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Global bending quantum number and the absence of monodromy in the HCN+ CNH molecule
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We introduce and analyze a model system based on a deformation of a spherical pendulum that can be used
to reproduce large amplitude bending vibrations of flexible triatomic molecules with two stable linear equilib-
ria. On the basis of our model and the recent vibrational poteftiaChem. Phys115 3706 (2003)], we
analyze the HCN/CNH isomerizing molecule. We find that HCN/CNH has no monodromy and introduce the
second global bending quantum number for this system at all energies where the potential is expected to work.
We also show that LINC/LICN is a qualitatively different system with monodromy.
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I. INTRODUCTION A. Energy-momentum map EM

) ] ) . We study a special simple case of two degree of freedom
Action-angle variables play a central role in the descrip-systems with axial symmetry $@, such as the spherical
tion and analysis of internal dynamics of atomic and molecUpendulum and the pendular model of the HCN molecule.
lar systems. Such systems often have important integrabfghese systems can be described using two first integrals,

approximations for which these variables can be introducednomentum lcorresponding to the S@) symmetry ancen-

Particularly many approximations are obtained for the limitergy H The functions(L,H) define theenergy-momentum
of small oscillations about an equilibrium or a periodic orbit. map

If the frequencies of oscillations are incommensurate, i.e., in . 5

the absence of resonances, such oscillators can be described EM:R*— R%(a,p) — (L(a,p).H(q,p)) = (£,h).
very efficiently using a particularly simple and, arguably, the
most popular version of action-angle variables and corre

) . '~ =dulum, which we discuss later in Sec. Il A. The image of this
sponding quantum numbers. Thus molecular vibrationak,,, is shown in Fig. 1, where the shaded area represents
Hamiltonians are commonly expanded in the so-called Dun-

ham series in such action-angle variables. regular 2—tqri. The joint spectrum of operatcﬁt_s,H) of the .
In a general situation, actions:an be defined onlipcally corrgspondmg quantum system forms a lattice of points in

as smooth real single-valued functioki&) of the first inte- "€ image of th&’A map, see Fig. 2.

gralsF, see Refs[1-3] and Appendix D of Ref[4]. Under

certain general conditions these local actidfis) can be

extended to the whole domain of valuesFof5]. However,

different topological obstructions can make definition of ~We like to understand how the fibers of oM fit to-

such global actiongmpossible[6]. Monodromyis the sim- ~ gether in the phase space. To this end we take a closed loop

plest obstruction, it can be found in integrable systems witH in the domain of regular values 6\ (see Fig. }, choose

only two degrees of freedom. an initial point onI” and define the coordinates on the corre-
After mathematicians provided several concrete examplegPondingl? fiber or theperiod lattice(see more in Appendix

of systems with monodromy, notably tepherical pendulum A 3 @. We redefine these coordinates continuously while

[7.8], physicists followed with discovery of monodromy in a moving alongl” and compare the final and the initial coor-

number of fundamental atomic and molecular systems: théinate system after taking a tour dhthus finding the 2

hydrogen atom in orthogoné&trossegl electric and magnetic

As an example, consider ti&M map of the spherical pen-

B. Monodromy

fields [9], rotating molecules in external electric fig]dlO], h (energy)

rotating linear triatomic moleculeq11], systems with \ 2 /

coupled angular momentgl2], and the H system[13]. r periodic orbit S}
Flexible or “floppy” triatomic molecules with linear equilib- i once pinched 2-torus
rium configuration is another candidate for a system with RP? regular 2-torus 'ﬂ-ﬁl,h)

monodromy. In this paper we analyze HCN, one of the most

studied such molecules. A brief mathematical introduction to 2 3 0 1 2 | (momentum)
monodromy can be found in Appendix A. S

-1 point {pt}

FIG. 1. Image and fibers of the energy-momentum g of
*Electronic address: sadovski@univ-littoral.fr the spherical pendulum; see Chap. IV.3 of Réi.
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FIG. 3. Spherical pendulurieft) and flexible triatomic mol-
ecule HCN(right) with fixed bond lengths H-CNR), C-N (r) and
bending angley.

Energy 4 [a.u.]

(2) Compute the joint quantum spectrum, i.e., the eigen-

values(L) and(H) of quantum operators andH. If D is too
small, reduce the value df.

(3) Take a closed contodr which passes the regular val-
ues of EM, specify the direction of".

(4) Take the initial-final pointy,=vy; on I', define the
elementary cell aty,.

FIG. 2. Energy-momentum diagram for the spherical pendulum. . . .
Dots show quantum levels, bold solid lines represent relative equi- (5) While moving alongl” in small steps, follow the con-

libria, opaque circle marks the positighh)=(0, 1) of the unstable tinuous eVOIUt'On of the cellcf. Fig. 15, “Qh)- L
(“upper’) equilibrium. Rectangles show successive consistent defi- (6) After making a tour, compare the final and the initial
nitions of local quantum numbers along the contour which goe<€ll @nd find the monodromy matrix. .
around(0,1). Both axes are in atomic units but the quantization In this simple form the elementary cell method is ready
step is#i/8. for the coming revisions of undergraduate quantum-
mechanics courses. Despite its simplicity the method is
x 2 monodromy matrix MIf the coordinate systems differ mathematically rigorous: relation between the period lattices
' and elementary cells becomes exact in the limitfief: 0

i.e., if M is not unity, our system has monodromy and defin- PSR . . s
- . - : (when the cells become infinitesimand using the Einstein-
ing global action-angle variables and respective global quanl(ramers-Brillouin (EBK) quantization techniques we can

tum numbergover the domain enclosed by is impossible. . ! .
% Y P work analytically. At the same time, we have a very rapid

and efficient way of study of real molecular systems where
C. Quantum lattice method numerical computations are unavoidable.

Momentum [ [a.u.]

Using the local correspondence between the classical pe-
riod lattice and the vectors defining teéeementary celbf a
sufficiently fine quantun€M lattice (see Appendix A 2
we can replace continuation of period lattices for continua-

tion of elementary cells. Since the cells are small, they can Spherical pendulum can be represented as a motion of a
be easily extrapolated to the neighboring cédlse Appendix  particle(of massm) constrained to a sphefef radiusR) and
A 2 c, Fig. 15, righ}. placed in a linear gravitational fieldirected conventionally

In particular, we can finduantum monodromiB,14]. Af-  along the vertical axis see Fig. 3. This is very similar to the
ter completing a tour ol which we already used above, we isomerizing HAB/ABH system, where the proton H can go
compare now the vectors defining the initial and the finalaround the diatom fragment AB. Like the spherical pendu-
elementary cell and obtain the inverse transpose monodromniym, the molecular system has axial symmetry and two linear
matrix (M~%)*. More generally, elementary cell continuation (i.e., axially symmetrigequilibrium configurations HAB and
defines uniform quantum numbers for continuous families ofABH.
states. If such definition can be expanded to the whole area

of regular values of th€ M, then we talk of global quantum
numbers. A. Monodromy of spherical pendulum

Zhilinskif interpreted quantum monodromy againt de- On the example of spherical pendulum, we introduce rela-

fect of the lattice of quantum states and deVElOped the fOI‘tive equ”ibria, energy-momentum map, monodromy_ Details
lowing simple method of the elementary cell diagrams whichcan be found in Appendix B.

is similar to the methods used by crystallographers. We use
this approach later throughout the paper. As an example we
show in Fig. 2 how to find monodromy of the quantized
spherical pendulum. The image of the M map of the spherical pendulum is
(1) Define the are® of interest in the image of thEAM  shown in Fig. 1. The domaii of regular valuegshaded
map, possibly the whole image, and find singular values ofireg is bounded from below. The critical poitt,h)=(0,
EM. -1) corresponds to the stab{lower”) equilibrium point of

II. PENDULUM MODELS OF FLEXIBLE TRIATOMIC
MOLECULES

1. Fibers of theEM map, monodromy
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FIG. 4. Possible choices of quantum numbers for the spherical pendigénto right): “vibrational” n, “rotational” j, and “mixed”
n+¢; cf. Fig. 2. Fine solid lines join states with the same quantum number which is given at the end of the sequence.

the system; other points in the boundary correspond to rela- These two choices are widely used in analogous molecu-
tive equilibria, see AppenxliB 1 for more details. lar systemg10,15. In the case of the spherical pendulum,

We are primarily interested in the other critical value neither can be continued beyond the transition energy region
(0,1). This value is isolated withii\ and lifts to apinched  of h=1 if we want our quantum numbers to be extrapolated
torus whose pinch point is the unstab{gupper” equilib- by smooth function®f (¢,h), a necessary requirement for
rium. Consequently, the system has monodromigee Ap-  physically meaningful global quantum numbers. Of course,
pendix A 3 B. Quantum energies of the spherical pendulumas a matter of convenience all wave functions can be labeled
can be computed in the standard way, see Appendix B 4ontinuously using (or n) if the labels are chosen differently
Figure 2 presents the resulting lattice of quantum states anfdr |>0 andl <0. The energy of the states in the resulting
illustrates quantum monodronty °) of the system. multiplets does not depend smoothly on such labels and ex-
hibits the so-called “kink[15]. The kink occurs if we for-
mally continuej multiplets toh<<1 as shown in Fig. 4, cen-
ter. Same happens topolyads as we try going above=1.

Monodromy prevents defining the global second quantunuch [¢-like behavior should not be attributed directly to
number for the entire lattice of quantum states of the spheritionodromy but rather to the particular labeling system of
cal pendulum system. Using the elementary cell continuatio§uantum solutions.
method in Sec. | C. we can of course define smooth se-
quences of states, but we will fail when we try to extend
them to the whole lattice. This is illustrated in Fig. 4.

In particular, the vibrational quantum numberworks Without translations the total number of degrees of free-
correctly near the dynamical limit of the 1:1 resonant oscil-dom of the isomerizing triatomic molecule, such as HCN/
lator for h=~ -1 (cf. Appendk B 1 ¢). Above the stable equi- CNH, is six. The pendulum model in Fig. 3 deals with only
librium with €=0 andh=-1, we see constant-multiplets or  two of these degrees. Molecular physicists like describing
polyadsof n+1 levels whose energy is also nearly constanthese pendular degrees as “bending” using the bending angle
(Fig. 4, lefy). Note that levels with eveiiodd) value of € v (see Fig. 3 and ApperndiB 2 @ and “rotation” about the
belong to even(odd) n polyads. The values of within a  axis of the CN diatom using the angular momenténThe
polyad go by two so thg|=n,n-2,...,0 whem is even other four degrees of freedom are the two stretching modes
and|¢|=n,n-2,...,1 whem is odd. Due to this latter prop- described by distancasbetween C and N an& between H
erty the points of the lattice ne&f=0,h=-1) form a check- and CN(see Fig. 3 and rotations of the molecule as a whole
erboard pattern. In order to apply the elementary cell techabout axes which are roughly orthogonal to the CN axis.
nique in Sec. | C in terms of quantum numberand ¢ we  These extra degrees present, obviously, the major difficulty.
should choose a “double” cell with¢=An=2. The order-of-magnitude difference of massgsandmgy

Similarly, near the dynamical limit of free rigid spherical and the relative rigidity of the CN bond make it possible to
rotor whereh> 1, the rotational quantum numbgis a natu-  consider an approximate separation of the two degrees of
ral choice(Fig. 4, centex. In this region we can segmul-  freedom associated with the overall rotation. Ignoring these
tiplets with 2 +1 levels of nearly the same energy. The val-two degrees, and assuming constant bond distaReeglr,
ues of ¢ go simply as|¢|=j,j-1,...,0; the lattice has a as shown in Fig. 3, right, makes HCN a good candidate
straightforward rectangular pattern and we can define aystem for a “molecular spherical pendulum.”
single cell withA¢=Aj=1 for extending the local quantum The most obvious difference between the spherical pen-
number definition and monodromy computation. dulum and molecules is the potentil For the spherical

2. Quantum numbers

B. Flexible molecules as pendula
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FIG. 6. Inverse images of the points in the upper boundary
[a_,a,] of leaf B of the EM map image of the quadratic spherical
pendulum in Fig. 5.

1 1 1 1 ; 1 1 1 1 _ 1 _ _ 1
%4 3 2 1 o 1 2 3 4 ha=Co=3C=C1=0, Ng=Co—3Cz+Cy,

Angul It .
ngularmomentum.} where parameters can be chosen to mimic the HCN/CNH

FIG. 5. Image of the classical energy-momentum riight and ~ SyStem so thad andB correspond to HCN and CNH,

dark shaded argdor the quadratic spherical pendulum defined in )
Sec. Il C. Co=Cy + 5C C1= 2.5, Cr= 18.5.

pendulumV=z, the lower equilibrium is stable and the upper ~ Relative equilibria and other singular fibers of the1
equilibrium is unstable. In moleculdsis more complicated. map of this new system can be analyzed in the same way as
In particular,both linear equilibria of HCN/CNH are stable. for the original spherical pendulum, see Appendix B for de-
In order to account for such qualitative difference we deformtails. The image of th& M map has nowtwo leaves. Our
the potential of the spherical pendulum and show in Sec. Il Garticular example witt, < hg is illustrated in Fig. 5. In this
and Appendi B 1 athat the deformed system with two figure, the larger leah represents both the vibrational states
stable linear equilibria and one new unstable “bent” equilib-jocalized near theA minimum and rotationa(delocalized
rium still has monodromy. The other important difference isstates, while the smaller le& represents vibrational states
the “shape” of the system. While in the spherical pendulumocalized near th® minimum. The leaves andB are glued
Ris fixed and the particle moves on a sphere, in the HCNélong the segmerie_, a.] of singular values oE M which
CNH moleculer dependsconsiderablyon the bending angle jioq engirely insideA. Note thatB andA overlap in the image

yandH moves on a deformed sphere. We study the influenc ; » :
of the shape on monodromy in Sec. Il D and Appendix B 3.& the EM map so thaB looks like an "island.” The points

The looseness of the bond between H and CN results n;il;rt1 (-, ) lift to_ the singular f|be.r which has.the. topqlogy of
only in the shape effect, which modifies the kinetic energy o WO cusped tori glued "%"0”9 their cusped pngupal circle, s:,ee
the pendulum system, but has further dynamic consequenc&d- 6. I€ft; the cusp pointa.. correspond to a “cusped torus
of coupling the large amplitude bending motion of the pen-IN Fig. 6, right. Points on the lower boundaries of leades
dulum and the oscillation of the pendulum leng@nlf the ~ andB represent relative equilibriecf. Sec. 1l A 1); the two
frequency of this latter is in a low-order resonance with theSingular apexes of these boundariestat0 correspond, of
pendular frequency, the stretching and bending degrees @Purse, to the stable equilibrium points.
freedom are inseparable. The empiric rule is that the The singular segmeifitr_, «,] exists forc,>c,>0; when
bending-to-stretching frequency ratio is abdytas in the —Cc;—¢;>0, it shrinks to a point. Th€ M map of the system
most known example of the Fermi resonance in,Clhe with 0<c,<c; is qualitatively the same as that of the
same resonance is very important in many flexible mol-spherical pendulum witlt,=0. Such system has the same
ecules, in particular, in HCP and HCIO. Such systems cannahonodromy as the spherical pendulum.
be analyzed on the basis of the pendulum model. On the It is clear that a slightly deformed system with just
other hand, HCN/CNH has no strong resonag8ec. Il)  abovec,; also has the same monodromy. To find this mono-
and this system can indeed be analyzed using an appropdromy we should make a tour along a contduwhich lies
ately deformed spherical pendulum. in the leafA and goes arounidv_, .. ]. The quantum latticé
will therefore have a segment defect in place of a point de-
fect as illustrated in Fig. 7. Note that in Fig. 7 we should well
We deform the spherical pendulum by replacing the podistinguish points of the\ lattice (filled circles from those
tential termz in Eq. (B1) for a quadratic potential of the B lattice (empty circle$ in order to continue the el-
(1) ementary cell of theA lattice in the overlap region of the
EM image. The cell can, obviously, be continued using only
so that both linear equilibria of this system are now stablethe A points.(In classical terms, we should remain on e
We call A the lower(z=-1) andB the upper(z=1) equilib- leaf.) The latticesA andB join along the segment but there is
rium. Their energies are no passage between them, in the sense that we cannot define

C. Quadratic deformation of spherical pendulum

V(2) = cyz- 3,22 + ¢y,
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FIG. 7. Quantum and classical energy-momentum diagram for F'C- 8. Image of the classical energy-momentum rstaded
the quadratic spherical pendulum defined in Sec. Il C. Rectangle@r€a$ of the quadratic aspherical pendulum with aspherieity;
show successive consistent definitions of local quantum number@Nd guadratic potential constartg ¢y, ¢, used in Sec. Il C; cf.
along the contour which goes around the line of singular values of19s- 5 and 10.
the main leafA, cf. Fig. 5. Both axes are in atomic units but the
quantization step i%/8. small e except, of course, for the two “cusped tori” which

disappear. Since there is no longer a finite segment about

the second smooth global action and corresponding quantuthich our elementary cell can make a tour, such nonconvex
number to label uniformly the quantum states in the twosystem has no monodromy.
lattices; neither can we define such global action and quan-
tum number for theA lattice. Our main question is whether
the quantum states of the real HCN/CNH system are orga- Il GLOBAL BENDING QUANTUM NUMBERS
nized in the similar fashion and specifically, whether this AND ACTIONS IN HCN

system has monodromy.
Y Y Analysis of the early energy surfaces of the isomerizing

D. Shape correction HCN/CNH system[16,17 shows that this system is some-
) ) ~what exceptional: it has no prominent low-order stretching-
In flexible molecules such as HCN/CNH or LINC/NCLI, pending resonance. Consequently, we can average over the
the dlstanlceR tends to be smaller in the. configuration  gscillations ofR andr and obtain a pendulumlike reduced
wheny=;m. We can model this by using system. More concretely, we decouple the two stretching de-
_ o grees of freedom of HCN/CNH from the pendular motion by
R() =Ro(l-esir ), @ applying canonical perturbation theory to a reaction path
where I> >0 is theasphericity parameterOf course, any Hamiltonian. A classical version of this procedure was devel-
such deformation of the spherical shape of the penduluroped in Refs[18,19. We use the quantum procedure de-
complicates the expression for the kinetic energy. For relascribed in Ref[20], where the improvement ov¢i8,19 is
tive equilibria, however, the modification is straightforward. in correct handling of vibrational angular momentum for
The concrete computation in Apperd 3 for the shapé2)  large values of.
shows that at small asphericitw% the EM diagram of the The starting point of our present calculations is the most
system is qualitatively the same as that in Fig. 7. For lagger recentab initio potential-energy surface of HCN/CNH by
the shape is no longer convex and this modifies qualitativelyfennyson and co-workef&1,22. According to this surface,
the EM diagram(see Fig. 8 the cusp pointsy, disappear the CNH linear equilibrium configuration is located at about
and the singular segment becomes a line of singular value$300 cm?! above the HCN linear equilibrium configuration
Comparing to the small asphericity case in Sec. Il C ancand the two equilibria are separated by a barrier at about
Fig. 5, we see that we now hawkree leaves which we 16 800 cm, see Fig. 9, bottom. This potential is qualita-
denote byA’ for oscillations localized near th& minimum, tively similar to the quadratic potential in Sec. Il C. Figure 9
B for the oscillations localized near tlB2minimum, andA” also shows the variation afandR along the minimum en-
for the delocalized bending motion. The leaves are glueergy path(MEP) for the potentia[21]. We find that in good
along their common boundary which is the upper boundaryagreement with our intuitive model of the rigid CN diatom
of B andA’ and the lower boundary &". As before A’ and  (Sec. Il B the CN distance changes negligibly. At the same
B overlap in the image of M. All leaves are unbounded time, R decreases significantly in the configuration. As a
from above. All fibers remain the same as in the case ofesult, H moves on a peanutlike@nconvexsurface.
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of the HCN/CNH system computed for tlad initio potential sur-
face in Refs.[21,23. Atoms C, N, and H are sized according to
their covalent radii.

FIG. 10. Image of the energy-momentum niapaded area®f
the isomerizing HCN/CNH system computed for pure bending
states withy;=13=0 using the classical analog of the Hamiltonian
3.
1. Reduced effective Hamiltonian
Following Refs[18,19, the potential and kinetic energies =1, which originate from the noncommutativity of &gsand
of the system are first expanded in the neighborhood of thgye gitferential operators in Eq3), and by replacing? by

reaction path(or MEP), which leads from HCN to CNH 5 classical analog in EGB5). The image of th&€M map of
through the saddle; the two stretch coordinates are defined §e HCN/CNH system is shown in Fig. 10 for the pure bend-
deviationsr —ryep(y) and R—Rygp(y) from their values on  jng states withw; = »,=0; very similar plots are obtained for
the MEP and then rescaled to obtain the dimensionless nogther values o, and vs. As predicted in Sec. 11 D for non-
mal stretch coordinates. The expansion is rewritten in termgonyex systems, this image is qualitatively the same as that
of these coordinates. The principal virtues of this expansiomf the largely aspherical quadratic pendulum in Fig. 8. We

are (i) the optimal representation of the coupling betweenconcjude that HCN/CNH has no monodromy.
stretching and pendular modes with only few truly pertinent

relatively small explicit coupling terms and) the simplifi- 3. Computing quantum energies

cation of the Hamiltonian, which contains only powers of the .

stretch coordinates, conjugate momenta, harmonics of the Quantum energy spectrum of the reduced Hamiltokian

bending angley, and the momentum conjugate 40 in Eq. (3) is computed as beforesee Appendix B # The
The second step of the procedure consists of several cadvantage of usingd, over the full initial Hamiltonian in

nonical transformations which are aimed at separating th®ef. [22] is in the predefined value of the global quantum

stretching motion completely and introducing the two stretchnumber€=0,1,2,.... Thaesulting lattice of quantum states

guantum numbergor corresponding two classical oscillator is shown Fig. 11.

actiong as parameters. This results in an effective quantum In order to check the accuracy of our pendular approxi-

Hamiltonian of the form mation we compare our energies of the0 states localized
~ in the HCN and CNH wells, called vibrationbhnd origins
H¢(ng,n3,3,%) to the values in Tables VI and VIl of Ref21]. We reproduce
o 2 \P . the 101 origins, which go all the way up to the isomerization
=> > & j kmp NN cos y (sin 'y—> JHm, threshold and have up to 18 quanta of excitation in the bend-
ij kmp ay ing mode, with an average error of 10.4 ¢nand a maxi-

(3  mum error of 38.3 cm. Furthermore, as can be seen in Fig.
o 11, we also reproduce satisfactorily the energied f610. An
where coefficients j mp are realn; andn; are theRandr  even better agreement could be obtained by taking into ac-
stretch quantum numbers respectivelys the bending angle = count the kinetic-energy terms which are responsible for the
in Fig. 3, the exponenp is either 0 or 1,)% is defined in Eq. €2 anharmonic correction in the effective Hamiltonian.

(B8) with 8=+, and{ is called the quantum number of the

vibrational angular momentum. In this work, we computed 4. Defining the second global quantum number

H¢ in Eq. (3) after six successive transformations, its coeffi-  First of all we should specify the kind of the global quan-
cientsa; j , mp Can be obtained by contacting the authors.  tum numberclassical actiopnwhich we look for. Normally,
global actions are defined over one open connected domain
in the image of th& M map. We have three domaias, A”,

The classical Hamiltonian can be obtained from the quanandB. So we should first attempt to define the second action
tum expression in Eq3) by discarding the terms witip globally within each of the domaingRemember that in the

2. Energy-momentum mag.M
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FIG. 11. Energy-momentum diagram for the
v1=v3=0 states of the HCN/CNH system com-
puted using the Hamiltonia(8). Shades of gray
distinguish HCN, CNH, and delocalized level re-
gions respectively, cf. Fig. 10. The regions are
bordered by the energies of classical relative
equilibria shown by bold solid lines. Filled circles
show levels attributed to the HCN minimums
while hollow circles represent either CNH or de-
localized states depending on the region. A few
larger black circles mark levels assigned in Ref.
[22]. Fine solid lines join states with the same

22 quantum numbersycy, Nenws OF J, Whose values

HCN levels
CNH levels
delocalized

Energy E (103 cm'1)

0

2} ] are given at the end of the respective sequences.
1 The diagram is symmetric with respect {6
28 1 —¢, and only half of it is shown.
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modele<§ system in Sec. Il C this was not possible for the With growing energy and, the relative energy of the high
leaf A due to monodromy.If succeeded, we can try relating end of the polyads increases. Abadve: 16 000 cm?* where
these actions in order to define one unique generalized globall three domains overlap in energy, the polyads cannot be
action and the corresponding quantum number. This generatompleted ton+1 levels (lattice point3, only their high¢
ized action is a real functioff(q, p) which is two valued in  ends still exist. This is well seen in Fig. 11 where the fine
the overlap region oA’ andB, and single valued iA”. The lines connecting levels in the same polyad begin crossing
branching of the values ofF should correspond to the (from right to lef the singular value line which gives the
branching ofA” into the leavesA’ andB. The image of the common boundary of\’, A”, andB.
EM map serves similarly to Riemann surfaces in complex Rotational quantum number cannot be defined abso-
analysis. lutely because the multiplets are incompléd least within

We now define quantum numbers in each domain. Thehe energy range of Fig. 11Starting at smalk and using
natural choice of these numbers is already considered for theur elementary cell approach in Sec. | C we can only as-
spherical pendulum in Sec. Il A2. We will use two vibra- semble some levels in rotational multiplets and extend our
tional numbers,cy andngyy in domainsA” andB, respec-  definition over the whole domaiA”; our lines representing
tively, and rotational numbejrin domainA”. In Fig. 11 we  multiplets cross inevitably over the lower boundary ASf,
connect levels in the samepolyad andj multiplet by one  see Fig. 11.
line. The main result of this paper is that the three lattices of

Vibrational polyads are clearly seen in Fig. 11 at the bot-quantum states can be connected and that the connection is
tom of leavesA’ andB. At low energies, the levels in these likely to be smoothFigure 11 shows how for each rotational
polyads are practically degenerdie the scale of Fig. 1 ~ multiplet we find the two corresponding vibrational polyads
The polyad numbers can be given an absolute value startingith labels nycy and neyy, @and define the global bending
with the ground statén=0,¢{=0) at the bottom of each leaf. number
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4.8
46
44

NCLi |

42 | LINC

40

w
I

3.8
36

0 0.2 0.4 0.6 0.8 1
Bending angle y/'x

Stretch distance [bohr]

Energy E (103 cm'1)
N

FIG. 12. Minimum stretch distand® in the LINC-NCLi system
computed for theab initio potential in Ref.[24]. 11

=j= = LiNC levels
j J nHCN nCNH + 11 0- I I I NCLi IleVeISI 5 R
i.e., J=j on leafA", J=nycy on leafA’, and J=ncyp+1 on 5 10 15 20 25 30 35
leaf B, so that the full three-brancly multiplet contains Vibrational angular momentum !

2J+1 levels, see the example of=j=nycy=28 and
Nenw=27 in Fig. 11. Note that the elementary cell continu-  FIG. 13. Energy-momentum diagram for the pure bending states
ation in the region near the common boundary of the thre@f LINC/NCLi computed using thab initio potential in Ref[24].
leaves is difficult because quantum states in this regiortollow circles show levels attributed to the NCLi minimum; filled
are ”'regular and cannot be attrlbuted Wlth Certalnty to anflrcles represent LiNC levels which become delocalized states at
of the leaves. To reduce this difficulty, recall that levels in highe_r _energies; _bold sol_id lines shqw e_nergies of classical relative
the n polyads step by 2, whilg¢ multiplets contain states equilibria. Thg diagram is symmetric with respect#e-—¢ and
with both odd and ever (see Sec. Il A2 This means ©nly half of itis shown.

that if we want to connect two incomplete polyads with

guantum numbers,cy andngyy to aj multiplet, the num-  LINC/NCLI is shown in Fig. 13. Comparing to Fig. 7 we
bersnycy andngyy should be of different parity and, if we conclude that in full agreement with our prediction in Sec.
want the connected multiplet to be complete, these numH D for the case of smalk, this system has monodromy of
bers should differ by 1. Then only two possibilities are the kind described in Sec. Il C.

left, and the one we found is more logical in view that the

HCN minimum lies below the CNH one. V. DISCUSSION

The study of obstructions to global action-angle variables
IV. MONODROMY IN LiINC in molecular and atomic systems remains still at a descriptive
stage and is of interest to a limited community of mathema-
We have seen in Secs. lll and Il D that the anticipatedicians and theoretically motivated physicists. Yet the poten-
monodromy phenomenon is prevented in HCN/CNH by thetial importance of this study to a much wider audience
“excessive” asphericity of the system. In fact we have missedhould be recognized. After several important physical sys-
this phenomenon in HCN by a small margin: a rough esti+ems with monodromy have been found, our next question is
mate for asphericity giveg= (Rya— Rmin)/Rmax=0.36. It naturally: What is the principal difference of systems with
follows that we should look for a similar system with smaller global angle-action variables, and systems with monodromy,
asphericity such as the LINC/NCLi molecy®3]. The(R, y) and how can we manifest or “exploit” this difference? This
potential surface of LINC/NCLi was obtained in R¢R4]  question remains open. The answer involves expertise in sev-
for the C-N distance fixed at=2.186 bohr. According to eral fields, such as modern semiclassical theories, wave-
Ref. [24] the LINC equilibrium is the lowest in energy. Like packet techniques and corresponding experiments, geometric
in HCN/CNH, both linear equilibria of LINC/NCLi are phase theory, and others.
stable and there is no strong resonance between stretching
and bending. More importantly, since Li is much larger than
H, it stays at larger distancésand the system remaimc®n- Our present concrete study allows to state a likely propo-
vex see Fig. 12. The same asphericity estimate now givesition that the HCN/CNH molecular system without rotation
e~=0.25. can be described in terms of global quantum numbers and
We treated LINC/NCLi in the same way as HCN/CNH therefore has no monodromy. This should bring certain sat-
using sixth-order canonical perturbation theory. Sinaeas isfaction to theoretical chemists and spectroscopists, who
fixed in Ref.[24], we only had to normalize over the Li-NC have been for a long time using bending quantum numbers
vibration and define the respective quantum number. Oufor the assignment of the energy levels of HCN/CNH. The
computed band origins are in good agreement withJth®  absence of monodromy makes HCN/CNH qualitatively dif-
levels in the full quantum calculation of Ref25]. The ferent from the LINC/NCLi system which has monodromy.
energy-momentum diagram for the pure bending stateShe reason for this difference is the nonconvex shape of
(without excitation of the stretching degree of freedBjrof HCN/CNH, see Figs. 9 and 12.

A. Results
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B. Limitations project Mechanics and Symmetry in EurofdASIE), Con-

We considered a subsystem of four internal degrees dfact No. HPRN-CT-2000-00113.
freedom of the isomerizing triatomic molecules HCN and
LINC (Sec. Il B. Extending our results to the complete sys-
tem depends on whether the two excluded degrees related to APPENDIX A: MATHEMATICAL BACKGROUND
the overall rotations of the molecule can be effectively sepa-
rated. Two aspects are of major concern in this context: th?e
ratio of the energy of such rotations to that of the bendin
oscillations, and the dependence of the instantaneous iner
tensorZ on the position of H or Li. Since Li is heavier and
moves at larger distances from the CN diatom than H, thg
two systems differ substantially in both aspects and shoul
be examined individually. Thus the contribution of H To
does not exceed 15 % and we can distinguish rotations of
HCN/CNH about axes roughly orthogonal to the CN axis.

Since monodromy is relatively new to atomic and mo-
cular physics, and furthermore, since it originated in inte-
rable classical mechanical systems, we explain this concept

re with an emphasis on its relation to approximately inte-
rable (or Kolmogorov-Arnold-Moser systems and corre-
ponding quantum systems.

1. A trivial example of global actions

This is clearly not the case for LINC/CNLI. Recall that the Hamiltoniai of a K-dimensional non-
In LINC/NCLi we could not account for the N-C stretch resonantand, in particular, nondegeneratenlinear oscil-
which was frozen in the potentigR4]. This is justifiable in  |ator can be put in the Birkhoff normal forri(l4, ... ,lx),

general because the ratio of the frequency of this vibration tguhich is a formal power series in actions of individual oscil-
that of the bending mode is about 15:1. However, this fre1atorslk=%(q§+ p2) =0 with k=1, ... K. Clearly, the actions

quency is close to the energies of the NCLi states in whicly, |, ) are first integrals of the normalized system. For

we are interested. given nonzero values of actions, the trajectories of this latter
In HCN/CNH we do not prove the smoothness of thesystem fill a particulak-dimensional torus.

junction of the two families of high- vibrational bending The actiond(ls, ... ,lx) can be easily quantized using the

states and_ the rotational multiplet. We_ should furt_her stud)BOhr,s rule |k:ﬁ(nk+%) where theK quantum numbers,
this analytically for the strongly aspherical quadratic pendu-

I del(See. 11 D). More | anl  ext are non-negative integers aric=1 in atomic units. Each
lu:n rtno el( ec. ).h r?_rehlm;igr an hy, we .calr:1.no elxorapc(;—l uantum state is labeled uniquely by the set of quantum
ate to energies much nigner than shown in =1gs. 1L an umbers(n,, ... ,nyx), and the(semiclassicalenergy of the
which cover all energies where the potenfial,22 is be-

lieved to work, and by far all experimentally studied states ofState Is given byH(nl.+ 20 MKF 2)' Recall also that the
HCN/CNH. quantum wave functmnﬁnl,,__,nK(ql, ...,Ox) can be repre-

sented in the configuration space with coordinates
(qq, ...,0¢) as a standing wave with, nodes in the direction
C. Perspectives O
On the technical side, further analysis should begin with All classical and quantum states of the oscillator system
the development of consistent classical mechanical descripp this example can be represented by points in a domain of
tion of flexible molecules which is similar to the polar- @ K-dimensional spac&X, which is the image of the map
coordinate-free study of the spherical pendul#) and |:R*—R":(q,p)—1(q,p). The quantum states of this sys-
which would allow correct uniform classical normalization tem form a lattice of points

and analysis at all values &f It would be also interesting to o o o

develop the corresponding quantum description. The next g o o

step is combining this approach with the description of the I__, .

two rotational degrees of freedom. Particularly interesting in I (Ala)

this context is understanding the role of rotation and giving a

complete assignment of tha initio results in Ref[22]. whose “elementary cell” is defined by the way the quantum

Itis equally important to find the way of global analysis nympers label the states. A different choice of quantum num-
of the isomerizing triatomic molecules with pronouncedpers, for exampley;=n;, v,=n;+n, corresponds to a

stretching-bending Fermi resonance, such as HCP, HCIGjifferent cell below.
etc. From the recent analysis of a similar model system, the

1:1:2 resonant “swing-sprind26], we can expect that these

molecules have nontrivial monodromy already in the limit of ‘4 °

small oscillations about their stable equilibrium. ° (ALb)
Trivial as it may seem, the above combination of simple
ACKNOWLEDGMENTS facts about the quantum-classical correspondence at the level

of undergraduate quantum mechanics, has many ardent ad-
We thank Boris Zhilinskii and Richard Cushman for help- herents among molecular physicists and theoretical chemists
ful discussions and comments on the manuscript. D.S. isho use oscillator action-angle variables with considerable
grateful to the CNRS for making this work possible. D.S.success in the analysis of molecular vibrations and other
and K.E. acknowledge the support by the EU networksystems.
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2. Local action-angle variables

Consider a Hamiltonian dynamical system wittdegrees
of freedom defined on ak2dimensional phase spabk with
a Poisson structurg}. Our system id.iouville integrableif
we can find K independent Hamiltonian function§
=(Fy, ... ,Fx) which are mutually in involution, i.e., all Pois-
son bracketgF;,F;} vanish, and the HamiltoniaH of the
system can be expressed as a functiofFaf ... ,Fy).

a. Period lattice on regular tori

If f=(f4,...,fx) is a regularnoncritica) value in the im-
age of the integral map:M — RK defined by(F, ... ,Fy),
then by the Poincaré-Liouville-Arnol'd theorefi—3], each

compact connected component of the constant level set of

first integrals(F4, ... ,Fx) is aK torusTfK in M characterized
(labeled by the values of integralgf,,...,fx) and, of
course, by constant energif, ... ,fx).

The Hamiltonian vector field

XFi = ({QllFi}! v !{QKi Fi}v{pliFi}' e ’{pK’Fi})

of each integraF; in (Fq, ... ,Fx) defines a ﬂow<p,:i on the
torus T¥ in R?<. The Hamiltonian flows(gg,, ... ,¢F,) are

PHYSICAL REVIEW A69, 032504(2004

FIG. 14. The flow of the two vector fieldX, and X_ on a
regular 2-toru§[“ﬁyh); the flow X is periodic whileXy is not.

c. SO(2) symmetric systems with two degrees of freedom:
Classical period lattice and quantum elementary cell

In this paper, like in many of the initial studies of quan-
tum and classical monodromy,8], we consider a special
most simple situation wherl€=2 and one of the integrals in
F=(F.,F,) has a periodic flow. We will call this integral
momentumL; the flow of its Hamiltonian vector fieldk,
defines the Lie symmetry S@). The other integral can be
simply taken as the HamiltoniaH of the system, i.e., en-
ergy. The integral maj- in this case is called the energy-

not necessarily periodic. We can, however, choose specidlomentum magM,

new Hamiltonian functiongl (F), ... ,I«(F)) calledactions
whose vector fieldsx,l, e ,X,K) defineK 27-periodic flows
on T? parametrized by conjugateangle variables
(¢1,...,¢x). We say that the vector field¥, ,... X, ) de-
fine the period lattice oK. This period lattice can be ex-
tended to an open small neighborhda¢f) of f which con-
tains regular valuesf’. As a result, local action-angle
variables can be defined for all regular td]"'f, with ' in
D(f).

b. EBK quantization, local quantum numbers

Once the period lattice is defined for &llin D(f), we can
find (semiclassicalquantum energiebl(f’) on the basis of
the EBK quantization principle. Specifically, we look for
such tori TfK, on which the values of actionk(f’) equal
27h(n+ ), wherelocal quantum numbers, 0 are non-

EM:Rgp— Ripi(a,p) — (L(a,p),H(@,p),

where (q,p)=(d;,pP1,02,P»); the values ofH, L, and EM
will be denoted ad, I, and(l,h), respectively. The inverse
image(EM)™X(1,h) of point (1,h) is afiber of the integrable
foliation defined byF; singular and regular fibers corre-
spond to singular and regular valugsh). The rank of the
2X 4 matrix d(H,L)/d(q,p) equals 2 for all pointgg,p) on
regular fibers; it is less than 2 on some or all points of the
singular fibers.

When the fibers are compact, then each connected com-
ponent of a regular fibel€M)~%(,h) is a 2-torusl] . Fig-
ure 14 illustrates defining the period lattice ’Bﬁ\’h). We take
a periodic orbity of the flow of X, and launch an orbit of the
flow Xy from a pointa e y. This orbit returns toy at point
a’ #a after timeT(l,h) called period of first return As a
coordinate ony we use the angle, €[0,27) conjugate to

negative integers and correction constantaire often called | The distanced(l,h) =, (a') - ¢, (@) betweena anda’ is
Maslov indexes. All simple principles of quantum-classical .gjjedrotation angleor rotation numberit gives the “twist”

correspondence that we summarized in Appendix Al can bgs the flow Xy.
now transferred to the present system restricted to the valu

f in D(f).
As in the simple exampleAla) and (Alb), coordinates

in D(f) can still be given by local actions which are smooth

functions of the integrals. However, we usually label quan-
tum statedlirectly by the expectation valugg) of the inte-
grals and we use these values as coordinatd3(f (and
globally in the whole image of the mdp). In such natural
coordinates, the simple rectangular lattiggla) becomes

smoothly distorted. The nodal patterns in the original con-
.,0x) become also whosecolumnsdefine the period lattice vectors. Neither the

figuration space with coordinatesy, ..

The period lattice at on Tﬁyh) has a basis

?§(,1(a) ,X,Z(a)}, where

X,@y (XL(a))
<X.2<a>> i@ ) (A2e)
Here we use the 2 2 period lattice matrix
1 (27 -0(,h)
("“FZT( 0 T(h ) (A2b)

more intricate since they now follow projections of the flow functions® and T nor the basis depend on the choiceaof

of Hamiltonians(l4, ... ,lx).

2
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h 0 0 o0 o h —O- 1 0
I, h+27h/T ° o T X X
( n/o) 22"1:10 | (xl>:a—|2a—|2(L>'
| H
wh z 5 Z & 2 JL JH
o
(I+h, h+hO/T) 0’0 ° ‘l’ | Comparing this to Eq(A2b) gives

O _a, T _il

FIG. 15. Example of the local lattice of quantum states in a -— , .
27 JL 27 JH

domain of the regular values of the energy-momentum &&p of

an S@2) symmetric system with two degree of freedoms in Appen-
dix A 2 c. Left panels show the initial “germ” cell; the right panel
illustrates propagating this cell in order to define quantum number
over a larger domain.

To find the elementary cell of the quantum lattice, we can
pow use

(C) T
A|2=__AL+_AH, AlJ_:AL,
Rotation numbe®(l,h) is a realmultivaluedfunction of 2m 2m
(I,h). However, we can always find a sufficiently small openor simply
neighborhoodD(I,h) which consists of regular values of
EM, and whereB(l,h) can be defined uniquely so that, for (Al3,Alp) = (AL,AH)A| 1.
example, 6< 0|y <27 This defines the period lattice
(A2a) and (A2b) and locally over the whol®(l,h). After ~ Equation(A3) follows.
integration, it also defines the corresponding actidndl,)
on D(l,h). 3. Defining global action-angle variables

Provided that the volume dP(l,h) is sufficiently large We continue discussing the particular case introduced in

(compared t0h?), quantizing(ly,1,) produces a regular lat- Appendix A 2 c. The reader familiar with basic fiber bundle

tice of quantum states iB(l,h) illustrated in Fig. 15. The concepts has already noted that our ngapt defines a lo-

elementary cell of this lattice is related to the definition of o4y trivial 2-torus bundle over an open digk!,h) in R2.

t/r;?:tfr(;a:/vﬁfgko?jelﬁggethg cEeCIKIﬁ(;\ZSa)s.hEC\)/vzni?\ tl?iz t"l"g tl’:f?'swelndeed, local action-angle coordinates connect all fibers
. i) L] V“2 1 H ! !

step eithern; or n, by 1 (so that the respective classical Ty of this bundle W'tmz ") e D(l,h so that I9cally the

tion then the topology of the whole bundle is trivial. Below we
discuss several less or more constructive ways of verifying
Al An, this [27]. After reviewing the phenomenon of monodromy,
(Ah) = (Aﬁ,m)‘l(m )h, (A3)  we turn to our main objective—justifying the elementary cell
2

method which we rely upon in the main body of the paper.

where the vectors are given by the columns of the inverse

. ; a. Analytic study of period lattices, monodromy
transpose matrid; i, times#.

To verify Eq. (A3) note that local actions, and I, are The method of analytic continuation of period lattices was
smooth functions of.(q, p) andH(q,p); in our case we can detailed by_ Cushmap,7]. Fol!owmg the standard_ approach
usel,;=L. The vector fields in EqA2a) are to uncovering topology of a fiber bundle, we dgfme a closed

loop I' which passes through regular valugg) in the im-
X, =X, X,=VIpJ, age ofEM (see Fig. 1. We take a pointly,hy) e I', define

the period lattice as explained in Appendix A 2 ¢ and Eq.
(A2a) and (A2b), and then attempt to continue this period
lattice for all consecutive point$l,h) e I' while moving
alongI'. When we come back to the original poiig,h;)

where

00-10 =(lg,hg) of the loop, we compare the initial and final period
v <_L__> _(oo o0 -1 . Igttices given by matriced, n, andA, p). If these lattices
dgy 9y dpy 9P, 10 0 O differ and
01 0 O
MA('Ovho) = A(llvhl) !
For,(L(g,p),H(g,p)) we compute where the monodromy matriM is not unity, then the topol-
ogy of the bundle is nontrivial and the actions we used to
X, = (‘?_"fl VL + a1 v H>j= ‘9_|2xL + ‘9_|2xH, define our Iat_tices are not globgl. o
2 \gL dH aL dH At the origin of monodromy is the possibility for the ro-
tation number® in Eq. (A2b) to jump byk2s after our tour
and consecutively on I so that at the end point we have
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L=[r Opl,=xp, — ypx (B2)

Mathematical analysis of spherical pendulum can be found
in Chap. IV of Ref.[4]. The leitmotiv there is “no polar
coordinates.” We like to give an idea of why and how this is
done without polar coordinates.

FIG. 16. Two possible plots of a pinched torus; cf. Chap. IV.3,

Fig. 3.5 on p. 163 of Ref4]. Both representations are equivalent in 1. Energy-momentum map
the four-dimensional phase space. We explain how to find the image and fibers of ti#1
map of the spherical pendulum systéhRig. 1) directly from
O(lg,hg) = O(l4,hy) + k277, Egs.(B1). Alternatively, this can be done after reducing the
axial symmetry, see AppendB 2 and Ref[4].
The matrixM does not depend on the choice Iaf but de- The integral fibration of the spherical pendulum system

pends, of course, on the choice of the basis. In the basiefined in Eq(B1) can be analyzed using thex4 Jacobian
(X,l,x|2) defined by the initial IatticeA“O,hO) in Eq. (A2Db), matrix  oF/9¢, where F=(L,H,r,r-p) and ¢
this matrix equalsA*MA=(§ 7). We say that our system =(X,¥,Z,Px,Py,P,). We compute the rank of this matrix. Spe-

has monodromy. cifically, we find all critical pointsé, of F where this rank is
less than 4 and then compute the corresponding critical val-
b. Geometric monodromy theorem ues(L(&ir) ,H(&rip) of the EM map.
Cushman and Duistermag8] proved that global action- a. Equilibria and relative equilibria

angle variables over a punctured open dixi,0)\(0,0) of

regular valueg!,h) of the EM map donot exist if (0,0) is Critical values(0,1) and (0,-1) of the £M map of the

an isolated critical value of thé\M map which corresponds SPherical pendulum system have rank O and correspond to
the upper unstable equilibrium wittx 1 and the lower stable

to the singular fiber called pinched torus. As shown in Fig.” = “FF ) X " .
16, this singular fiber is a torus with one basic cycle con-€auilibrium with z=-1, respectively. Critical values with

tracted to a point. The point is an unstable equilibrium of the_rank 1 lft tq th.e relativg equilibrig which are periodic tra-
system, while the rest of the fiber corresponds to the holeCtories coinciding with the orbits of the axial symmetry
moclinically connected stable and unstable manifolds of thi@ction, i-€., the orbits of the flow,_ of the angular momen-
equilibrium. Furthermore, for a contodf around (0,0), tum L in Eq. (B2). They project to latitudinal circles in the

; ; . ; figuration spaces? and correspond to the maximum
monodromy computed as explained in Appendix A 3 a is con ; .
[29]. llength|L| =|¢| at each given fixed energy.

The study ofdF/9¢ can be simplified if we use the axial
symmetry of the system and restrigt/ 9¢ to a vertical plane
APPENDIX B: SPHERICAL PENDULUM SYSTEMS containing axisz, such as the planéx=0}. Note that for

. . relative equilibriaz=p,=0. Furthermore, whem=p,=0 we
Spherical pendulum was discovered by Huygens about 30, only satisfy Eq(B1b) if eithery=0 orp,=0. The former

years before Newtorsee Ref[4], p. 402. Some 360 years o tion corresponds to the two equilibria wits +1; we
later, Duistermaat used spherical pendulum as an exampig,, |4, therefore, use the latter solution. Direct computation

when he introduced Hamiltonian monodromy in 198D It 5w shows thatF/ 9é|,-, -, - has only three & 4 minors
was largely due to Cushman that molecular physicists under- ith nonzero determin;prﬁgy'_

stood the monodromy of this system and became intereste

in its molecular analo30]. The closest analog, which they D;=-zd D,=-yd, Ds;=pd,

came up with very early, was a flexible triatomic molecule ) . _

HAB, such as HCN, HCP, HCIO, etc. Whered=y +Z[ﬁ. The nontrivial solution 0D1=D2=D3=0,
With all parameters scaled out, the unconstrained Hamil- (= +(1 —22)/\"——2, h=(32-1)/(22). (B3)

tonian of the spherical pendulum is
where -1<z<0 is the elevation of the relative equilibrium,
H= %(pf( + p§+ pg) +7= %p2+ e (Bla) leads tod=0 and is compatible with EqB1b) and x=p,
=p,=0. EquationgB3) define the relation betweemand ¢
The motion is constrained to the surface of the sphere antpr relative equilibria, and give the lower boundary of the

the momentum vector is tangent to this surface, image of theM map in Fig. 1.
r2=x?+y?+72=1, r-p=xp+yp,+zp,=0. b. Pinched torus
(Blb) The critical valug(¢,h)=(0, 1) (see Fig. 1 corresponds to

the upper equilibrium withz=1 and all homoclinic orbits
This system is invariant with regard to rotations about axis which begin and come back to this equilibriuim infinite
The corresponding first integral is, of course, theompo-  time) while zooming by the bottom poire=-1 with just
nent of the angular momentum enough energy to climb back up. These trajectories fill up the
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pinched torus shown in Fig. 16, center. To verify the topol-
ogy of this singular fiber consider a sectionRff by a half-
plane{x=0,y>0}. SinceL=0 andy#+0, it follows thatp,
=0. Solving Eqs(B1) with H=1 gives the equation of the
cusped circle

p2=2(z- 1)%(z+1),

which is the section of the pinched torus witk=0,y> 0}.
By axial symmetry all such sections are the same.

c. Topology of the constant energy-level sets

All other values off M (represented in Fig. 1 by the gray
shaded areacorrespond to regular tofi>. Depending on the
energyh these tori foliate the constamhtlevel sets in two
different ways. Belown=1, regular tori are packed intos,
while aboveh=1 they form ariR P® [4]. The former topology
corresponds to the level set of the 1:1 resonant oscill@or
Hopf bifurcatior), while the latter to a rotator. We speak of
“vibrations” ath<<1 and “rotations” foth>1 (when the pen-
dulum goes over the topcf. Sec. Il A 2.

2. Reduction of axial symmetry

Physicists always reduce the axial symmetry of &)
by introducing polar coordinaté®, 6), whereg is the angle
variable conjugate th, see Ref[31], Chap. lll-14, problem

1. The downside of polar coordinates is their singularity at

the linear equilibria of the system whefeequals 0 orr. So

PHYSICAL REVIEW A 69, 032504(2004)

o3

F:

1
2

FIG. 17. The{p,=0} plane projections of the reduced spaces
(shaded areaP,-; (left) andP,—, (right), and of theh-level sets for
the spherical pendulurgsolid linesa, b, ¢, d, e) and its quadratic
deformation(dashed lines, labi).

libria of the reduced system with Hamiltoniady, for €+ 0
[see Eq(B4a)] and are defined by the equations

é:p0:01 p():{po.Hg}:—ﬁH(/ﬁtg: 0.

At the same time, the two equilibria withry=0 correspond
to the equilibria of the reduced system witkrO [useH, in
Eq. (B4b)].

b. Reduction using polynomial invariants

the simplification comes at the price of loosing correct ge-

ometry. In particular, it is difficult to work near the equilib-

ria, to study their stability, etc. Furthermore, it becomes im-

Consider the action of the axial symmetry @Don the
six-dimensional space TR® with coordinates (r,p)

possible to do standard classical normalization of molecular (X;Y.Z,Px, Py, P, generated by the flows of the system

analog systems uniformly for all [18,19. Details of the

geometrically correct reduction of the spherical pendulum

system are presented in R@4] and are summarized in Ap-
pendk B 2 b inorder to give the idea of how troubles can be
avoided.

a. Reduction in polar coordinates

with HamiltonianL in Eq. (B2). Six basic invariants,
Zl pz| L! 0-3:p)2(+p§+p§’

0-4:X2+y21 0-5:pr+yml

of this action can be used to express anyinvariant func-
tion of (r,p). Taking constraint$B1b) into accouniin other

In polar coordinates, the reduced system with one degrewords, descending frofiR? to the four-dimensional phase

of freedom describes the latitudinal motionédnthe reduced
Hamiltonian is

Ho=3p2+3¢(sin §)2—cos® when ¢ #0,

(B4a)

=1p5-cos® when (=0, (B4b)

where angled is defined as shown in Fig. 3, am is the
corresponding conjugate momentum. Note that

{2
sinfé

is the square of the total angular momentdiraf the system
and{ is projection ofJ on axisz.

FP=pj+ (B5)

spaceTS? of the spherical penduluynwe eliminateo, and
o5 and find that the reduced phase sp&;eis a semialge-
braic variety inR® defined by the equation and inequalities

po+ (2= 03(1 -2, (B6)

When ¢ #0 P, is diffeomorphic toR?, but for €=0 it is
singular. Each point ofP, except for the two singular points
with |z| =1 of Py lifts to circular orbits of¢; the two ||
=1 points lift to equilibrium points.

The reduced Hamiltoniakl, on P, is

lZ<1, o3=0.

H(z,p,05) = 505+ 2. (B7)

To determine the topology of the fibers of thi&1 map we
need to find intersections d?, and constanb-level sets of
H,. Furthermore, sincél, and P, are invariant with respect

Practitioners use physical intuition to compensate for theo “time reversal’p,— —p,, we project in the plan¢p,=0},

singularity of polar coordinates in E@B4). Thus relative
equilibria discussed in AppendB 1 correspond to the equi-

see Fig. 17. In this plane, the levels of H, in Eq. (B7)
become lines, and thk levels of the deformed spherical
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pendulum parabolas, whose intersections Witltan be eas-
ily found.

To reconstruct the fibers @M we lift the intersections
a,b,c,d,e, shown in Fig. 17 toP, and then back to the
original phase space. Thizssandd are circles orP,, which
lift to tori T?; the singular intersectior is a cusped circle
which lifts to a pinched torus; one-point intersections lift to
relative equilibria(RE) if the point is regulafa with |z| <1),
and to an equilibrium point if the point is singulés with
|z|=1). Similar analysis can be done for the levels of the
quadratic spherical penduludashed lines in Fig. 37 In
particular, sectionf is a figure eight curve o,y which
corresponds to the fiber shown in Fig. 6, left.

3. Quadratic aspherical pendulum

PHYSICAL REVIEW A69, 032504(2004)

libria wherep,=0 and 9=0, only the change in the second
term ofH, in Eq. (B4a) matters; this term becomes

T, =€ [2mR6)%sir? 6],

where the mass is used for scaling, ani(6) is given by
Eq. (2) with R, set to 1. Solving equations

d(Ty+V(cosh)/gH#=0, T,+V(cosé) =h,

for €(¢) andh({) where=cos 6, defines parametrically the
energy-momentum characteristics of RE.

When e<§, i.e., when asphericity ismall the EM map
is qualitatively the same as fer=0 (Fig. 5. The EM char-
acteristics ofA, X, andB are now parametrized b§ on the
intervals[-1,0), [{1,{.], and [, 1], respectively. Here;
~cl+c 1-c?)et+O(e?) is the real root of ecl3+(1

Quadratic deformation of the spherical pendulum is ob—e¢)c{-1, such that({;)=0. The cusp point is given by the

tained after replacing in Eq. (B1a) for a quadratic potential
V(2) in Sec. Il C. The energy-momentum relation

C1
Cz_ -
Z

1 3
h(z) = co+ E( >+Eclz—c222,

for the relative equilibria of this system can be obtained fol-
lowing the same approach as in Append@ 1 a. However,
now z takes three different types of values: [-1,0) for the
lower stable REA), ze[c;/c,,z;] for the unstable REX),
andz e[z, 1] for the upper stable REB).

The deformed system has only one essential pararoeter
=c,/c; which defines the ratio

(hx = hg)/(hx=ha) = (c = D(c+ 1)?,

wherehy is the energy of the unstable RE a0 (the “bar-
rier”), andh, andhg are energies of the two equilibria, see
Fig. 5. For HCN/CNH and LiINC/NCLi we have~10.5 and
3.8, respectively. Other parameters serve scaling an
shifting the EM characteristics.

The elevatiorg, for the “cusp” pointsa, of the EM dia-

real root{, e (£;,1) of
4¢3 - 377 -1 - e(40cs® - 2704 - 32c3 + 1472 + 5) + O(€9).

Whene> £ the solutionsA, B, andX are defined by in the
intervals[-1,0), [1,{,), and[{;,0), respectively. Herg,
=\1-(3¢) and ¢({y)==». These solutions are shown in
Fig. 8 for the quadratic potential in Sec. Il C, asphericity
e=3 and scalingn=2.5.

The critical value ofe=§ has a simple geometrical expla-
nation. At this value, the shape of the molecule given by Eq.
(2) bifurcates so that at largerit is no longer convex. To
verify, note that the dent develops #=3m, where z
=R(#)cos #=0, and compute

(e[

dz dz
4. Quantum energy-level spectrum

The spectrum of the quantum spherical pendulum and
similar systems is computed straightforwardly by diagonal-
izing the quantum Hamiltoniai =342J7+V/(6), where for
the spherical pendulur(6)=-cos#, in the standard basis
of spherical harmonicsyj,. Here j=0,1,... jna and ¢
=0,%1, ..., 4 are the quantum numbers for the angular mo-

2 2
R(6)sin =

z=0

3e-1
(1-

z=0

€?

common zeroes ath/dzandd¢/dz In this way we find that
z. is the real root of 1+&-4cZ=0. In the example of Sec.
IIC z,=0.361.

large to assure the convergence of the required lower ener-
gies, see Chap. IV-26 and the end of Chap. IV-29 in Ref.
[32]. Note that the quantum analog &t in Eq. (B5) is

Deformation of the shape of the pendulum, i.e., of the

surface on which the body is movig§ec. Il D), complicates

the kinetic energy of the system. However, for relative equi-

2
, 1 ¢

=————35l 9(9—9—@. (B8)

- n
sinéaoo
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