crossed
the Lyapunov orbits we marked it as non-escaping. For every energy we considered
a grid of initial conditions where the distance between adjacent nodes in the grid
was 5 × 10−3.

In Figure 5(a) we show the distribution of the escape times for energies from
h = 25.4 to h= 28.5. Specifically, for each value of the energy, we have plotted the
quantity dNn/(N0 − Nnon), where dNn denotes the number of orbits that escape
between the n and n+ 1 iterations, N0 is the total number of orbits and Nnon is
the number of non-escaping orbits. We notice that for h = 25.4 (very close to the
escape energy) there is a sharp initial reduction of the escape rate and then the

Figure 5. (a) Curves giving the escape rate for several energies. The curves cover the range of energies
from h= 25.4 to h= 28.3 with a step dh= 0.1. We have marked the values of the energy in some
curves. (b) The average inclination of these curves around n= 50, as a function of the energy h. (c)
The inclinations around n = 180.
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escape rate becomes almost constant. We note here that the escape rate cannot be
exactly constant since that would require an infinite volume in phase space.

For larger energies the initial reduction becomes slightly less abrupt
(Figure 5(a)) but after a larger time (larger n) the inclination of the curve becomes
absolutely smaller. In general these curves are made up of three parts with differ-
ent inclinations. Namely after the first abrupt reduction there is a large part, with
a smaller (absolutely) inclination. For larger n the inclination changes again and
becomes even smaller (absolutely).

The almost constant inclination, λ, of the curves becomes more negative with
increasing energy. For n = 50 the inclination λ is given approximately by a formula

λ = −0.02(h − hesc) + 0.0017 (4)

as shown in Figure 5(b).
For larger times n (e.g. n= 180, Figure 5(c)) the inclination becomes first ab-

solutely larger, as h increases, but for even larger energies (h > 26.4) it becomes
absolutely smaller. Thus, the inclination for energies beyond h= 27 is absolutely
smaller than for energies near h = 26.4 (Figure 5(c)).

Finally, in Figure 5(a) we notice that the almost constant value of the inclination
lasts longer (i.e. up to larger n) as the energy h decreases.

4. Asymptotic Curves

The most important periodic orbit is the ‘central’ periodic orbit O which tends to
one point at the center (x = y = 0) as h goes to 0. This is stable for small h, but
unstable for h > h0 = 22.16.

The structure of the asymptotic curves from the central periodic orbit O for h
smaller than the escape energy hesc is well known (Contopoulos and Polymilis,
1993; some cases with h > hesc have been also explored). Here we compare two
cases with h larger than hesc, namely h= 27 (Figure 6) and h = 29 (Figure 8).

We first recall here the terminology used by Contopoulos and Polymilis (1993).
The unstable asymptotic curve U intersects the stable asymptotic curve S at the
point P0, at roughly equal distances from O along U and S (Figure 6). The region
between the arcs OP0 along U and S is called a resonance. The curve U intersects
S outwards from the resonance region at the points P0, P1, P2, . . . and inwards
at the points P ′

1, P
′
2, P

′
3, . . . . The arcs OP0, OP1, OP2 along S are reduced by a

factor approximately equal to λ where λ > 1 is the larger eigenvalue of the orbit O.
The same is true for the intervals OP′

1, OP′
2, etc. Similarly the curve S intersects

U outwards at the points P0, P−1, . . . and inwards at the points P′
0, . . . . The arcs

P0P
′
1 along U and S form an outer lobe U ′

1, the arcs P ′
1P1 form an inner lobe U1

and in the same way the arcs P1P
′
2 form an outer lobe U ′

2, the arcs P ′
2P2 form the

inner lobe U2, etc. Similarly we have the outer lobe P0P
′
0 and the inner lobe P ′

0P−1

that are called S0 (≡U0) and S ′
0 (≡ U ′

0) lobes respectively (Figure 6).
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Figure 6. Asymptotic curves from the unstable periodic orbit O: U (solid line up to P ′
3) and S (dotted

line up to P−1) in the case h= 27. These curves form the lobes U ′
0, U0, U ′

1, U1, U ′
2, U2 and U ′

3. The
escape regions E(O1,−0) and E(O1,+0) are gray.

In the case h = 27 the lobe U ′
2 leads to escapes (Figure 6). Therefore, the lobe U ′

3
consists only of the images of non-escaping points of U ′

2. The boundary of the lobe
U ′

3 starts at P2 and makes infinite clockwise rotations around a limiting curve on
the right of the figure, namely the boundary of the region E(O1,−0). Then another
arc of U ′

3 returns with infinite counterclockwise rotations and reaches the point Q
(between O and E(O1,−0)). This arc continues by returning in a clockwise way
along almost exactly the same curve from Q to the limiting curve of E(O1,−0).
Finally another arc starts again at the limiting curve of E(O1,−0), very close to
the original arc of U ′

3, but in a counterclockwise way, terminating the boundary of
the lobe P ′

3, at the point P ′
3, very close to P2 (Figure 6).

The form of the curve U ′
3 is rather strange. It is composed of three arcs that make

infinite rotations around E(O1,−0) (the central one makes twice infinite rotations
around E(O1,−0)). In order to verify that such a form is to be expected we ex-
amined more carefully the lobe U ′

2 of Figure 6. We noticed that this lobe intersects
the escape region E(O1,+0). The four points of intersection after one iteration
correspond to the four infinite rotations of U ′

3 around the escape region E(O1,−0).
The arc of the curve U ′

2, beyond the region E(O1,+0), after one iteration forms the
central arc of U ′

3, that reaches the point Q after infinite counterclockwise rotations
from the boundary of the region E(O1,−0) and then returns from Q to E(O1,−0)

after infinite clockwise rotations.
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Figure 7. The lobe U ′
4 in the case h= 27. In the inset we show the beginning of the lobe at P3 and

its end at P ′
4. The escape regions E(O1,−0) and E(O2, −0) are gray.

The arc of U ′
2 from P1 to the region E(O1,+0) has its image along the first

arc of U ′
3 that starts at the point P2 and reaches the boundary of E(O1,−0) after

infinite clockwise rotations. Similarly the arc of U ′
2 from the region E(O1,+0) to

the point P ′
2 has its image on the third arc of U ′

2 from the boundary of E(O1,−0)

to the point P ′
3 after infinite counterclockwise rotations.

If we continue the unstable asymptotic curve U, beyond the lobes U ′
3 and U3

in the case h = 27, we have a quite complicated lobe U ′
4 (Figure 7). The curve U ′

4
starts at P3 with an arc making infinite clockwise rotations around E(O1,−0). A
second branch (arc) starts by making infinite counterclockwise rotations around
E(O1,−0). This arc does not terminate at a point Q, as in Figure 6, but passes
below the lobe U ′

1 of Figure 6, and makes infinite clockwise rotations around
E(O2,−0) on the left part of Figure 7. Then a number of branches start asymp-
totically from the boundary of E(O2,−0) and return again asymptotically to it,
both below the lobe U ′

1 of Figure 6 and above this lobe. Finally, we have two more
arcs, very close to the second and first arcs above. Namely, the branch before the
last makes infinite counterclockwise rotations around E(O2,−0) and ends with in-
finite clockwise rotations around E(O1,−0) and the last branch starts with infinite
counterclockwise rotations around E(O1,−0) and terminates at P ′

4 very close to P3

(Figure 7). Thus, although the lobe U ′
1 of Figure 6 does not make infinite rotations

around E(O2,−0) the lobe U ′
3 makes infinite rotations around E(O1,−0) and the
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Figure 8. The lobes U ′
0 ≡ S′

0, U ′
1, U1, U ′

2 and part of the lobe U0 in the case h= 29. The escape
regions E(O2,−0) and E(O2,+0) are gray.

higher lobe U ′
4 (Figure 7) makes infinite rotations around both E(O1,−0) and

E(O2,−0).
For the energy h = 27 (Figure 6) the outer lobes U ′

1, U ′
2 are elongated but not

of infinite length. On the other hand for h = 29 (Figure 8) the lobe U ′
1 makes in-

finite spiral rotations around E(O2,−0) and tends to a limiting asymptotic curve,
which is the boundary of the region E(O2,−0). In fact U ′

1 is composed of two
spiral curves. The first starts at P0 and makes infinite rotations clockwise while
the second makes infinite rotations counterclockwise and terminates at the point
P ′

1 (Figure 8).The same is true with the lobes U ′
2, U ′

3, etc. As a consequence we
cannot consider the curve U ′

1 as a unique curve, although its two arcs, the one
starting at P0 and the one ending at P ′

1, both approach asymptotically the same
limiting curve. For h = 27 (Figure 6) the lobes U ′

1, U ′
2 are images of the lobe U ′

0
and they have equal area. This is due to the fact that no orbit starting in the area U ′

0
escapes after one or two iterations. On the other hand for h = 29 (Figure 8) the area
of the lobe U ′

1 is smaller than the area of the lobe U ′
0 because some orbits from U ′

0
escape to infinity, before making another intersection with the plane (x, px). These
are the orbits in the region which is common between E(O2,+0) and the lobe U ′

0.
Along the asymptotic curve U there are intervals that lead to escapes, as discussed
in Contopoulos and Polymilis (1993). One such interval is the part P∞P ′∞ of the
arc U ′

0 inside the region E(O2,+0) (Figure 8).
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The image of the arc P−1P∞ of the asymptotic curve U is the first part of the
boundary of the lobe U ′

1, that starts at P0 and terminates, after infinite clockwise
rotations, on the boundary of E(O2,−0). This is explained in the same way as the
spirals formed by E(O2,+1) around E(O1,+0) (Figure 2(a)) that we discussed
above. The orbits along U between P∞ and P ′∞ escape for positive times directly
through the Lyapunov orbit O2, without any further intersections with the plane
(x, px). The orbit starting at P∞ is on the stable manifold of O2 and reaches O2

after infinite time. The orbits between P−1 and P∞ approach the orbit O2 as t
increases but they are reflected without reaching O2, and then they continue close
to the unstable manifold of O2, reaching the plane (x, px) close to the boundary
of E(O2,−0). If the initial point of an orbit approaches P∞ its consequent ap-
proaches the boundary of E(O2,−0) being at the same time on the asymptotic
curve U (beyond P0) that approaches asymptotically this boundary. Thus, the im-
ages of the points of the arc P−1P∞ follow the spiral from P0 to the limiting curve
(boundary of E(O2,−0)) and approach asymptotically this boundary when the
initial point tends to P∞. The same happens with the arc P ′∞P ′

0 of the asymp-
totic curve U. Its image now is an arc starting on the boundary of E(O2,−0)

and after infinite counterclockwise rotations around this boundary, it reaches the
point P ′

1.
The escape regions of the case h = 27 are smaller than the corresponding escape

regions of the case h = 29, but they are similar in their form. As h decreases these
escape regions become smaller and they disappear when h becomes smaller than
hesc. However, the structure of the asymptotic curves for h slightly smaller than hesc

resembles the form of these curves for h > hesc. This is seen in Figure 9(a) and (b)
for h = 25.2 < hesc. In Figure 9(a) we see the outer lobes U ′

1, U ′
2, U ′

3 and U ′
4 that

have a relatively small length and the lobe U ′
5 that is longer. Higher order lobes

are more complicated. In particular in Figure 9(b) we see the lobe U ′
8 which is

very complicated. Of course in Figure 9(b) we do not have infinite spiral rotations
(infinite rotations appear only for h>hesc), but nevertheless the lobe U ′

8 makes
some rotations in the regions that will form the escape regions E(O1,−0) and
E(O2,−0) for a little larger h, namely when h > hesc.

Two more unstable periodic orbits are of primary importance for the dynamics
of the system, namely the Lyapunov orbits O1 and O2. The asymptotic curves of
the orbit O1 have been studied in detail in Contopoulos (1990a). In this case also we
have escape regions that correspond to the escape regions described in the present
paper.

The asymptotic manifolds of the orbits O1 and O2 intersect along homoclinic
and heteroclinic orbits. In Figure 10(a) we give a homoclinic orbit reaching asymp-
totically the orbit O1 for t →±∞ and in Figure 10(b) we give a heteroclinic orbit
from O1 reaching asymptotically the orbit O2. Such orbits are important because
they represent the limits between escaping and non-escaping orbits. Namely a small
deviation from these orbits outwards, that is, an orbit crossing the orbit O1, or O2,
escapes from the system to infinity, never returning close to the origin. On the other
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Figure 9. Some lobes in the case h= 25.2 (<hesc = 25.31). (a) The lobes U ′
0, U0, U ′

1, U1, U ′
2, U2,

U ′
3, U3, U ′

4, U4 and U ′
5. (b) The lobe U8 in the same case.

Figure 10. (a) A homoclinic orbit to the O1 Lyapunov orbit. (b) A heteroclinic orbit between O1
and O2.

hand a small deviation of such an orbit inwards from the orbit O1, or O2, avoids
the escape temporarily, but this orbit may escape later through one of the Lyapunov
orbits.

5. Recurrence

In a previous paper (Contopoulos and Polymilis, 1993) we found the minimum
Poincaré recurrence time for the lobes of the unstable orbit O. Namely we found
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the first higher order lobe U ′
k+1 that enters into the outer lobe U ′

1 so that the two
lobes partly overlap. We know that the unstable asymptotic curve cannot intersect
itself, therefore the outer lobe U ′

k+1 must first enter into the resonance region, and
intersect the lobe U ′

1 from its inner side S ′
1.

We found that for h = 24 the first outer lobe that enters into U ′
1 is the lobe U ′

22,
therefore the minimum Poincaré recurrence time is k = 21.

In a similar way we found that for h = 25 the minimum recurrence time is
k = 15. Furthermore, we noticed that although for h > hesc the phase space is in-
finite and one cannot define an average Poincaré recurrence time (it is infinite),
nevertheless, one can find a minimum Poincaré recurrence time. In particular for
h = 27 the minimum recurrence time is k = 6 while for h = 27.8 it is k = 5.

In the present case we can see that for h = 29 the minimum recurrence time is
k = 2. This can be derived from Figure 8 as follows. In this figure we have drawn
the arc S ′

0 of the stable asymptotic curve S that starts at the point P ′
0 and ends at the

point P−1, forming the inner lobe S ′
0 ≡ U ′

0. Then we notice that the lobe U ′
2 enters

into the lobe U ′
0. Therefore the lobe U ′

3 enters into U ′
1, and so on for higher order

lobes. We verified that U ′
3 enters into U ′

1 by calculating U ′
3 (U ′

3 is very complicated
and we do not give a figure of it).

The minimum recurrence time k as a function of the energy is given in Figure 11.
As the energy increases the value of k decreases, until it reaches the value k = 1
for h = 30. Then it remains constant (k = 1), and it seems improbable that it can
become smaller (this would require a large deformation of the lobe U ′

1 to enter into
itself).

The common region of U ′
3 and U ′

1 (recurrence region) for h = 29 is relatively
small and does not approach the limiting curve of an escape region. However,

Figure 11. Minimum recurrence times for some values of the energy.
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for larger h this region becomes larger and finally reaches asymptotically the es-
cape region E(O2,−0) after infinite rotations. Thus its area is smaller than the
corresponding common area between U ′

2 and U ′
0.

For example in the case of h = 29 we have computed the area of U ′
n ∩ U ′

n+k

(where k = 2 is the minimum recurrence time) beginning with n= 0. The lobe
U ′

2 enters inside the lobe U ′
0 but also makes infinite rotations around E(O2,−1),

(This escape region is shown in Figure 2(b) but not in Figure 8). Therefore, the
intersection of U ′

2 and U ′
0 consists of a main area, shown in Figure 8, plus an

infinite number of thin filaments. We considered only the main area, since the
thin filaments are very small. Then we estimated the area of the images of the
area U ′

2 ∩ U ′
0 by iterating a large number of randomly and homogeneously distrib-

uted initial conditions inside it and counting the number of orbits that re-
mained after each iteration. The results are presented in Figure 12, where we
can see that the ratio En/E0 (where En denotes the area of the nth recurrence
region) is reduced roughly exponentially although the slope of the diagram
changes.

This reduction of the recurrence region as the order of the lobes increases is
quite general. It is due to the fact that a part of the recurrence region escapes
to infinity. As the order of the lobes increases further, the area of the recur-
rence region always decreases and tends to zero. This is to be expected because
almost all the orbits that do not belong to islands of stability escape from the
system.

Figure 12. The ratio of the area En of the nth recurrence region to that of the initial recurrence region
(E0) as a function of n.
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6. The Resonance 1:1

In this section we compare the behaviour of the Hamiltonian (1) with that of the
Hamiltonian

H ′(x, y, px , py) = 1
2 (p2

x + p2
y + x2 + y2) − xy2 = h′ (5)

which is a perturbation of the 1:1 resonance. In this case the escape energy (given
by (2)with A =B = ε = 1) is h′

esc = 0.125. A correspondence between the two cases
can be established using the relation

h′

h′
esc

= h

hesc
. (6)

As the energy increases we have the following cases:

6.1. h′ = 0.13

This corresponds roughly to the case h = 27 for the Hamiltonian (1). In Figure 13
we see that the two escape regions E(Oi,+0), i = 1, 2 are almost symmetric with
respect to the x-axis, in contrast with the 4:3 case (Figure 2(b)), where E(O2,+0)

is roughly at the same position, but E(O1,+0) is very different from the corre-
sponding region of the present case, being elongated along the right side of the
phase space. Notice that now the y-axis orbit is unstable and there is a thin chaotic
region near the boundary x2 +p2

x = 2h′. Around the escape regions E(Oi,+0)

there are spiral regions E(Oi,+1). The whole central domain of Figure 13 leads
to escape after a short, or longer time n. The escape domain is surrounded by a

Figure 13. Escape regions in the Hamiltonian (5) for h′ = 0.13. The dark gray regions represent the
escape regions E(O1,2,+0). The light gray spiral regions represent the escape regions E(O1,2, +1).
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Figure 14. Escape regions in the Hamiltonian (5) for h′ = 0.15. The dark gray regions represent the
escape regions E(O1,2,+0). The light gray spiral regions represent the escape regions E(O1,2, +1).

strangely shaped invariant curve (a curve with many irregularities). Going from
this invariant curve outwards towards the boundary we find a succession of zones
containing invariant curves, and thin but not insignificant chaotic regions. Close to
the boundary, on the left and on the right, there are two large islands of stability.
This structure is quite different than that of the system (1), where there is a zone
composed mostly of invariant curves (Figure 2(b)) without any visible chaotic
regions, extending up to the boundary, that is, the stable y-axis orbit.

6.2. h′ = 0.15

In Figure 14 we see that the main escape regions E(Oi,+0), E(Oi,+1) have
grown considerably in size. The total escape domain has also been extended out-
wards, by the destruction of some invariant curves, in particular the irregularly
shaped invariant curves that exist for h′ = 0.13. In their place there are now can-
tori. Although these cantori can be crossed by the orbits, they also serve as partial
barriers that confine escaping orbits for long times before these orbits can escape.

6.3. h′ = 0.18

This case corresponds roughly to the case h = 40 of the Hamiltonian (1). In
Figure 15 we see that the asymmetry between the two principal escape regions
E(Oi,+0) is now much more pronounced. These two regions have grown consid-
erably in size and they occupy now most of the phase space. Notice also that the
escape region E(O2,+1) is now making infinite rotations around both principal es-
cape regions E(Oi,+0). All the invariant curves, that separated the escape domain
from the boundary in Figures 13 and 14, have been destroyed. This is in contrast
with the h= 40 case in the Hamiltonian (1) where there are still invariant curves
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Figure 15. The escape regions in the Hamiltonian (5) for h′ = 0.18. The dark gray regions represent
the escape regions E(O1,2,+0). The medium gray regions represent the escape region E(O2, +1),
and the light gray regions represent the escape regions E(O1,+1). Some islands of stability appear
near the left and right boundary but detached from it.

near the boundary. The only prominent non-escaping orbits in the case h′ = 0.18
are the two islands at the left and the right of Figure 15.

The escape rates for the Hamiltonian (5) are similar to the corresponding rates
for the Hamiltonian (1). In Figure 16 we have plotted dNn/(N0−Nnon) as a function
of the number of iterations n and we see the same qualitative behaviour as in
Figure 5(a).

Figure 16. The escape rates in the Hamiltonian (5) for the energies h′ = 0.13, h′ = 0.14, h′ = 0.15,
h′ = 0.20 and h′ = 0.25, as functions of n.
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7. Conclusions

An autonomous Hamiltonian system with escapes, although it is conservative, has
an attractor at infinity. Thus, in some respects, it is similar to a dissipative system.
In particular although the volumes in phase space are preserved, the areas on the
plane (x, px) are not preserved. Thus, the plane (x, px), which is a Poincaré surface
of section when the energy is smaller than the escape energy hesc, is not a Poincaré
surface of section for h>hesc, except in a local sense (Birkhoff, 1927).

The domains of escape are reduced in size (i.e. in area) as the number of in-
tersections increases. Most of the escape regions form infinite rotations around the
main escape regions. The higher order escape regions form fractals. For example,
close to the escape regions E(Oi,±1), i = 1, 2 there are infinite filaments of type
E(Oi,±n).

The asymptotic curves of the main unstable periodic orbits form complicated
structures. In the present paper we study mainly the asymptotic curves of the
central periodic orbit. These curves form outer lobes that become longer as the
order increases. The higher order lobes develop infinite spirals around the escape
regions E(Oi,±0). Thus, beyond a certain order the lobes have infinite length and
reach asymptotically the boundaries of the escape regions. The areas of these lobes
become smaller as the order increases.

In a system with escapes one cannot define an average Poincaré recurrence
time. However, there is a minimum recurrence time for certain regions of the plane
(x, px). In particular we studied the time required for an image of a particular
lobe to intersect the same lobe. For large energies this time is very small. The
domains of recurrence after some iterations become infinitely elongated, like the
corresponding lobes. This implies that the higher order recurrence domains be-
come smaller in area. Their area tends to zero as the number of iterations tends to
infinity.

Finally, we studied the case of a Hamiltonian in 1:1 resonance (5). A major
difference between this case and the case of the Hamiltonian (1), which is in a 4:3
resonance, is that in the 4:3 case the escape regions extend outwards but they do
not reach the y-axis orbit (boundary), which is surrounded by invariant curves even
for comparatively high energies (h = 40). On the other hand, in the case of the 1:1
resonance, the y-axis orbit is unstable and a chaotic region is formed around it, that
is, near the boundary. As the energy increases the central escape domain grows and
extends towards the boundary by the successive destruction of rings of invariant
curves. Each such ring separates some small chaotic regions from the large escape
domain. When such a ring is destroyed a chaotic region becomes connected with
the large escape domain, therefore orbits that start in the chaotic region can now
escape, but after a long time. Finally, the escape domain reaches the boundary for
h′ � 0.18 (corresponding roughly to h = 40 in the Hamiltonian (1)) and then the
only non-escaping orbits either belong to isolated islands inside the escape domain
or they are intersections of the stable and unstable manifolds of unstable periodic
orbits.
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The resonance effects of a particular higher order resonance extend over a small
interval of frequencies |ω1:ω2 − n:m| = O(ε2) and they refer to initial conditions
in an area of order O(ε(m+n−4)/2) (Contopoulos, 2002; pp. 107, 189). This area
is very small if m+ n is large, and it is appreciable only if m+ n is small (e.g.
m= n = 2). Therefore we expect that the qualitative aspects of our results for the
case n:m = 4:3 regarding the form of the asymptotic curves, the laws for the rate
of escapes and the recurrence are also valid for most non-resonant Hamiltonians.
Only in low order resonances, like the case 1:1, there are some important differ-
ences.
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