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Abstract

We consider the hydrogen atom in crossed electric and magnetic fields. We prove that near the Stark and Zeeman limits
the system goes through two qualitatively different Hamiltonian Hopf bifurcations. We explain in detail the geometry of the
bifurcations.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The hydrogen atom in constant orthogonal electric and magnetic fields is a fundamental atomic system. The
system itself and its limiting cases of pure magnetic or electric field (Zeeman and Stark limit, respectively) have
been studied to varying degrees of completeness and mathematical sophistication in a series of papers[1–9]. In
[10,11] it was shown that as the parameters of the system (the relative field strengths) vary from the Zeeman limit
to the Stark limit, there exists an interval of parameter values for which the system hasmonodromy.

It was conjectured there that monodromy is caused by two separate Hamiltonian Hopf bifurcations. The authors
of [10] were unable to prove this conjecture because they calculated the relevant normal form (thesecondnormal
form in the terminology that we use later) only up to terms of second degree. Normalization to higher degree is
needed to resolve the degeneracy that appears at the bifurcation.

In this work we prove that the appearance of monodromy as we move away from the Zeeman limit is due to a
supercritical Hamiltonian Hopf bifurcation. On the other hand, a subcritical Hamiltonian Hopf bifurcation happens
as we leave the monodromy interval and approach the Stark limit. We show that in the latter case the system has
monodromy both before and after the bifurcation. The two types of monodromy are qualitatively different, one of
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them being ordinary and the othernon-local monodromy[12]. The study of these bifurcations is made possible by
the computation of the relevant normal form to higher order than was done in[10] and in all other previous work.
Notice that due to additional symmetries these bifurcations are highly degenerate. As a result they happen on a
microscopic scale: the relevant structures in phase space and the range of parameters in which one can see them
are very small. It would be hardly possible to find these bifurcations using a superficial numerical treatment of the
problem without powerful analytic techniques, namely normalization (of which there are three different variations
in this work) and symmetry reduction.

1.1. Fundamental notions

The hydrogen atom in crossed fields is an example of a perturbed Kepler system. The first step in its study is
Keplerian normalizationwhich consists of regularization of the singularity of the Kepler potential and normalization
of the resulting system[1–7]. In this work we use Kustaanheimo–Stiefel (KS) regularization[13]. The result of
KS regularization is a Hamiltonian that is a perturbation of the harmonic oscillator in 1:1:1:1 resonance, with an
extraS1 symmetry due to the flow of the Hamiltonian vector field associated to the KS integral. The normalization
of the system with respect to the approximate dynamicalS1 symmetry induced by the unperturbed part of the
Hamiltonian can then be easily performed using standard techniques. The consequent reduction in terms of theT2

oscillator and KS symmetry gives a Poisson system defined onS2 × S2. The dynamical variables onS2 × S2 span
the so(4) = so(3) × so(3) algebra.

The important property of the crossed fields system is that after the first normalization the reduced system has
yet another approximateS1 axial symmetry. We perform a second normalization and reduction with respect to
this symmetry. The result is an one degree of freedom integrable Poisson system. The second normalization was
introduced for perturbed Keplerian problems in[14], see also[15]. It was used for the hydrogen atom in crossed
fields in[16–18]. We perform the second normalization to high order using the Lie series algorithm[19,20]for the
standard Poisson structure on so(3) × so(3).

In [10] it was discovered that the hydrogen atom in crossed fields has monodromy for an interval of the parameters.
Monodromy was introduced by Duistermaat in[21] as the simplest topological obstruction to the existence of global
action-angle variables in integrable Hamiltonian systems. We explain this concept a bit more. Consider a two degree
of freedom integrable Hamiltonian system with Hamiltonian functionH and second integralJ called momentum.
Let mc be an isolated critical value of the energy–momentum mapEM : R4 → R2 : p �→ (H(p), J(p)) and
consider a closed pathΓ aroundmc on the set of regular values ofEM. Although for each pointm ∈ Γ , EM−1(m)

is aT2 torus, it is not true in general that theT2 bundle overΓ is trivial, that is, thatEM−1(Γ) is diffeomorphic to
S1 × T2. If the bundle overΓ is not trivial we say that the system has monodromy. In[22] it was shown that the
system has monodromy ifEM−1(mc) is a pinched torus.

Monodromy in a parametric family of Hamiltonian systems can appear as the result of a Hamiltonian Hopf
bifurcation [23]. This bifurcation is a codimension one bifurcation that happens in Hamiltonian systems with
two degrees of freedom. When an equilibriump of a HamiltonianH is elliptic–elliptic, then by a theorem of
Weinstein[24] there exists a family of periodic orbits emanating fromp. Whenp changes its linear stability type to
complex hyperbolic and certain non-degeneracy conditions are satisfied, then two things can happen to this family
of periodic orbits. It can either disappear or it can detach fromp. In the first case we have asubcriticalHamiltonian
Hopf bifurcation and in the second asupercriticalHamiltonian Hopf bifurcation.

In the case of a supercritical Hamiltonian Hopf bifurcation it is known that the system has monodromy when
the equilibrium is complex hyperbolic[23,25]. The reason for this is rather clear. Whenp is elliptic–elliptic it is
connected to a family of periodic orbits that appear as critical points of the energy momentum mapEM. Therefore
mc = EM(p) is not isolated. Whenp changes linear stability type and becomes complex hyperbolic, the family
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Fig. 1. Relative positions ofV 0
n,0 and the level curves of̄H0. The shaded region representsV 0

n,0. (a) Near the Zeeman limit. (b) Monodromy
region. (c) Near the Stark limit.

of periodic orbits detaches fromp. Therefore in the image ofEM, mc appears as an isolated critical point. Under
certain conditions[26] EM−1(mc) is a pinched torus and the system has monodromy.

What seems to have gone unnoticed until now is that an integrable Hamiltonian system can have monodromy
when it undergoes a subcritical Hamiltonian Hopf bifurcation. We show that this happens in the hydrogen atom in
crossed fields.

The second normalization to high degree is a necessary improvement with respect to all previous work, because
it lifts the degeneracy when the system goes in and out of the monodromy region. Let us explain the origin of
the degeneracy. We denote byn the value of the generator of the oscillator symmetry and byc the value of the
generator of the approximateS1 axial symmetry. Forc = 0, the fully reduced spaceV 0

n,0 in the coordinates(w, π2)

defined inAppendix B.2is a filled triangle with bordersw = ±π2 andw = n2 (seeFig. 1). In [10] only the
two-jet of the second normal form̃H was computed. To that degree the fully reduced HamiltonianH̄0 on V 0

n,0

is linear inw andπ2. This means that the level sets ofH̄0 are straight lines. The different regimes of the system
depend on the relative positions of the level sets ofH̄0 andV 0

n,0 (Fig. 1). The qualitative changes of the system

happen when the level sets ofH̄0 are parallel either to the linew = π2 or the linew = −π2. Then the reason
of the degeneracy is that a small perturbation will curve the level sets ofH̄0 either ‘inwards’ or ‘outwards’, see
[10]. As we show inSection 4these cases correspond to qualitatively different Hamiltonian Hopf bifurcations.
Therefore in order to lift the degeneracy we need to compute the second normal formH̃ to a degree such that
H̄c is quadratic tow andπ2. We show inAppendix B.2that because of a discrete symmetry this happens when
we compute the four-jet of̃H, which corresponds to degree 8 in the original KS variables. Following the whole
normalization and reduction procedure we find that in turn we have to compute the first normal form up to terms
of degree 10.

We now give an outline of the paper. InSection 2we review the second normalization of the system. InSection
3 we formulate and prove the main result of this paper which is the existence of the two qualitatively different
Hamiltonian Hopf bifurcations in the hydrogen atom in crossed fields. Finally, inSection 4we illustrate and discuss
the geometric manifestation of these Hamiltonian Hopf bifurcations in the reduced phase space and explain how
monodromy appears near the Zeeman and Stark limits.

2. Review of normalization and reduction

We give a brief review of the Kustaanheimo–Stiefel regularization, the normalization and the reduction of the
system following the presentation and notation in[10], where the reader can find more details.



K. Efstathiou et al. / Physica D 194 (2004) 250–274 253

2.1. Hamiltonian

We consider a hydrogen atom with proton at the point 0 in physical spaceR3 with variablesQ = (Q1,Q2,Q3).
The electric field isE = (0, F,0) while the magnetic field isB = (G,0,0). The motion of the electron is then
described by the Hamiltonian

H : R6 → R : (Q, P) �→ H(Q,P) = 1

2
P2 − C

|Q| + FQ2 + 1

2
G(Q2P3 − Q3P2) + 1

8
G2(Q2

2 + Q2
3), (1)

whereP = (P1, P2, P3) are the conjugate momenta.
In the HamiltonianH we have ignored all effects due to the spin of the electron and relativistic corrections. In

addition we have simplified the two-body problem by considering an infinitely heavy proton.
Instead ofF andG we will use the parametersε anda defined in(A.7) of Appendix A.1. The parameterε > 0

represents the total strength of the two fields whilea represents the relative strength of the fields and takes values
in [−1,1]. When|a| is small the system is near the Stark limit; while when|a| is close to 1 the system is near the
Zeeman limit.

2.2. Keplerian normalization

The Keplerian normalization ofH (1) consists of the Kustaanheimo–Stiefel regularization followed by normal-
ization and reduction of the resulting system with respect to theT2 = S1 × S1 action generated by the 1:1:1:1
oscillator and KS symmetry. For details seeAppendix A.1or [10]. The final result is a Poisson system defined on
the first reduced spaceS2×S2, which can be described by coordinate functionsx = (x1, x2, x3) andy = (y1, y2, y3)

that satisfy the conditions

x2
1 + x2

2 + x2
3 = 1

4n
2, y2

1 + y2
2 + y2

3 = 1
4n

2. (2)

Heren is the value of the generator of the oscillator symmetry. The dynamical variablesx, y span the algebra
so(3) × so(3) = so(4). Specifically, the Poisson structure onS2 × S2 is

{xi, xj} =
∑
k

εijkxk, {yi, yj} =
∑
k

εijkyk, {xi, yj} = 0. (3)

The first reduced Hamiltonian defined onS2 × S2 can be written in terms of(x, y, n) variables as

H = H1 + εH2 + ε2H3 + ε3H4. (4)

The lowest order non-trivial term is

H1 = x1 + y1. (5)

EachHj is a homogeneous polynomial of degreej in (x, y, n). For j ≥ 2 the termsHj can be computed in a
straightforward way fromTable 2using the relations(A.17) and (A.18).

2.3. Second normalization

H1 generates anS1 actionΦ on S2 × S2 given by

Φ : S1 × (S2 × S2) → (S2 × S2) : (t, (x, y)) → (x1, R(t)(x2, x3)
T, y1, R(t)(y2, y3)

T), (6)
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where

R(t) =
(

cost − sint
sint cost

)
.

We normalize the HamiltonianH (4) with respect to the actionΦ. First define new variables

z1 = 1

2
x1, z2 = 1

2
√

2
(x2 + ix3), z̄2 = 1

2
√

2
(x2 − ix3),

w1 = 1

2
y1, w2 = 1

2
√

2
(y2 + iy3), w̄3 = 1

2
√

2
(y2 − iy3). (7)

Then notice that

{z1, z2} = z2

2i
, {z1, z̄2} = − z̄2

2i
, {z2, z̄2} = z1

2i
. (8)

In these variablesH1 becomesH1 = 2(z1 + w1) and the action of adH1 = {H1, ·} on a monomialzawb =
z
a1
1 z

a2
2 z̄

a3
2 w

b1
1 w

b2
2 w̄

b3
2 is diagonal:

{H1, z
awb} = −i(a2 − a3 + b2 − b3)z

awb. (9)

Therefore the variablesz andw are particularly suitable for the application of the standard Lie series algorithm
[19,20] for the computation of the second normal form, since they trivialize the task of solving the homological
equation.

Remark 1. Another way to perform the second normalization is to expressH (4) in terms of the original variables
(q, p). Then normalization can be performed in these variables and the result can be re-expressed in terms of the
variables(x, y).

The result of second normalization is the Hamiltonian

H̃ = H̃1 + εH̃2 + ε2H̃3 + ε3H̃4, (10)

where each term̃Hj is a homogeneous polynomial of degreej in (x, y, n). Explicit expressions for̃H can be easily
obtained from the expressions for the second reduced HamiltonianĤ given inTable 3.

The pointsp± = (n/2)(±1,0,0,∓1,0,0) andz± = (n/2)(±1,0,0,±1,0,0) are fixed points of theS1 action
Φ. Therefore[27] they are equilibria of anyΦ invariant Hamiltonian onS2 × S2. In particular, they are equilibria
of H̃ (10).

3. The Hamiltonian Hopf bifurcations

In this section we prove the following theorem which is the main result of the paper.

Theorem 1. The equilibriap± = (n/2)(±1,0,0,∓1,0,0) of the second normalized HamiltoniañH (10) on
S2 × S2 undergo a supercritical Hamiltonian Hopf bifurcation ata = a1(nε) and a subcritical Hamiltonian Hopf
bifurcation ata = a2(nε). Herea1 anda2 are functions ofδ = nε given in(33)and(34).

Sketch of the proof. The first step of the proof is to find a local chart(Q, P) on S2 × S2 near the pointp+. The
symplectic form in the chart(Q, P) is in Darboux form only up to constant terms:

ω = dQ1 ∧ dP1 + dQ2 ∧ dP2 + ω2(Q, P) + ω4(Q, P) + · · · (11)
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because we are working on the curved spaceS2×S2. Hereω2 andω4 are two-forms of degrees 2 and 4, respectively.
In order to study the local dynamics near the equilibrium pointp+ we need toflattenthe symplectic form to Darboux
form at an appropriate order, using a constructive version of the Darboux theorem[28]. The result of flattening is a
chart(q, p) in which the symplectic form is

ω = dq1 ∧ dp1 + dq2 ∧ dp2 + ω̃4(q, p) + · · · . (12)

After flattening the symplectic form and expressing the local Hamiltonian in the chart(q, p), we reduce the local
Hamiltonian with respect to theS1 symmetry that is induced on the local chart from theΦ action(6) on S2 × S2.
The multiplicative ring of invariants of the inducedS1 symmetry is generated by the quadratic polynomialsM,N, T
andS in the variables(q, p). S is the generator of theS1 symmetry andM, N generate nilpotent linear Hamiltonian
vector fields.

We denote byG the reduced local Hamiltonian and byGj thej-degree part ofG, where the degree is defined
in terms of the variablesq andp. The next step is to bringG2 into versal normal form for the Hamiltonian Hopf
bifurcation, namely

G2 = αM + N + ΩS, (13)

or

G2 = M + βN + ΩS. (14)

We also have to check that certain transversality conditions are satisfied whenα = 0 orβ = 0. This proves that the
local HamiltonianG goes through alinear Hamiltonian Hopf bifurcation.

The final step is to normalizeG with respect toM (or N). If, after the normalization, the coefficient ofM2 (or
N2) is zero, then the bifurcation is degenerate. If the coefficient is positive the bifurcation issupercriticaland if it
is negative the bifurcation issubcritical.

Remark 2. In order to study the Hamiltonian Hopf bifurcation we need at least the four-jet ofG. Recall that in
order to lift the degeneracy discussed inSection 1and inAppendix B.2we need to consider the four-jet ofH̃. If
we make the computations that lead to the proof ofTheorem 1using the three-jet of̃H (instead of its four-jet) we
find that the coefficient ofM2 (or N2) is zero. This is how the degeneracy manifests itself in the local analysis of
this section.

Remark 3. The hydrogen atom in crossed fields problem has two parametersδ = nε anda. In the formulation
of Theorem 1we treat the familyH̃ as a one-parameter family keepingδ constant and small and varying onlya.
Despite this, we can consider more general one-parameter subfamilies ofH̃ under certain transversality conditions
in parameter space on which we elaborate in the following sections.

In the following sections we fill in the details of the argument sketched above.

3.1. Local chart

We define a local chart onS2 × S2 near the pointp+ with coordinatesQ1, Q2, P1, P2 given by

x1 = (1
4n

2 − 1
2nQ2

1 − 1
2nP2

1)
1/2, x2 = (1

2n)
1/2Q1, x3 = (1

2n)
1/2P1,

y1 = −(1
4n

2 − 1
2nQ2

2 − 1
2nP2

2)
1/2, y2 = (1

2n)
1/2P2, y3 = (1

2n)
1/2Q2.
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Note that the coordinate functionsQ andP are not canonically conjugate since the symplectic two-form in these
coordinates is

ω = dQ1 ∧ dP1 + dQ2 ∧ dP2 + (higher order terms). (15)

We first make the transformation

Q1 = −1
2(p1 + p2 + q1 − q2), Q2 = −1

2(p1 − p2 + q1 + q2),

P1 = 1
2(−p1 + p2 + q1 + q2), P2 = −1

2(p1 + p2 − q1 + q2).

The coordinate functionsq andp are not canonical either and the symplectic two-form has the form

ω = ω0 + ω2 + ω4 + · · · , (16)

where

ω0 = dq1 ∧ dp1 + dq2 ∧ dp2, (17)

and

ω2 = 1

2n
(p2

1 + p2
2 + q2

1 + q2
2)(dq1 ∧ dp1 + dq2 ∧ dp2) + 1

n
(p1q2 − p2q1)(dq1 ∧ dq2 + dp1 ∧ dp2). (18)

3.2. Flattening of the symplectic form

The first step in order to study the local behavior of the Hamiltonian system nearp+ is to flattenthe symplectic
form ω (16) up to second degree terms. In other words, we need to eliminate the termω2. This means that we find
a near identity transformationφ such that

φ∗ω = ω0 + ω̃4 + · · · , (19)

where the components ofω̃4 are homogeneous polynomials of degree 4.
The following lemma explains why flatteningω up to fourth degree terms is sufficient.

Lemma 1. Consider a HamiltonianH = H2 + H3 + · · · and a symplectic formω = ω0 + ωj + · · · , i.e.ωk = 0
for 1 ≤ k ≤ j − 1. Then the j-jet of the Hamiltonian vector field X of H with respect toω is equal to the j-jet of the
Hamiltonian vector field Y of H with respect toω0.

Proof. Write the Hamiltonian vector fieldX as

X = X1 + X2 + X3 + · · · , (20)

where the components ofXj are homogeneous polynomials of degreej in (q, p). X is the solution of the equation
X |ω = dH , or

(X1 + X2 + X3 + · · · ) |(ω0 + ωj + · · · ) = dH2 + dH3 + · · · . (21)

Splitting this equation into terms of equal degree we get

Xk |ω0 = dH1+k, 1 ≤ k ≤ j, Xk |ω0 +
k−j∑
l=1

Xl |ωj+1−l = dH1+k, k ≥ j + 1

from which the lemma follows. �



K. Efstathiou et al. / Physica D 194 (2004) 250–274 257

Applying Lemma 1to the case at hand shows that when the first non-zero terms of the symplectic form afterω0

are of degree 4 then we can study Hamiltonians of degree up to 5 without any more flattening.
Flattening of the symplectic form is done using the method described in[28]. Specifically we find a vector field

X such thatLXω0 + ω2 = 0. AnX satisfying

X |ω0 = −1

4

(
q1

∂

∂q1
+ q2

∂

∂q2
+ p1

∂

∂p1
+ p2

∂

∂p2

)
|ω2 (22)

does the job. A short computation gives

X = 1

8n

(
(−q1(q

2
1 + q2

2 + p2
1 + p2

2) − 2p2(p2q1 − p1q2))
∂

∂q1
+ (−q2(q

2
1 + q2

2 + p2
1 + p2

2)

+ 2p1(p2q1 − p1q2))
∂

∂q2
+ (−p1(q

2
1 + q2

2 + p2
1 + p2

2) + 2q2(p2q1 − p1q2))
∂

∂p1

+ (−p2(q
2
1 + q2

2 + p2
1 + p2

2) − 2q1(p2q1 − p1q2))
∂

∂p2

)
. (23)

LetHloc be the Taylor expansion of̃H (10), expressed in coordinates(q, p) near(0,0). A short computation shows
thatHloc has the form

Hloc = Hloc
2 +Hloc

4 + · · · , (24)

where eachHloc
j is a homogeneous polynomial of degreej in (q, p). The final step is to use the transformationφ

generated by the flow of the vector fieldX in order to obtain the Hamiltonianφ∗Hloc in coordinates in whichω has
been flattened to terms of degree 2. We have

φ∗Hloc = Hloc
2 + (LXH

loc
2 +Hloc

4 ) + · · · , (25)

whereHloc
j is the degreej term ofHloc.

3.3. S1 symmetry

The HamiltonianH1 (5) generates a HamiltonianS1 actionΦ on S2 × S2 that induces anS1 action on the local
chart. A computation shows that the action induced on the chart(q, p) is

Φ̃ : S1 × R4 → R4 : (t, (q, p)) �→ (R(t)q, R(t)p), (26)

where

R(t) =
(

cost − sint
sint cost

)
.

Lemma 2. The algebraR[q, p]Φ̃ of Φ̃-invariant polynomials is generated by

M = 1
2(p

2
1 + p2

2), N = 1
2(q

2
1 + q2

2), S = q1p2 − q2p1, T = q1p1 + q2p2, (27)

which satisfy the relation

S2 + T 2 = 4MN, M ≥ 0, N ≥ 0. (28)

Note that S is the generator ofΦ̃.
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Table 1
Coefficients ofG = G2 + εG4

Coefficients of terms of 1728G2

M −432δ + 864a4δ − 591δ3 + 1194a2δ3 − 480a4δ3 − 84a6δ3 + 66a8δ3 − 588a10δ3 + 492a12δ3

N −432δ + 1728a2δ + 864a4δ − 591δ3 + 3078a2δ3 − 3480a4δ3 − 380a6δ3 − 94a8δ3 − 204a10δ3 + 492a12δ3

S −1728− 984δ2 + 2448a2δ2 − 1008a4δ2 − 960a6δ2 + 504a8δ2

Coefficients of terms of 3456G4

NS −2064δ + 7296a2δ − 624a4δ + 4320a6δ − 2448a8δ

MS −2064δ + 768a2δ + 144a4δ + 4896a6δ − 2448a8δ

MN −864+ 1728a2 + 1728a4 − 576δ2 + 1768a2δ2 − 5392a4δ2 − 2360a6δ2 + 7844a8δ2 − 4080a10δ2 + 3984a12δ2

M2 432− 864a4 + 288δ2 − 1082a2δ2 + 1260a4δ2 + 2540a6δ2 − 3978a8δ2 + 2604a10δ2 − 1992a12δ2

N2 432− 1728a2 − 864a4 + 288δ2 − 686a2δ2 + 52a4δ2 + 12a6δ2 − 3290a8δ2 + 900a10δ2 − 1992a12δ2

S2 −2016+ 1152a2 − 1728a4 − 6392δ2 + 17 048a2δ2 − 9000a4δ2 + 616a6δ2 − 6628a8δ2 + 8304a10δ2 − 3984a12δ2

Hereδ = nε anda is defined in(A.7).

The Poisson structure onR4 is

{M,N} = −T, {M,T } = −2M, {N, T } = 2N, (29)

and{M,S} = {N, S} = {T, S} = 0.
Because ofLemma 2the HamiltonianHloc can be expressed in terms of the invariants(27). Moreover since the

flattening transformationφ preserves theS1 symmetry the same applies to the ‘flattened’ local Hamiltonianφ∗Hloc.
Therefore truncation of the local Hamiltonian to terms of degree 4, flattening and expression in terms of the

invariants(27)gives the Hamiltonian

G = G2 + εG4. (30)

HereG2 andG4 are homogeneous polynomials of the invariant polynomials(27) of degrees 1 and 2, respectively.
Explicit expressions ofG2 andG4 are given inTable 1.

3.4. Linear Hamiltonian Hopf bifurcation

The reduced local HamiltonianG (30) is given inTable 1. We write the linear part of this Hamiltonian as

G2 = δA(a, δ)M + δB(a, δ)N + C(a, δ)S, (31)

whereδ = nε and the coefficientsA(a, δ), B(a, δ) andC(a, δ) can be read off the first entries inTable 1. SinceG
depends on the parametersa andδ = nε we also writeGa,δ instead ofG.

The eigenvalues of the Hamiltonian matrix ofG2 are

±i(C ± δ
√

AB). (32)

It is obvious from(32) that the origin changes linear stability type when one ofA or B changes sign. Specifically,
whenAB < 0 the origin is complex hyperbolic; while whenAB > 0 it is elliptic–elliptic. At A = 0 orB = 0 the
eigenvalues are(iC, iC,−iC,−iC) but the Hamiltonian matrix ofG2 is not semisimple (Fig. 2).

LetWA andWB be the curves on the parameter plane(a, δ) on whichA(a, δ) = 0 andB(a, δ) = 0, respectively.
Let a1(δ) be the function that satisfiesA(a1(δ), δ) = 0 anda2(δ) the function that satisfiesB(a2(δ), δ) = 0. For
smallδ, the Taylor series of the squares of these two functions are

a1(δ)
2 = 1√

2
+ −335+ 251

√
2

576
δ2 + O(δ4), (33)
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Fig. 2. The movement of eigenvalues at a linear Hamiltonian Hopf bifurcation. EE: elliptic–elliptic, 2E: degenerate elliptic, CH: complex
hyperbolic.

and

a2(δ)
2 =

√
6 − 2

2
+ 58 875− 23 596

√
6

5184
δ2 + O(δ4). (34)

The curvesWA andWB are depicted inFig. 3. We note that they do not intersect.
We prove the following lemma.

Lemma 3. The one-parameter family of quadratic Hamiltonianss �→ Ga(s),δ(s) goes through a linear Hamiltonian
Hopf bifurcation when the curveC : s �→ (a(s), δ(s)) crosses one of the curvesWA orWB transversely at a point
with δ > 0.

Proof. Consider first the case in whichC crossesWA transversely. This means that there is ans1 such that
A(a(s1), δ(s1)) = 0 andδ(s1) > 0. SinceWA andWB do not intersect, we can find a neighborhoodU of s1

such that for alls ∈ U B(a(s), δ(s)) �= 0.
We rescaleG (30)by dividing byδB(a, δ). Let

G̃ = G̃2 + εG̃4 = G

δB(a, δ)
. (35)

The quadratic part of̃G is

G̃2 = α(a, δ)M + N + Ω1(a, δ)S, (36)

whereα(a, δ) = A(a, δ)/B(a, δ) andΩ1(a, δ) = C(a, δ)/(δB(a, δ)). Clearlyα(a(s1), δ(s1)) = 0.

Fig. 3. Bifurcation sets. In the proof we consider curvess �→ (a(s), δ(s)) in parameter space for whichδ = nε is small and which intersectWA

andWB transversely.
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The Hamiltonian matrix of̃G2 is

Y1(a, δ) =




0 −Ω1(a, δ) 1 0
Ω1(a, δ) 0 0 1
−α(a, δ) 0 0 −Ω1(a, δ)

0 −α(a, δ) Ω1(a, δ) 0


 . (37)

The one-parameter family of infinitesimally symplectic matricess �→ Ỹ1(s) = Y1(a(s), δ(s)) is in normal form for
s nears1. Note that

Ỹ1(s1) =




0 −Ω0
1 1 0

Ω0
1 0 0 1

0 0 0 −Ω0
1

0 0 Ω0
1 0


 , (38)

whereΩ0
1 = Ω1(a(s1), δ(s1)). A straightforward computation shows thatΩ0

1 �= 0. BecauseC intersectsWA

transversely we have that

dα(a(s), δ(s))

ds

∣∣∣∣
s=s1

�= 0. (39)

Therefore the curves �→ G̃2(s) undergoes a linear Hamiltonian Hopf bifurcation ats1.
The treatment of the second case is almost identical. In this case lets2 be such thatB(a(s2), δ(s2)) = 0. We can

find a neighborhoodU of s2 such that for alls ∈ U A(a(s), δ(s)) �= 0. We rescaleG dividing by δA(a, δ). Let

Ĝ = Ĝ2 + εĜ4 = G

δA(a, δ)
. (40)

The quadratic part of̂G becomes

Ĝ2 = M + β(a, δ)N + Ω2(a, δ)S, (41)

whereβ(a, δ) = B(a, δ)/A(a, δ) andΩ2(a, δ) = C(a, δ)/(δA(a, δ)). Clearlyβ(a(s2), δ(s2)) = 0.
The Hamiltonian matrix of̂G2 is

Y2(a, δ) =




0 −Ω2(a, δ) β(a, δ) 0
Ω2(a, δ) 0 0 β(a, δ)

−1 0 0 −Ω2(a, δ)

0 −1 Ω2(a, δ) 0


 . (42)

The one-parameter family of infinitesimally symplectic matricess �→ Ỹ2(s) = Y2(a(s), δ(s)) is already in normal
form nears2. Notice that

Ỹ2(s0) =




0 −Ω0
2 0 0

Ω0
2 0 0 0

−1 0 0 −Ω0
2

0 −1 Ω0
2 0


 , (43)

whereΩ0
2 = Ω2(a(s2), δ(s2)). A straightforward computation shows thatΩ0

2 �= 0. Moreover becauseC intersects
WB transversally we have that

dβ(a(s), δ(s))

ds

∣∣∣∣
s=s2

�= 0. (44)

Therefore the familys �→ Ĝ2(s) undergoes a linear Hamiltonian Hopf bifurcation ats2. �
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3.5. Nonlinear Hamiltonian Hopf bifurcation

In this section we prove the following lemma.

Lemma 4. Any one-parameter familys �→ Ga(s),δ(s) that crosses the curveWA transversely at a point withδ > 0
goes through a supercritical Hamiltonian Hopf bifurcation.

Proof. We begin with the rescaled HamiltoniañG (35)with

G̃2 = α(a, δ)M + N + Ω(a, δ)S (45)

from Lemma 3. We have already proved thats �→ G̃2(s) goes through a linear Hamiltonian Hopf bifurcation ats1.
We normalize the HamiltoniañG (35)with respect toN using the generator

W = c1NT+ c2ST+ c3MT. (46)

The coefficientsci are determined by demanding that only the termsM2, S2 andMSappear in the quadratic part of
the normal form. Specifically, we have

exp(εLW)G̃ = (1 + εadW + O(ε2))(G̃2 + εG̃4 + O(ε2)) = G̃2 + ε(G̃4 + {W, G̃2}) + O(ε2)

= G̃2 + G̃4 + O(ε2). (47)

The term{W, G̃2} is equal to

{W, G̃2} = (6c1α − 6c3)MN + (c3 − c1α)S
2 − 2c1N

2 + 2c3αM
2 + 2c2αMS− 2c2NS. (48)

At the bifurcationα = 0. Therefore

{W, G̃2} = −6c3MN + c3S
2 − 2c1N

2 − 2c2NS. (49)

By choosingc1, c2 andc3 appropriately it is clear that we can ensure thatG̃4 (47) is free of termsMN, N2 andNS.
At a = a1(δ) (33)we have

G̃4=M2(0.0922δ+0.0124742δ3)+MS(−0.135+0.0484δ2) + S2
(

−0.678
1

δ
+ 0.03δ − 0.00671δ3

)
(50)

(the numbers given are approximate). Since the coefficient ofM2 is positive (forδ > 0) the lemma follows. �

Lemma 5. Any one-parameter familys �→ Ga(s),δ(s) that crosses transversaly the lineWB at a point withδ > 0
goes through a subcritical Hamiltonian Hopf bifurcation.

Proof. Again we begin with the rescaled HamiltonianĜ (40)with

Ĝ2 = M + β(a, δ)N + Ω(a, δ)S. (51)

We normalizeĜ (40)with respect toM using the generator

W = c1NT+ c2ST+ c3MT, (52)

where the coefficientsci in this case are determined by demanding that in the quadratic partĜ4 of the normal form
appear only termsN2, S2 andNS. We find

Ĝ4 = N2(−0.0628δ + 0.118δ3) + NS(0.531− 0.822δ2) + S2
(

2.541
1

δ
+ 1.846δ − 1.950δ3

)
+ O(δ4). (53)

In this case the coefficient ofN2 is negative for smallδ and we have a subcritical Hamiltonian Hopf
bifurcation. �
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4. Geometric analysis of the Hamiltonian Hopf bifurcation on the fully reduced space

The original Hamiltonian(1) is invariant with respect to theZ2 × Z2 action detailed inAppendix B.2. Therefore
the HamiltonianH̃ (10) is invariant with respect to the inducedZ2 × Z2 action onS2 × S2. Reduction ofH̃ with
respect to theS1 actionΦ (6) and the discrete symmetryZ2 × Z2 gives the fully reduced Hamiltonian̄Hc on the
fully reduced spaceV 0

n,c with coordinates(w, π2). Details for this reduction are given inAppendix B.2. Herec is
the value ofH1 (5) which is the generator ofΦ. In the fully reduced spaceV 0

n,0, the pointp = (0,0) corresponds
to the pointsp± that undergo the Hamiltonian Hopf bifurcation studied inSection 3.

Stationary points of̄Hc correspond to periodic orbits of̃H (10) on S2 × S2. In turn they correspond to periodic
orbits ofH (4) in the range of validity of the first normal form. The equilibria of the fully reduced Hamiltonian
vector fieldXH̄c

are the points of tangency between the level curves ofH̄c andV ∗
n,c.

When the level curves of̄H0 become tangent toV ∗
n,0 (i.e. to one of the linesw = ±π2) the system goes through a

Hamiltonian Hopf bifurcation. The exact type of the bifurcation depends on how the level curves ofH̄0 are curved
with respect toV ∗

n,0. We distinguish two cases, seeFig. 4.

In the first case (Figs. 4a and b) the level curves of̄H0 ‘bend outwards’, that is, when the level curve that passes
throughp becomes tangent to the linew = π2 the rest of the level curve stays outsideV 0

n,0. As the parameters
of the Hamiltonian change, the slope of the level curves also changes. Note here that the shape of the curves also
changes slightly. In order to understand qualitatively what happens, it is enough to consider only the change of
slope. Consider the level curve ofH̄0 that passes throughp and letw = f(π2) be defined so that̄H0(f(π2), π2) = 0
nearπ2 = 0. We denoteλ = f ′(0), i.e.λ is the slope atp of the level curve ofH̄0 that passes throughp.

Whenλ > 1 (Fig. 4a) there are tangencies between the level curves ofH̄c andV ∗
n,c for c close to 0. This means

that there are equilibria of̄Hc arbitrarily close top and therefore periodic orbits of̃H attach top+. Whenλ < 1
(Fig. 4b) the level curves that pass nearp enterV 0

n,0 in such a way that they intersect transversely allV ∗
n,c with c close

to 0, and only forc greater than some valuec0 do they become tangent toV ∗
n,c. This means that there are no critical

points ofH̄c nearp, but there do exist such critical points further away. For the second normalized HamiltonianH̃
(10) this means that the periodic orbits have detached fromp+. This situation clearly corresponds to a supercritical
Hamiltonian Hopf bifurcation.

In the second case (Figs. 4c and d) the level curves of̄H0 ‘bend inwards’, that is, when the level curve that passes
throughp becomes tangent to the linew = π2, the rest of the level curve stays insideV 0

n,0. Whenλ > 1 (Fig. 4c)
there are tangencies between the level curves andV ∗

n,c very close top but they stop when|c| becomes larger than
somec0 > 0. Asλ decreases so doesc0 and the set of equilibria shrinks towardsp. Whenλ < 1 (Fig. 4d) the level

Fig. 4. Different types of Hamiltonian Hopf bifurcation, correspond to different relative arrangements ofV 0
n,0 and the level curves of̄H0. (a)

and (b) The level curves of̄H0 ‘bend outwards’ and the system goes through a supercritical Hamiltonian Hopf bifurcation. (c) and (d) The level
curves ofH̄0 ‘bend inwards’ and the system goes through a subcritical Hamiltonian Hopf bifurcation.
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Fig. 5. Supercritical bifurcation. Herea = a1+10−4. (a) Level curves of̄H0. (b) Family of critical points ofH̄c. In these two parts the coordinates
areσ1 = (w − π2)/2 andσ2 = (w + π2)/2. The shaded region representsV 0

n,0. The horizontal axisσ1 = 0 corresponds to the linew = π2

of V ∗
n,0. The vertical axisw = −π2 corresponds to the linew = −π2 of V ∗

n,c. (c) The image of the energy–momentum map. (d) Blow up of a
region around(0,0).

curves that pass nearp enterV 0
n,0 in such a way that they intersect transversely allV ∗

n,c and therefore there are no

critical points ofH̄c nearp. This situation clearly corresponds to the scenario of the subcritical bifurcation, where
a family of periodic orbits shrinks towards the equilibrium point and then disappears.

In order to depict the Hamiltonian Hopf bifurcations on the fully reduced space and the image of the energy–
momentum mapEM we fix n = 1, ε = 1/10 and find numerically the relative equilibria in the fully reduced phase
space for values ofa close to the bifurcation parametersa1(0.1) = 0.841102. . . anda2(0.1) = 0.4744664. . . .

Whena passes througha1(δ) we have a supercritical Hamiltonian Hopf bifurcation that is depicted inFigs. 5a–d
and 6a–d. In order to show better the family of relative equilibria we have used coordinatesσ1 = (w − π2)/2
andσ2 = (w + π2)/2. In Figs. 5a and 6awe show the level curves of the HamiltonianH̄0 intersectingV 0

n,0. It is
clear that they ‘bend outwards’ and according to the argument at the beginning of the section this corresponds to
a supercritical Hamiltonian Hopf bifurcation in accordance withTheorem 1. We now check in more detail what
happens as we cross the parameter valuea = a1(0.1). Fora > a1(0.1) the coefficientA(a,0.1) is positive and the
pointp+ is elliptic–elliptic. In this case there is a family of relative equilibria emanating fromp and parametrized
by c. These are depicted inFig. 5b, where for eachc we have drawn the position of the corresponding relative
equilibrium. These positions form two curves and each point on these curves corresponds to a relative equilibrium
on a different fully reduced spaceV 0

n,c. The two branches correspond to different signs ofc, so if we consider the
intersection of someVn,c with the branch, it consists of only one point. This follows because one of the two points
corresponds toVn,c and the other toVn,−c. The two branches do not coincide, even thoughV 0

n,c andV 0
n,−c are

identical, because the reduced Hamiltonian is not invariant with respect to the changec → −c. For a < a1(0.1)
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Fig. 6. Supercritical bifurcation. Herea = a1 − 2 × 10−4. (a) Level curves ofH̄0. (b) Family of critical points ofH̄c. (c) The image of the
energy–momentum map. (d) Blow up of a region around(0,0).

the coefficientA(a,0.1) becomes negative and the pointp+ becomes complex hyperbolic. The family of relative
equilibria detaches fromp+ and moves away. The situation is depicted inFig. 6b where again the two branches
correspond to the values ofc and−c.

One can also see the Hamiltonian Hopf bifurcation in the image of the energy momentum map,EM : (S2×S2) →
R2 : z �→ (H̃(z), H̃1(z)). Specifically fora > a1 we have drawn the image of theEM map inFig. 5c and a blow
up of a small region inFig. 5d. We see there that at(0,0) we have a critical point that corresponds to the image of
p+ and this is connected to a family of relative equilibria. Fora < a1 (Fig. 6c and d) we see that the critical point
p+ has detached from the family of relative equilibria and is isolated. Therefore in this case we have monodromy
that appears as a result of the supercritical Hamiltonian Hopf bifurcation.

In the case of the subcritical bifurcation the level setH̄
−1
0 (0,0) becomes tangent to the linew = −π2. In Fig. 7a

we show the level curves of the Hamiltonian. It is clear that they ‘bend inwards’. According to the argument above
it corresponds to a subcritical Hamiltonian Hopf bifurcation in accordance withTheorem 1. We now check in more
detail what happens as we cross the valuea = a2(δ). Fora > a2(δ), p+ is complex hyperbolic and there are not any
relative equilibria close to it. Fora < a2, the pointp+ becomes elliptic–elliptic and in the fully reduced space we
have a family of critical points of̄Hc emanating fromp. The family is depicted inFig. 7b. Forc = 0 the family has
two points O and O′. Forc = c− < 0 the family has the point O− and forc = c+ > 0 it has the point O+. For each
c ∈ (c−,0) the family has two points on the curve OO−O′, one on OO− and one on O′O−. For eachc ∈ (0, c+)

the family has two points on OO+O′, one on the curve OO+ and one on O′O+.
In the image ofEM we see a very small ‘triangular’ are (Fig. 7d) with EM(p+) being at one of the vertices of

the ‘triangle’. Again,EM(p+) = (0,0) is connected to a family of critical points ofEM which are equilibria of
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Fig. 7. Subcritical bifurcation. Herea = a2 − 25 × 10−6. (a) Level curves ofH̄0. (b) Family of critical points ofH̄c. (c) The image of the
energy–momentum map. (d) Blow up of a region of (c) around(0,0).

the reduced Hamiltonian. Asa increases and approachesa2 from below the ‘triangular’ area shrinks and exactly at
a = a2 it disappears leaving in its place an isolated critical point.

In this case we have monodromy both before and after the Hamiltonian Hopf bifurcation. Whena > a2 we have
the classical type of monodromy around the isolated critical point. Whena < a2 we havenon-local monodromy
[12]. This means that if we consider a closed pathΓ around the ‘triangle’ inFig. 7d, theT2 bundleEM−1(Γ) is
not trivial. Since the passage froma > a2 to a < a2 is a smooth deformation the monodromy around the ‘triangle’
for a < a2 must be the same as the monodromy around the critical point fora > a2, i.e. it is given by the matrix

(
1 2
0 1

)
.

The last question is how does monodromy disappear as we lower the value ofa and approach the Stark limit. The
answer is that there exists another family of relative equilibria that is not related directly to the Hamiltonian Hopf
bifurcations. The image of this family underEM is connected to the rest of the boundary of the image ofEM. At
a = aj � a2−27×10−6 this family and the family of relative equilibria related to the Hamiltonian Hopf bifurcation
join. Fora < aj there do not exist any other families of relative equilibria disconnected from the boundary of the
image ofEM and therefore the system can not have monodromy. For more details on these families see[29].

5. Conclusions

We have proved that the hydrogen atom in crossed fields goes through two Hamiltonian Hopf bifurcations when
the relevant parameter of the system enters or leaves the interval of parameter values for which this system has
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monodromy. We also uncovered the fine details of these bifurcations such as non-local monodromy. The proof is
traditionally analytic along the lines in[23]. We also detailed a complementary geometric description based on the
qualitative study of the level curves of the fully reduced Hamiltonian on the fully reduced space. Anticipated in
[10], this description can by itself provide a complete proof of the occurrence of the Hamiltonian Hopf bifurcations
and their characterization. A similar approach was developed in[30,31]. What we add to this is the use of the
fully reduced system which allows to decrease the degree of the Hamiltonian from 4 to 2. Clearly, formalizing and
developing this geometric analysis for its application to the concrete system goes beyond the scope of the more
‘traditional’ approach adopted initially in the present paper. Such geometric study should be deferred to a future
work and will certainly constitute an important new contribution to the field.

The physical significance of these bifurcations is an equally important subject of future analysis. The relative
equilibria that participate in these bifurcations are not ‘closed orbits’, i.e., trajectories of the electron that go to
the nucleus[9,32–34]. So these bifurcations would not be observed ‘directly’ in Rydberg spectra, but they would
certainly affect qualitatively the form of the wave functions.

In the integrable approximation these bifurcations are related to monodromy whose implication in the actual
quantum system has been understood only partially[10]. The global role of these bifurcations in the original
non-integrable system is in creating centers of strongly chaotic dynamics. Continuing certain aspects of the integrable
approximation, namely sequences of bifurcations including the Hamiltonian Hopf bifurcation, into the chaotic region
near the ionization threshold is therefore an important future direction of research.
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Appendix A. Review of the Keplerian normalization

A.1. Kustaanheimo–Stiefel regularization

The Kustaanheimo–Stiefel regularization is a standard procedure for the regularization of the Kepler vector field.
The first step is a time rescaling which is also used in Moser regularization.

Specifically, we fix an energy levelE < 0 (since we are only interested in bounded motions), rescale(Q, P) →
(C−1Q,CP) and introduce the new time scale dt → C2 dt/|Q|. The result is

1 = 1

2

(
P2 − 2E

C2

)
|Q| + F

C3
Q2|Q| + G

2C2
(Q2P3 − Q3P2)|Q| + G2

8C4
(Q2

2 + Q2
3)|Q|, (A.1)

where

H0 = 1

2

(
P2 − 2E

C2

)
|Q| (A.2)

is the unperturbed Hamiltonian.
The Kustaanheimo–Stiefel regularization is defined by the transformation

KS : T0R4 → T0R3 : (q, p) �→
(
M(q)q,

1

q2
M(q)p

)
= (Q,0, P,0), (A.3)
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whereM(q) is the matrix

M(q) =




q1 −q2 −q3 q4

q2 q1 −q4 −q3

q3 q4 q1 q2

q4 −q3 q2 −q1


 . (A.4)

Notice that

ζ = 1
2(q1p4 − q2p3 + q3p2 − q4p1) = 0, (A.5)

and thatζ generates anS1 action onT0R4 called the KS symmetry.
Any function defined onT0R4 through the KS transformation Poisson commutes withζ. Therefore we can treat

ζ as a constant of motion identically equal to 0.
The KS transformed Hamiltonian after the scaling(q, p) → (q/

√
ω, p

√
ω) and changing the time byt → ωt

becomes

H = 1
2(p

2 + q2) + 1
3f(q1q2 − q3q4)q

2 + 1
2g(q2p3 − q3p2)q

2 + 1
8g

2(q2
1 + q2

4)(q
2
2 + q2

3)q
2, (A.6)

where

ω2 = −2E

C2
, f = 6F

C3ω3
= εb, g = 2G

C2ω2
= εa, a2 + b2 = 1. (A.7)

A.2. First normalization

We normalize the Hamiltonian(A.6) with respect to the unperturbed partH0 = (1/2)(q2 + p2), which is
the Hamiltonian of a 1:1:1:1 resonant harmonic oscillator. The result of the normalization and truncation is the
Hamiltonian

H̃ = H̃2 + εH̃4 + ε2H̃6 + ε3H̃8 + ε4H̃10, (A.8)

where each term̃Hj is a homogeneous polynomial of degreej in (q, p). Expressions for̃H can be easily obtained
from the expressions of the reduced HamiltonianĤ given later inTable 2.

A.3. First reduction

The algebraR[q, p]T2
of the polynomials that are invariant under theT2 action generated byH0 andζ is generated

by the invariant polynomials

K1 = 1
4(p

2
2 + q2

2 + p2
3 + q2

3 − p2
1 − q2

1 − p2
4 − q2

4), K2 = 1
2(p3p4 − q1q2 − p1p2 + q3q4),

K3 = −1
2(q1q3 + q2q4 + p1p3 + p2p4), L1 = 1

2(q2p3 − q3p2 + q1p4 − q4p1),

L2 = 1
2(q2p4 + q3p1 − q1p3 − q4p2), L3 = 1

2(q1p2 + q3p4 − q2p1 − q4p3),

n = 1
4(p

2
2 + q2

2 + p2
3 + q2

3 + p2
1 + q2

1 + p2
2 + q2

2), ζ = 1
2(q1p4 − q2p3 + q3p2 − q4p1). (A.9)

The vectorsK = (K1,K2,K3) andL = (L1, L2, L3) are the KS transformed eccentricity vector and angular
momentum vector, respectively. The invariant polynomials satisfy the relations

K2 + L2 = n2 + ζ2, KL = −nζ. (A.10)
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Table A.1
Coefficients of the terms of the first normal form̃H

Coefficients of terms of 72̃H6

n2 −17b2

L2
3 9a2

L2
2 9a2 + 9b2

K2
3 45a2

K2L1 84ab

K2
2 45a2 − 51b2

K1L2 −12ab

Coefficients of terms of 288̃H8

n2L1 337ab2

L1L
2
3 −54a3 − 102ab2

L1L
2
2 −54a3 − 192ab2

L3
1 −72a3 − 102ab2

K3L2L3 −144a2b

K2
3L1 −270a3 − 108ab2

n2K2 156a2b − 250b3

K2L
2
3 60a2b

K2L
2
2 −84a2b + 86b3

K2L
2
1 −246a2b

K2K
2
3 330a2b

K2
2L1 −270a3 + 510ab2

K3
2 330a2b − 250b3

K1K3L3 108ab2

Coefficients of terms of 13 824̃H10

n4 1504a2b2 − 3563b4

n2L2
3 36a4 + 1086a2b2

L4
3 −351a4 − 240a2b2

n2L2
2 36a4 − 1110a2b2 + 2970b4

L2
2L

2
3 −702a4 − 278a2b2

L4
2 −351a4 − 38a2b2 − 303b4

n2L2
1 10 224a4 − 66 192a2b2

L2
1L

2
3 −9072a4 + 46 736a2b2

L2
1L

2
2 −9072a4 + 53 712a2b2

L4
1 −6768a4 + 46 976a2b2

K3L1L2L3 12 312a3b + 120ab3

n2K2
3 −4716a4 + 9462a2b2

K2
3L

2
3 −12 690a4 + 48 080a2b2

K2
3L

2
2 −2358a4 − 2334a2b2

K2
3L

2
1 48 080a2b2

K4
3 −5895a4

n2K2L1 −27 768a3b + 74 320ab3

K2L1L
2
3 −5976a3b − 10 056ab3
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Table A.1 (Continued)

K2L1L
2
2 6336a3b − 27 312ab3

K2L
3
1 2784a3b − 10 056ab3

K2K3L2L3 −20 664a4 + 70 888a2b2

K2K
2
3L1 −47 520a3b − 11 232ab3

n2K2
2 −4716a4 + 38 978a2b2 − 35 630b4

K2
2L

2
3 −2358a4 + 5266a2b2

K2
2L

2
2 −12 690a4 + 25 740a2b2 + 8910b4

K2
2K

2
3 −11 790a4 + 31 290a2b2

K3
2L1 −47 520a3b + 48 000ab3

K4
2 −5895a4 + 31 290a2b2 − 17 815b4

n2K1L2 −336a3b − 4352ab3

K1L2L
2
3 768a3b − 120ab3

K1L
3
2 768a3b + 744ab3

K1K
2
3L2 3720a3b

K1K2K3L3 −3720a3b + 11 232ab3

The space ofT2 orbits onH−1
0 (2n) ∩ ζ−1(0) is defined by

K2 + L2 = n2, KL = 0, (A.11)

or equivalently

(K + L)2 = n2, (K − L)2 = n2. (A.12)

Therefore the orbit space isS2 × S2. The Poisson structure on the reduced space is

{Li, Lj} =
∑
k

εijkLk, {Ki,Kj} =
∑
k

εijkLk, {Li,Kj} =
∑
k

εijkKk. (A.13)

After computing the normal form we performT2 reduction by expressing the normalized Hamiltonian(A.8) in
terms of the polynomials(A.9). The result is

Ĥ = Ĥ2 + εĤ4 + ε2Ĥ6 + ε3Ĥ8 + ε4Ĥ10. (A.14)

After settingζ = 0 the first terms ofĤ are

Ĥ2 = 2n, (A.15)

Ĥ4 = n(aL1 − bK2). (A.16)

The coefficients for the other terms are presented inTable 2. Next we subtract the constant term̂H2 = 2n and then
divide Ĥ by nε.

In the resulting rescaled Hamiltonian, called the first reduced Hamiltonian, we make the successive linear changes
of variables

T1 = aL1 − bK2, T2 = aL2 + bK1, T3 = L3,

V1 = aK1 − bL2, V2 = aK2 + bL1, V3 = K3, (A.17)
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and

x1 = 1
2(T1 + V1), x2 = 1

2(T2 + V2), x3 = 1
2(T3 + V3),

y1 = 1
2(T1 − V1), y2 = 1

2(T2 − V2), y3 = 1
2(T3 − V3). (A.18)

The variablesx, y satisfy

x2
1 + x2

2 + x2
3 = 1

4n
2, y2

1 + y2
2 + y2

3 = 1
4n

2. (A.19)

They span the algebra so(3) × so(3) = so(4). The Poisson structure is given by(3).
The lowest order non-trivial term of the first reduced Hamiltonian becomes

H1 = Ĥ4 = x1 + y1. (A.20)

We defineHj = Ĥ2j+2. Notice thatHj is a homogeneous polynomial of degreej in (x, y, n). The first reduced
Hamiltonian can be written in terms of(x, y, n) variables as

H = H1 + εH2 + ε2H3 + ε3H4, (A.21)

whereH1 = x1 + y1, and the rest of the terms can be computed straightforwardly fromTable 2using (A.17)
and (A.18).

Appendix B. Full reduction and reconstruction

B.1. Second reduction

We recall here that Keplerian normalization creates an approximateS1 axial symmetryΦ (6) on S2 × S2.
The algebraR[x, y]Φ of Φ-invariant polynomials in the variables(x, y) is generated by

π1 = x1 − y1, π2 = 4(x2y2 + x3y3), π3 = 4(x3y2 − x2y3),

π4 = x1 + y1, π5 = 4(x2
2 + x2

3), π6 = 4(y2
2 + y2

3). (B.1)

These invariants satisfy

π2
2 + π2

3 = π5π6, π5 ≥ 0, π6 ≥ 0. (B.2)

From(A.19) we have

π5 = n2 − (π1 + π4)
2, π6 = n2 − (π1 − π4)

2. (B.3)

Sinceπ4 = c, the second reduced phase spaceMn,c is the semi-algebraic variety defined by

π2
2 + π2

3 = (n2 − (π1 + c)2)(n2 − (π1 − c)2), |π1| ≤ n − |c|. (B.4)

Notice that in the spaceR3 with coordinates(π1, π2, π3) the spacesMn,c andMn,−c have the same representation.
The Poisson structure onMn,c is

{π1, π2} = 2π3, {π1, π3} = −2π2, {π2, π3} = 4π1(n
2 + c2 − π2

1). (B.5)

ExpressingH̃ (10) in terms ofπ1, π2, π3 andπ4 = c gives the second reduced Hamiltonian

Ĥ = Ĥ1 + εĤ2 + ε2Ĥ3 + ε3Ĥ4, (B.6)
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Table B.1
Coefficients of the terms of the second reduced HamiltonianĤ

Coefficients of terms of 72̂H2

π2 −18a2

π2
1 9 − 18a2 − 18a4

c2 −51+ 42a2 − 18a4

n2 −17+ 38a2 + 6a4

Coefficients of terms of 288̂H3

π2c 136a2 − 16a4 − 12a6

π2
1c −86+ 168a2 − 10a4 + 192a6 − 102a8

c3 250− 304a2 + 122a4 + 56a6 − 34a8

n2c 250− 576a2 + 178a4 − 32a6 + 18a8

Coefficients of terms of 13 824̂H4

π2
2 −1020a4 + 48a6 + 144a8 − 144a10

π4
1 −303+ 1252a2 − 304a4 + 996a6 − 3792a8 + 1500a10 − 1500a12

π2n
2 −4908a2 + 8104a4 + 2004a6 + 56a8 − 108a10

π2
1π2 1140a2 − 2104a4 − 1412a6 + 264a8 − 660a10

π2
1n

2 2970− 11 048a2 + 8528a4 − 1064a6 + 7640a8 − 1416a10 + 1032a12

π2
1c

2 8910− 19 896a2 + 8016a4 − 9144a6 − 16 608a8 + 27 624a10 − 9000a12

π2c
2 −13 092a2 + 6136a4 − 996a6 + 1256a8 − 612a10

n2c2 −35 630+ 91 624a2 − 54 800a4 + 6888a6 + 5784a8 − 2568a10 + 1032a12

c4 −17 815+ 28 628a2 − 16 320a4 − 1292a6 + 240a8 + 3676a10 − 1500a12

n4 −3563+ 13 252a2 − 11 472a4 − 860a6 − 1848a8 + 44a10 − 44a12

where

Ĥ1 = π4 = c. (B.7)

The coefficients of the termŝH2, Ĥ3 andĤ4 are given inTable 3.

B.2. Discrete symmetries and full reduction

We can take into account the discrete symmetries of the original system in order to simplify our analysis. The
original Hamiltonian(1)is invariant with respect to a group of discrete symmetries that consists of the transformations

g1 : (Q1,Q2,Q3, P1, P2, P3) �→ (−Q1,Q2,−Q3, P1,−P2, P3),

g2 : (Q1,Q2,Q3, P1, P2, P3) �→ (−Q1,Q2,Q3,−P1, P2, P3),

g3 : (Q1,Q2,Q3, P1, P2, P3) �→ (Q1,Q2,−Q3,−P1,−P2, P3). (B.8)

Eachgi generates aZ2 subgroup of the full symmetry group, which is isomorphic toZ2 × Z2.
The induced transformations on the second reduced spaceMn,c are

g1 : (π1, π2, π3) �→ (−π1, π2, π3), g2 : (π1, π2, π3) �→ (−π1, π2,−π3),

g3 : (π1, π2, π3) �→ (π1, π2,−π3). (B.9)
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Fig. 8. (a) Reduced phase spacesM0
n,c. (b) Fully reduced phase spacesV 0

n,c.

The orbit spaceM0
n,c of the Z2 action generated byg3 is the image ofMn,c under the mapR3 → R2 :

(π1, π2, π3) �→ (π1, π2) (Fig. 8a).∂M0
n,c is the boundary ofM0

n,c or equivalently as the intersection ofMn,c with
the plane{π3 = 0}.

The orbit spaceVn,c of theZ2 action onMn,c generated byg1 is the image ofMn,c under the mapR3 → R3 :
(π1, π2, π3) �→ (w, π2, π3), wherew = n2 − π2

1. Thefully reduced spaceV 0
n,c can be defined equivalently as

• The orbit space of theZ2 action onVn,c generated byg3. It is the image ofVn,c under the mapR3 → R2 :
(w, π2, π3) �→ (w, π2).

• The orbit space of theZ2 action onM0
n,c generated byg1. It is the image ofM0

n,c under the mapR2 → R2 :
(π1, π2) �→ (w, π2).

• The orbit space of the fullZ2×Z2 action onMn,c. It is the image ofMn,c under the mapR3 → R2 : (π1, π2, π3) �→
(w, π2).

Finally, V ∗
n,c is the boundary ofV 0

n,c less the line segment{(n2, π2) : −c ≤ π2 ≤ c}. Points onV ∗
n,c satisfy the

equation

π2
2 = (w + c2)2 − (2nc)2. (B.10)

The fully reduced Hamiltonian̄Hc onVn,c is obtained fromĤ (B.6)(see alsoTable 3) by the substitutionπ2
1 = n2−w.

At this point let us complete the argument used inSection 1to explain why we need to compute the four-jet ofH̃
in order to lift the degeneracy of the Hamiltonian Hopf bifurcation. The discrete symmetry groupZ2 × Z2 imposes
certain restrictions on the types of terms that can appear in the fully reduced HamiltonianH̄c. The allowed terms
appear inTable 4, whereH̄c,j is the part ofH̄c that comes from̃Hj, i.e. the part ofH̃ of degreej. It is clear from the
table that if we consider̄Hc only up toH̄c,2 as it was done in[10], or even up toH̄c,3, its level curves will appear in
the plane(w, π2) as straight lines. In order to correct this we need to go toH̄c,4, i.e. up to fourth degree terms iñH.

Table B.2
Terms compatible withZ2 × Z2 symmetry

Part ofH̄c Allowed terms

H̄c,1 c

H̄c,2 w, π2, c2, n2

H̄c,3 wc, π2c, c3, n2c

H̄c,4 wπ2, π2
2, π2c

2, π2n
2, w2, wc2, wn2, c4, n2c2, n4
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B.3. Reconstruction

SinceV 0
n,c is the orbit space ofM0

n,c with respect to theZ2 symmetry generated byg1 each point ofV 0
n,c\{w = n2}

lifts to two points inM0
n,c; while each point on the line{w = n2} lifts to one point.

M0
n,c is the orbit space ofMn,c with respect to theZ2 symmetry generated byg3. Therefore, each point in the

interior ofM0
n,c lifts to two points inMn,c with opposite sign ofπ3; while the points on∂M0

n,c lift to one point.
Each point ofMn,c lifts to an S1 orbit (a topological circle) onS2 × S2. The only exceptions are the singular

points ofMn,0 which lift to only one point onS2 × S2, and the single pointsMn,±n, which lift to two single
points. Specifically, the singular point ofMn,0 with coordinates(π1, π2, π3) = (n,0,0) lifts to the pointp+ =
n/2(1,0,0,−1,0,0) while the point(−n,0,0) lifts to the pointp− = n/2(−1,0,0,1,0,0). Each spaceMn,±n

consists of a single point with coordinates(π1, π2, π3) = (0,0,0). These lift to the pointsz± on S2 × S2 with
coordinatesz± = n/2(±1,0,0,±1,0,0). The pointsp± andz± are fixed points of theS1 actionΦ (6) onS2 × S2

and therefore are equilibria of anyΦ invariant Hamiltonian onS2 × S2.
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