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We introduce and analyze a model system based on a deformation of a spherical pendulum that can be used
to reproduce large amplitude bending vibrations of flexible triatomic molecules with two stable linear equilib-
ria. On the basis of our model and the recent vibrational potential[J. Chem. Phys.115, 3706 (2001)], we
analyze the HCN/CNH isomerizing molecule. We find that HCN/CNH has no monodromy and introduce the
second global bending quantum number for this system at all energies where the potential is expected to work.
We also show that LiNC/LiCN is a qualitatively different system with monodromy.
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I. INTRODUCTION

Action-angle variables play a central role in the descrip-
tion and analysis of internal dynamics of atomic and molecu-
lar systems. Such systems often have important integrable
approximations for which these variables can be introduced.
Particularly many approximations are obtained for the limit
of small oscillations about an equilibrium or a periodic orbit.
If the frequencies of oscillations are incommensurate, i.e., in
the absence of resonances, such oscillators can be described
very efficiently using a particularly simple and, arguably, the
most popular version of action-angle variables and corre-
sponding quantum numbers. Thus molecular vibrational
Hamiltonians are commonly expanded in the so-called Dun-
ham series in such action-angle variables.

In a general situation, actionsI can be defined onlylocally
as smooth real single-valued functionsIsFd of the first inte-
gralsF, see Refs.[1–3] and Appendix D of Ref.[4]. Under
certain general conditions these local actionsIsFd can be
extended to the whole domain of values ofF [5]. However,
different topological obstructions can make definition of
such global actionsimpossible[6]. Monodromyis the sim-
plest obstruction, it can be found in integrable systems with
only two degrees of freedom.

After mathematicians provided several concrete examples
of systems with monodromy, notably thespherical pendulum
[7,8], physicists followed with discovery of monodromy in a
number of fundamental atomic and molecular systems: the
hydrogen atom in orthogonal(crossed) electric and magnetic
fields [9], rotating molecules in external electric field[10],
rotating linear triatomic molecules[11], systems with
coupled angular momenta[12], and the H2

+ system [13].
Flexible or “floppy” triatomic molecules with linear equilib-
rium configuration is another candidate for a system with
monodromy. In this paper we analyze HCN, one of the most
studied such molecules. A brief mathematical introduction to
monodromy can be found in Appendix A.

A. Energy-momentum mapEM
We study a special simple case of two degree of freedom

systems with axial symmetry SOs2d, such as the spherical
pendulum and the pendular model of the HCN molecule.
These systems can be described using two first integrals,
momentum Lcorresponding to the SOs2d symmetry anden-
ergy H. The functionssL ,Hd define theenergy-momentum
map

EM:R4 → R2:sq,pd → „Lsq,pd,Hsq,pd… = s,,hd.

As an example, consider theEM map of the spherical pen-
dulum, which we discuss later in Sec. II A. The image of this
map is shown in Fig. 1, where the shaded area represents

regular 2-tori. The joint spectrum of operatorssL̂ ,Ĥd of the
corresponding quantum system forms a lattice of points in
the image of theEM map, see Fig. 2.

B. Monodromy

We like to understand how the fibers of ourEM fit to-
gether in the phase space. To this end we take a closed loop
G in the domain of regular values ofEM (see Fig. 1), choose
an initial point onG and define the coordinates on the corre-
spondingT2 fiber or theperiod lattice(see more in Appendix
A 3 a). We redefine these coordinates continuously while
moving alongG and compare the final and the initial coor-
dinate system after taking a tour onG thus finding the 2
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FIG. 1. Image and fibers of the energy-momentum mapEM of

the spherical pendulum; see Chap. IV.3 of Ref.[4].
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32 monodromy matrix M. If the coordinate systems differ,
i.e., if M is not unity, our system has monodromy and defin-
ing global action-angle variables and respective global quan-
tum numbers(over the domain enclosed byG) is impossible.

C. Quantum lattice method

Using the local correspondence between the classical pe-
riod lattice and the vectors defining theelementary cellof a
sufficiently fine quantumEM lattice (see Appendix A 2 c),
we can replace continuation of period lattices for continua-
tion of elementary cells. Since the cells are small, they can
be easily extrapolated to the neighboring cells(see Appendix
A 2 c, Fig. 15, right).

In particular, we can findquantum monodromy[8,14]. Af-
ter completing a tour onG which we already used above, we
compare now the vectors defining the initial and the final
elementary cell and obtain the inverse transpose monodromy
matrix sM−1d†. More generally, elementary cell continuation
defines uniform quantum numbers for continuous families of
states. If such definition can be expanded to the whole area
of regular values of theEM, then we talk of global quantum
numbers.

Zhilinskií interpreted quantum monodromy as apoint de-
fect of the lattice of quantum states and developed the fol-
lowing simple method of the elementary cell diagrams which
is similar to the methods used by crystallographers. We use
this approach later throughout the paper. As an example we
show in Fig. 2 how to find monodromy of the quantized
spherical pendulum.

(1) Define the areaD of interest in the image of theEM
map, possibly the whole image, and find singular values of
EM.

(2) Compute the joint quantum spectrum, i.e., the eigen-

valueskL̂l andkĤl of quantum operatorsL̂ andĤ. If D is too
small, reduce the value of".

(3) Take a closed contourG which passes the regular val-
ues ofEM, specify the direction ofG.

(4) Take the initial-final pointg0=g1 on G, define the
elementary cell atg0.

(5) While moving alongG in small steps, follow the con-
tinuous evolution of the cell(cf. Fig. 15, right).

(6) After making a tour, compare the final and the initial
cell and find the monodromy matrix.

In this simple form the elementary cell method is ready
for the coming revisions of undergraduate quantum-
mechanics courses. Despite its simplicity the method is
mathematically rigorous: relation between the period lattices
and elementary cells becomes exact in the limit of"→0
(when the cells become infinitesimal) and using the Einstein-
Kramers-Brillouin (EBK) quantization techniques we can
work analytically. At the same time, we have a very rapid
and efficient way of study of real molecular systems where
numerical computations are unavoidable.

II. PENDULUM MODELS OF FLEXIBLE TRIATOMIC
MOLECULES

Spherical pendulum can be represented as a motion of a
particle(of massm) constrained to a sphere(of radiusR) and
placed in a linear gravitational field(directed conventionally
along the vertical axis), see Fig. 3. This is very similar to the
isomerizing HAB/ABH system, where the proton H can go
around the diatom fragment AB. Like the spherical pendu-
lum, the molecular system has axial symmetry and two linear
(i.e., axially symmetric) equilibrium configurations HAB and
ABH.

A. Monodromy of spherical pendulum

On the example of spherical pendulum, we introduce rela-
tive equilibria, energy-momentum map, monodromy. Details
can be found in Appendix B.

1. Fibers of theEM map, monodromy

The image of theEM map of the spherical pendulum is
shown in Fig. 1. The domainA of regular values(shaded
area) is bounded from below. The critical points, ,hd=s0,
−1d corresponds to the stable(“lower” ) equilibrium point of

FIG. 2. Energy-momentum diagram for the spherical pendulum.
Dots show quantum levels, bold solid lines represent relative equi-
libria, opaque circle marks the positionsl ,hd=s0,1d of the unstable
(“upper”) equilibrium. Rectangles show successive consistent defi-
nitions of local quantum numbers along the contour which goes
arounds0,1d. Both axes are in atomic units but the quantization
step is" /8.

FIG. 3. Spherical pendulum(left) and flexible triatomic mol-
ecule HCN(right) with fixed bond lengths H-CNsRd, C-N srd and
bending angleg.
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the system; other points in the boundary correspond to rela-
tive equilibria, see Appendix B 1 for more details.

We are primarily interested in the other critical value
s0,1d. This value is isolated withinA and lifts to apinched
torus whose pinch point is the unstable(“upper”) equilib-
rium. Consequently, the system has monodromy 1(see Ap-
pendix A 3 b). Quantum energies of the spherical pendulum
can be computed in the standard way, see Appendix B 4.
Figure 2 presents the resulting lattice of quantum states and
illustrates quantum monodromys 1

1
0
1

d of the system.

2. Quantum numbers

Monodromy prevents defining the global second quantum
number for the entire lattice of quantum states of the spheri-
cal pendulum system. Using the elementary cell continuation
method in Sec. I C. we can of course define smooth se-
quences of states, but we will fail when we try to extend
them to the whole lattice. This is illustrated in Fig. 4.

In particular, the vibrational quantum numbern works
correctly near the dynamical limit of the 1:1 resonant oscil-
lator for h<−1 (cf. Appendix B 1 c). Above the stable equi-
librium with ,=0 andh=−1, we see constant -n multiplets or
polyadsof n+1 levels whose energy is also nearly constant
(Fig. 4, left). Note that levels with even(odd) value of ,
belong to even(odd) n polyads. The values of, within a
polyad go by two so thatu, u =n,n−2, . . . ,0 whenn is even
andu, u =n,n−2, . . . ,1 whenn is odd. Due to this latter prop-
erty the points of the lattice nears,=0,h=−1d form a check-
erboard pattern. In order to apply the elementary cell tech-
nique in Sec. I C in terms of quantum numbersn and, we
should choose a “double” cell withD,=Dn=2.

Similarly, near the dynamical limit of free rigid spherical
rotor whereh@1, the rotational quantum numberj is a natu-
ral choice(Fig. 4, center). In this region we can seej mul-
tiplets with 2j +1 levels of nearly the same energy. The val-
ues of , go simply asu, u = j , j −1, . . . ,0; the lattice has a
straightforward rectangular pattern and we can define a
single cell withD,=D j =1 for extending the local quantum
number definition and monodromy computation.

These two choices are widely used in analogous molecu-
lar systems[10,15]. In the case of the spherical pendulum,
neither can be continued beyond the transition energy region
of h<1 if we want our quantum numbers to be extrapolated
by smooth functionsof s, ,hd, a necessary requirement for
physically meaningful global quantum numbers. Of course,
as a matter of convenience all wave functions can be labeled
continuously usingj (or n) if the labels are chosen differently
for l .0 and l ,0. The energy of the states in the resulting
multiplets does not depend smoothly on such labels and ex-
hibits the so-called “kink”[15]. The kink occurs if we for-
mally continuej multiplets toh,1 as shown in Fig. 4, cen-
ter. Same happens ton polyads as we try going aboveh=1.
Such u,u-like behavior should not be attributed directly to
monodromy but rather to the particular labeling system of
quantum solutions.

B. Flexible molecules as pendula

Without translations the total number of degrees of free-
dom of the isomerizing triatomic molecule, such as HCN/
CNH, is six. The pendulum model in Fig. 3 deals with only
two of these degrees. Molecular physicists like describing
these pendular degrees as “bending” using the bending angle
g (see Fig. 3 and Appendix B 2 a) and “rotation” about the
axis of the CN diatom using the angular momentum,. The
other four degrees of freedom are the two stretching modes
described by distancesr between C and N andR between H
and CN(see Fig. 3) and rotations of the molecule as a whole
about axes which are roughly orthogonal to the CN axis.
These extra degrees present, obviously, the major difficulty.

The order-of-magnitude difference of massesmH andmCN
and the relative rigidity of the CN bond make it possible to
consider an approximate separation of the two degrees of
freedom associated with the overall rotation. Ignoring these
two degrees, and assuming constant bond distancesR andr,
as shown in Fig. 3, right, makes HCN a good candidate
system for a “molecular spherical pendulum.”

The most obvious difference between the spherical pen-
dulum and molecules is the potentialV. For the spherical

FIG. 4. Possible choices of quantum numbers for the spherical pendulum(left to right): “vibrational” n, “rotational” j , and “mixed”
n+,; cf. Fig. 2. Fine solid lines join states with the same quantum number which is given at the end of the sequence.
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pendulumV=z, the lower equilibrium is stable and the upper
equilibrium is unstable. In moleculesV is more complicated.
In particular,both linear equilibria of HCN/CNH are stable.
In order to account for such qualitative difference we deform
the potential of the spherical pendulum and show in Sec. II C
and Appendix B 1 a that the deformed system with two
stable linear equilibria and one new unstable “bent” equilib-
rium still has monodromy. The other important difference is
the “shape” of the system. While in the spherical pendulum
R is fixed and the particle moves on a sphere, in the HCN/
CNH moleculeR dependsconsiderablyon the bending angle
g andH moves on a deformed sphere. We study the influence
of the shape on monodromy in Sec. II D and Appendix B 3.

The looseness of the bond between H and CN results not
only in the shape effect, which modifies the kinetic energy of
the pendulum system, but has further dynamic consequences
of coupling the large amplitude bending motion of the pen-
dulum and the oscillation of the pendulum lengthR. If the
frequency of this latter is in a low-order resonance with the
pendular frequency, the stretching and bending degrees of
freedom are inseparable. The empiric rule is that the
bending-to-stretching frequency ratio is about1

2, as in the
most known example of the Fermi resonance in CO2. The
same resonance is very important in many flexible mol-
ecules, in particular, in HCP and HClO. Such systems cannot
be analyzed on the basis of the pendulum model. On the
other hand, HCN/CNH has no strong resonance(Sec. III)
and this system can indeed be analyzed using an appropri-
ately deformed spherical pendulum.

C. Quadratic deformation of spherical pendulum

We deform the spherical pendulum by replacing the po-
tential termz in Eq. (B1) for a quadratic potential

Vszd = c1z− 1
2c2z

2 + c0, s1d

so that both linear equilibria of this system are now stable.
We call A the lowersz=−1d andB the uppersz=1d equilib-
rium. Their energies are

hA = c0 − 1
2c2 − c1 = 0, hB = c0 − 1

2c2 + c1,

where parameters can be chosen to mimic the HCN/CNH
system so thatA andB correspond to HCN and CNH,

c0 = c1 + 1
2c2, c1 = 2.5, c2 = 18.5.

Relative equilibria and other singular fibers of theEM
map of this new system can be analyzed in the same way as
for the original spherical pendulum, see Appendix B for de-
tails. The image of theEM map has nowtwo leaves. Our
particular example withhA,hB is illustrated in Fig. 5. In this
figure, the larger leafA represents both the vibrational states
localized near theA minimum and rotational(delocalized)
states, while the smaller leafB represents vibrational states
localized near theB minimum. The leavesA andB are glued
along the segmentfa−,a+g of singular values ofEM which
lies entirely insideA. Note thatB andA overlap in the image
of the EM map so thatB looks like an “island.” The points
in sa−,a+d lift to the singular fiber which has the topology of
two cusped tori glued along their cusped principal circle, see
Fig. 6, left; the cusp pointsa± correspond to a “cusped torus”
in Fig. 6, right. Points on the lower boundaries of leavesA
andB represent relative equilibria(cf. Sec. II A 1); the two
singular apexes of these boundaries at,=0 correspond, of
course, to the stable equilibrium points.

The singular segmentfa−,a+g exists forc2.c1.0; when
c2→c1.0, it shrinks to a point. TheEM map of the system
with 0,c2,c1 is qualitatively the same as that of the
spherical pendulum withc2=0. Such system has the same
monodromy as the spherical pendulum.

It is clear that a slightly deformed system withc2 just
abovec1 also has the same monodromy. To find this mono-
dromy we should make a tour along a contourG which lies
in the leafA and goes aroundfa−,a+g. The quantum latticeA
will therefore have a segment defect in place of a point de-
fect as illustrated in Fig. 7. Note that in Fig. 7 we should well
distinguish points of theA lattice (filled circles) from those
of the B lattice (empty circles) in order to continue the el-
ementary cell of theA lattice in the overlap region of the
EM image. The cell can, obviously, be continued using only
the A points.(In classical terms, we should remain on theA
leaf.) The latticesA andB join along the segment but there is
no passage between them, in the sense that we cannot define

FIG. 5. Image of the classical energy-momentum map(light and
dark shaded area) for the quadratic spherical pendulum defined in
Sec. II C.

FIG. 6. Inverse images of the points in the upper boundary
fa−,a+g of leaf B of theEM map image of the quadratic spherical
pendulum in Fig. 5.
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the second smooth global action and corresponding quantum
number to label uniformly the quantum states in the two
lattices; neither can we define such global action and quan-
tum number for theA lattice. Our main question is whether
the quantum states of the real HCN/CNH system are orga-
nized in the similar fashion and specifically, whether this
system has monodromy.

D. Shape correction

In flexible molecules such as HCN/CNH or LiNC/NCLi,
the distanceR tends to be smaller in the' configuration
wheng< 1

2p. We can model this by using

Rsgd = R0s1 − e sin2 gd, s2d

where 1.e.0 is theasphericity parameter. Of course, any
such deformation of the spherical shape of the pendulum
complicates the expression for the kinetic energy. For rela-
tive equilibria, however, the modification is straightforward.
The concrete computation in Appendix B 3 for the shapes2d
shows that at small asphericitye,

1
3 theEM diagram of the

system is qualitatively the same as that in Fig. 7. For largere
the shape is no longer convex and this modifies qualitatively
the EM diagramssee Fig. 8d: the cusp pointsa± disappear
and the singular segment becomes a line of singular values.

Comparing to the small asphericity case in Sec. II C and
Fig. 5, we see that we now havethree leaves which we
denote byA8 for oscillations localized near theA minimum,
B for the oscillations localized near theB minimum, andA9
for the delocalized bending motion. The leaves are glued
along their common boundary which is the upper boundary
of B andA8 and the lower boundary ofA9. As before,A8 and
B overlap in the image ofEM. All leaves are unbounded
from above. All fibers remain the same as in the case of

small e except, of course, for the two “cusped tori” which
disappear. Since there is no longer a finite segment about
which our elementary cell can make a tour, such nonconvex
system has no monodromy.

III. GLOBAL BENDING QUANTUM NUMBERS
AND ACTIONS IN HCN

Analysis of the early energy surfaces of the isomerizing
HCN/CNH system[16,17] shows that this system is some-
what exceptional: it has no prominent low-order stretching-
bending resonance. Consequently, we can average over the
oscillations ofR and r and obtain a pendulumlike reduced
system. More concretely, we decouple the two stretching de-
grees of freedom of HCN/CNH from the pendular motion by
applying canonical perturbation theory to a reaction path
Hamiltonian. A classical version of this procedure was devel-
oped in Refs.[18,19]. We use the quantum procedure de-
scribed in Ref.[20], where the improvement over[18,19] is
in correct handling of vibrational angular momentum for
large values of,.

The starting point of our present calculations is the most
recentab initio potential-energy surface of HCN/CNH by
Tennyson and co-workers[21,22]. According to this surface,
the CNH linear equilibrium configuration is located at about
5300 cm−1 above the HCN linear equilibrium configuration
and the two equilibria are separated by a barrier at about
16 800 cm−1, see Fig. 9, bottom. This potential is qualita-
tively similar to the quadratic potential in Sec. II C. Figure 9
also shows the variation ofr andR along the minimum en-
ergy path(MEP) for the potential[21]. We find that in good
agreement with our intuitive model of the rigid CN diatom
(Sec. II B) the CN distancer changes negligibly. At the same
time, R decreases significantly in the' configuration. As a
result, H moves on a peanutlikenonconvexsurface.

FIG. 7. Quantum and classical energy-momentum diagram for
the quadratic spherical pendulum defined in Sec. II C. Rectangles
show successive consistent definitions of local quantum numbers
along the contour which goes around the line of singular values of
the main leafA, cf. Fig. 5. Both axes are in atomic units but the
quantization step is" /8.

FIG. 8. Image of the classical energy-momentum map(shaded
areas) of the quadratic aspherical pendulum with asphericitye= 1

2
and quadratic potential constantsc0, c1, c2 used in Sec. II C; cf.
Figs. 5 and 10.
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1. Reduced effective Hamiltonian

Following Refs.[18,19], the potential and kinetic energies
of the system are first expanded in the neighborhood of the
reaction path(or MEP), which leads from HCN to CNH
through the saddle; the two stretch coordinates are defined as
deviationsr −rMEPsgd and R−RMEPsgd from their values on
the MEP and then rescaled to obtain the dimensionless nor-
mal stretch coordinates. The expansion is rewritten in terms
of these coordinates. The principal virtues of this expansion
are (i) the optimal representation of the coupling between
stretching and pendular modes with only few truly pertinent
relatively small explicit coupling terms and(ii ) the simplifi-
cation of the Hamiltonian, which contains only powers of the
stretch coordinates, conjugate momenta, harmonics of the
bending angleg, and the momentum conjugate tog.

The second step of the procedure consists of several ca-
nonical transformations which are aimed at separating the
stretching motion completely and introducing the two stretch
quantum numbers(or corresponding two classical oscillator
actions) as parameters. This results in an effective quantum
Hamiltonian of the form

Ĥ,sn1,n3,J,gd

= o
i,j

o
k,m,p

ai,j ,k,m,p n1
i n3

j cosk g Ssin g
]

] g
Dp

sĴ2dm,

s3d

where coefficientsai,j ,k,m,p are real,n1 andn3 are theR andr
stretch quantum numbers respectively,g is the bending angle

in Fig. 3, the exponentp is either 0 or 1,Ĵ2 is defined in Eq.
sB8d with u=g, and, is called the quantum number of the
vibrational angular momentum. In this work, we computed

Ĥ, in Eq. s3d after six successive transformations, its coeffi-
cientsai,j ,k,m,p can be obtained by contacting the authors.

2. Energy-momentum mapEM
The classical Hamiltonian can be obtained from the quan-

tum expression in Eq.(3) by discarding the terms withp

=1, which originate from the noncommutativity of coskg and

the differential operators in Eq.(3), and by replacingĴ2 by
its classical analog in Eq.(B5). The image of theEM map of
the HCN/CNH system is shown in Fig. 10 for the pure bend-
ing states withn1=n3=0; very similar plots are obtained for
other values ofn1 andn3. As predicted in Sec. II D for non-
convex systems, this image is qualitatively the same as that
of the largely aspherical quadratic pendulum in Fig. 8. We
conclude that HCN/CNH has no monodromy.

3. Computing quantum energies

Quantum energy spectrum of the reduced HamiltonianĤ,

in Eq. (3) is computed as before(see Appendix B 4). The

advantage of usingĤ, over the full initial Hamiltonian in
Ref. [22] is in the predefined value of the global quantum
number,=0,1,2, . . .. Theresulting lattice of quantum states
is shown Fig. 11.

In order to check the accuracy of our pendular approxi-
mation we compare our energies of the,=0 states localized
in the HCN and CNH wells, called vibrationalband origins,
to the values in Tables VI and VII of Ref.[21]. We reproduce
the 101 origins, which go all the way up to the isomerization
threshold and have up to 18 quanta of excitation in the bend-
ing mode, with an average error of 10.4 cm−1 and a maxi-
mum error of 38.3 cm−1. Furthermore, as can be seen in Fig.
11, we also reproduce satisfactorily the energies for,Þ0. An
even better agreement could be obtained by taking into ac-
count the kinetic-energy terms which are responsible for the
,2 anharmonic correction in the effective Hamiltonian.

4. Defining the second global quantum number

First of all we should specify the kind of the global quan-
tum number(classical action) which we look for. Normally,
global actions are defined over one open connected domain
in the image of theEM map. We have three domainsA8, A9,
andB. So we should first attempt to define the second action
globally within each of the domains.(Remember that in the

FIG. 9. Geometry and reaction path minimum potential energy
of the HCN/CNH system computed for theab initio potential sur-
face in Refs.[21,22]. Atoms C, N, and H are sized according to
their covalent radii.

FIG. 10. Image of the energy-momentum map(shaded areas) of
the isomerizing HCN/CNH system computed for pure bending
states withn1=n3=0 using the classical analog of the Hamiltonian
(3).
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modele,
1
3 system in Sec. II C this was not possible for the

leaf A due to monodromy.) If succeeded, we can try relating
these actions in order to define one unique generalized global
action and the corresponding quantum number. This general-
ized action is a real functionFsq,pd which is two valued in
the overlap region ofA8 andB, and single valued inA9. The
branching of the values ofF should correspond to the
branching ofA9 into the leavesA8 andB. The image of the
EM map serves similarly to Riemann surfaces in complex
analysis.

We now define quantum numbers in each domain. The
natural choice of these numbers is already considered for the
spherical pendulum in Sec. II A 2. We will use two vibra-
tional numbersnHCN andnCNH in domainsA8 andB, respec-
tively, and rotational numberj in domainA9. In Fig. 11 we
connect levels in the samen polyad andj multiplet by one
line.

Vibrational polyads are clearly seen in Fig. 11 at the bot-
tom of leavesA8 andB. At low energies, the levels in these
polyads are practically degenerate(in the scale of Fig. 11).
The polyad numbers can be given an absolute value starting
with the ground statesn=0,,=0d at the bottom of each leaf.

With growing energy andn, the relative energy of the high,
end of the polyads increases. Aboveh<16 000 cm−1 where
all three domains overlap in energy, the polyads cannot be
completed ton+1 levels (lattice points), only their high,
ends still exist. This is well seen in Fig. 11 where the fine
lines connecting levels in the same polyad begin crossing
(from right to left) the singular value line which gives the
common boundary ofA8, A9, andB.

Rotational quantum numberj cannot be defined abso-
lutely because the multiplets are incomplete(at least within
the energy range of Fig. 11). Starting at small, and using
our elementary cell approach in Sec. I C we can only as-
semble some levels in rotational multiplets and extend our
definition over the whole domainA9; our lines representing
multiplets cross inevitably over the lower boundary ofA9,
see Fig. 11.

The main result of this paper is that the three lattices of
quantum states can be connected and that the connection is
likely to be smooth.Figure 11 shows how for each rotational
multiplet we find the two corresponding vibrational polyads
with labels nHCN and nCNH, and define the global bending
number

FIG. 11. Energy-momentum diagram for the
n1=n3=0 states of the HCN/CNH system com-
puted using the Hamiltonian(3). Shades of gray
distinguish HCN, CNH, and delocalized level re-
gions respectively, cf. Fig. 10. The regions are
bordered by the energies of classical relative
equilibria shown by bold solid lines. Filled circles
show levels attributed to the HCN minimums
while hollow circles represent either CNH or de-
localized states depending on the region. A few
larger black circles mark levels assigned in Ref.
[22]. Fine solid lines join states with the same
quantum numbersnHCN, nCNH, or j , whose values
are given at the end of the respective sequences.
The diagram is symmetric with respect to,↔
−,, and only half of it is shown.
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J = j = nHCN = nCNH + 1,

i.e.,J= j on leafA9, J=nHCN on leafA8, andJ=nCNH+1 on
leaf B, so that the full three-branchJ multiplet contains
2J+1 levels, see the example ofJ= j =nHCN=28 and
nCNH=27 in Fig. 11. Note that the elementary cell continu-
ation in the region near the common boundary of the three
leaves is difficult because quantum states in this region
are irregular and cannot be attributed with certainty to any
of the leaves. To reduce this difficulty, recall that levels in
the n polyads step by 2, whilej multiplets contain states
with both odd and even, ssee Sec. II A 2d. This means
that if we want to connect two incomplete polyads with
quantum numbersnHCN andnCNH to a j multiplet, the num-
bersnHCN andnCNH should be of different parity and, if we
want the connected multiplet to be complete, these num-
bers should differ by 1. Then only two possibilities are
left, and the one we found is more logical in view that the
HCN minimum lies below the CNH one.

IV. MONODROMY IN LiNC

We have seen in Secs. III and II D that the anticipated
monodromy phenomenon is prevented in HCN/CNH by the
“excessive” asphericity of the system. In fact we have missed
this phenomenon in HCN by a small margin: a rough esti-
mate for asphericity givese<sRmax−Rmind /Rmax=0.36. It
follows that we should look for a similar system with smaller
asphericity such as the LiNC/NCLi molecule[23]. ThesR,gd
potential surface of LiNC/NCLi was obtained in Ref.[24]
for the C-N distance fixed atr =2.186 bohr. According to
Ref. [24] the LiNC equilibrium is the lowest in energy. Like
in HCN/CNH, both linear equilibria of LiNC/NCLi are
stable and there is no strong resonance between stretching
and bending. More importantly, since Li is much larger than
H, it stays at larger distancesR and the system remainscon-
vex, see Fig. 12. The same asphericity estimate now gives
e<0.25.

We treated LiNC/NCLi in the same way as HCN/CNH
using sixth-order canonical perturbation theory. Sincer was
fixed in Ref.[24], we only had to normalize over the Li-NC
vibration and define the respective quantum number. Our
computed band origins are in good agreement with theJ=0
levels in the full quantum calculation of Ref.[25]. The
energy-momentum diagram for the pure bending states
(without excitation of the stretching degree of freedomR) of

LiNC/NCLi is shown in Fig. 13. Comparing to Fig. 7 we
conclude that in full agreement with our prediction in Sec.
II D for the case of smalle, this system has monodromy of
the kind described in Sec. II C.

V. DISCUSSION

The study of obstructions to global action-angle variables
in molecular and atomic systems remains still at a descriptive
stage and is of interest to a limited community of mathema-
ticians and theoretically motivated physicists. Yet the poten-
tial importance of this study to a much wider audience
should be recognized. After several important physical sys-
tems with monodromy have been found, our next question is
naturally: What is the principal difference of systems with
global angle-action variables, and systems with monodromy,
and how can we manifest or “exploit” this difference? This
question remains open. The answer involves expertise in sev-
eral fields, such as modern semiclassical theories, wave-
packet techniques and corresponding experiments, geometric
phase theory, and others.

A. Results

Our present concrete study allows to state a likely propo-
sition that the HCN/CNH molecular system without rotation
can be described in terms of global quantum numbers and
therefore has no monodromy. This should bring certain sat-
isfaction to theoretical chemists and spectroscopists, who
have been for a long time using bending quantum numbers
for the assignment of the energy levels of HCN/CNH. The
absence of monodromy makes HCN/CNH qualitatively dif-
ferent from the LiNC/NCLi system which has monodromy.
The reason for this difference is the nonconvex shape of
HCN/CNH, see Figs. 9 and 12.

FIG. 12. Minimum stretch distanceR in the LiNC-NCLi system
computed for theab initio potential in Ref.[24].

FIG. 13. Energy-momentum diagram for the pure bending states
of LiNC/NCLi computed using theab initio potential in Ref.[24].
Hollow circles show levels attributed to the NCLi minimum; filled
circles represent LiNC levels which become delocalized states at
higher energies; bold solid lines show energies of classical relative
equilibria. The diagram is symmetric with respect to,↔−, and
only half of it is shown.
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B. Limitations

We considered a subsystem of four internal degrees of
freedom of the isomerizing triatomic molecules HCN and
LiNC (Sec. II B). Extending our results to the complete sys-
tem depends on whether the two excluded degrees related to
the overall rotations of the molecule can be effectively sepa-
rated. Two aspects are of major concern in this context: the
ratio of the energy of such rotations to that of the bending
oscillations, and the dependence of the instantaneous inertia
tensorI on the position of H or Li. Since Li is heavier and
moves at larger distances from the CN diatom than H, the
two systems differ substantially in both aspects and should
be examined individually. Thus the contribution of H toI
does not exceed 15 % and we can distinguish rotations of
HCN/CNH about axes roughly orthogonal to the CN axis.
This is clearly not the case for LiNC/CNLi.

In LiNC/NCLi we could not account for the N-C stretch
which was frozen in the potential[24]. This is justifiable in
general because the ratio of the frequency of this vibration to
that of the bending mode is about 15:1. However, this fre-
quency is close to the energies of the NCLi states in which
we are interested.

In HCN/CNH we do not prove the smoothness of the
junction of the two families of high-, vibrational bending
states and the rotational multiplet. We should further study
this analytically for the strongly aspherical quadratic pendu-
lum model(Sec. II D). More importantly, we cannot extrapo-
late to energies much higher than shown in Figs. 10 and 11
which cover all energies where the potential[21,22] is be-
lieved to work, and by far all experimentally studied states of
HCN/CNH.

C. Perspectives

On the technical side, further analysis should begin with
the development of consistent classical mechanical descrip-
tion of flexible molecules which is similar to the polar-
coordinate-free study of the spherical pendulum[4] and
which would allow correct uniform classical normalization
and analysis at all values of,. It would be also interesting to
develop the corresponding quantum description. The next
step is combining this approach with the description of the
two rotational degrees of freedom. Particularly interesting in
this context is understanding the role of rotation and giving a
complete assignment of theab initio results in Ref.[22].

It is equally important to find the way of global analysis
of the isomerizing triatomic molecules with pronounced
stretching-bending Fermi resonance, such as HCP, HClO,
etc. From the recent analysis of a similar model system, the
1:1:2 resonant “swing-spring”[26], we can expect that these
molecules have nontrivial monodromy already in the limit of
small oscillations about their stable equilibrium.
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APPENDIX A: MATHEMATICAL BACKGROUND

Since monodromy is relatively new to atomic and mo-
lecular physics, and furthermore, since it originated in inte-
grable classical mechanical systems, we explain this concept
here with an emphasis on its relation to approximately inte-
grable (or Kolmogorov-Arnold-Moser) systems and corre-
sponding quantum systems.

1. A trivial example of global actions

Recall that the HamiltonianH of a K-dimensional non-
resonant(and, in particular, nondegenerate) nonlinear oscil-
lator can be put in the Birkhoff normal formHsI1, . . . ,IKd,
which is a formal power series in actions of individual oscil-
lators Ik= 1

2sqk
2+pk

2dù0 with k=1, . . . ,K. Clearly, the actions
sI1, . . . ,IKd are first integrals of the normalized system. For
given nonzero values of actions, the trajectories of this latter
system fill a particularK-dimensional torus.

The actionssI1, . . . ,IKd can be easily quantized using the
Bohr’s rule Ik="snk+ 1

2
d where theK quantum numbersnk

are non-negative integers and"=1 in atomic units. Each
quantum state is labeled uniquely by the set of quantum
numberssn1, . . . ,nKd, and the(semiclassical) energy of the
state is given byHsn1+ 1

2 , . . . ,nK+ 1
2

d. Recall also that the
quantum wave functioncn1,. . .,nK

sq1, . . . ,qKd can be repre-
sented in the configuration space with coordinates
sq1, . . . ,qKd as a standing wave withnk nodes in the direction
qk.

All classical and quantum states of the oscillator system
in this example can be represented by points in a domain of
a K-dimensional spaceRK, which is the image of the map
I :R2K→RK : sq,pd→ Isq,pd. The quantum states of this sys-
tem form a lattice of points

sA1ad

whose “elementary cell” is defined by the way the quantum
numbers label the states. A different choice of quantum num-
bers, for example,v1=n1, v2=n1+n2, corresponds to a
different cell below.

sA1bd

Trivial as it may seem, the above combination of simple
facts about the quantum-classical correspondence at the level
of undergraduate quantum mechanics, has many ardent ad-
herents among molecular physicists and theoretical chemists
who use oscillator action-angle variables with considerable
success in the analysis of molecular vibrations and other
systems.
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2. Local action-angle variables

Consider a Hamiltonian dynamical system withK degrees
of freedom defined on a 2K-dimensional phase spaceM with
a Poisson structureh,j. Our system isLiouville integrableif
we can find K independent Hamiltonian functionsF
=sF1, . . . ,FKd which are mutually in involution, i.e., all Pois-
son bracketshFi ,Fjj vanish, and the HamiltonianH of the
system can be expressed as a function ofsF1, . . . ,FKd.

a. Period lattice on regular tori

If f =sf1, . . . ,fKd is a regular(noncritical) value in the im-
age of the integral mapF :M→RK defined bysF1, . . . ,FKd,
then by the Poincaré-Liouville-Arnol’d theorem[1–3], each
compact connected component of the constant level set of
first integralssF1, . . . ,FKd is aK torusT f

K in M characterized
(labeled) by the values of integralssf1, . . . ,fKd and, of
course, by constant energyhsf1, . . . ,fKd.

The Hamiltonian vector field

XFi
= shq1,Fij, . . . ,hqK,Fij,hp1,Fij, . . . ,hpK,Fijd

of each integralFi in sF1, . . . ,FKd defines a flowwFi
on the

torus T f
K in R2K. The Hamiltonian flowsswF1

, . . . ,wFK
d are

not necessarily periodic. We can, however, choose special
new Hamiltonian functions(I1sFd , . . . ,IKsFd) calledactions,
whose vector fieldssXI1

, . . . ,XIK
d defineK 2p-periodic flows

on T f
K parametrized by conjugateangle variables

sf1, . . . ,fKd. We say that the vector fieldssXI1
, . . . ,XIK

d de-
fine the period lattice onT f

K. This period lattice can be ex-
tended to an open small neighborhoodDsfd of f which con-
tains regular valuesf8. As a result, local action-angle
variables can be defined for all regular toriT f8

K with f8 in
Dsfd.

b. EBK quantization, local quantum numbers

Once the period lattice is defined for allf8 in Dsfd, we can
find (semiclassical) quantum energiesHsf8d on the basis of
the EBK quantization principle. Specifically, we look for
such tori T f8

K on which the values of actionsIksf8d equal
2p"snk+mkd, wherelocal quantum numbers nk.0 are non-
negative integers and correction constantsmk are often called
Maslov indexes. All simple principles of quantum-classical
correspondence that we summarized in Appendix A1 can be
now transferred to the present system restricted to the values
f8 in Dsfd.

As in the simple examples(A1a) and (A1b), coordinates
in Dsfd can still be given by local actions which are smooth
functions of the integralsF. However, we usually label quan-
tum statesdirectly by the expectation valueskfl of the inte-
grals and we use these values as coordinates inDsfd (and
globally in the whole image of the mapF). In such natural
coordinates, the simple rectangular lattice(A1a) becomes
smoothly distorted. The nodal patterns in the original con-
figuration space with coordinatessq1, . . . ,qKd become also
more intricate since they now follow projections of the flow
of HamiltonianssI1, . . . ,IKd.

c. SO(2) symmetric systems with two degrees of freedom:
Classical period lattice and quantum elementary cell

In this paper, like in many of the initial studies of quan-
tum and classical monodromy[7,8], we consider a special
most simple situation whereK=2 and one of the integrals in
F=sF1,F2d has a periodic flow. We will call this integral
momentumL; the flow of its Hamiltonian vector fieldXL
defines the Lie symmetry SOs2d. The other integral can be
simply taken as the HamiltonianH of the system, i.e., en-
ergy. The integral mapF in this case is called the energy-
momentum mapEM,

EM:Rq,p
4 → Rl,h

2 :sq,pd → „Lsq,pd,Hsq,pd…,

where sq,pd=sq1,p1,q2,p2d; the values ofH, L, and EM
will be denoted ash, l, and sl ,hd, respectively. The inverse
imagesEMd−1sl ,hd of point sl ,hd is a fiber of the integrable
foliation defined byF; singular and regular fibers corre-
spond to singular and regular valuessl ,hd. The rank of the
234 matrix ]sH ,Ld /]sq,pd equals 2 for all pointssq,pd on
regular fibers; it is less than 2 on some or all points of the
singular fibers.

When the fibers are compact, then each connected com-
ponent of a regular fibersEMd−1sl ,hd is a 2-torusTsl,hd

2 . Fig-
ure 14 illustrates defining the period lattice onTsl,hd

2 . We take
a periodic orbitg of the flow ofXL and launch an orbit of the
flow XH from a pointaPg. This orbit returns tog at point
a8Þa after time Tsl ,hd called period of first return. As a
coordinate ong we use the anglewLP f0,2pd conjugate to
L. The distanceQsl ,hd=wLsa8d−wLsad betweena and a8 is
calledrotation angleor rotation number; it gives the “twist”
of the flow XH. The period lattice ata on Tsl,hd

2 has a basis
hXI1

sad ,XI2
sadj, where

SXI1
sad

XI2
sad D = Asl,hd

† SXLsad
XHsad

D . sA2ad

Here we use the 232 period lattice matrix

Asl,hd =
1

2p
S2p − Qsl,hd

0 Tsl,hd
D , sA2bd

whosecolumnsdefine the period lattice vectors. Neither the
functionsQ andT nor the basis depend on the choice ofa
PTsl,hd

2 .

FIG. 14. The flow of the two vector fieldsXH and XL on a
regular 2-torusTsl,hd

2 ; the flow XL is periodic whileXH is not.
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Rotation numberQsl ,hd is a realmultivaluedfunction of
sl ,hd. However, we can always find a sufficiently small open
neighborhoodDsl ,hd which consists of regular values of
EM, and whereQsl ,hd can be defined uniquely so that, for
example, 0øQuDsl,hd,2p. This defines the period lattice
(A2a) and (A2b) and locally over the wholeDsl ,hd. After
integration, it also defines the corresponding actionssI1,I2d
on Dsl ,hd.

Provided that the volume ofDsl ,hd is sufficiently large
(compared to"2), quantizingsI1,I2d produces a regular lat-
tice of quantum states inDsl ,hd illustrated in Fig. 15. The
elementary cell of this lattice is related to the definition of
the local period lattice in Eq.(A2a). To find the two basis
vectors which define the cell as shown in Fig. 15, left, we
step eithern1 or n2 by 1 (so that the respective classical
actionsI1=L and I2 step by"). Then in the first approxima-
tion

SDl

Dh
D = sAsl,hd

† d−1SDn1

Dn2
D", sA3d

where the vectors are given by the columns of the inverse
transpose matrixAsl,hd times".

To verify Eq. (A3) note that local actionsI1 and I2 are
smooth functions ofLsq,pd andHsq,pd; in our case we can
useI1=L. The vector fields in Eq.(A2a) are

XI1
= XL, XI2

= = I2 J,

where

= = S ]

] q1
,

]

] q2
,

]

] p1
,

]

] p2
D, J =1

0 0 − 1 0

0 0 0 − 1

1 0 0 0

0 1 0 0
2 .

For I2(Lsq,pd ,Hsq,pd) we compute

XI2
= S ] I2

] L
= L +

] I2

] H
= HDJ =

] I2

] L
XL +

] I2

] H
XH,

and consecutively

SXI1

XI2

D = 1 1 0

] I2

] L

] I2

] H
2SXL

XH
D .

Comparing this to Eq.sA2bd gives

−
Q

2p
=

] I2

] L
,

T

2p
=

] I2

] H
.

To find the elementary cell of the quantum lattice, we can
now use

DI2 = −
Q

2p
DL +

T

2p
DH, DI1 = DL,

or simply

sDI1,DI2d = sDL,DHdAsl,hd.

EquationsA3d follows.

3. Defining global action-angle variables

We continue discussing the particular case introduced in
Appendix A 2 c. The reader familiar with basic fiber bundle
concepts has already noted that our mapEM defines a lo-
cally trivial 2-torus bundle over an open diskDsl ,hd in R2.
Indeed, local action-angle coordinates connect all fibers
Tsl8,h8d

2 of this bundle withsl8 ,h8dPDsl ,hd so that locally the

topology of the bundle isT23Dsl ,hd. If global actions exist
then the topology of the whole bundle is trivial. Below we
discuss several less or more constructive ways of verifying
this [27]. After reviewing the phenomenon of monodromy,
we turn to our main objective—justifying the elementary cell
method which we rely upon in the main body of the paper.

a. Analytic study of period lattices, monodromy

The method of analytic continuation of period lattices was
detailed by Cushman[4,7]. Following the standard approach
to uncovering topology of a fiber bundle, we define a closed
loop G which passes through regular valuessl ,hd in the im-
age ofEM (see Fig. 1). We take a pointsl0,h0dPG, define
the period lattice as explained in Appendix A 2 c and Eq.
(A2a) and (A2b), and then attempt to continue this period
lattice for all consecutive pointssl ,hdPG while moving
along G. When we come back to the original pointsl1,h1d
=sl0,h0d of the loop, we compare the initial and final period
lattices given by matricesAsl0,h0d andAsl1,h1d. If these lattices
differ and

MAsl0,h0d = Asl1,h1d,

where the monodromy matrixM is not unity, then the topol-
ogy of the bundle is nontrivial and the actions we used to
define our lattices are not global.

At the origin of monodromy is the possibility for the ro-
tation numberQ in Eq. (A2b) to jump byk2p after our tour
on G so that at the end point we have

FIG. 15. Example of the local lattice of quantum states in a
domain of the regular values of the energy-momentum mapEM of
an SOs2d symmetric system with two degree of freedoms in Appen-
dix A 2 c. Left panels show the initial “germ” cell; the right panel
illustrates propagating this cell in order to define quantum numbers
over a larger domain.
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Qsl0,h0d = Qsl1,h1d + k2p.

The matrixM does not depend on the choice ofG, but de-
pends, of course, on the choice of the basis. In the basis
sXI1

,XI2
d defined by the initial latticeAsl0,h0d in Eq. sA2bd,

this matrix equalsA−1MA= s 1
0

−k
1

d. We say that our system
has monodromyk.

b. Geometric monodromy theorem

Cushman and Duistermaat[28] proved that global action-
angle variables over a punctured open diskDs0,0d \ s0,0d of
regular valuessl ,hd of the EM map donot exist if s0,0d is
an isolated critical value of theEM map which corresponds
to the singular fiber called pinched torus. As shown in Fig.
16, this singular fiber is a torus with one basic cycle con-
tracted to a point. The point is an unstable equilibrium of the
system, while the rest of the fiber corresponds to the ho-
moclinically connected stable and unstable manifolds of this
equilibrium. Furthermore, for a contourG around s0,0d,
monodromy computed as explained in Appendix A 3 a is 1
[29].

APPENDIX B: SPHERICAL PENDULUM SYSTEMS

Spherical pendulum was discovered by Huygens about 30
years before Newton(see Ref.[4], p. 402). Some 360 years
later, Duistermaat used spherical pendulum as an example
when he introduced Hamiltonian monodromy in 1980[6]. It
was largely due to Cushman that molecular physicists under-
stood the monodromy of this system and became interested
in its molecular analog[30]. The closest analog, which they
came up with very early, was a flexible triatomic molecule
HAB, such as HCN, HCP, HClO, etc.

With all parameters scaled out, the unconstrained Hamil-
tonian of the spherical pendulum is

H = 1
2spx

2 + py
2 + pz

2d + z= 1
2p2 + z. sB1ad

The motion is constrained to the surface of the sphere and
the momentum vector is tangent to this surface,

r 2 = x2 + y2 + z2 = 1, r ·p = xpx + ypy + zpz = 0.

sB1bd

This system is invariant with regard to rotations about axisz.
The corresponding first integral is, of course, thez compo-
nent of the angular momentum

L = fr ∧ pgz = xpy − ypx. sB2d

Mathematical analysis of spherical pendulum can be found
in Chap. IV of Ref. f4g. The leitmotiv there is “no polar
coordinates.” We like to give an idea of why and how this is
done without polar coordinates.

1. Energy-momentum map

We explain how to find the image and fibers of theEM
map of the spherical pendulum system(Fig. 1) directly from
Eqs.(B1). Alternatively, this can be done after reducing the
axial symmetry, see Appendix B 2 and Ref.[4].

The integral fibration of the spherical pendulum system
defined in Eq.(B1) can be analyzed using the 436 Jacobian
matrix ]F /]j, where F=sL ,H ,r 2,r ·pd and j
=sx,y,z,px,py,pzd. We compute the rank of this matrix. Spe-
cifically, we find all critical pointsjc of F where this rank is
less than 4 and then compute the corresponding critical val-
ues(Lsjcritd ,Hsjcritd) of the EM map.

a. Equilibria and relative equilibria

Critical valuess0,1d and s0,−1d of the EM map of the
spherical pendulum system have rank 0 and correspond to
the upper unstable equilibrium withz=1 and the lower stable
equilibrium with z=−1, respectively. Critical values with
rank 1 lift to therelative equilibria, which are periodic tra-
jectories coinciding with the orbits of the axial symmetry
action, i.e., the orbits of the flowwL of the angular momen-
tum L in Eq. (B2). They project to latitudinal circles in the
configuration spaceS2 and correspond to the maximum
length uL u = u,u at each given fixed energyh.

The study of]F /]j can be simplified if we use the axial
symmetry of the system and restrict]F /]j to a vertical plane
containing axisz, such as the planehx=0j. Note that for
relative equilibriaż=pz=0. Furthermore, whenx=pz=0 we
can only satisfy Eq.(B1b) if either y=0 or py=0. The former
solution corresponds to the two equilibria withz= ±1; we
should, therefore, use the latter solution. Direct computation
now shows that]F /]jux=pz=py=0 has only three 434 minors
with nonzero determinants:

D1 = − zd, D2 = − yd, D3 = pxd,

whered=y2+zpx
2. The nontrivial solution ofD1=D2=D3=0,

, = ± s1 − z2d/Î− z, h = s3z2 − 1d/s2zd, sB3d

where −1,z,0 is the elevation of the relative equilibrium,
leads tod=0 and is compatible with Eq.sB1bd and x=pz
=py=0. EquationssB3d define the relation betweenh and,
for relative equilibria, and give the lower boundary of the
image of theEM map in Fig. 1.

b. Pinched torus

The critical values, ,hd=s0,1d (see Fig. 1) corresponds to
the upper equilibrium withz=1 and all homoclinic orbits
which begin and come back to this equilibrium(in infinite
time) while zooming by the bottom pointz=−1 with just
enough energy to climb back up. These trajectories fill up the

FIG. 16. Two possible plots of a pinched torus; cf. Chap. IV.3,
Fig. 3.5 on p. 163 of Ref.[4]. Both representations are equivalent in
the four-dimensional phase space.
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pinched torus shown in Fig. 16, center. To verify the topol-
ogy of this singular fiber consider a section ofR6 by a half-
plane hx=0,y.0j. SinceL=0 andyÞ0, it follows that px

=0. Solving Eqs.(B1) with H=1 gives the equation of the
cusped circle

pz
2 = 2sz− 1d2sz+ 1d,

which is the section of the pinched torus withhx=0,y.0j.
By axial symmetry all such sections are the same.

c. Topology of the constant energy-level sets

All other values ofEM (represented in Fig. 1 by the gray
shaded area) correspond to regular toriT2. Depending on the
energyh these tori foliate the constanth-level sets in two
different ways. Belowh=1, regular tori are packed into aS3,
while aboveh=1 they form anRP3 [4]. The former topology
corresponds to the level set of the 1:1 resonant oscillator(a
Hopf bifurcation), while the latter to a rotator. We speak of
“vibrations” ath,1 and “rotations” forh.1 (when the pen-
dulum goes over the top), cf. Sec. II A 2.

2. Reduction of axial symmetry

Physicists always reduce the axial symmetry of Eq.(B1)
by introducing polar coordinatessw ,ud, wherew is the angle
variable conjugate toL, see Ref.[31], Chap. III-14, problem
1. The downside of polar coordinates is their singularity at
the linear equilibria of the system whereu equals 0 orp. So
the simplification comes at the price of loosing correct ge-
ometry. In particular, it is difficult to work near the equilib-
ria, to study their stability, etc. Furthermore, it becomes im-
possible to do standard classical normalization of molecular
analog systems uniformly for all, [18,19]. Details of the
geometrically correct reduction of the spherical pendulum
system are presented in Ref.[4] and are summarized in Ap-
pendix B 2 b in order to give the idea of how troubles can be
avoided.

a. Reduction in polar coordinates

In polar coordinates, the reduced system with one degree
of freedom describes the latitudinal motion inu; the reduced
Hamiltonian is

H, = 1
2pu

2 + 1
2,2ssin ud−2 − cosu when , Þ 0,

sB4ad

= 1
2pu

2 − cosu when , = 0, sB4bd

where angleu is defined as shown in Fig. 3, andpu is the
corresponding conjugate momentum. Note that

J2 = pu
2 +

,2

sin2u
sB5d

is the square of the total angular momentumJ of the system
and, is projection ofJ on axisz.

Practitioners use physical intuition to compensate for the
singularity of polar coordinates in Eq.(B4). Thus relative
equilibria discussed in Appendix B 1 correspond to the equi-

libria of the reduced system with HamiltonianH, for ,Þ0
[see Eq.(B4a)] and are defined by the equations

u̇ = pu = 0, ṗu = hpu,H,j = − ] H,/] u = 0.

At the same time, the two equilibria withx=y=0 correspond
to the equilibria of the reduced system with,=0 fuseH, in
Eq. sB4bdg.

b. Reduction using polynomial invariants

Consider the action of the axial symmetry SOs2d on the
six-dimensional space TR3 with coordinates sr ,pd
=sx,y,z,px,py,pzd generated by the flowwL of the system
with HamiltonianL in Eq. (B2). Six basic invariants,

z, pz, L, s3 = px
2 + py

2 + pz
2,

s4 = x2 + y2, s5 = xpx + ypy,

of this action can be used to express anywL-invariant func-
tion of sr ,pd. Taking constraintssB1bd into accountsin other
words, descending fromTR3 to the four-dimensional phase
spaceTS2 of the spherical pendulumd, we eliminates4 and
s5 and find that the reduced phase spaceP, is a semialge-
braic variety inR3 defined by the equation and inequalities

pz
2 + ,2 = s3s1 − z2d, uzu ø 1, s3 ù 0. sB6d

When ,Þ0 P, is diffeomorphic toR2, but for ,=0 it is
singular. Each point ofP, except for the two singular points
with uzu =1 of P0 lifts to circular orbits ofwL; the two uzu
=1 points lift to equilibrium points.

The reduced HamiltonianH, on P, is

H,sz,pz,s3d = 1
2s3 + z. sB7d

To determine the topology of the fibers of theEM map we
need to find intersections ofP, and constanth-level sets of
H,. Furthermore, sinceH, andP, are invariant with respect
to “time reversal”pz→−pz, we project in the planehpz=0j,
see Fig. 17. In this plane, theh levels of H, in Eq. sB7d
become lines, and theh levels of the deformed spherical

FIG. 17. Thehpz=0j plane projections of the reduced spaces
(shaded area) P,=1 (left) andP,=0 (right), and of theh-level sets for
the spherical pendulum(solid linesa, b, c, d, e) and its quadratic
deformation(dashed lines, labelf).
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pendulum parabolas, whose intersections withP, can be eas-
ily found.

To reconstruct the fibers ofEM we lift the intersections
a,b,c,d,e, shown in Fig. 17 toP, and then back to the
original phase space. Thusb andd are circles onP,, which
lift to tori T2; the singular intersectione is a cusped circle
which lifts to a pinched torus; one-point intersections lift to
relative equilibria(RE) if the point is regular(a with uzu ,1),
and to an equilibrium point if the point is singular(c with
uzu =1). Similar analysis can be done for the levels of the
quadratic spherical pendulum(dashed lines in Fig. 17). In
particular, sectionf is a figure eight curve onP,=0 which
corresponds to the fiber shown in Fig. 6, left.

3. Quadratic aspherical pendulum

Quadratic deformation of the spherical pendulum is ob-
tained after replacingz in Eq. (B1a) for a quadratic potential
Vszd in Sec. II C. The energy-momentum relation

,szd = ± s1 − z2dÎc2 −
c1

z
,

hszd = c0 +
1

2
Sc2 −

c1

z
D +

3

2
c1z− c2z

2,

for the relative equilibria of this system can be obtained fol-
lowing the same approach as in Appendix B 1 a. However,
now z takes three different types of values:zP f−1,0d for the
lower stable REsAd, zP fc1/c2,zcg for the unstable REsXd,
andzP fzc,1g for the upper stable REsBd.

The deformed system has only one essential parameterc
=c2/c1 which defines the ratio

shX − hBd/shX − hAd = sc − 1d2/sc + 1d2,

wherehX is the energy of the unstable RE at,=0 sthe “bar-
rier”d, andhA andhB are energies of the two equilibria, see
Fig. 5. For HCN/CNH and LiNC/NCLi we havec<10.5 and
3.8, respectively. Other parameters serve scaling and
shifting theEM characteristics.

The elevationzc for the “cusp” pointsa± of theEM dia-
gram in Fig. 5 can be obtained by searching for the nontrivial
common zeroes ofdh/dzandd, /dz. In this way we find that
zc is the real root of 1+3z2−4cz3=0. In the example of Sec.
II C zc=0.361.

Deformation of the shape of the pendulum, i.e., of the
surface on which the body is moving(Sec. II D), complicates
the kinetic energy of the system. However, for relative equi-

libria wherepu=0 andu̇=0, only the change in the second
term of H, in Eq. (B4a) matters; this term becomes

T, = ,2f2mRsud2sin2 ug−1,

where the massm is used for scaling, andRsud is given by
Eq. s2d with R0 set to 1. Solving equations

] „T, + Vscosud…/] u = 0, T, + Vscosud = h,

for ,szd andhszd wherez=cosu, defines parametrically the
energy-momentum characteristics of RE.

Whene,
1
3, i.e., when asphericity issmall, theEM map

is qualitatively the same as fore=0 (Fig. 5). TheEM char-
acteristics ofA, X, andB are now parametrized byz on the
intervals f−1,0d, fz1,zcg, and fzc,1g, respectively. Herez1

<c−1+c−1s1−c−2de+Ose2d is the real root of ecz3+s1
−edcz−1, such that,sz1d=0. The cusp point is given by the
real rootzcP sz1,1d of

4cz3 − 3z2 − 1 −es40cz5 − 27z4 − 32cz3 + 14z2 + 5d + Ose2d.

Whene.
1
3 the solutionsA, B, andX are defined byz in the

intervals f−1,0d, f1,z0d, and fz1,0d, respectively. Herez0

=Î1−s3ed−1 and ,sz0d=`. These solutions are shown in
Fig. 8 for the quadratic potential in Sec. II C, asphericity
e= 1

2 and scalingm=2.5.
The critical value ofe= 1

3 has a simple geometrical expla-
nation. At this value, the shape of the molecule given by Eq.
(2) bifurcates so that at largere it is no longer convex. To
verify, note that the dent develops atu= 1

2p, where z
=Rsudcosu=0, and compute

S d

dz
D

z=0

2

x = S d

dz
D

z=0

2

Rsudsin u =
3e − 1

s1 − ed2 .

4. Quantum energy-level spectrum

The spectrum of the quantum spherical pendulum and
similar systems is computed straightforwardly by diagonal-

izing the quantum HamiltonianĤ= 1
2"2Ĵ2+Vsud, where for

the spherical pendulumVsud=−cosu, in the standard basis
of spherical harmonicsYj,. Here j =0,1, . . . ,jmax and ,
=0, ±1, . . . , ±j are the quantum numbers for the angular mo-
mentumJ and its projectionJz, and jmax is taken sufficiently
large to assure the convergence of the required lower ener-
gies, see Chap. IV-26 and the end of Chap. IV-29 in Ref.
[32]. Note that the quantum analog ofJ2 in Eq. (B5) is

Ĵ2 = −
1

sin u

]

] u
sin u

]

] u
−

,2

sin2u
. sB8d
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