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Abstract

We consider the hydrogen atom in crossed electric and magnetic fields. We prove that near the Stark and Zeeman limits
the system goes through two qualitatively different Hamiltonian Hopf bifurcations. We explain in detail the geometry of the
bifurcations.
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1. Introduction

The hydrogen atom in constant orthogonal electric and magnetic fields is a fundamental atomic system. The
system itself and its limiting cases of pure magnetic or electric field (Zeeman and Stark limit, respectively) have
been studied to varying degrees of completeness and mathematical sophistication in a series §f-gipers
[10,11]it was shown that as the parameters of the system (the relative field strengths) vary from the Zeeman limit
to the Stark limit, there exists an interval of parameter values for which the systemomasiromy

It was conjectured there that monodromy is caused by two separate Hamiltonian Hopf bifurcations. The authors
of [10] were unable to prove this conjecture because they calculated the relevant normal fosec¢thénormal
form in the terminology that we use later) only up to terms of second degree. Normalization to higher degree is
needed to resolve the degeneracy that appears at the bifurcation.

In this work we prove that the appearance of monodromy as we move away from the Zeeman limit is due to a
supercritical Hamiltonian Hopf bifurcation. On the other hand, a subcritical Hamiltonian Hopf bifurcation happens
as we leave the monodromy interval and approach the Stark limit. We show that in the latter case the system hazs
monodromy both before and after the bifurcation. The two types of monodromy are qualitatively different, one of
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them being ordinary and the otheon-local monodromj12]. The study of these bifurcations is made possible by

the computation of the relevant normal form to higher order than was ddf@Jiand in all other previous work.

Notice that due to additional symmetries these bifurcations are highly degenerate. As a result they happen on a
microscopic scale: the relevant structures in phase space and the range of parameters in which one can see then
are very small. It would be hardly possible to find these bifurcations using a superficial numerical treatment of the
problem without powerful analytic techniques, namely normalization (of which there are three different variations

in this work) and symmetry reduction.

1.1. Fundamental notions

The hydrogen atom in crossed fields is an example of a perturbed Kepler system. The first step in its study is
Keplerian normalizationvhich consists of regularization of the singularity of the Kepler potential and normalization
of the resulting systerfil—7]. In this work we use Kustaanheimo-Stiefel (KS) regularizafiB]. The result of
KS regularization is a Hamiltonian that is a perturbation of the harmonic oscillator in 1:1:1:1 resonance, with an
extraS' symmetry due to the flow of the Hamiltonian vector field associated to the KS integral. The normalization
of the system with respect to the approximate dynanm&asymmetry induced by the unperturbed part of the
Hamiltonian can then be easily performed using standard techniques. The consequent reduction in teffifs of the
oscillator and KS symmetry gives a Poisson system definegf onS?. The dynamical variables & x S? span
the s@4) = so(3) x sa(3) algebra.

The important property of the crossed fields system is that after the first normalization the reduced system has
yet another approximats! axial symmetry. We perform a second normalization and reduction with respect to
this symmetry. The result is an one degree of freedom integrable Poisson system. The second normalization was
introduced for perturbed Keplerian problemdq14], see alsd15]. It was used for the hydrogen atom in crossed
fields in[16—18] We perform the second normalization to high order using the Lie series algditha0]for the
standard Poisson structure orn(3ox so(3).

In[10] itwas discovered that the hydrogen atom in crossed fields has monodromy for an interval of the parameters.
Monodromy was introduced by Duistermaaf2i] as the simplest topological obstruction to the existence of global
action-angle variables in integrable Hamiltonian systems. We explain this concept a bit more. Consider a two degree
of freedom integrable Hamiltonian system with Hamiltonian functtband second integral called momentum.

Let m. be an isolated critical value of the energy—momentum &&p : R* — R2 : p — (H(p), J(p)) and
consider a closed path aroundn on the set of regular values 6. Although for each point € I, EM™1(m)
is aT2 torus, it is not true in general that tiié bundle over is trivial, that is, tha€AM~1(I) is diffeomorphic to
S! x T2. If the bundle over is not trivial we say that the system has monodromyj2i] it was shown that the
system has monodromydfM~1(m.) is a pinched torus.

Monodromy in a parametric family of Hamiltonian systems can appear as the result of a Hamiltonian Hopf
bifurcation [23]. This bifurcation is a codimension one bifurcation that happens in Hamiltonian systems with
two degrees of freedom. When an equilibrigimof a HamiltonianH is elliptic—elliptic, then by a theorem of
Weinstein[24] there exists a family of periodic orbits emanating fromWhenp changes its linear stability type to
complex hyperbolic and certain non-degeneracy conditions are satisfied, then two things can happen to this family
of periodic orbits. It can either disappear or it can detach fgoim the first case we havesaibcriticalHamiltonian
Hopf bifurcation and in the secondsapercriticalHamiltonian Hopf bifurcation.

In the case of a supercritical Hamiltonian Hopf bifurcation it is known that the system has monodromy when
the equilibrium is complex hyperboli23,25] The reason for this is rather clear. Wheiis elliptic—elliptic it is
connected to a family of periodic orbits that appear as critical points of the energy momentutibmdnerefore
me = EM(p) is not isolated. Whep changes linear stability type and becomes complex hyperbolic, the family
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Fig. 1. Relative positions oV,RO and the level curves dfo. The shaded region represem’;%o. (a) Near the Zeeman limit. (b) Monodromy
region. (c) Near the Stark limit.

of periodic orbits detaches from Therefore in the image &M, m. appears as an isolated critical point. Under
certain condition$26] EM Yme) isa pinched torus and the system has monodromy.

What seems to have gone unnoticed until now is that an integrable Hamiltonian system can have monodromy
when it undergoes a subcritical Hamiltonian Hopf bifurcation. We show that this happens in the hydrogen atom in
crossed fields.

The second normalization to high degree is a necessary improvement with respect to all previous work, because
it lifts the degeneracy when the system goes in and out of the monodromy region. Let us explain the origin of
the degeneracy. We denote bythe value of the generator of the oscillator symmetry and liye value of the
generator of the approxima® axial symmetry. For = 0, the fully reduced spadé)f{o in the coordinategw, 7o)
defined inAppendix B.2is a filled triangle with bordersy = 4+, andw = n? (seeFig. 1). In [10] only the
two-jet of the second normal forf was computed. To that degree the fully reduced Hamiltofiiaron V,?,o
is linear inw andr,. This means that the level sets&f are straight lines. The different regimes of the system
depend on the relative positions of the level set${gfand V;?,o (Fig. 1). The qualitative changes of the system
happen when the level sets #f are parallel either to the lin@ = x, or the linew = —,. Then the reason
of the degeneracy is that a small perturbation will curve the level settoddither ‘inwards’ or ‘outwards’, see
[10]. As we show inSection 4these cases correspond to qualitatively different Hamiltonian Hopf bifurcations.
Therefore in order to lift the degeneracy we need to compute the second norma#{foona degree such that
#. is quadratic tow and,. We show inAppendix B.2that because of a discrete symmetry this happens when
we compute the four-jet off, which corresponds to degree 8 in the original KS variables. Following the whole
normalization and reduction procedure we find that in turn we have to compute the first normal form up to terms
of degree 10.

We now give an outline of the paper. 8ection 2we review the second normalization of the systenSéation
3 we formulate and prove the main result of this paper which is the existence of the two qualitatively different
Hamiltonian Hopf bifurcations in the hydrogen atom in crossed fields. Final§eation 4we illustrate and discuss
the geometric manifestation of these Hamiltonian Hopf bifurcations in the reduced phase space and explain how
monodromy appears near the Zeeman and Stark limits.

2. Review of normalization and reduction

We give a brief review of the Kustaanheimo-Stiefel regularization, the normalization and the reduction of the
system following the presentation and notatiofilii], where the reader can find more details.
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2.1. Hamiltonian

We consider a hydrogen atom with proton at the point 0 in physical Speéth variablesQ = (01, 02, 03).
The electric field iE = (0, F, 0) while the magnetic field i8 = (G, 0, 0). The motion of the electron is then
described by the Hamiltonian

1 C 1 1
H:R® - R:(Q, P+ HQ,P) = EPZ T FQ2+ 5G(Q2Ps — Q3P2) + §GZ(Q§ +0%)., @

whereP = (P1, P», P3) are the conjugate momenta.

In the HamiltonianH we have ignored all effects due to the spin of the electron and relativistic corrections. In
addition we have simplified the two-body problem by considering an infinitely heavy proton.

Instead ofF andG we will use the parameteesanda defined in(A.7) of Appendix A.1 The parameter > 0
represents the total strength of the two fields whilepresents the relative strength of the fields and takes values
in [—1, 1]. When|qa| is small the system is near the Stark limit; while whepis close to 1 the system is near the
Zeeman limit.

2.2. Keplerian normalization

The Keplerian normalization aff (1) consists of the Kustaanheimo—Stiefel regularization followed by normal-
ization and reduction of the resulting system with respect tolthe= S! x S! action generated by the 1:1:1:1
oscillator and KS symmetry. For details s&ependix A.1or [10]. The final result is a Poisson system defined on
the firstreduced spa@ x S, which can be described by coordinate functiers (x1, x2, x3) andy = (y1, y2, y3)

that satisfy the conditions
2, .2,.2 2 2, 2, .2 2
x1+x2+x3:%n, yl—i—yz—}—ygz%n. 2)

Heren is the value of the generator of the oscillator symmetry. The dynamical variaplespan the algebra
sa3) x sa3) = sa(4). Specifically, the Poisson structure 8Ax S? is

{xi, x;} = Zeiijk, {vi,yj} = Zeijkyk, {xi;,y;} =0. (3)
k k

The first reduced Hamiltonian defined 8A x S? can be written in terms dfx, y, n) variables as

H =M1+ eHo + €€Hz + € Ha. 4
The lowest order non-trivial term is

Hi=x1+ y1. ®)

Each?; is a homogeneous polynomial of degree (x, y, n). For j > 2 the terms#{; can be computed in a
straightforward way fronTable 2using the relation§A.17) and (A.18)

2.3. Second normalization

#1 generates aB! action® onS? x S? given by

?:S % (xS = (xS (1, (x,y) = (x1, RO(x2,%3) ", y1, RO (y2, ¥3) "), (6)
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where
R() = ( cost —sint> .
sinr  cost
We normalize the Hamiltonia# (4) with respect to the actio@. First define new variables
1 1 . _ 1 .
a1= X1 2= Z—ﬁ(xz +ix3), 2= Z—ﬁ(XZ —1x3),
1 1 . _ 1 .
wi=gyL o w2 = Z—ﬁ(yz +iy3),  ws= 2_ﬁ(y2 —iy3). (7
Then notice that
{z1, 22} = % {z1, 22} = —%, {z2, 22} = % (8)

In these variable${, becomesi{i1 = 2(z1 + w1) and the action of agy, = {#1,-} on a monomiak?w’ =

227w w2 }? is diagonal:

{H1, 2w’} = —i(az — a3 + b2 — b3)z"w’. 9)
Therefore the variablesandw are particularly suitable for the application of the standard Lie series algorithm

[19,20] for the computation of the second normal form, since they trivialize the task of solving the homological
equation.

Remark 1. Another way to perform the second normalization is to expte$4) in terms of the original variables
(¢, p)- Then normalization can be performed in these variables and the result can be re-expressed in terms of the
variables(x, y).

The result of second normalization is the Hamiltonian
H= 7:l1 + 67-lz + 627:l3 + 637:14, (10)
where each terrﬁl, is a homogeneous polynomial of degride (x, y, n). Explicit expressions fof, can be easily
obtained from the expressions for the second reduced Hamilt@higimen in Table 3
The pointsp+ = (n/2)(£1, 0,0, F1,0, 0) andz+ = (n/2)(£1, 0,0, +1, 0, 0) are fixed points of th&! action

@. Thereford27] they are equilibria of ang invariant Hamiltonian or§2 x S2. In particular, they are equilibria
of 7 (10).

3. TheHamiltonian Hopf bifurcations

In this section we prove the following theorem which is the main result of the paper.

Theorem 1. The equilibriaps = (n/2)(£1,0,0, F1, 0, 0) of the second normalized Hamiltoni& (10) on
S? x S? undergo a supercritical Hamiltonian Hopf bifurcation at= a1 (n€) and a subcritical Hamiltonian Hopf
bifurcation ata = az(ne¢). Hereas andaz are functions of = ne given in(33) and (34).

Sketch of the proof. The first step of the proof is to find a local cha@, P) on S? x S? near the poinp_.. The
symplectic form in the chaitQ, P) is in Darboux form only up to constant terms:

w=0d01 AdPL+d0> AdPo + w2 (Q, P) + wa(Q, P) + - - - (12)
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because we are working on the curved sgéfce S. Herew, andaw, are two-forms of degrees 2 and 4, respectively.
In order to study the local dynamics near the equilibrium ppintve need tdlattenthe symplectic form to Darboux
form at an appropriate order, using a constructive version of the Darboux thé8trfihe result of flattening is a
chart(g, p) in which the symplectic form is

w =dq1 Adp1+dga Adp2+@alg, p)+ - . (12)

After flattening the symplectic form and expressing the local Hamiltonian in the @hasi, we reduce the local
Hamiltonian with respect to th8! symmetry that is induced on the local chart from thaction(6) on S? x S%.
The multiplicative ring of invariants of the induc&d symmetry is generated by the quadratic polynomialsv, T
ands in the variablegq, p). S is the generator of th8! symmetry and/, N generate nilpotent linear Hamiltonian
vector fields.

We denote byG the reduced local Hamiltonian and l6¥; the j-degree part oG, where the degree is defined
in terms of the variableg and p. The next step is to bring into versal normal form for the Hamiltonian Hopf
bifurcation, namely

Go=aM + N + 228, (13)
or
Gz = M + BN + £28. (14)

We also have to check that certain transversality conditions are satisfiedwh@nor 8 = 0. This proves that the
local HamiltonianG goes through &inear Hamiltonian Hopf bifurcation.

The final step is to normaliz€é with respect taVf (or N). If, after the normalization, the coefficient 82 (or
N?) is zero, then the bifurcation is degenerate. If the coefficient is positive the bifurcasapescriticaland if it
is negative the bifurcation subcritical

Remark 2. In order to study the Hamiltonian Hopf bifurcation we need at least the four-jét étecall that in
order to lift the degeneracy discussedSection 1and inAppendix B.2we need to consider the four-jet &f. If

we make the computations that lead to the prodfla€éorem lusing the three-jet off (instead of its four-jet) we

find that the coefficient oM? (or N?) is zero. This is how the degeneracy manifests itself in the local analysis of
this section.

Remark 3. The hydrogen atom in crossed fields problem has two parameterae anda. In the formulation
of Theorem 1we treat the family as a one-parameter family keepifigonstant and small and varying only
Despite this, we can consider more general one-parameter subfamiliesrafer certain transversality conditions
in parameter space on which we elaborate in the following sections.

In the following sections we fill in the details of the argument sketched above.
3.1. Local chart

We define a local chart o x S? near the poinp.. with coordinates)1, Q», P1, P> given by

x1=(3n° — 3nQf — 3nPHY2, x2 = (GmY? 0, x3 = (3m)Y2Py,

n=—Gn* =G -2 =GP ya= G202
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Note that the coordinate functions and P are not canonically conjugate since the symplectic two-form in these
coordinates is

o =dQ1 AdP; +dQ2 A dP, + (higher order terms (15)
We first make the transformation

Q1=—3(p1+p2+q1—q2),  Q2=—3(p1—p2+q1+q2),

Pr=3(—p1+ p2+q1+q2). Pr=—3(p1+ p2—q1+q2).

The coordinate functiongand p are not canonical either and the symplectic two-form has the form

w=w)+w2+wq4+---, (16)
where
wo = dg1 A dp1 +dgz A dpa, (17)

and

1 1
wp = Z(pf + p5 +4qf + q5)(dg1 A dp1 + dgz A dp2) + —(p192 — p2q1)(dg1 A dgz +dp1 Adpz).  (18)
3.2. Flattening of the symplectic form

The first step in order to study the local behavior of the Hamiltonian systenpneiarto flattenthe symplectic
form w (16) up to second degree terms. In other words, we need to eliminate theteifhis means that we find
a near identity transformatiap such that

p*'o=wo+ s+, (19)
where the components éf, are homogeneous polynomials of degree 4.

The following lemma explains why flatteningup to fourth degree terms is sufficient.

Lemma 1. Consider a HamiltoniarH = H> + Hz + --- and a symplectic form» = wo+ w; + -+, i.e.0p =0
for 1 < k < j — 1. Then the j-jet of the Hamiltonian vector field X of H with respecbtis equal to the j-jet of the
Hamiltonian vector field Y of H with respectd®.

Proof. Write the Hamiltonian vector field as
X=X1+Xo+Xz+--, (20)

where the components &f; are homogeneous polynomials of degyjee (¢, p). X is the solution of the equation
X_|w=dH, or
(X1+ X2+ Xa+--)J(wo+wj+---)=dHy +dHz + - - . (21)
Splitting this equation into terms of equal degree we get
k—j

Xiwo=dH14x, 1<k<}, XrJwo + ZXIJCU,/H—I =dH1, k>j+1
=1

from which the lemma follows. O
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Applying Lemma 1to the case at hand shows that when the first non-zero terms of the symplectic forapafter
are of degree 4 then we can study Hamiltonians of degree up to 5 without any more flattening.

Flattening of the symplectic form is done using the method describg8]nSpecifically we find a vector field
X such that xwp + w2 = 0. An X satisfying

0 d 0 0
XJwo=—|q1— +q2—+p1— +p2o— ) Jw2 (22)
0q1 aq2 ap1 ap2

does the job. A short computation gives
1 0
X= . ((—m(qi + g5+ p3+ p3) — 2p2(p2q1 — PlCIZ))% + (—q2(q% + 45 + p3 + pd)
5 B I S SN SO NP _ 9
+2p1(p2g91 — p1g2)) P + (=p1(q1 + g5 + p1 + p5) + 292(p291 — p192)) o
2., 2, 2, 2 0
+ (—p2(q1 + g5 + pT + P5) — 291(p2q1 — ple))g) . (23)

Let 2/°C be the Taylor expansion 6 (10), expressed in coordinatég p) near(0, 0). A short computation shows
that#'°° has the form
/Hloc — /Hloc + Hloc . (24)

where eacl‘i-t'j‘-"’ is a homogeneous polynomial of degrei (g, p). The final step is to use the transformatipn

generated by the flow of the vector fiettin order to obtain the Hamiltoniagi*#'°C in coordinates in whicky has
been flattened to terms of degree 2. We have

¢*HIOC |OC + (EXH|0C |OC) + . (25)

WhereH'})c is the degreg term of £!°C.

3.3. St symmetry

The Hamiltoniar#; (5) generates a Hamiltonig®! action® on S? x S? that induces a$! action on the local
chart. A computation shows that the action induced on the ¢hap) is

®:StxRY > R*: (1, (¢, p) = (R(q, R(D)p), (26)
where
R() — ( CQSt —sint).
sins  cost

Lemma 2. The algebraR[q, p]&’ of @-invariant polynomials is generated by

M=30pi+p3. N=3Gi+d5). S=ap2—qep1. T =qip1+qz2p2 (27)
which satisfy the relation

$24+T?>=4MN, M >0, N>0. (28)

Note that S is the generator df.
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Table 1
Coefficients ofG = G2 + ¢G4

Coefficients of terms of 1728,

M —4325 + 8641”5 — 5915% + 1194253 — 48(u*s3 — 844853 + 664853 — 58841083 + 4921253
N —4325 + 172825 + 8641*5 — 59153 + 307825 — 348083 — 380883 — 944853 — 20441083 + 492,1253
N —1728— 98452 + 2448252 — 1008452 — 960082 + 5044852
Coefficients of terms of 3458,
NS —2064 + 7296125 — 624a*5 + 43285 — 2448:85
MS —20645 + 768425 + 14405 + 4896155 — 2448:85
MN —864+ 17282 + 1728* — 57652 + 17681252 — 53921*2 — 236Qu%52 + 78444852 — 408102 + 39841252
M? 432— 864a* + 28852 — 1082262 4 126Qu*s? + 254052 — 397&Bs% 4 260411082 — 19921282
N2 432 — 17282 — 864* + 28852 — 6861252 + 524452 + 124852 — 329852 + 901052 — 19921252
52 —2016+ 11522 — 172&* — 63922 + 17 0481252 — 9000182 + 6161582 — 6628852 + 830411052 — 3984,1252

Heres = ne anda is defined in(A.7).

The Poisson structure d®f* is
(M,N}=—T. {M,T}=—2M, {N.T}=2N, (29)

and{M, S} = {N, S} ={T, S} = 0.
Because of emma 2the Hamiltoniar{'°° can be expressed in terms of the invarig@f). Moreover since the
flattening transformation preserves the' symmetry the same applies to the ‘flattened’ local Hamiltogis!°C.
Therefore truncation of the local Hamiltonian to terms of degree 4, flattening and expression in terms of the
invariants(27) gives the Hamiltonian

G = G2+ €Gy. (30)

HereG2 andG4 are homogeneous polynomials of the invariant polynon{i2ify of degrees 1 and 2, respectively.
Explicit expressions ofi2 andG4 are given inTable 1

3.4. Linear Hamiltonian Hopf bifurcation

The reduced local Hamiltonia@ (30)is given inTable 1 We write the linear part of this Hamiltonian as
G2 =6A(a, )M + 6B(a, )N + C(a, §)S, (31)

whereé = ne and the coefficientd (a, §), B(a, §) andC(a, §) can be read off the first entries Table 1 SinceG
depends on the parameterands = ne we also writeG,, s instead ofG.
The eigenvalues of the Hamiltonian matrix@$ are

+i(C £ 5vAB). (32)

It is obvious from(32) that the origin changes linear stability type when ondadr B changes sign. Specifically,
whenAB < 0 the origin is complex hyperbolic; while whekB > 0 it is elliptic—elliptic. At A = 0 or B = 0 the
eigenvalues aréC, iC, —iC, —iC) but the Hamiltonian matrix of;2 is not semisimpleKig. 2).

Let W4 andWp be the curves on the parameter pléamnes) on whichA(a, §) = 0 andB(a, §) = 0, respectively.
Let a1(8) be the function that satisfie$(a1(8), §) = 0 andax(8) the function that satisfieB(ax(8), §) = 0. For
smalls, the Taylor series of the squares of these two functions are

1 —335+25L/2

2~ 2 4
ai(8)” = ﬁ+ 576 54 0(8%), (33)
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EE %ZE CH

B

Fig. 2. The movement of eigenvalues at a linear Hamiltonian Hopf bifurcation. EE: elliptic—elliptic, 2E: degenerate elliptic, CH: complex
hyperbolic.

and
J6—-2 58875-23596/6
2 5184

The curvesV, andWp are depicted irrig. 3. We note that they do not intersect.
We prove the following lemma.

az(8)” = 5% + 0. (34)

Lemma3. The one-parameter family of quadratic Hamiltonians> Gs),s(s) goes through a linear Hamiltonian
Hopf bifurcation when the cun@: s — (a(s), 5(s)) crosses one of the curvé®, or Wpg transversely at a point
with§ > 0.

Proof. Consider first the case in whiah crossesW, transversely. This means that there issarmsuch that
A(a(s1), 8(s1)) = 0 andé(s1) > 0. Sincew, andWp do not intersect, we can find a neighborhdddf s1
such that for alk € U B(a(s), 8(s)) # 0.

We rescales (30) by dividing by$B(a, §). Let

G = G ; = . 35

G=Go+¢€Gy SBeD) (35)
The quadratic part of is

Go=a(a, )M + N + 21(a, 8)S, (36)

wherea(a, 8) = A(a, §)/B(a, §) and$21(a, 8) = C(a, 8)/(8B(a, 8)). Clearlya(a(s1), 8(s1)) = O.

1

0

0 52 1

Fig. 3. Bifurcation sets. In the proof we consider curves (a(s), 8(s)) in parameter space for whiéh= ne is small and which interse¢y/,
andWjg transversely.
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The Hamiltonian matrix o5 is

0 _Ql(aﬂ 6) 1 0
_| 2@y 0 0 1

Yi(a,d) = —a(a, 8) 0 0 —$21(a, 5) >
0 —a(a, ) $21(a, d) 0

The one-parameter family of infinitesimally symplectic matrices Y1(s) = Y1(a(s), 8(s)) is in normal form for
s nears1. Note that

o -2 1 o

22 0o o0 1

o o0 o -2/ (38)
o 0 292 o

Yi(s1) =

where Qg’ = £1(a(s1), 8(s1)). A straightforward computation shows th.@lg’ # 0. Because intersectsiWy
transversely we have that

d ,8
oe(a(s), 5(s)) 20, (39)
ds g
S=51
Therefore the curve — Ga(s) undergoes a linear Hamiltonian Hopf bifurcatiorsat
The treatment of the second case is almost identical. In this casedetsuch thaB(a(s2), 5(s2)) = 0. We can
find a neighborhood’ of s, such that for alk € U A(a(s), 5(s)) # 0. We rescal&; dividing by A (a, §). Let

G=Go+eGa= . 40
2+€Ga 5A@.5) (40)

The quadratic part of; becomes
Go =M + B(a, )N + 22(a, 8)S, (41)

whereg(a, §) = B(a, 8)/A(a, ) and22(a, §) = C(a, 8)/(5A(a, 8)). Clearly B(a(sa), 8(s2)) = O.
The Hamiltonian matrix of;5 is

0 — 2@, 8)  Bla,d) 0
| 229 0 0 B(a, 8)
Ya(a,9) = -1 0 0  —2(a ) (42)
0 1 29 0

The one-parameter family of infinitesimally symplectic matrices Y2(s) = Y2(a(s), 8(s)) is already in normal
form nears,. Notice that
0 -2 0 o0
29 0 0 0

2 4
-1 0 o0 -9/ (43)
0 -1 29 o0

Ya(so) =

Wheres?g = 22(a(s2), 8(s2)). A straightforward computation shows thﬁg # 0. Moreover becausgintersects
Wg transversally we have that

dB(a(s), 6(s)) £0. (44)
ds

S=52

Therefore the family — G2(s) undergoes a linear Hamiltonian Hopf bifurcatiorsat O
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3.5. Nonlinear Hamiltonian Hopf bifurcation

In this section we prove the following lemma.

Lemma4. Any one-parameter family— G 5(s) that crosses the curvid/, transversely at a point with > 0
goes through a supercritical Hamiltonian Hopf bifurcation
Proof. We begin with the rescaled Hamiltonigh(35) with

Go=a(a, )M + N + 2(a, 8)S (45)

from Lemma 3 We have already proved that> G2(s) goes through a linear Hamiltonian Hopf bifurcationat
We normalize the HamiltoniaG (35)with respect taV using the generator

W = ¢iNT+ ¢2ST+ c3MT. (46)

The coefficients; are determined by demanding that only the teifs S2 andMSappear in the quadratic part of
the normal form. Specifically, we have

expeLw)G = (1 + eady + O(€2))(G2 + €G4 + O(€?) = G2 + (G4 + {W, G2}) + O(e?)

=G+ Ga + O(€?). (47)
The term{W, G} is equal to
(W, G2} = (6cra — Bc3)MN + (c3 — c10) S — 2c1N? + 2c30M? + 2co0MS — 2¢oNS (48)

At the bifurcatione = 0. Therefore
{W, G2} = —6¢3MN + 352 — 2c1N? — 2¢oNS (49)

By choosinges, ¢ andcs appropriately it is clear that we can ensure §af47)is free of termavIN, N2 andNS
At a = a1(8) (33) we have

5 1
Ga=M?(0.0922+0.0124743%)+MS(—0.135+0.0484°) + §? (-0.678g +0.035 — 0.0067]53> (50)

(the numbers given are approximate). Since the coefficiemt%is positive (fors > 0) the lemma follows. O

Lemma5. Any one-parameter family— G,().5(s) that crosses transversaly the lin®p at a point withs > 0
goes through a subcritical Hamiltonian Hopf bifurcation
Proof. Again we begin with the rescaled Hamiltoni&n(40) with

Go =M + Ba, )N + 2(a, 5)S. (51)

We normalizeG (40) with respect taV using the generator
W = ciNT + ¢2ST+ ¢3MT, (52)

where the coefficients in this case are determined by demanding that in the quadrati¢paftthe normal form
appear only term#/2, $2 andNS We find

R 1
G4 = N%(—0.0628 + 0.1185%) + NS0.531— 0.8225?) + §? (2.5415 + 1.8465 — 1.95053> +0(s%. (53)

In this case the coefficient oN? is negative for smalls and we have a subcritical Hamiltonian Hopf
bifurcation. 0
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4. Geometric analysis of the Hamiltonian Hopf bifurcation on the fully reduced space

The original Hamiltoniar{1) is invariant with respect to thé, x Z; action detailed ilAppendix B.2 Therefore
the Hamiltoniar?{ (10)is invariant with respect to the induc& x Z, action onS? x S?. Reduction ofH{ with
respect to thé&! action® (6) and the discrete symmet&s x Z, gives the fully reduced Hamiltonia#,. on the
fully reduced spacé’,ﬂc with coordinatesw, 72). Details for this reduction are given Appendix B.2 Herec is
the value ofH (5) which is the generator ap. In the fully reduced spac@rgo, the pointp = (0, 0) corresponds
to the pointsp4 that undergo the Hamiltonian Hopf bifurcation studieiection 3

Stationary points of{. correspond to periodic orbits 6 (10)on S? x S2. In turn they correspond to periodic
orbits of % (4) in the range of validity of the first normal form. The equilibria of the fully reduced Hamiltonian
vector fieIdX,f{r are the points of tangency between the level curvel§ oéind Ve

When the level curves ¢y become tangent tU:,o (i.e. to one of the lines) = +m) the system goes through a
Hamiltonian Hopf bifurcation. The exact type of the bifurcation depends on how the level curigsané curved
with respect toV; 5. We distinguish two cases, seg. 4.

In the first caseRigs. 42 and b) the level curves @fo ‘bend outwards’, that is, when the level curve that passes
through p becomes tangent to the line = ; the rest of the level curve stays outsidﬁo. As the parameters
of the Hamiltonian change, the slope of the level curves also changes. Note here that the shape of the curves als
changes slightly. In order to understand qualitatively what happens, it is enough to consider only the change of
slope. Consider the level curve &b that passes throughand letw = f(r2) be defined so th&to( f(r2), 72) = 0
nearr, = 0. We denoté. = f(0), i.e. ) is the slope ap of the level curve of{q that passes through

Whenx > 1 (Fig. 4a) there are tangencies between the level curvés.aind Vy; . for c close to 0. This means
that there are equilibria of. arbitrarily close top and therefore periodic orbits 61 attach top... Wheni < 1
(Fig. 4b) the level curves that pass ne&enterVr?’ oinsuch away that they intersect transverselyll with c close
to 0, and only foic greater than some valug do they become tangent i .. This means that there are no critical
points ofH,. nearp, but there do exist such critical points further away. For the second normalized Hamilf¢nian
(10) this means that the periodic orbits have detached fsemiThis situation clearly corresponds to a supercritical
Hamiltonian Hopf bifurcation.

In the second cas&igs. £ and d) the level curves 61 ‘bend inwards’, that is, when the level curve that passes
throughp becomes tangent to the line = 2, the rest of the level curve stays insidﬁ’o. Whenx > 1 (Fig. 4c)
there are tangencies between the level curveslgndvery close top but they stop wheifc| becomes larger than
somecp > 0. As ) decreases so doegand the set of equilibria shrinks towargdsWhenx < 1 (Fig. 4d) the level

2 2= 2 ar
L L IR e e Fn®

—-n? (a) —n?| (b) —n?| (c) —712: (d)

Fig. 4. Different types of Hamiltonian Hopf bifurcation, correspond to different relative arrangemeﬂf%mfnd the level curves dflp. (a)

and (b) The level curves 61 ‘bend outwards’ and the system goes through a supercritical Hamiltonian Hopf bifurcation. (c) and (d) The level
curves ofHp ‘bend inwards’ and the system goes through a subcritical Hamiltonian Hopf bifurcation.
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Fig. 5. Supercritical bifurcation. Here= a1 +10~%. (a) Level curves of{. (b) Family of critical points of,. In these two parts the coordinates
areo; = (w — m2)/2 andoz = (w + m2)/2. The shaded region represe%. The horizontal axig; = 0 corresponds to the line = =,

of V. The vertical axisv = —, corresponds to the line = —m of V.. (c) The image of the energy-momentum map. (d) Blow up of a
region aroundO, 0).

curves that pass ne@rentervﬁo in such a way that they intersect transverselyVgl|. and therefore there are no
critical points ofH,. nearp. This situation clearly corresponds to the scenario of the subcritical bifurcation, where
a family of periodic orbits shrinks towards the equilibrium point and then disappears.

In order to depict the Hamiltonian Hopf bifurcations on the fully reduced space and the image of the energy—
momentum magM we fixn = 1, = 1/10 and find numerically the relative equilibria in the fully reduced phase
space for values af close to the bifurcation parameterg0.1) = 0.841102 .. anda(0.1) = 0.4744664. ..

Whena passes througdn (§) we have a supercritical Hamiltonian Hopf bifurcation that is depictdedds. 5a—d
and 6a—dIn order to show better the family of relative equilibria we have used coordinates (w — 72)/2
ando2 = (w + m2)/2. In Figs. 5a and 6ae show the level curves of the Hamiltoniafy intersectingvrgo. Itis
clear that they ‘bend outwards’ and according to the argument at the beginning of the section this corresponds to
a supercritical Hamiltonian Hopf bifurcation in accordance witreorem 1 We now check in more detail what
happens as we cross the parameter valgea1(0.1). Fora > a1(0.1) the coefficientA(a, 0.1) is positive and the
point p is elliptic—elliptic. In this case there is a family of relative equilibria emanating fpoamd parametrized
by c¢. These are depicted irig. Sb, where for eacle we have drawn the position of the corresponding relative
equilibrium. These positions form two curves and each point on these curves corresponds to a relative equilibrium
on a different fully reduced spadeE{C. The two branches correspond to different signs,@o if we consider the
intersection of som#,, . with the branch, it consists of only one point. This follows because one of the two points
corresponds td&, . and the other td/, _.. The two branches do not coincide, even thougﬂ} and V,?,,‘ are

c

identical, because the reduced Hamiltonian is not invariant with respect to the changec. Fora < a1(0.1)
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Fig. 6. Supercritical bifurcation. Here = a; — 2 x 10~%. (a) Level curves of{p. (b) Family of critical points ofH.. (c) The image of the
energy—momentum map. (d) Blow up of a region arodhd).

the coefficientd (a, 0.1) becomes negative and the popmt becomes complex hyperbolic. The family of relative
equilibria detaches fromp,. and moves away. The situation is depictedrig. 6b where again the two branches
correspond to the values efand—c.

One can also see the Hamiltonian Hopf bifurcation in the image of the energy momentughvhags? x S°) —
R2:z > (H(z), H1(2)). Specifically fora > a1 we have drawn the image of tle\ map inFig. 5c and a blow
up of a small region irfrig. 5d. We see there that &b, 0) we have a critical point that corresponds to the image of
p+ and this is connected to a family of relative equilibria. Eot a1 (Fig. 6c and d) we see that the critical point
p+ has detached from the family of relative equilibria and is isolated. Therefore in this case we have monodromy
that appears as a result of the supercritical Hamiltonian Hopf bifurcation.

In the case of the subcritical bifurcation the Ievel??lg_tl(o, 0) becomes tangent to the lime= —>. In Fig. 7a
we show the level curves of the Hamiltonian. It is clear that they ‘bend inwards’. According to the argument above
it corresponds to a subcritical Hamiltonian Hopf bifurcation in accordanceMigorem 1We now check in more
detail what happens as we cross the valdeax(§). Fora > a2(8), p+ is complex hyperbolic and there are not any
relative equilibria close to it. Far < ap, the pointp,. becomes elliptic—elliptic and in the fully reduced space we
have a family of critical points of{,. emanating fronp. The family is depicted ifFig. 7b. Forc = 0 the family has
two points O and O Forc = ¢_ < 0 the family has the point Oand forc = ¢, > 0 it has the point O. For each
¢ € (c—, 0) the family has two points on the curve OO’, one on OO and one on @D~. For eachr € (0, cy)
the family has two points on OG0/, one on the curve ODand one on ™.

In the image 0EM we see a very small ‘triangular’ ar€ify. 7d) with EM (p4) being at one of the vertices of
the ‘triangle’. Again,éM(p+) = (0, 0) is connected to a family of critical points 6iM which are equilibria of
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Fig. 7. Subcritical bifurcation. Here = a, — 25 x 10-°. (a) Level curves ofo. (b) Family of critical points ofH,. (c) The image of the
energy—momentum map. (d) Blow up of a region of (c) aro(h®).

the reduced Hamiltonian. Asincreases and approachesrom below the ‘triangular’ area shrinks and exactly at
a = ay it disappears leaving in its place an isolated critical point.

In this case we have monodromy both before and after the Hamiltonian Hopf bifurcation.ahep we have
the classical type of monodromy around the isolated critical point. Whena, we havenon-local monodromy
[12]. This means that if we consider a closed pAtharound the ‘triangle’ irFig. 7d, theT2 bundleEM (1) is
not trivial. Since the passage fram> az toa < az is a smooth deformation the monodromy around the ‘triangle’
for a < ap must be the same as the monodromy around the critical pointfoty, i.e. it is given by the matrix

(5 5)

The last question is how does monodromy disappear as we lower the valaedfipproach the Stark limit. The
answer is that there exists another family of relative equilibria that is not related directly to the Hamiltonian Hopf
bifurcations. The image of this family undém is connected to the rest of the boundary of the imag&/ef. At
a=a;~ay—27x 108 this family and the family of relative equilibria related to the Hamiltonian Hopf bifurcation
join. Fora < a; there do not exist any other families of relative equilibria disconnected from the boundary of the
image ofé M and therefore the system can not have monodromy. For more details on these fam[2§.see

5. Conclusions

We have proved that the hydrogen atom in crossed fields goes through two Hamiltonian Hopf bifurcations when
the relevant parameter of the system enters or leaves the interval of parameter values for which this system has
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monodromy. We also uncovered the fine details of these bifurcations such as non-local monodromy. The proof is
traditionally analytic along the lines {23]. We also detailed a complementary geometric description based on the
qualitative study of the level curves of the fully reduced Hamiltonian on the fully reduced space. Anticipated in
[10], this description can by itself provide a complete proof of the occurrence of the Hamiltonian Hopf bifurcations
and their characterization. A similar approach was developdd(r81] What we add to this is the use of the

fully reduced system which allows to decrease the degree of the Hamiltonian from 4 to 2. Clearly, formalizing and
developing this geometric analysis for its application to the concrete system goes beyond the scope of the more
‘traditional’ approach adopted initially in the present paper. Such geometric study should be deferred to a future
work and will certainly constitute an important new contribution to the field.

The physical significance of these bifurcations is an equally important subject of future analysis. The relative
equilibria that participate in these bifurcations are not ‘closed orbits’, i.e., trajectories of the electron that go to
the nucleug9,32—-34] So these bifurcations would not be observed ‘directly’ in Rydberg spectra, but they would
certainly affect qualitatively the form of the wave functions.

In the integrable approximation these bifurcations are related to monodromy whose implication in the actual
guantum system has been understood only part[aD}. The global role of these bifurcations in the original
non-integrable system isin creating centers of strongly chaotic dynamics. Continuing certain aspects of the integrable
approximation, namely sequences of bifurcations including the Hamiltonian Hopf bifurcation, into the chaotic region
near the ionization threshold is therefore an important future direction of research.
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Appendix A. Review of the Keplerian normalization
A.1l. Kustaanheimo-Stiefel regularization

The Kustaanheimo—-Stiefel regularization is a standard procedure for the regularization of the Kepler vector field.
The first step is a time rescaling which is also used in Moser regularization.

Specifically, we fix an energy levél < 0 (since we are only interested in bounded motions), res¢alé®) —
(c~1Q, CP) and introduce the new time scale-¢ C2d/|Q|. The result is

1 2E F G G*
1=3 (P2 - 3) 101+ 502101+ 575 (Q2P3 = 03P2)| Q] + g—(05 + 0310, (A1)
where
(2
Ho = 5( cz> 0l (A2)

is the unperturbed Hamiltonian.
The Kustaanheimo—Stiefel regularization is defined by the transformation

1
KS : ToR* — ToR3: (¢, p) — (M(q)q, ?M(q)p> =(0,0, P,0), (A.3)
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whereM(g) is the matrix

q1 —q42 —43 44

Mg |2 ©n (A4)
43 44 q1 q2
q4 —4¢3 492 —q1
Notice that
¢ = 3(q1pa — q2p3 + q3p2 — qap1) =0, (A.5)

and that; generates a8! action onTpoR* called the KS symmetry.
Any function defined offpR* through the KS transformation Poisson commutes wiffherefore we can treat
¢ as a constant of motion identically equal to 0.

The KS transformed Hamiltonian after the scaliggp) — (¢/+/w, p/w) and changing the time by— wt
becomes

H = 3(p* + ¢°) + §f(q192 — 43q4)4° + 38(q2p3 — q3p2)q” + §8°(d5 + 43) (45 + 45)q° (A.6)
where
2E 6F 2G
wzz—ﬁ, f:m:eb, g= = ea, @ +b>=1 (A7)

A.2. First normalization

We normalize the HamiltoniagA.6) with respect to the unperturbed pafy = (1/2)(¢% + p?), which is
the Hamiltonian of a 1:1:1:1 resonant harmonic oscillator. The result of the normalization and truncation is the
Hamiltonian

H= i]g + 61:14 + 621:16 + 63]:]8 + 641:110, (A8)

where each ternﬁ{j is a homogeneous polynomial of degrgim (¢, p). Expressions foH can be easily obtained
from the expressions of the reduced Hamiltonfamiven later inTable 2

A.3. First reduction

The algebr&|[q, p]T2 of the polynomials that are invariant under ffeaction generated by andz is generated
by the invariant polynomials

Ki=%5+a5+p5+d5—-pi—ai—pi—d3).  K2=3(papa—qiqz — p1p2 + q43qa).

K3=—3(q193 + q294 + p1p3+ p2pa). L1 = 3(q2p3 — q3p2 + q1pa — qap1).

Lo= %(612174 +g3p1 — q1p3 — qap2), Lz = %(qlpz + q3pa — q2p1 — qap3),
n=3(p5+q5+ p5+d5+ pi+ai+ ps+4d), ¢ = 3(q1pa — q2p3 + q3p2 — qap1). (A.9)

The vectorsk = (K1, K2, K3) andL = (L1, L, L3) are the KS transformed eccentricity vector and angular
momentum vector, respectively. The invariant polynomials satisfy the relations

K>+ L%2=n?>+¢2 KL=-nc (A.10)
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Table A.1
Coefficients of the terms of the first normal foth

Coefficients of terms of 7Hg

n? —17?

L% 942

L3 9a? + 9b?
K2 4572

KoLy 84ab

K3 4542 — 5152
K1L> —12ab

Coefficients of terms of 288g

n?Lq 337ak?

LyL2 —54a% — 102a1?

L1L3 —544° — 192al?
3 3

L3 —724% — 10222

K3LpLs —144a%p

K3Ly —270:% — 108al?

n?K> 1562%b — 25003

KoL3 60a2b

KoL3 —84a?b + 86b°

KpL? —24622b

K2K3 33

K3Ly —27Q3 + 510ak?

K3 3302%h — 250°

K1K3L3 108ab?

Coefficients of terms of 13 8%

n# 1504:%p? — 356"

n?L2 36a* + 108612h2

L3 —351a* — 2402%p?

n?L2 360 — 1110:2p% + 29705*
1212 —702* — 2782%p?

L3 —351a* — 38:%p? — 30P*
n?L2 10 224* — 66 192:%b?
1212 —9072¢* + 46 736Gi°b?
1212 —9072¢* + 53 712°b?

L} —6768:* + 46 97Gi°b?
K3LiLaL3 123123p + 120ab®

n?K?% —4716:* + 9462422
K3L2 —12690:* + 4808Q:%H?
K3L2 —2358* — 233422
K3L2 48080:2p?

K3 —5895:*

n?KpL1 —27768:% + 74 32@k°

KpLyL3 —5976:3b — 10 05610°
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Table A.1 Continued

KoL1L3 6336:°h — 27 31263

KoL3 2784:%b — 10 05@b°

K2K3LoL3 —20664* + 70 888:2b?

K2K32Ly —47520:% — 1123261

n?K?2 —4716" + 38 978%b2 — 35 630"
K2L2 —2358* + 52662%b?

K3L3 —1269Q:* + 25 74Q2b% + 89105*
K2K?2 —1179Q:* + 31 29Q:%p2

K3Ly —4752Gb + 48 00GD®

K3 —58957* + 3129Q:26% — 17 81%*
n?K1L, —336%b — 4352a0°

K1LpL2 768%b — 120ab°

KiL3 7684%b + 744ab?

K1K3Lo 3720

K1KpK3La —3720:%p + 1123203

The space oT 2 orbits onHy 1 (2n) N ¢~1(0) is defined by

K%+ L? = n?, KL =0, (A.11)
or equivalently

(K + L) =n?, (K — L) = n?. (A.12)
Therefore the orbit space 8 x S?. The Poisson structure on the reduced space is

{Li,L;} = Zgijkle {Ki,K;} = ZeijkLk, {Li,K;} = ZSiijk- (A.13)
% % %

After computing the normal form we perfori? reduction by expressing the normalized HamiltonfAr8) in
terms of the polynomialA.9). The result is
H = Ho + eHa + €2 Hg + 2 Hg + €* Hyo. (A.14)

After setting = 0 the first terms off are

Ho = 2n, (A.15)
Ha = n(aly — bKy). (A.16)

The coefficients for the other terms are presenteliinie 2 Next we subtract the constant tefifa = 2n and then
divide A by ne.

In the resulting rescaled Hamiltonian, called the first reduced Hamiltonian, we make the successive linear changes
of variables

Ty =al; — bKy, T> = aly + bKy, T3 = L3,
Vi=akK; — bly, Vo = aKo + bly, V3 = K3, (A.17)



270 K. Efstathiou et al./ Physica D 194 (2004) 250-274
and
x1=3(T1+ V), x2 = 3(T2 + Va), x3 = 3(T3 + Va),
n=3T1—V), yp2=3T2—V), y3=3(T3—Va. (A.18)
The variables;, y satisfy
xi + x% + x% = %nz, y% + y% + y% = %nz. (A.19)

They span the algebra@) x so(3) = sa(4). The Poisson structure is given (8).
The lowest order non-trivial term of the first reduced Hamiltonian becomes

H1 = Hy = x1+ y1. (A.20)

We define; = I:IZJ-+2. Notice that# ; is a homogeneous polynomial of degrem (x, y, n). The first reduced
Hamiltonian can be written in terms ¢f, y, n) variables as

H =M1+ eHo+ €2Hz + Ha, (A.21)

where#; = x1 + y1, and the rest of the terms can be computed straightforwardly fraiohe 2using (A.17)
and (A.18)

Appendix B. Full reduction and reconstruction
B.1. Second reduction

We recall here that Keplerian normalization creates an approxigtaigial symmetry® (6) on S? x S2.
The algebraR[x, y]® of ®-invariant polynomials in the variablgs, y) is generated by

T1=X1— Y1, 72 = 4(x2y2 + x3y3), 73 = 4(x3y2 — x2y3),

ma=x1+ y1, 5 = 4(x3 + x3), 6 = Hy5 +)3). (B.1)
These invariants satisfy

75 + 75 = nswe, 75 >0, 7> 0. (B.2)
From(A.19) we have

s = n? — (w1 + 74)?, w6 = n? — (w1 — 74)°. (B.3)
Sincens = ¢, the second reduced phase spa&g. is the semi-algebraic variety defined by

75+ 715 = (n® — (1 + )P (® — (1 — ), |ml <n—cl. (B.4)

Notice that in the spad@® with coordinates1, 72, 73) the spaced, . andM, _. have the same representation.
The Poisson structure avi,, . is

{mr1, M2} = 273, {1, m3} = —2m, {2, m3} = 4711(n2 + % — JT%) (B.5)
Expressing':t (10) in terms ofry, 72, 73 andry = ¢ gives the second reduced Hamiltonian

H =M1+ eHo+ e2Hz + Ha, (B.6)
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Table B.1
Coefficients of the terms of the second reduced Hamiltokian

Coefficients of terms of 72,

T —1842

n? 9—18:% — 18:*

c? —51+ 4242 — 184*
n? —17+ 3842 + 64%

Coefficients of terms of 2883

TTac 13642 — 16a* — 124°

72 —86+ 1682 — 10a* + 1925 — 102:°
A 250— 30442 4 1224* + 5648 — 3448
nc 250— 57612 + 178&* — 3245 + 1848

Coefficients of terms of 13 8244

73 —1020* + 4848 + 14448 — 144410
by —303+ 12522 — 304* + 9964° — 379248 + 150010 — 1500412
Ton? —4908:2 + 8104* + 20048 + 5648 — 108,10
721, 11402 — 2104* — 14126 + 2644® — 6610
72n? 2970— 110482 + 8528* — 1064° + 76408 — 1416:1° + 103212
72c? 8910— 19 896:% + 80161* — 9144° — 16 6082 + 27 62410 — 90012
1
72c? —13092:2 + 613&1* — 99648 + 1256:8 — 612410
n2c? —35630+ 91 6241° — 54 80(:* + 6888:° 4 57848 — 256810 + 103212
c* —17 815+ 286282 — 16 32Q1* — 129245 + 2408 + 3676:1° — 15012
n* —3563+ 132522 — 11 472* — 860® — 18488 + 44410 — 44412
where
Hi=ma=c. (B.7)

The coefficients of the terni», H3 and#{4 are given inTable 3

B.2. Discrete symmetries and full reduction

We can take into account the discrete symmetries of the original system in order to simplify our analysis. The
original Hamiltoniar(1)is invariant with respect to a group of discrete symmetries that consists of the transformations

g1: (01, 02, 03, P1, P2, P3) = (=01, Q2, — 03, P1, — P2, P3),
gZ (Ql’ Q27 Q37 PJ.’ P2’ P3) g (_Qla Q27 QB’ _Ply P25 P3)7
g3: (Q1, 02, Q3, P1, P2, P3) = (Q1, Q2, —Q03, —P1, — P2, P3). (B.8)

Eachg; generates @, subgroup of the full symmetry group, which is isomorphiZtpx Z».
The induced transformations on the second reduced syaceare

g1 : (mwy, mo, m3) > (—m1, M2, m3), g2 . (my, o, m3) > (—m1, M2, —73),

83 (m1, m2, m3) > (71, w2, —73). (B.9)
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(b) ﬂ,zi

Fig. 8. (a) Reduced phase spaﬂé,%c. (b) Fully reduced phase spadé,%L..

The orbit spaceM,?,C of the Z; action generated byz is the image ofM, . under the mafR® — R? :
(71, 2, m3) > (1, w2) (Fig. 83). BM,?’C is the boundary oM,?,C or equivalently as the intersection &f, . with
the plang{nz = 0}.

The orbit spacé/, . of theZ action onM,, . generated by is the image oiM,, . under the mafR3 — R3:
(71, 72, w3) > (w, 72, 73), Wherew = n? — 2. Thefully reduced spacg? . can be defined equivalently as

e The orbit space of th&, action onV, . generated bys. It is the image ofV, . under the ma[R3 - R?:
(w, w2, w3) = (W, 72).

e The orbit space of th&; action onM? . generated by;. It is the image ofM? . under the mafR? — R? :
(1, 2) > (W, 72).

e Theorbitspace of the full, x Z, action onM,, ... Itisthe image oM,, . under the mapR® — R?: (71, 72, 13) >
(w, 7).

Finally, V¥ . is the boundary ol/,gc less the line segmeritn?, p) : —c < w2 < c}. Points onv, . satisfy the

1,C

equation
73 = (w+ c?)? — (2no)2. (B.10)

The fully reduced Hamiltoniai. onV,, .. is obtained fromit (B.6)(seealsdable 3 by the substitutionf = n?—w.
At this point let us complete the argument use&attion 1to explain why we need to compute the four-jefof
in order to lift the degeneracy of the Hamiltonian Hopf bifurcation. The discrete symmetry geoxZ » imposes
certain restrictions on the types of terms that can appear in the fully reduced Hamiltgnidhe allowed terms
appear infable 4 where?itc,j is the part ofH, that comes frorﬁ:[.,-, i.e. the part of{ of degreej. Itis clear from the
table that if we considek, only up toH,. » as it was done ifiL0], or even up tdH,. 3, its level curves will appear in
the plangw, 7r2) as straight lines. In order to correct this we need to gl a, i.e. up to fourth degree terms 7.

Table B.2

Terms compatible witlZ, x Z, symmetry

Part of . Allowed terms
73117.1 c

7:117.2 w, 112, 62, n2
He3 wC, T2c, c3, n2c

7:11,-_4 Wy, n%, 72¢2, won?, w2, we?, wn?, ¢*, n?c?, n*




K. Efstathiou et al./Physica D 194 (2004) 250-274 273

B.3. Reconstruction

SinceV;? . is the orbit space aff? . with respect to th, symmetry generated ky each pointo#? .\ {w = n?}
lifts to two points inM? .; while each point on the linew = n?} lifts to one point.

n,c?

M,?’C is the orbit space oM, . with respect to th&, symmetry generated hys. Therefore, each point in the
interior of M,?,C lifts to two points inM,, . with opposite sign ofr3; while the points omM,?,c lift to one point.

Each point ofM,, . lifts to an S! orbit (a topological circle) oi8* x S?. The only exceptions are the singular
points of M, o which lift to only one point onS? x S?, and the single points4, ,,, which lift to two single
points. Specifically, the singular point 84, o with coordinategr1, 2, 73) = (n, 0, 0) lifts to the pointp; =
n/2(1,0,0, -1, 0, 0) while the point(—r, 0, 0) lifts to the pointp_ = n/2(—1, 0,0, 1, 0, 0). Each spacé/,, +,
consists of a single point with coordinates,, 7, 73) = (0, 0, 0). These lift to the points+ on S? x S? with
coordinateg+ = n/2(%1, 0,0, &1, 0, 0). The pointsp+ andz. are fixed points of th&! action® (6) onS? x S?
and therefore are equilibria of agyinvariant Hamiltonian ors? x S°.
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