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Université du Littoral, UMR 8101 du CNRS, 59 140 Dunkerque, France

E-mail: sadovski@univ-littoral.fr

Received 21 May 2003, in final form 26 September 2003
Published 21 November 2003
Online at stacks.iop.org/Non/17/415 (DOI: 10.1088/0951-7715/17/2/003)

Recommended by A Chenciner

Abstract
We study a class of three degree of freedom (3-DOF) Hamiltonian systems that
share certain characteristics with the 2-DOF Hénon–Heiles Hamiltonian. Our
systems represent a 1 : 1 : 1 resonant three-oscillator whose principal nonlinear
perturbation is the cubic potential term xyz with tetrahedral symmetry. After
normalizing and reducing the 1 : 1 : 1 oscillator symmetry, we show that near
the limit of linearization all our systems can be described as a one-parametric
family. Such reduced systems have been suggested earlier by Hecht (1960
J. Mol. Spectrosc. 5 355) and later by Patterson (1985 J. Chem. Phys. 83 4618)
to model triply degenerate vibrations of tetrahedral molecules. We describe
relative equilibria (RE) of these systems, classify all qualitatively different
family members, and discuss bifurcations of RE involved in the transitions
from one region of regular parameter values to the other.

Mathematics Subject Classification: 37J15

1. Introduction

Consider a two degree of freedom (2-DOF) Hamiltonian system with phase space T R2, standard
symplectic form dx ∧ dpx + dy ∧ dpy and Hamiltonian function H : T R2 → R

H(x, y, px, py) = 1
2 (x2 + p2

x) + 1
2 (y2 + p2

y) + ε(x2y − 1
3y3), (1)

where we introduced ε to scale the cubic perturbation potential of the 1 : 1 harmonic oscillator.
This Hamiltonian was derived by Hénon and Heiles from their original model 3-DOF
Hamiltonian in [1]. The specific form of its potential was chosen ‘because: (i) it is analytically
simple; . . . (ii) at the same time, it is sufficiently complicated to give trajectories far from
trivial’ [1]. Equation (1) is called the 2-DOF Hénon–Heiles Hamiltonian.

As Hénon and Heiles found numerically in [1], an additional integral of motion did not
exist in the 2-DOF system with Hamiltonian (1). Their study resulted in the first illustration of
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Hamiltonian chaos, and their system has since been studied extensively both numerically and
analytically (see [2] for a detailed list of references). It has served not only as a model for the
dynamics near the centre of a galaxy but also in molecular physics where it has been used to
describe doubly degenerate vibrations of molecules whose equilibrium configuration has one
or several threefold symmetry axes [3], such as H+

3 [4], P4 or CH4, and SF6.
The Hamiltonian (1) is symmetric under the action of the finite group D3 × T . Here

D3 is the dihedral symmetry group of the equilateral triangle, and T = {1, T } is the
time reversal or momentum reversal group generated by T : (x, y, z, px, py, pz) →
(x, y, z, −px, −py, −pz). Although the finite symmetry of (1) was not particularly
emphasized in [1], it has one very important consequence, namely the a priori existence
at low energy of eight families of periodic orbits called nonlinear normal modes [5–7]. In fact,
this is a property of any D3 × T symmetric 1 : 1 resonant 2-oscillator.

1.1. Generalized Hénon–Heiles Hamiltonian

In this work, we propose and study the following three-dimensional generalization of the
Hamiltonian (1):

Hε(x, y, z, px, py, pz) = H0(x, y, z, px, py, pz) + Vε(x, y, z), (2a)

where x, y, z are Cartesian coordinates in R3, and px, py, pz are the corresponding conjugate
momenta. We assume that (x, y, z) transform according to the vector representation of the
orthogonal group O(3) of transformations of R3. The zero-order Hamiltonian in (2a)

H0(x, y, z, px, py, pz) = 1
2 (p2

x + p2
y + p2

z ) + 1
2 (x2 + y2 + z2) (2b)

represents three harmonic oscillators with equal frequencies, that is, the 1 : 1 : 1 resonant
(isotropic) harmonic oscillator. The perturbation potential

Vε(x, y, z) = εK3 xyz + ε2K0(x
2 + y2 + z2)2 + ε2K4(x

4 + y4 + z4) (2c)

is a polynomial in (x, y, z) of degree 4. The dimensionless smallness parameter ε characterizes
the magnitude of the perturbation, while parameters K0, K3 and K4 give the relative strength
of each perturbation term. We assume that these parameters are of the order of 1. Note that
we use K3 in order to keep track of the contribution of the cubic potential term; in principle,
this parameter can be absorbed into ε.

Comparison of the family (2) to the two-dimensional Hénon–Heiles Hamiltonian (1).

(i) Like the two-dimensional Hénon–Heiles system, the system with Hamiltonian (2) is
probably not integrable and hence is a genuinely three-dimensional system in the sense
that the only exact first integrals are smooth functions of energy.

(ii) Both (1) and (2) have no connected compact Lie group of symmetries. Both are invariant
under the action of a discrete group which includes rotations by 2π/3 and the time reversal
group T described above. Our Hamiltonian (2) is invariant under the action of the group
Td×T , where Td ⊂ O(3) is the tetrahedral group of transformations of R3. This symmetry
group has four conjugate subgroups C3v ×T which are isomorphic to the symmetry group
of (1).

(iii) Both (1) and (2) have principal cubic perturbation terms of the simplest possible analytic
form which realize completely the respective point group symmetries: D3 and Td . The
polynomial Vε in (2c) is the most general Td -invariant polynomial in (x, y, z) of degree 4.
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A proof of the nonintegrability of the system with Hamiltonian (2) is beyond the scope
of this work and is not really necessary in our context. However, direct computations for high
degree Td ×T -invariant polynomials F(x, y, z, px, py, pz) show that {Hε, F } does not vanish.
Furthermore, numerical integration also reveals chaotic dynamics.

The symmetry properties of Hε can be verified easily once the action of O(3) ⊃ Td is
defined on the phase space T ∗R3 using the diagonal extension to (px, py, pz) of the standard
action of O(3) ⊃ Td on R3 with coordinates (x, y, z) (see [8–10] and appendix A). The action
and structure of Td × T is described in detail in [11].

The ring of polynomial invariants of the Td action on R3 with coordinates (x, y, z) is
generated freely by three principal invariants

µ2 = x2 + y2 + z2, µ3 = xyz, and µ4 = x4 + y4 + z4.

This can be confirmed by a direct computation of the corresponding Molien generating function
g(λ) = 1/[(1 − λ2)(1 − λ3)(1 − λ4)], with λ representing any of the variables (x, y, z) (see,
e.g. [12, 13]). It follows that the perturbation Vε in (2c) includes all principal invariants. It is
the most general Td -invariant polynomial in (x, y, z) of degree 4. However, including only
the cubic term µ3 is sufficient to bring the symmetry of (2c) down to Td .

Remark 1. The most obvious physical realization of a system with Hamiltonian (2) is an atom
(a spherical particle) trapped in a tetrahedral potential well. Hamiltonian (2) can also be used
to model triply degenerate vibrational modes of the tetrahedral molecules A4 or AB4 [11]. In
this latter case, we should include the term representing the squared length of the vibrational
angular momentum [(x, y, z) × (px, py, pz)]2. We will see later that omission of such a term
in (2) results in no loss of generality because Hamiltonian (2) with fourth degree terms in (2c)
already has enough parameters to represent qualitatively the above molecular systems.

The natural starting point of the analysis of the family of systems with Hamiltonian (2)
is near the linearization limit ε → 0. According to a theorem of Weinstein [14], a perturbed
non-resonant k-oscillator near this limit has k families of short periodic orbits called nonlinear
normal modes. In the presence of resonances, the oscillator can have more than k such
families. The number and the properties of the modes depend primarily on the resonance
and the symmetry of the perturbing nonlinear terms. As in the case of the two-dimensional
Hénon–Heiles system [5,6], the nonlinear normal modes of our three-dimensional system with
Hamiltonian (2) are special periodic solutions characterized by a nontrivial isotropy group G,
or stabilizer, which is a subgroup of the total symmetry group of the system Td × T . The
description of the subgroups G is given in appendix A and in more detail in [10]. Montaldi
et al [6] studied special short period solutions for a system, which, near ε → 0, is equivalent
to ours. Using their results we immediately obtain.

Theorem 1. The system with Hamiltonian (2) has at least 27 nonlinear normal modes. These
modes can be classified according to their stabilizers G ⊂ Td × T as follows.

Conjugacy class of Shorthand Number of
stabilizers notation modes

D2d × T A4 3
C3v × T A3 4
C2v × T A2 6
S4 ∧ T2 B4 6
C3 ∧ Ts B3 8

For a description of these stabilizers see appendix A.1.
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Figure 1. Qualitative representation of the equipotential surface of H (top left). Configuration
space representation of the periodic orbits of the system with Hamiltonian Hε (2) that correspond
to the critical points of Td × T . These periodic orbits have been computed for appropriate values
of the parameters ε, K3, K4, K0 in (2).

Remark 2. We can also use the approach of [6, 7] as well as of the earlier work on the two-
dimensional Hénon–Heiles system [5] (see also [15]) to reconstruct qualitatively the nonlinear
normal modes in theorem 1 using their isotropy groups. Figure 1 shows the projection of these
periodic orbits in the configuration space R3. A detailed discussion is relegated to appendix A.3
(see also [11]).

In this work, we determine the actual number of nonlinear normal modes for generic
members of the family (2) and we find situations where the Hamiltonian has more than the
27 relative equilibria (RE) given by theorem 1. Computing the value of Hε (energy) for these
modes and characterizing their linear stability we will give a basic qualitative description of
the whole parametric family (2).

Remark 3. In [1], Hénon and Heiles derived the 2-DOF Hamiltonian (1) from a 3-DOF
axisymmetric Hamiltonian. This 3-DOF Hamiltonian has been studied in [16–18] where it is
called the three-dimensional Hénon–Heiles Hamiltonian. The reduction of the axial symmetry
was done in [19] where it is shown that the reduced system is in 1 : 2 resonance.

1.2. Dynamical symmetry; relative equilibria

An alternative proof of theorem 1 was suggested in [15] based on the earlier work by
Zhilinskiı́ [20]. In order to follow this latter approach we recall a number of known facts
which we formulate as lemmas.

Lemma 1. For all n > 0 the n-level set of the Hamiltonian H0 in (2b) is a 5-sphere
S5

n : {ξ ∈ T ∗R3, H0(ξ) = h0 = n > 0} ⊂ T ∗R3\{0}. All orbits of the flow ϕt
0 : S1 ×S5

n �→ S5
n

of the Hamiltonian vector field XH0 are periodic with period 2π . This flow defines a symmetry
group S1 whose action on T ∗R3\{0} and on S5

n is free. The orbit space S5
n/S1 is a complex

projective 2-space CP2.
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Proof. Identify the phase space T ∗R3 with a complex 3-space C3 with coordinates

w1 = x + ipx, w2 = y + ipy, and w3 = z + ipz. (3)

In these coordinates, the equation

H0 = 1
2 (w1w̄1 + w2w̄2 + w3w̄3) = h0 = n > 0

defines a 5-sphere S5
n ⊂ C3\{0} of radius

√
2n. The flow

ϕt
0 : (w, w̄) → (eitw, e−it w̄) (4)

is, obviously, diagonal, and all orbits are circles S1
n of radius

√
2n. The quotient space

S5
n/S1

n is obtained by identifying points in each S1
n ⊂ S5

n orbit. We arrive at one of
the standard definitions of the complex projective space. See an appropriate textbook,
for example [21]. �

We denote by CP2(n) the orbit space of H0 for the level set H−1
0 (n), n > 0. A convenient

way to parametrize CP2(n) globally is by using polynomial invariants of the flow ϕ0. (Some
other ways to parametrize CP2 are discussed in [22].)

Lemma 2. The quadratic invariants of the S1 action (4) are

ν1 = 1
2w1w̄1, ν2 = 1

2w2w̄2, ν3 = 1
2w3w̄3, (5a)

σ1 = Re(w2w̄3), σ2 = Re(w3w̄1), σ3 = Re(w1w̄2), (5b)

τ1 = Im(w2w̄3), τ2 = Im(w3w̄1), τ3 = Im(w1w̄2), (5c)

Except for the relation

	0 = ν1 + ν2 + ν3 − n = 0, (6a)

which fixes the level set H−1
0 (n), these invariants are linearly independent. They satisfy nine

algebraic relations 	k = 0, called syzygies of the first order, where

	1 = 4ν2ν3 − σ 2
1 − τ 2

1 , 	4 = 2ν1σ1 − σ2σ3 + τ2τ3, 	7 = 2ν1τ1 + σ2τ3 + τ2σ3, (6b)

	2 = 4ν3ν1 − σ 2
2 − τ 2

2 , 	5 = 2ν2σ2 − σ3σ1 + τ3τ1, 	8 = 2ν2τ2 + σ3τ1 + τ3σ1, (6c)

	3 = 4ν1ν2 − σ 2
3 − τ 2

3 , 	6 = 2ν3σ3 − σ1σ2 + τ1τ2, 	9 = 2ν3τ3 + σ1τ2 + τ1σ2. (6d)

The syzygies (6) are themselves not algebraically independent.

The following two lemmas show why invariants (5) are used extensively in the reduction
of the oscillator symmetry (4).

Lemma 3. We can represent the points on CP2(n), i.e. the orbits of the S1 action in (4) using
(ν1, ν2, ν3; σ1, σ2, σ3; τ1, τ2, τ3) where the nine parameters satisfy relations (6).

Lemma 4. Any S1-invariant smooth function C3 → R is a smooth function of basic quadratic
invariants (5). In particular, any S1-invariant polynomial can be expressed uniquely in terms
of an integrity basis. One possible choice of such a basis is

R[n, ν1−ν2, σ1, σ2, σ3] • {1, ν3, ν
2
3 , τ1, τ2, τ3}.

Here, R[. . .] is the ring generated freely by the principal invariants listed within the square
brackets; auxiliary invariants listed within the curly brackets can enter only linearly, so that
the whole ring can be represented as follows:

R[n, ν1−ν2, σ1, σ2, σ3] · 1 + R[n, ν1−ν2, σ1, σ2, σ3] · ν3 + · · ·
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Proof. This lemma follows from a standard Gröbner basis computation and Schwarz’s
theorem [23]. The structure of the polynomial ring is described by the following Molien
generating function

g(λ) = 1 + 4λ + λ2

(1 − λ)5
, (7)

where λ represents any of the generators in (5) (see more in [11]). �

Lemma 5. Invariants (5) generate a Poisson algebra u(3) with n = ν1 + ν2 + ν3 one of its
Casimirs. The ring of invariant polynomials, generated multiplicatively by (5), can, therefore,
be equipped with a Poisson structure. This structure is used to define Hamiltonian dynamical
systems on CP2.

Proof. The Poisson bracket { , } of the two invariants in (5) is S1-invariant. By lemma 4 it
can be expressed in terms of (5). Moreover, since (5) are all quadratic in (x, y, z, px, py, pz),
the brackets are linear in (5). The concrete Poisson structure is found straightforwardly by
computing { , } in the coordinates (x, y, z, px, py, pz). The brackets satisfy relations of u(3).
Note that if we set n to a specific value greater than 0, then the algebra spanned by the linearly
independent invariants (5) is isomorphic to su(3). �

Lemma 6. Near the limit of linearization ε → 0 the perturbed Hamiltonian Hε in (2) is
approximately invariant with respect to the flow ϕ0 in lemma 1. Near ε → 0 we can normalize
Hε with respect to H0 and make this approximate dynamical symmetry exact.

After normalization we obtain a formal series H̃ε such that {H̃ε, H0} = 0. In practice,
we truncate H̃ε and, therefore, H̃ε and H0 Poisson commute up to a certain order k in ε:
{H̃ε, H0} = O(εk).

Definition 1. RE are periodic orbits of the normalized system with Hamiltonian H̃ε in T ∗R3,
which are also group orbits of the S1 action in lemma 1.

RE are also sometimes called short periodic orbits, i.e. periodic orbits with period close
to 2π , or basic orbits.

To reduce the now exact S1 symmetry of H̃ε , we pass from the original phase space T ∗R3

to the space CP2(n) of S1
n orbits or the reduced space as follows. Since {H̃ε, H0} = 0, the

value of H̃ε on each orbit of H0 is constant. This means that we can properly define a function
Ĥε on the phase space CP2(n) of H0 by assigning to each S1

n orbit of H0 the value of H̃ε on any
point of the orbit. We call the Hamiltonian Ĥε on CP2(n) the reduced Hamiltonian. Reduction
results in the 2-DOF system on CP2 or the reduced system. By lemma 5, this system is a
Poisson dynamical system with Hamiltonian Ĥ expressed (uniquely) in terms of the invariants
(5) and the integrity basis in lemma 4.

Lemma 7. After reduction of the S1 symmetry, RE correspond to the equilibria of the reduced
system with Hamiltonian Ĥε on CP2. Linear Hamiltonian stability and the isotropy group of
the RE and of the corresponding stationary point of Ĥε are the same.

The normal form of (2) is a formal power series whose orders are ‘tracked’ by the degrees
of the smallness parameter ε. Since this series diverges for typical values of parameters in (2),
it is truncated at the order of interest, which is in our case the principal order ε2. At this order
Ĥε is a Morse function on CP2 except for five isolated values of the appropriate parameter
introduced in section 2. We analyse only the non-exceptional (or ε2-generic) cases.
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As is well-known (see, e.g. appendix 7 of [24]), the system described by such truncated
normal form H̃ε and the original system can be profoundly different. At the same time, it is
possible to use H̃ε to analyse the short time average behaviour of the original system, and in
particular its short periodic orbits. The adequateness (validity) of the truncated normal form
approximation for the study of orbits of a given short period is clearly limited by the value of
ε which should be sufficiently small. (Note that decreasing ε is equivalent to decreasing the
energy and approaching the equilibrium x = y = z = 0 of (2) where H = 0.) This makes
H̃ε particularly suited for the analysis of the nonlinear normal modes which exist and can be
studied anywhere close to the limit ε → 0.

Lemma 8. For small enough ε, RE of the normalized system with Hamiltonian Ĥε correspond
to the nonlinear normal modes of the original system with Hamiltonian (2).

The correspondence between the RE of the normalized system and the nonlinear normal
modes is used in many applications. In particular, this was discussed in detail by Duistermaat
in [25] who uncovered the relation of normalization near the equilibrium and Lyapunov–
Schmidt reduction.

We conclude that the study of the nonlinear normal modes of the system with
Hamiltonian (2) becomes the study of the equilibria of the reduced system, i.e. of the stationary
points of the appropriately truncated reduced Hamiltonian Ĥε .

1.3. Symmetry and topology

In order to describe qualitatively the systems with Hamiltonian (2) in terms of their nonlinear
normal modes, we should find the equilibria of Hamiltonians Ĥε on CP2 (and hence the RE of
the normalized system) and characterize them in terms of their energy and linear stability type.
When searching for the stationary points of Ĥε we should account for the action of Td × T on
CP2 and the topology of this space.

Consider the action of a compact or finite group G on a manifold M . The isotropy group
(or stabilizer) of m ∈ M is the subgroup Gm of elements of G that leave m fixed. A point
m ∈ M is called a fixed point of the G action when Gm = G, that is, when it is fixed by all the
elements of G. The G-orbit of m is the set G·m = {g ·m : g ∈ G}. We are primarily interested
in points mc ∈ M such that there is a punctured neighbourhood of mc in which there are no
points m with isotropy group Gm that belongs to the same conjugacy class in G as Gmc

. We
call such points mc and the orbit G·mc critical (for more details see, e.g. [13]). The importance
of the critical points is due to the following theorem of Louis Michel [26].

Theorem. Critical points of the action of a group G on a smooth manifold M are stationary
points of every smooth, G-invariant function H on M .

Consequently, analysis of the critical points of the Td × T group action on the reduced
space CP2 provides a number of RE of the normalized system and by lemma 8, nonlinear
normal modes of the original system with Hamiltonian (2). A concrete study of this action
results in the following conclusion (Zhilinskiı́ [20], see also [10, 11, 15] and appendix A).

Theorem 2. The action of Td × T on CP2 induced by the action of Td × T on T ∗R3 ∼ C3

has 27 critical (i.e. isolated fixed) points grouped into five critical orbits with the conjugacy
classes of stabilizers given in theorem 1. Table 1 presents the position of these points on CP2(n)

characterized by the values of the invariants (5).

Remark 4. Table A3 of appendix A lists isotropy groups of the 27 points in theorem 2. Isotropy
groups of the points in the same critical orbit of the Td × T action are conjugate in Td × T .



422 K Efstathiou and D A Sadovskiı́

Table 1. Critical points of the Td × T action on CP2(n). Coordinates are given by
(ν1, ν2, ν3; σ1, σ2, σ3; τ1, τ2, τ3) with α = 1

2 , β = √
3/2, ᾱ = − 1

2 , β̄ = −√
3/2, and 1̄ = −1.

Point Coordinates on CP2(n) Point Coordinates on CP2(n)

Ax
4 n(1, 0, 0; 0, 0, 0; 0, 0, 0)

A
y

4 n(0, 1, 0; 0, 0, 0; 0, 0, 0)

Az
4 n(0, 0, 1; 0, 0, 0; 0, 0, 0)

Aa
3

2n
3 (α, α, α; 1, 1, 1; 0, 0, 0)

Ab
3

2n
3 (α, α, α; 1̄, 1̄, 1; 0, 0, 0)

Ac
3

2n
3 (α, α, α; 1, 1̄, 1̄; 0, 0, 0)

Ad
3

2n
3 (α, α, α; 1̄, 1, 1̄; 0, 0, 0)

Ax
2 n(0, α, α; 1, 0, 0; 0, 0, 0)

Ax̄
2 n(0, α, α; 1̄, 0, 0; 0, 0, 0)

A
y

2 n(α, 0, α; 0, 1, 0; 0, 0, 0)

A
ȳ

2 n(α, 0, α; 0, 1̄, 0; 0, 0, 0)

Az
2 n(α, α, 0; 0, 0, 1; 0, 0, 0)

Az̄
2 n(α, α, 0; 0, 0, 1̄; 0, 0, 0)

Bx
4 n(0, α, α; 0, 0, 0; 1, 0, 0)

Bx̄
4 n(0, α, α; 0, 0, 0; 1̄, 0, 0)

B
y

4 n(α, 0, α; 0, 0, 0; 0, 1, 0)

B
ȳ

4 n(α, 0, α; 0, 0, 0; 0, 1̄, 0)

Bz
4 n(α, α, 0; 0, 0, 0; 0, 0, 1)

Bz̄
4 n(α, α, 0; 0, 0, 0; 0, 0, 1̄)

Ba
3

2n
3 (α, α, α; ᾱ, ᾱ, ᾱ; β, β, β)

Bā
3

2n
3 (α, α, α; ᾱ, ᾱ, ᾱ; β̄, β̄, β̄)

Bb
3

2n
3 (α, α, α; α, α, ᾱ; β, β, β̄)

Bb̄
3

2n
3 (α, α, α; α, α, ᾱ; β̄, β̄, β)

Bc
3

2n
3 (α, α, α; ᾱ, α, α; β̄, β, β)

Bc̄
3

2n
3 (α, α, α; ᾱ, α, α; β, β̄, β̄)

Bd
3

2n
3 (α, α, α; α, ᾱ, α; β, β̄, β)

Bd̄
3

2n
3 (α, α, α; α, ᾱ, α; β̄, β, β̄)

These points are equivalent: the dynamics in their neighbourhood is identically the same, so
it is usually sufficient to study one representative of each critical orbit. We denote different
points of the same critical orbit by a superscript; we drop this index when referring to the entire
orbit or when our results apply identically to all points in the orbit.

We can now prove theorem 1. We rely on lemma 6 in order to establish the correspondence
of the nonlinear normal modes of the initial system with Hamiltonian (2) and the RE of the
normalized system near the limit ε → 0. We then use the theorem of Michel and theorem 2.

Consider a smooth Hamiltonian function H : CP2 → R whose stationary points are
nondegenerate. We call H a Morse type Hamiltonian. The isotropy group of a stationary point
c of H also restricts the possible types of linear Hamiltonian stability and the Morse index of c.
Recall that linear stability is given by the eigenvalues of the 4×4 Hamiltonian matrix, which
describes the linearized equations of motion near c ∈ CP2, while the Morse index of c gives
the number of negative eigenvalues of the Hessian matrix of the Hamiltonian at c. Depending
on the eigenvalues of this matrix we will distinguish six linear stability types EE, HH, EH,
CH, 2E, 2H, described in appendix B.2.

Theorem 3. Equilibria of a Td ×T -invariant Morse type Hamiltonian function on CP2, which
are the critical points listed in theorem 2, have the following linear Hamiltonian stability types
and Morse indices.

Critical Orbit Stability Index Critical Orbit Stability Index

D2d × T A4 3 2E 0, 4 S4 ∧ T2 B4 6 EE 0, 2, 4
2H 2 EH 1, 3

C3v × T A3 4 2E 0, 4 C3 ∧ Ts B3 8 EE, CH 0, 2, 4
2H 2

C2v × T A2 6 EE 0, 2, 4
EH 1, 3
HH 2
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Proof. See [10]. �
Theorem 3 is a local statement which concerns an open neighbourhood Dc ⊂ CP2 of each

critical point c of the Td × T action on CP2. Thus far we have no information about the set
of stationary points characterized in theorems 2 and 3. This information can only be obtained
from the global (topological) analysis. Note that we have already used the topology of CP2 in
order to find the action of Td × T (initially defined on R3

x,y,z) on this space, and of the isotropy
group Gc of c on Dc. In appendix B we summarize how Morse theory [27, 28] is applied in
order to check the consistency of any set of stationary points using the Morse inequalities (four
inequalities and one equality) imposed by the topology of CP2 on the number and types of
stationary points of Morse functions H. In particular, we can determine if it is possible for a
Td × T -invariant Morse function H to have stationary points solely at the critical points of the
Td × T symmetry given in theorem 2.

Definition 2. A simplest (or perfect) G-invariant Morse function on a manifold M is one that
has the minimal possible number of nondegenerate stationary points.

Note that there is no guarantee that all the stationary points of a perfect function lie on a
critical orbit of the G-action. In our case, we have the following lemma.

Lemma 9. The simplest Td × T -invariant Morse Hamiltonian H on CP2 has 27 equilibria
which are critical points of the Td × T action in theorems 2 and 3. In this case the six A2 and
six B4 stationary points of H are of odd Morse index and have stability EH.

Proof. According to theorem 3, points A3, A4, and B3 are of even Morse index. The 27 points
can have the right Morse indices whose alternating sum gives the Euler characteristic of CP2

only if A2 and B4 are of odd Morse index. �

Remark 5. Linear stability types of the nonlinear normal modes in theorem 1 correspond to
the stability types in theorem 3. In the simplest possible case, the system with Hamiltonian
(2) near the limit of linearization has exactly 27 families of short periodic orbits.

Remark 6. Morse theory provides necessary conditions that must be satisfied by the stationary
points of any Morse function on CP2. At the same time, when a set of known stationary points
of a Morse function H satisfies all these conditions, H can still have other stationary points.

Remark 7. A more complete consistency check of a known system of stationary points of a
Td × T -invariant Morse function H on CP2 requires that the Morse inequalities hold not only
for CP2 but also for all G-invariant subspaces of CP2 with G a subgroup of Td × T .

1.4. Overview

We give a brief overview of this paper. In section 2, we continue a general study of Td × T
symmetric systems with Hamiltonian (2) and show how these systems can be described as a
one-parameter family. In section 3, we normalize the Hamiltonian (2) to the second (principal)
order in ε (degree 4) and then reduce it. In section 4, we determine the local properties (linear
stability type and Morse index) of the equilibria of the reduced Hamiltonian Ĥε , which are
critical points of the Td × T action. In section 5, we describe other stationary points of Ĥε ,
which do not lie on a critical orbit of the Td × T action. This concludes the concrete study
of the family of systems with Hamiltonian (2) near the limit ε → 0. Finally, in section 6, we
make some comments on the bifurcations of the RE of this family. This paper contains two
appendices where we detail the action of Td × T on CP2 and describe how we find the linear
stability types and the Morse indices of the critical points on CP2.
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2. One-parameter classification

Theorem 1 has already highlighted the important consequences of the presence of the additional
finite symmetry Td × T . The next lemma shows that this symmetry causes important
modifications of the standard S1-invariant polynomial basis in lemma 4.

Lemma 10. Consider the most general (Td ×T )×S1-invariant polynomial Pk(w, w̄) of degree
k in variables (w, w̄) (3). Then Pk = 0 if k is odd, and

P2 = c′n = c′(ν1 + ν2 + ν3) (8a)

P4 = cn2 + a(σ 2
1 + σ 2

2 + σ 2
3 ) + b(τ 2

1 + τ 2
2 + τ 2

3 ) (8b)

where a, b, c, and c′ are arbitrary constants.

Proof. The action of O(3) × T and its subgroup Td × T on polynomials (5) can be found
by direct computation (see appendix A and [10, 11]). In particular, we can verify that all
S1-invariants in (5) are invariant with respect to spatial inversion, and that

n, (τ1, τ2, τ3), and

(
σ1, σ2, σ3,

3ν3 − n√
3

, n1−n2

)

transform according to the irreducible representations of O(3) of indices 0g , 1g , and 2g ,
respectively. In other words, n and (τ1, τ2, τ3) transform as a scalar and an axial 3-vector,
respectively. We can also easily verify that for the generator T of T

T : (ν, σ, τ ) → (ν, σ, −τ).

Knowing the action of Td × T , we can further symmetrize the basis of lemma 4. In particular,
we obtain the generating function

g(λ) = 1 + λ3 + λ4 + λ5 + λ6 + λ9

(1 − λ)(1 − λ2)2(1 − λ3)(1 − λ4)
(9)

which describes the symmetrized integrity basis (see [11]). The symmetrized invariants
have generators of high degree when expressed in terms of the generators in (5): of the five
denominator factors in (9), which describe principal invariants, (1 − λ) corresponds to n,
while (1 − λ2)2 represents two invariants of degree two in generators (5). Direct computation
shows that τ 2 and σ 2 are Td × T -invariant and can be chosen as these two invariants.
The function (9) indicates that there are no other principal or auxiliary invariants of this
degree. �

Remark 8. The 3-vector τ = (τ1, τ2, τ3) is the angular momentum vector. Both n and
τ 2 = τ 2

1 + τ 2
2 + τ 2

3 are totally symmetric with respect to the larger group O(3) × T . The
only term in (8) which represents a Td × T symmetry is σ 2.

Definition 3.

(i) Two reduced Hamiltonians Ĥε and Ĥ ′
ε will be called ε2-equivalent if a(n)Ĥε = b(n)Ĥ ′

ε +
c(n) + O(ε2), where a(n) �= 0, b(n) �= 0 and c(n) are functions of the parameter n.

(ii) Two normalized Hamiltonians H̃ε and H̃ ′
ε are ε2-equivalent if a(H0)Ĥε = b(H0)Ĥ

′
ε +

c(H0) + O(ε2), where a �= 0, b �= 0 and c are functions of H0 in (2b).
(iii) Two systems with Hamiltonians Hε and H ′

ε of the form (2) will also be called ε2-equivalent
if their respective normalized Hamiltonians are ε2-equivalent.

We now come to a central result which provides the basis for our work.
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Theorem 4. At the level of ε2-equivalence, all systems with Hamiltonian Hε in (2) with generic
values of K3, K0, and K4, can be characterized using one parameter.

Proof. Lemma 6 establishes the correspondence of the initial system with Hamiltonian Hε

and the normalized system with Hamiltonian H̃ε . According to lemma 10, H̃ε has the form
P2 + ε2P4 + · · ·. Since {H0, H̃ε} = 0, H0 is replaced by its value n when we define the reduced
Hamiltonian Ĥε . Then, up to the constant c′n + ε2cn2 and the overall scaling factor of ε2,

Ĥ = Ks(σ
2
1 + σ 2

2 + σ 2
3 ) + Kt(τ

2
1 + τ 2

2 + τ 2
3 ) + · · · . (10)

It remains to verify that the family of systems (2) is generic in the sense that for practically
all members of this family K2

s + K2
t �= 0. (For the exceptional members we would have to

normalize to higher orders.) This will be done in section 3 after computing explicitly the
normal form H̃ε of (2).

In the generic situation when R =
√

K2
s + K2

t > 0 we can define a one-parameter family
by setting Ks = R sin θ and Kt = R cos θ and rescaling the reduced Hamiltonian Ĥ in (10)
by R. Then,

Ĥ = sin θ (σ 2
1 + σ 2

2 + σ 2
3 ) + cos θ (τ 2

1 + τ 2
2 + τ 2

3 ) + · · · , (11)

where, in general, θ can take any value in [0, 2π). Systems with the same value of θ but different
values of R have qualitatively the same dynamics but different timescales. Specifically, for
smaller R the dynamics is slower. �

Remark 9. Lemma 10 and theorem 4 apply, in fact, to a larger family of systems with an
extended Hamiltonian Hε + Wε(x, y, z, px, py, pz), where Hε is defined in (2), and Wε is
a general Td × T -invariant ε-series perturbation of degree 3 or higher in all the dynamical
variables (x, y, z, px, py, pz).

The Hamiltonian (10) is equivalent to the model quantum Hamiltonian proposed by
Hecht [29] in order to describe the structure of polyads formed by triply degenerate vibrational
modes of tetrahedral and octahedral molecules. Hecht’s Hamiltonian was analysed later by
Patterson [30]. Both authors exploited the one-parameter property in their analysis. The
classical RE system and quantum–classical comparison for this Hamiltonian are presented
in section 11.1 of [11]. To continue classifying reduced systems with Hamiltonian (11) and
respective original systems with Hamiltonian (2) we use the equivalence relation, which takes
into account only the families of RE and respective nonlinear normal modes.

Definition 4. Consider two different systems with Hamiltonians Hε and H ′
ε in (2).

(i) Nonlinear normal modes of these two systems are equivalent if these modes have the same
stability and the same isotropy group.

(ii) The sets of modes of the two systems are equivalent if we can establish a 1–1
correspondence between all modes in each respective set using the equivalence in (i).

(iii) Two systems belong to the same class of mode-equivalent systems if their sets of nonlinear
normal modes are equivalent.

Definition 5. Consider two reduced systems with Hamiltonians Ĥε and Ĥ ′
ε in (11).

(i) Equilibria of these two systems are equivalent if they have the same stability and the same
isotropy group.

(ii) The sets of equilibria are equivalent if we can establish a 1–1 correspondence between
the equivalent equilibria in the sets.
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(iii) Two reduced systems are equivalent if their sets of equilibria are equivalent.

Consider now two reduced systems with Hamiltonians Ĥε and Ĥ ′
ε which correspond to the

systems in definition 4. By lemma 8 we obtain the following lemma.

Lemma 11. Two systems belong to the same class of mode-equivalent systems in definition 4
if the corresponding reduced systems are equivalent in the sense of definition 5.

Proof. Relate the equilibria of the reduced system, the RE of the normalized system and the
nonlinear normal modes of the original system. �

Definition 6. The system with Hamiltonian Hε in (2) is called ε2-generic if it is mode-
equivalent to the respective normalized system with Hamiltonian H̃ε truncated at the principal
order ε2.

In this work, we will only consider ε2-generic systems with Hamiltonian (2). In order to
characterize all such systems we will study all possible sets of stationary points ξ ∈ CP2(n) of
the Hamiltonian (11). Symmetry properties of ξ can be obtained from the study of the action of
Td × T on CP2(n). Stability of ξ is given by four eigenvalues (±λ1, ±λ2) of the Hamiltonian
matrix of the locally linearized Hamiltonian Ĥ |ξ . We also use the eigenvalues of the Hessian
matrix to compute the Morse index of ξ .

Remark 10. It is sufficient to study (11) for θ ∈ [0, π) because Ĥ (θ + π) = −Ĥ (θ). Both
Hamiltonian and Hessian matrices change signs when θ → θ +π . This does not affect stability
(since both λ and −λ are eigenvalues). On the other hand, if the Morse index for θ is d then
for θ + π it becomes 4 − d.

We would like to point out that our classification has both qualitative and quantitative aspects.
We will find several different classes of ε2 generic systems with Hamiltonian (2). At the same
time we represent all systems in the same class as a continuous one-parameter family and
describe quantitatively the evolution of their RE as the parameter varies.

Remark 11. It is instructive to compare our analysis to a similar single parameter classification
of the two-dimensional Hénon–Heiles systems with Hamiltonian (1) which is summarized in
appendix C. The principal difference between our case and the two-dimensional case is that
systems with different θ in (11) have the same principal action n and do not differ seriously
in energy. Figuratively, our scheme is ‘isoenergetic’, while any possible scheme for the two-
dimensional systems has an energy-dependent parametrization.

3. Normalization and reduction

Normalization is the first step of the concrete study of systems with Hamiltonian Hε in (2).
This well-known procedure can be performed using the Lie series method [31–33]. Up to the
second-order terms ε2 we obtain the normalized Hamiltonian

H̃ε(w, w̄) = H̃0(w, w̄) + ε2H̃2(w, w̄) , (12a)

where variables (w, w̄) are given in (3), H̃0(w, w̄) = H0(w, w̄) = 1
2

∑
wiw̄i , and

H̃2(w, w̄) = − 3
2 (K0 + K4)(w

2
1w̄

2
1 + w2

2w̄
2
2 + w2

3w̄
2
3)

+ (−2K0 + 1
6K2

3 )(w1w̄1w2w̄2 + w2w̄2w3w̄3 + w3w̄3w1w̄1)

+ (− 1
2K0 + 1

8K2
3 )(w2

1w̄
2
2 + w̄2

1w
2
2 + w2

2w̄
2
3 + w̄2

2w
2
3 + w2

3w̄
2
1 + w̄2

3w
2
1). (12b)
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Reduction of the Hamiltonian (12) gives

Ĥε = Ĥ0 + ε2Ĥ2, (13a)

where

Ĥ0 = ν1 + ν2 + ν3 = n (13b)

Ĥ2 = 3
2 (K4 + K0)n

2 + Ks(σ
2
1 + σ 2

2 + σ 2
3 ) + Kt(τ

2
1 + τ 2

2 + τ 2
3 ) (13c)

with

Ks = −5K2
3 − 36K4

48
, Kt = K2

3 − 36K4 − 24K0

48
. (13d)

Dropping the constant terms in Ĥε and rescaling by ε2 we arrive at the Hamiltonian Ĥ in (10).
Furthermore, since K0, K3, and K4 can take arbitrary values (of order 1) we can rewrite Ĥ in
the one-parameter form Ĥ (θ) in (11), where 0 � θ < π .

Remark 12. There are two values of θ at which the reduced system with Hamiltonian Ĥ (θ)

has large Lie group of symmetries and is Liouville integrable, see below.

Value of θ First integrals Symmetry

0 n, τ 2
1 + τ 2

2 + τ 2
3 , τ3 O(3)

π/4 ν1, ν2, ν3 SU(3)

Remark 13. Including the terms µ4 and µ2
2 in (2) results in the most general Td ×T -invariant

fourth-order reduced system. With K4 = K0 = 0 and K3 �= 0 in (2) the reduced Hamiltonian is

Ĥ = −5K2
3 (σ 2

1 + σ 2
2 + σ 2

3 ) + K2
3 (τ 2

1 + τ 2
2 + τ 2

3 ),

which represents only one member of the family (11) with θ = π − tan−1(5) ≈ 0.563π .

4. RE corresponding to critical points

We study equilibria of the reduced system with Hamiltonian (11) which are the critical points
of the Td × T action on CP2(n).

Lemma 12. The nonlinear normal modes in theorem 1 correspond to the RE of the normalized
system with Hamiltonian (2). On the phase space CP2 of the corresponding reduced system,
these RE are critical points of the action of the symmetry group Td × T given in theorem 2.
The principal terms in the energy-action characteristics for these modes are given below.

Conjugacy class Shorthand Number of

of stabilizers notation modes Energy Ĥ (n, θ)

D2d × T A4 3 0
C3v × T A3 4 4

3n2 sin θ

C2v × T A2 6 n2 sin θ

S4 ∧ T2 B4 6 n2 cos θ

C3 ∧ Ts B3 8 1
3n2(sin θ + 3 cos θ)

Note that n is equal to the action I = ∮
p dq computed along the respective periodic orbit,

and θ is defined in the proof of theorem 4. For the members of the family of systems with
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Hamiltonian (2), the absolute maximum and minimum energy, Emax(n) and Emin(n), for a
given fixed action n can be estimated as follows: Emin = EA4 and Emin = EB4 in the regions
θ ∈ [0, 1

2π] and θ ∈ [ 1
2π, π ], respectively, while Emax = EB3 and Emax = EA3 in the regions

θ ∈ [0, 1
4π ] and θ ∈ [ 1

4π, π ], respectively.

Proof. We find the energy for each type of RE by substituting the coordinates in table 1
into (11). We present the result in figure 2 and table 2. We now prove that Ĥ /n2 takes the
values represented by the grey region in figure 2. We do this in a number of steps. First, note
that when 0 � θ � π/2 we have sin θ � 0 and cos θ � 0; therefore Ĥ � 0 = ĤA4 in that
region.

Let ν2 ≡ ν2
1 + ν2

2 + ν2
3 , σ 2 ≡ σ 2

1 + σ 2
2 + σ 2

3 , and τ 2 ≡ τ 2
1 + τ 2

2 + τ 2
3 . From (6a) we find that

ν2 � n2/3. In the region π/4 � θ � π we express Ĥ as Ĥ = sin θ(σ 2 +τ 2)+(cos θ−sin θ)τ 2.
Using the syzygies (6) we find that σ 2 + τ 2 = 2(n2 − ν2) and since ν2 � n2/3 we get
σ 2 + τ 2 � 4n2/3. Also, when π/4 � θ � π we have cos θ − sin θ � 0. Therefore,
Ĥ � sin θ(σ 2 + τ 2) � 4n2 sin θ/3 = ĤA3 .

In order to complete the argument we need to show that τ 2 � n2. By remark 8, any
rotation in the original phase space T ∗R3 leaves τ 2 unchanged. Note also that the form of the
syzygies in (6) remains invariant under such a rotation. Therefore we can rotate coordinate
axes so that in the new coordinate system we have τ ′

1 = τ ′
2 = 0 and τ ′

3
2 = τ 2. If τ ′

3 = 0, then
what we want to prove is true. If τ ′

3 �= 0, then using the syzygies we find that ν ′
3 = σ ′

1 = σ ′
2 = 0

and τ ′
3

2 = 4ν ′
1(n− ν ′

1)− σ ′
3

2. It follows from the last relation that τ ′
3

2 and, therefore, τ 2 is less
than or equal to n2.

We complete the proof. In the region π/2 � θ � π we have that Ĥ = sin θσ 2−| cos θ |τ 2.
Since sin θ � 0 we get Ĥ � −| cos θ |τ 2 � −| cos θ |n2 = ĤB4 . Finally, in the region 0 � θ �
π/4 we have Ĥ = sin θ(σ 2 + τ 2) + (cos θ − sin θ)τ 2 � (4n2/3) sin θ + n2(cos θ − sin θ) =
(n2/3)(sin θ + 3 cos θ) = ĤB3 . �

We now study linear stability of the RE found in lemma 12 and the Morse index of the
corresponding stationary points. Theorem 3 leaves a number of different possibilities that
require a concrete study of the Hamiltonian (11).

Figure 2. Scaled energy h/n2 of the stationary points of Ĥ (11) as a function of the parameter θ .
The dashed curve marks the energy of the Cs point (see section 5).
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Table 2. Stability (2E, 2H, etc, as explained in appendix B.2) and Morse index (0, . . . , 4) of
the stationary points of Ĥ in (11). For the Cs points see section 5; ρ1 = cos−1(1/

√
5) and

ρ2 = cos−1(−1/
√

10).

Region Emin Emax A4 A3 A2 B4 B3 Cs

I (0, 1
4 π) ĤA4 ĤB3 2E 0 2H 2 EH 1 EE 2 EE 4 EH 3

IIa ( 1
4 π, ρ1) ĤA4 ĤA3 2E 0 2E 4 EE 2 EH 1 CH 2 EH 3

IIb (ρ1,
1
2 π) 2E 0 2E 4 EH 3 EH 1 CH 2

IIIa ( 1
2 π, ρ2) ĤB4 ĤA3 2H 2 2E 4 EH 3 EE 0 CH 2 EH 1

IIIb (ρ2, π) 2H 2 2E 4 EH 3 EE 0 EE 2 EH 1

Lemma 13. The one-parameter family of reduced Hamiltonians (11) and corresponding
Hamiltonians (2) can be separated into five qualitatively different subfamilies, which
correspond to five open intervals of the values of the parameter θ . Concrete values are listed
in table 2. Each subfamily is distinguished by a particular pattern of the linear stability of the
RE in lemma 12.

Proof. According to remark 4, it suffices to study one critical point for each of the five
critical orbits of the Td × T action on CP2(n). We begin by finding an appropriate local
symplectic chart in the neighbourhood of the critical point, and then compute the quadratic
part of the Hamiltonian (11) in this local chart. We define the charts (χ1, χ2, ψ1, ψ2) in terms
of the polynomial invariants as described in detail in appendix B. These charts are given in
table 3. Note that our local coordinates (χ, ψ) are canonical only up to the constant terms in
the Poisson brackets,

{χk, ψk} = 1 + · · · , {χ1, ψ2} = 0 + · · · , {χ2, ψ1} = 0 + · · · , k = 1, 2.

This is adequate only for the study of the linearized equations of motion. We now express
Hamiltonian (11) in each local chart and expand it to the second-order terms. This gives

HA4(χ, ψ) = 2n cos θ(ψ2
1 + ψ2

2 ) + 2n sin θ(χ2
1 + χ2

2 );

HA3(χ, ψ) = 4

3
n2 sin θ +

4
√

2

3
n(cos θ − sin θ)(ψ2

1 + ψ2
2 ) −

√
2n sin θ(χ2

1 + χ2
2 );

HA2(χ, ψ) = n2 sin θ + n((cos θ − sin θ)ψ2
1 + (2 cos θ − sin θ)ψ2

2 − 4 sin θχ2
1 + sin θχ2

2 );
HB4(χ, ψ) = n2 cos θ + n(−4 cos θψ2

1 + sin θψ2
2 − (cos θ − sin θ)χ2

1 + sin θχ2
2 );

HB3(χ, ψ) = 1
3n[(sin θ + 3 cos θ)(n − (ψ2

1 + ψ2
2 ) − 2

√
3(χ1ψ1 + χ2ψ2))

−12 cos θ(χ2
1 + χ2

2 ) + 6(sin θ − cos θ)(χ1ψ2 − χ2ψ1)].

(Note that in agreement with remark 4, we can always find two such local charts for any two
critical points in the same critical orbit, such that the respective local Hamiltonians are the
same.) Using local quadratic Hamiltonians H(χ, ψ) we compute the Morse indices and the
linear stability types in table 2. �

Remark 14. Besides the linear stability type of the stationary points of Ĥ we can also
determine that in some cases the stationary point is orbitally stable. This is true when the
Morse index of the point is either 0 or 4 and we can use the reduced Hamiltonian to get the
appropriate estimate.

Corollary 1. The 27 equilibria of the system with Hamiltonian Ĥ in (11), which are the
critical points of the Td ×T action on CP2, satisfy Morse inequalities and give the right Euler
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Table 3. Local coordinates at critical points on CP2(n). We use these relations in order to express
the Hamiltonian in each local chart and to compute the Poisson brackets of the local coordinates.

Ax
4 χ1 = − 1√

2n
σ2 χ2 = 1√

2n
σ3

ψ1 = 1√
2n

τ2 ψ2 = 1√
2n

τ3

ν1 = δ

2
ν2 = σ 2

3 + τ 2
3

2δ

ν3 = σ 2
2 + τ 2

2

2δ
σ1 = σ2σ3 − τ2τ3

δ

τ1 = −σ2τ3 − τ2σ3

δ
where δ = n + (n2 − σ 2

2 − σ 2
3 − τ 2

2 − τ 2
3 )1/2

Aa
3 χ1 = 1

21/4
√

n
(2n − 2σ2 − σ3) χ2 = − 1

21/4
√

3n
(2n − 3σ3)

ψ1 = 3

27/4
√

n
τ3 ψ2 =

√
3

27/4
√

n
(2τ2 + τ3)

ν1 = δ

2
ν2 = σ 2

3 + τ 2
3

2δ

ν3 = σ 2
2 + τ 2

2

2δ
σ1 = σ2σ3 − τ2τ3

δ

τ1 = −σ2τ3 − τ2σ3

δ
where δ = n − (n2 − σ 2

2 − σ 2
3 − τ 2

2 − τ 2
3 )1/2

Az
2 χ1 = 1√

n
(ν2 − n

2
) χ2 = 1√

n
σ1

ψ1 = 1√
n

τ3 ψ2 = 1√
n

τ1

ν1 = τ 2
3 + δ2

4ν2
ν3 = σ 2

1 + τ 2
1

4ν2

σ2 = −τ1τ3 + σ1δ

2ν2
σ3 = δ

τ2 = −σ1τ3 − τ1δ

2ν2
where δ = (4nν2 − 4ν2

2 − σ 2
1 − τ 2

1 − τ 2
3 )1/2

Bx
4 χ1 = 1√

n
σ1 χ2 = 1√

n
σ2

ψ1 = 1√
n

(
ν3 − n

2

)
ψ2 = 1√

n
τ2

ν1 = σ 2
2 + τ 2

2

4ν3
ν2 = σ 2

1 + δ

4ν3

σ3 = σ1σ2 − τ2δ

2ν3
τ1 = δ

τ3 = −σ1τ2 − σ2δ

2ν3
where δ = (4nν3 − 4ν2

3 − σ 2
1 − σ 2

2 − τ 2
2 )1/2

Ba
3 χ1 = 1

4
√

n
(
√

3(σ2 − σ3) + τ2 − τ3) χ2 = 1

4
√

n
(3(σ2 + σ3) +

√
3(τ2 + τ3))

ψ1 = − 1

2
√

n
(4n + 3σ2 −

√
3τ2 − 2

√
3τ3) ψ2 = − 1

2
√

n
(
√

3σ2 + 2
√

3σ3 + 3τ2)

ν1 = δ

2
ν2 = σ 2

3 + τ 2
3

2δ

ν3 = σ 2
2 + τ 2

2

2δ
σ1 = σ2σ3 − τ2τ3

δ

τ1 = −σ2τ3 − τ2σ3

δ
where δ = n − (n2 − σ 2

2 − σ 2
3 − τ 2

2 − τ 2
3 )1/2
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characteristic for CP2 only in the region IIb when θ ∈ (ρ1,
1
2π). In this region Ĥ can be the

simplest Td × T -invariant Morse function. For all other values of θ this system must have
other equilibria.

Proof. Use lemma 9, appendix B, and table 2. �

5. RE corresponding to non-critical points

In this section, we find additional equilibria of the system with Hamiltonian Ĥ in (11) predicted
in corollary 1 for θ outside the closed interval [ρ1,

1
2π]. Outside this interval Ĥ does not satisfy

the Morse inequalities. Additional equilibria are likely to be created in bifurcations which take
place when the value of θ leaves the interval (ρ1,

1
2π).

Remark 15. Let c be one of the critical points of the Td × T action on CP2 described in
theorem 2. By the theorem of Michel cited in section 1.3, c is a stationary point of Ĥ (θ) in
(11). Suppose that the new stationary point ξ is created in a bifurcation of c. When trying
to locate where ξ can be found, we should take into account the following facts (see [34] for
some of these statements).

(i) The isotropy group Gξ of ξ is a subgroup of the isotropy group Gc of c.
(ii) If c belongs not only in the closure of the stratum with trivial stabilizer C1 but also in

the closure of one or several strata with nontrivial stabilizers G′, G′′, etc, then a generic
one-parameter bifurcation of the stationary point c will not break the symmetry Gc all
the way down to C1 but Gξ will become one of G′, G′′, etc.

(iii) If such a generic bifurcation takes place, the new stationary point ξ with non-trivial
stabilizer Gξ will remain on a continuous set M ⊂ CP2 of non-critical Gξ -invariant
points. M in turn is a subset of a submanifold M ⊂ CP2 with isotropy group GM ⊆ Gξ .

(iv) The manifold M � ξ can contain points c of higher isotropy; it can itself be a subspace
of a larger manifold M ′ ⊂ CP2 with lower isotropy group GM ′ ⊂ GM ⊆ Gξ ⊂ Gc.

(v) When looking for stationary points ξ ∈ M ⊂ M ′ ⊂ · · · CP2 we should check if the Morse
inequalities hold for all invariant submanifolds M , M ′, etc.

(vi) Particularly interesting are the situations when P = M , or M ′, etc are also dynamically
invariant, because then GP is symplectic. In that case P is symplectic, and we can restrict
our system to P and look for its equilibria there.

(vii) The action of Td × T on CP2 has several invariant submanifolds M with topology S1,
S2 ∼ CP1, and RP2. Information on these manifolds and their intersections can be found
in [11] and appendix A. The 2-spheres with stabilizers of conjugacy class Cs and C2 can
serve as restricted phase spaces P .

5.1. Existence and stability of the Cs ∧ T2 RE

Following remark 15(vi–vii), consider the Cs- and C2-invariant spheres S2 ⊂ CP2(n) described
in appendix A. Critical points of type A4 and A2 occur at the points of intersection of the two
types of spheres (see figure A2). This means that the new equilibrium points ξ created in a
bifurcation of A4 or A2 can depart either on a C2 or a Cs sphere (cf remark 15(iii)). On the Cs

spheres we also find points of type B4, while on the C2 spheres we find points of type A3.

Lemma 14. The A2, A4, and B4 equilibrium points of the system with Hamiltonian Ĥ in (11)
alone do not give the right Euler characteristic for S2 on the Cs spheres when 0 < θ < ρ1

and 1
2π < θ < π , i.e. outside the region IIb in table 2; they give the right characteristic

when ρ1 < θ < 1
2π . Furthermore, for the same values of θ , the two points A2 and A4 alone,
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which lie on the same Cs ∧ T2-invariant circle of the Cs sphere, do not give the correct Euler
characteristic for S1.

Proof. We can always split local coordinates in table 3 in order to select a Cs- or C2-invariant
symplectic pair. Then, checking the Morse inequalities and the Euler characteristic for the C2

and Cs spheres is straightforward. �

Corollary 2. In all regions in table 2 except IIb, the system with Hamiltonian (11) should have
additional equilibria ξ ∈ S1 ⊂ S2 ⊂ CP2(n), where the isotropy group of ξ and S1 is Cs ∧ T2

and S2 has isotropy group Cs .

Lemma 15. The Cs ∧ T2-invariant equilibria in corollary 2 exist only when

0 < θ < ρ1 = cos−1

(
1√
5

)
or

1

2
π < θ < π,

and have stability type EH. By symmetry, there should be two such equilibria on each of the six
Cs spheres. The original system with Hamiltonian (2) has 12 corresponding Cs ∧T2-invariant
nonlinear normal modes.

Proof. By an argument similar to that given in remark 4, it is sufficient to study one of the six
equivalent Cs spheres. We choose the sphere Cab

s which is defined in appendix A as the set of
points on CP2(n) whose coordinates (ν1, ν2, ν3; σ1, σ2, σ3; τ1, τ2, τ3) are

(ν; σ ; τ) = n

(
1 + w

4
,

1 + w

4
,

1 − w

2
; u√

2
,

u√
2
,

1 + w

2
; v√

2
, − v√

2
, 0

)
, (14)

where u2 +v2 +w2 = 1. The Cs ∧T2-invariant circle on this sphere is defined by the additional
equation u = 0. The reduced system restricted to this sphere corresponds to the original
system restricted to the 4-plane in T ∗R3 defined by {x = y, px = py}. The Poisson algebra
generated by the functions (u, v, w) in (14) and restricted to the Cab

s sphere is the algebra so(3)

with Casimir u2 + v2 + w2. We find that the vector field of Hamiltonian (11) restricted to this
sphere is

u̇ = −v(w + 1)(sin θ − 4 cos θ) − 4v cos θ,

v̇ = u(1 − 3w) sin θ,

ẇ = 4uv(sin θ − cos θ).

(15)

The constant level sets of this system are shown in figure 3 in the coordinate system of
figure A3(b) with axis w aligned vertically. The equations u̇ = v̇ = ẇ = 0 for the
equilibria on the sphere can be easily solved. Solutions u = 0, v = 0, w = 1 (north pole) and
u = 0, v = 0, w = −1 (south pole) represent points Az

2 and Az
4, respectively; the two points

Aa
3 and Ab

3 correspond to u = ± 2
3

√
2, v = 0, w = 1

3 . The position of these critical points
is shown in figure 3 for the example of θ = 5π/36. The two new stationary points ξ± have
coordinates

u = 0, v = ±(1 − w2)1/2, w = sin θ

4 cos θ − sin θ
.

This solution exists only for the values of θ specified in the lemma. From (14) we find the
CP2(n) coordinates of ξ±

ξ± = n(r, r, 1 − 2r; 0, 0, 2r; ±2
√

r(1 − 2r), ±2
√

r(1 − 2r), 0),

where r = cos θ/(4 cos θ − sin θ). In figure 3, θ = 5π/36 (region I), ξ± can be seen as two
deep minima, which lie on the u = 0 meridian slightly above the equatorial line and below the
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Figure 3. First part: phase portraits of the system with Hamiltonian Ĥ in (11) restricted to the
Cab

s -invariant sphere S2 ⊂ CP2(n) for different values of the parameter θ . The sphere is oriented
in the same way as in figure A3(b); location of the critical points A2, A3, and A4 is marked for the
θ = 5π/36 case by a filled disc, triangle and square, respectively. Second part: the orbit space of
the action of the discrete symmetry on the Cs sphere. The Cs stationary points are represented by
a filled diamond. The level sets of the Hamiltonian Ĥ restricted on the Cs sphere and expressed in
terms of U = u2 and w are also depicted (for more details see appendix A.2).

latitude of the A3 points shown by a dashed line. As θ increases ξ± move up (north). In the
region IIa, they become unstable, see case θ = 11π/36. In the region IIb ξ± do not exist, they
reappear for θ > 1

2π as minima. Using the same local analysis as for other stationary points,

i.e. finding a local symplectic chart and linearizing Ĥ in this chart, we find that ξ± are always
of type EH (elliptic–hyperbolic). In the regions I, IIIa, and IIIb the elliptic plane is tangent to
the sphere and the hyperbolic plane is orthogonal to the sphere; in the IIa region the situation
is reversed. �

Remark 16. The second part of figure 3 shows how to find the same results from the
intersections of level sets of the Z2 × Z2 reduced Hamiltonian and the Z2 × Z2 orbit space.
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Theorem 5. The reduced one-parameter Hamiltonian Ĥ (13) has exactly 27 stationary points
in the region IIb (ρ1,

1
2π), which are the critical points of the Td × T action on CP2. In

the other regions it has exactly 12 more stationary points with stabilizer Cs ∧ T2. The only
exceptional values are θ = 0, 1

4π, ρ1,
1
2π, ρ2, π , where Ĥ is not a Morse function.

Proof. The vector field XĤ of Ĥ expressed in terms of the invariants has nine components
that are quadratic polynomials:

ν̇1 = 2(cos θ − sin θ)(σ2τ2 − σ3τ3),

ν̇2 = 2(cos θ − sin θ)(σ3τ3 − σ1τ1),

ν̇3 = 2(cos θ − sin θ)(σ1τ1 − σ2τ2),

σ̇1 = 2(sin θ − cos θ)(σ3τ2 − σ2τ3) + 4 cos θ(ν2 − ν3)τ1,

σ̇2 = 2(sin θ − cos θ)(σ1τ3 − σ3τ1) + 4 cos θ(ν3 − ν1)τ2,

σ̇3 = 2(sin θ − cos θ)(σ2τ1 − σ1τ2) + 4 cos θ(ν1 − ν2)τ3,

τ̇1 = 4 sin θ(ν3 − ν2)σ1,

τ̇2 = 4 sin θ(ν1 − ν3)σ2,

τ̇3 = 4 sin θ(ν2 − ν1)σ3.

The equilibria of XĤ are given by the common roots of these polynomials and the polynomials
	k , k = 0, . . . , 9 (6). We solve this system of polynomial equations by finding its Gröbner
basis using the lexicographic order τ3 > τ2 > τ1 > σ3 > σ2 > σ1 > ν3 > ν2 > ν1.
Such a basis can be constructed using the computer program Mathematica. Although the
Gröbner basis consists of 89 polynomials it is straightforward to solve. There are two types of
solutions: 27 solutions that do not depend on θ correspond to the critical stationary points of
H̃ ; 12 solutions that depend on θ correspond to the extra non-critical stationary points and are
valid only when 0 < ν1, ν2, ν3 < n. This condition implies that the extra stationary points do
not exist in the region IIb. �

5.2. Configuration space image of the Cs ∧ T2 RE

Remark 17. Evolution of the additional Cs ∧ T2 RE can be best seen on the interval
θ ∈ [− 1

2π, ρ1]. (The part [− 1
2π, 0] is equivalent to region III [ 1

2π, π ] in figure 2 and table 2

up to the sign of Ĥ , see remark 10.) These RE branch off the A4 RE at θ = − 1
2π and then

exist continuously until their merger with the A2 RE at θ = ρ1.

The principles of the RE representation in the configuration space R3
x,y,z are discussed in

appendix A.3. The Cs ∧ T2 RE are not T -invariant and, therefore, they appear in R3 as loops.
The two Cs ∧T2 stationary points on the same Cs sphere, such as, for example, in figure 3 with
θ = 5π/36, are mapped into each other by the T operation. These two points correspond to
two loops running along the same closed curve in R3 but in different directions. According
to remark 17, these loops branch off one of the three A4 orbits and merge with an A2 orbit.
Take, for example, the three RE Az

4, Az
2, and Az̄

2. The Az
4 RE is represented by a segment on

axis z, while images of Az
2 and Az̄

2 lie in the planes aOb and cOd (see figure A1 and figure 4,
left). Note that axis z is the intersection aOb ∩ cOd, and that the aOb and cOd planes are
the configuration spaces of the restricted systems whose reduced phase spaces are the Cab

s and
Ccd

s spheres.
Without any loss in our present qualitative description, we can consider RE of the

normalized system instead of those of the original system shown in figure 1. In the transformed
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Az
4

A�z
2

Az
2

a

b

c
d

θ> π
2 θ = 5

4 π θ> 5
4 π

Figure 4. Schematic representation of the Az
4, Az

2, Az̄
2, and Cs ∧ T RE in the configuration space

R3
x,y,z of the normalized Hamiltonian (2).

space R̃
3
, the Az

4 RE remains a segment of axis z, while Az
2 and Az̄

2 become segments of straight
lines x = y and x = −y in the horizontal plane z = 0 as shown in figure 4. At θ = 1

2π ,
four Cs ∧T2 orbits bifurcate from Az

4. These four RE project into two distinct closed curves in
R3. When the value of θ is only slightly above 1

2π , the loops have a highly eccentric elliptical
shape stretched along Az

4 (see figure 4, left). The major axis of the ellipse is on the z-axis and
the ellipses lie in the aOb and cOd planes, respectively. As θ increases, the eccentricity is
reduced until the ellipses become circles at θ = 5

4π . At this point the elliptic and hyperbolic
directions for the Cs ∧ T2 points ξ± ∈ CP2(n) are interchanged. For θ > 5

4π the eccentricity
increases again but now the major axes lie near the intersections aOb ∩xOy and cOd ∩xOy,
respectively. As θ approaches π + ρ1, the two ellipses come closer to the orbits Az

2 and Az̄
2 and

vanish exactly at θ = π + ρ1.

6. Bifurcations

Definition 7. The three-dimensional Hénon–Heiles system with Hamiltonian (2) is called
generic if it is ε2-generic and the corresponding principal order of the reduced Hamiltonian
Ĥ in (11) is a Td × T -invariant Morse function on CP2(n).

Generic systems belong to one of the subfamilies in table 2. We have characterized the
RE of these systems. In this section, we comment on some of the changes of linear stability
of the RE in table 2 and the possible bifurcations that may be happening when the parameter
θ is varied. A full study of non-Morse members of the family (11) which occur at the end
points of the five intervals in the first column of table 2 and bifurcations of RE requires going
to higher orders of the normal form and is beyond the scope of our present work. Some of
these bifurcations cannot be fully understood using the single-parameter classification scheme
of section 2.

As we saw in section 5.1, several bifurcations are related to the evolution of the Cs ∧ T2

RE. At θ = 1
2π (or − 1

2π) four Cs ∧T2 RE are created in the bifurcation of each of the three A4

RE. In this bifurcation, as we go from the region IIb to IIIa in table 2, the stability and Morse
index of the A4 RE change from 2E and 0 to 2H and 2, respectively. Since A4 and B4 share
the same C2-invariant subspace S2 (figure A3, left), the Morse index change of A4 forces the
change of the Morse index of B4 in order to preserve the right Euler characteristic of S2. When
θ = π and we enter region I from IIIb, the Morse index of A4 changes from 2 to 0 (or 4, see
remark 10). When θ = ρ1 the Cs ∧ T2 RE collide pairwise at the A2 RE and vanish. At this
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moment the A2 RE change the linear stability type from EE to EH and the Morse index from
2 to 1. This bifurcation can be considered as a collision of two stationary points on the Cs

sphere; in systems with 1-DOF it is often called a ‘pitchfork’ bifurcation.
The stability type of the B3 points changes between elliptic–elliptic (EE) and complex

hyperbolic (CH) at θ = π/4 and ρ2. At these values of θ the four eigenvalues of the respective
Hamiltonian matrices move along the imaginary axis, collide pairwise, and then move off
the axis into the complex plane. Such EE ↔ CH change of linear stability is called linear
Hamiltonian Hopf bifurcation1. It suggests that a nonlinear Hamiltonian Hopf bifurcation
might also be taking place [35]. This important codimension-one bifurcation happens in
Hamiltonian systems with two or more degrees of freedom. The EE ↔ CH change is
necessary but not sufficient for the nonlinear bifurcation. The latter occurs when a family
of periodic orbits either detaches from the bifurcating stationary point or shrinks to this point
and disappears. We should take the nonlinearity of the system into account in order to find out
if this takes place.

Unfortunately, standard theorems on the Hamiltonian Hopf bifurcation do not apply
directly in our case. When θ = ρ2 we can prove that the B3 points lie on an invariant
two-dimensional manifold. Consequently, the bifurcation remains degenerate in all orders.
A preliminary study using normal form techniques shows that a bifurcation of short periodic
orbits which differs slightly from the Hamiltonian Hopf bifurcation takes place at θ = ρ2. At
θ = 1

4π the eigenvalues of the Hamiltonian matrix of the linearized equations near the B3

equilibrium meet at 0 and then jump off to the complex plane. This means that at the moment
of bifurcation the quadratic part of the local Hamiltonian is nilpotent and hence the local
Hamiltonian cannot be normalized in the standard way. We believe that both the degeneracy
of the θ = ρ2 case and the nilpotency of the θ = 1

4π case is removed in the sixth (or higher)
order normal form of (2).

A generalization of the linear Hamiltonian Hopf bifurcation is proposed in [36]. This
paper describes a bifurcation of short periodic orbits that happens when a stationary point
with isotropy group SO(2) × T changes linear stability type from degenerate elliptic (2E) to
degenerate hyperbolic (2H). In our system, the A3 and A4 RE change stability type from 2E to
2H at θ = 1

4π and θ = 1
2π , respectively. Since by theorem 3 the A4 and A3 RE can only be of

type 2E or 2H, the eigenvalues must become simultaneously zero when their stability changes
from 2E to 2H. This degeneracy is robust under Td × T symmetric perturbations.

7. Conclusion: classification of three-dimensional Hénon–Heiles systems

If we now consider all stationary points of Ĥ in (11) that we have found, we can verify that
Morse inequalities (B.2) are now satisfied on CP2(n) and on all invariant subspaces of the
Td ×T action on CP2(n) for all values of θ . Studying the restrictions of Ĥ , we can also verify
that there are no other stationary points on the subspaces.

Proposition 1. Table 2 gives a complete set of stationary points of the reduced Hamiltonian
Ĥ in (11) in all regions of the values of the parameter θ where Ĥ is a Morse function on CP2.

Corollary 3. The family of systems with Hamiltonian (2) and its further generalizations
mentioned in remark 1 has five qualitatively different subfamilies. Each subfamily is
characterized by the number and stability of nonlinear normal modes which correspond to
the stationary points described in table 2. There is only one subfamily with minimal possible
number (27) of nonlinear normal modes described in theorem 1. Other subfamilies have a set
of 12 additional equivalent modes of the type Cs ∧ T2.
1 The name is because this is reminiscent of the Hopf bifurcation in dissipative systems.
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This concludes the classification of all systems with Hamiltonian (2) generic in the sense of
definition 7.
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Appendix A. Action of the group Td × T on the spaces R3, T ∗R3, and CP2

The symmetry group Td ⊂ O(3) of the tetrahedron is a group of point transformations of the
physical 3-space (see figure A1). As an abstract group it is isomorphic to the permutation
group of four elements. We assume that the coordinate functions (x, y, z) in the configuration
space R3 of (2) span a three-dimensional vector representation of Td , that is, Td acts on (x, y, z)

as on the coordinates in the physical 3-space. Let O be the origin (0, 0, 0) ∈ R3, and let Ox,
Oy, and Oz be the directed semi-axes of the coordinate system in R3. Consider also the four
directed semi-axes Oa, Ob, Oc, and Od in figure A1, where a = (1, 1, 1), b = (−1, −1, 1),
c = (1, −1, −1), and d = (−1, 1, −1). Any pair of semi-axes (Oα, Oβ) defines a 2-plane
αOβ passing through O. Table A1 gives explicit definitions of some basic operations in Td ,
which we further explain below.

S4 Operation Sx
4 combines the counterclockwise rotation by 2π/4 = 1

2π about Ox and the
reflection in the plane yOz ⊥ Ox. Similar operations S

y

4 and Sz
4 involve axes Oy and Oz,

Figure A1. Symmetry axes and planes of a tetrahedron.

Table A1. The action of some elements of Td on the representation spanned by x, y, z.

R Rx Ry Rz

Sx
4 −x −z y

S
y

4 z −y −x

Sz
4 −y x −z

R Rx Ry Rz

Ca
3 z x y

Cb
3 −z x −y

Cc
3 −z −x y

Cd
3 z −x −y

R Rx Ry Rz

Cab
s y x z

Ccd
s −y −x z

Cad
s z y x

Cbc
s −z y −x

Cac
s x z y

Cbd
s x −z −y
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respectively. The conjugacy class S4 in Td also contains the elements (Sα
4 )−1, α = x, y, z;

elements Cα
2 = (Sα

4 )2 form the conjugacy class C2.
C3 Operations Ca

3 , Cb
3 , Cc

3, and Cd
3 are counterclockwise rotations by 2π/3 about axes Oa,

Ob, Oc, and Od , respectively. The conjugacy class C3 also includes (Ca
3 )2, (Cb

3 )2, (Cc
3)

2,
and (Cd

3 )2.
Cs Reflection in each of the six planes {aOb, cOd, aOd, bOc, aOc, bOd}, which we denote

as Cab
s , Ccd

s , Cad
s , Cbc

s , Cac
s , and Cbd

s , leaves the tetrahedron invariant. These operations
form the conjugacy class Cs .

Extension of the Td action described above to the phase space T ∗R3 of (2) uses the
following lemma.

Lemma A.1. If matrices Mq and Mp in GL(R, 3) acting on the coordinates q = (x, y, z) and
the conjugate momenta p = (px, py, pz) define a linear symplectic transformation in T ∗R3,
then Mp = (M−1

q )T .

It follows that Mq = Mp for Mq ∈ Td ⊂ O(3); that is, (x, y, z) and (px, py, pz) transform
according to the same representation of Td . Action of the full symmetry group Td ×T on T ∗R3

is obtained by combining the action of Td and the momentum reversal T : (q, p) → (q, −p).

Appendix A.1. Fixed points of the action of Td × T on CP2

Projection of the Td ×T action on CP2 has been discussed in detail in [20, 15, 11, 10]. We give
only the information that is useful for our study. The action of Td ×T on the invariants (5) can
be found straightforwardly using the action of Td × T on T ∗R3. Table A2 gives the results.
Zhilinskiı́ described the critical orbits of the Td action on CP2 in [20]. The action of the full
group Td ×T has the same five critical orbits [11, 10] which we characterize in tables 1 and A3.
Observe that points of types A and B transform differently with respect to T : A4, A3, and A2

are T -invariant, while B4 and B3 are not, because T maps each B-type point to another: for
example, Bz

4 → Bz̄
4.

Appendix A.2. Subspaces of CP2-invariant under the action of Td × T

The action of Td × T on CP2 has a number of invariant subspaces M of topology RP2,
CP1 ∼ S2, and S1 [11]. Points of M are non-isolated fixed points of the action of the stabilizer
GM ⊂ Td × T of M . The invariant manifolds of points with stabilizers C2 and Cs are 2-
spheres S2 which are symplectic. Moreover, these spheres remain invariant under the flow of
any Td ×T -invariant Hamiltonian Ĥ . According to [20], the 27 critical points and the spheres
intersect in CP2 as shown in figure A2. We discuss these spheres in more detail.

Consider specifically the action of Cx
2 ⊂ Td on CP2(n). Using table A2 we find that fixed

points of this action are of the form (ν1, ν2, ν3; σ1, 0, 0; τ1, 0, 0). Taking relations (6) into

Table A2. Action of some elements of Td × T on CP2.

R Rν1 Rν2 Rν3 Rσ1 Rσ2 Rσ3 Rτ1 Rτ2 Rτ3

Cx
2 ν1 ν2 ν3 σ1 −σ2 −σ3 τ1 −τ2 −τ3

Sx
4 ν1 ν3 ν2 −σ1 −σ3 σ2 τ1 τ3 −τ2

Ca
3 ν3 ν1 ν2 σ3 σ1 σ2 τ3 τ1 τ2

Cab
s ν2 ν1 ν3 σ2 σ1 σ3 −τ2 −τ1 −τ3

T ν1 ν2 ν3 σ1 σ2 σ3 −τ1 −τ2 −τ3
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Table A3. Critical points of the Td × T action on CP2(n). In the second column T2 = {1, C2T }
and Ts = {1, CsT }.
Point Isotropy

Ax
4 Dx

2d × T {1, Sx
4 , Cx

2 , (Sx
4 )−1, C

y

2 , Cz
2, Cac

s , Cbd
s } × T

A
y

4 D
y

2d × T {1, S
y

4 , C
y

2 , (S
y

4 )−1, Cx
2 , Cz

2, Cad
s , Cbc

s } × T
Az

4 Dz
2d × T {1, Sz

4, Cz
2, (Sz

4)−1, Cx
2 , C

y

2 , Cab
s , Ccd

s } × T
Aa

3 Ca
3v × T {1, Ca

3 , (Ca
3 )2, Cab

s , Cac
s , Cad

s } × T
Ab

3 Cb
3v × T {1, Cb

3 , (Cb
3 )2, Cab

s , Cbc
s , Cbd

s } × T
Ac

3 Cc
3v × T {1, Cc

3, (Cc
3)2, Cac

s , Cbc
s , Ccd

s } × T
Ad

3 Cd
3v × T {1, Cd

3 , (Cd
3 )2, Cad

s , Cbd
s , Ccd

s } × T
Ax

2 Cx
2v × T {1, Cx

2 , Cac
s , Cbd

s } × T
Ax̄

2 Cx
2v × T {1, Cx

2 , Cac
s , Cbd

s } × T
A

y

2 C
y

2v × T {1, C
y

2 , Cad
s , Cbc

s } × T
A

ȳ

2 C
y

2v × T {1, C
y

2 , Cad
s , Cbc

s } × T
Az

2 Cz
2v × T {1, Cz

2, Cab
s , Ccd

s } × T
Az̄

2 Cz
2v × T {1, Cz

2, Cab
s , Ccd

s } × T
Bx

4 Sx
4 ∧ T y

2 {1, Sx
4 , Cx

2 , (Sx
4 )−1, C

y

2 T , Cz
2T , Cac

s T , Cbd
s T }

Bx̄
4 Sx

4 ∧ T y

2 {1, Sx
4 , Cx

2 , (Sx
4 )−1, C

y

2 T , Cz
2T , Cac

s T , Cbd
s T }

B
y

4 S
y

4 ∧ T z
2 {1, S

y

4 , C
y

2 , (S
y

4 )−1, Cx
2 T , Cz

2T , Cad
s T , Cbc

s T }
B

ȳ

4 S
y

4 ∧ T z
2 {1, S

y

4 , C
y

2 , (S
y

4 )−1, Cx
2 T , Cz

2T , Cad
s T , Cbc

s T }
Bz

4 Sz
4 ∧ T x

2 {1, Sz
4, Cz

2, (Sz
4)−1, Cx

2 T , C
y

2 T , Cab
s T , Ccd

s T }
Bz̄

4 Sz
4 ∧ T x

2 {1, Sz
4, Cz

2, (Sz
4)−1, Cx

2 T , C
y

2 T , Cab
s T , Ccd

s T }
Ba

3 Ca
3 ∧ T ab

s {1, Ca
3 , (Ca

3 )2, Cab
s T , Cac

s T , Cad
s T }

Bā
3 Ca

3 ∧ T ab
s {1, Ca

3 , (Ca
3 )2, Cab

s T , Cac
s T , Cad

s T }
Bb

3 Cb
3 ∧ T ab

s {1, Cb
3 , (Cb

3 )2, Cab
s T , Cbc

s T , Cbd
s T }

Bb̄
3 Cb

3 ∧ T ab
s {1, Cb

3 , (Cb
3 )2, Cab

s T , Cbc
s T , Cbd

s T }
Bc

3 Cc
3 ∧ T cd

s {1, Cc
3, (Cc

3)2, Cac
s T , Cbc

s T , Ccd
s T }

Bc̄
3 Cc

3 ∧ T cd
s {1, Cc

3, (Cc
3)2, Cac

s T , Cbc
s T , Ccd

s T }
Bd

3 Cd
3 ∧ T cd

s {1, Cd
3 , (Cd

3 )2, Cad
s T , Cbd

s T , Ccd
s T }

Bd̄
3 Cd

3 ∧ T cd
s {1, Cd

3 , (Cd
3 )2, Cad

s T , Cbd
s T , Ccd

s T }

account we find that the subset of CP2(n) with stabilizer Cx
2 is the disjoint union of Ax

2 and the
S2 sphere (0, ν2, n − ν2; σ1, 0, 0; τ1, 0, 0) with σ 2

1 + τ 2
1 + (2ν2 − n)2 = n2. In the coordinates

u = σ1n
−1, v = τ1n

−1, and w = 2ν2n
−1 − 1, its equation is u2 + v2 + w2 = 1. There are three

C2 spheres corresponding to the three axes C2. On each sphere we find six critical points, two
of type A4, two of type A2, and two of type B4. Specifically, on the Cx

2 sphere we find the
points A

y

4 , Az
4, Ax

2 , Ax̄
2 , Bx

4 , and Bx̄
4 (figure A3(a)).

The same analysis for the action of Cab
s ⊂ Td shows that the set of CP2(n)

points fixed under this action is the disjoint union of Az̄
2 and the S2 sphere (ν1, ν1, n −

2ν1; σ1, σ1, 2ν1; τ1, −τ1, 0) with 2σ 2
1 + 2τ 2

1 + (4ν1 − n)2 = n2 and coordinates u = √
2σ1n

−1,
v = √

2τ1n
−1, and w = 4ν1n

−1 − 1. There are six such spheres, one for each Cs plane. On
each Cs sphere we find four critical points, one of type A2, one of type A4, and two of type
A3. Specifically, on the Cab

s sphere we find the points Az
2, Az

4, Aa
3, and Ab

3 (figure A3(b)).
The action of the group Td×T on each Cs sphere is reduced to the action of a C2v = Z2×Z2

group generated by the transformations u → −u and v → −v. The orbit space of this action
is defined by the invariants U = u2, V = v2, and w subject to the relations U + V + w = 1,
U > 0, and V > 0. Because of the linear relation between the invariants we can use only
two of them to describe the orbit space. We choose U and w. The orbit space is depicted in
figure A3(c).
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Figure A2. Orbits of the Td and Td × T group action on CP2 according to [20]. Coloured areas
represent the three C2-invariant and the six Cs -invariant spheres.

Figure A3. The Cx
2 -invariant sphere (a) and the Cab

s -invariant sphere (b) in the ambient space R3

with coordinates (u, v, w) adapted for each case (see text). Solid lines represent the intersections
of the spheres with the planes {u = 0}, {v = 0}, and {w = 0}. In (b) the dashed line represents the
intersection of the sphere with the plane {w = 1/3}. (c) Orbit space of the C2v = Z2 × Z2 action
on the Cs sphere, which is used as a chart in figure 3.

Appendix A.3. Action of Td × T on the projections of nonlinear normal modes in the
configuration space R3

Like in the two-dimensional Hénon–Heiles system, it is quite convenient to represent the
nonlinear normal modes of the three-dimensional system with Hamiltonian (2) by their
projections in the configuration space R3

x,y,z shown in figure 1. The qualitative ‘shape’ of
each projection can be derived from the symmetry properties (isotropy group) of the mode
using a set of simple principles, which we formulate below as lemmas.

Lemma A.2. Projections � ⊂ R3
x,y,z of periodic orbits of the system with Hamiltonian H in

(2) can be of two types: (i) closed curves; (ii) curved line segments (degenerate closed curves),
which begin and end orthogonally at the equipotential surface, the boundary of the projection
of the constant level set of H in R3

x,y,z.

Lemma A.3. The action of an element g ∈ Td on projection � is found straightforwardly from
the action of g on each point m ∈ � ⊂ R3.

Lemma A.4. In order to study the action of the time reversal operation T on closed curve
projections �, we should consider the latter as directed closed curves, or loops. The two
periodic orbits which project into the same closed curve � correspond to two loops �+ and �−
with different directions. The T operation changes direction, i.e. T : �+ ↔ �−. A segment
projection represents one T -invariant periodic orbit.
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Figure A4. Two Bz
4 nonlinear normal modes related by the T and C2 operations. Compared to

figure 1 the z-axis (vertical) scale is zoomed.

Lemma A.5. Let � be an image of a periodic orbit defined according to lemma A.4, and
G ⊂ Td × T be its isotropy group. Then each operation g ∈ G maps � into itself as a whole,
but points m ∈ � are not necessarily fixed points of g. On the other hand, if g �∈ G (but
g ∈ Td × T ), then g defines a 1 : 1 map � → �′ where �′ is an image of another periodic
orbit in the same group orbit.

It follows from lemma A.4 that the T -invariant modes A4, A3, and A2 project into
segments (degenerate loops). Furthermore, action of the D2d stabilizers on R3 is such that
the A4 modes must project onto the symmetry axes (Ox, Oy, Oz), e.g. Az

4 is represented by a
segment of axis Oz (see figures 1 and A1). Similarly, the A3 modes project onto the C3 axes
(Oa, Ob, Oc, Od). The spatial isotropy group of the A2 modes is the group C2v , whose C2

axis is one of the (Ox, Oy, Oz). These modes project into curved line segments lying in the
symmetry planes of the C2v group. For example, the images of the periodic orbits Az

2 and Az̄
2

lie in the planes aOb (the plane x = y) and cOd (the plane x = −y), respectively, near the
intersections of these planes with the horizontal plane xOy. The images do not intersect: Az

2
passes above the xOy plane while Az̄

2 lies below it (see figure 1).
On the other hand, the modes B3 and B4 are not T -invariant. They project into closed

curves in figure 1. According to lemma A.4, each such closed curve accommodates two orbits.
As an instructive example, consider the two Bz

4 modes in figure A4. In accordance with the
spatial symmetry of these orbits Sz

4, their projection resembles a wobbled square whose two
pairs of opposing smoothed vertices are lifted and lowered out of the plane xOy. It is easy
to see from figure A4 that both operations Cx

2 and T preserve this projection geometrically
but change the direction of the mode, so that Bz

4+ ↔ Bz
4−. At the same time, the modes are

invariant with regard to the combination T2 = C2 ◦ T where C2 = Cx
2 or C

y

2 .

Appendix B. Local properties of RE

Appendix B.1. Morse inequalities and Euler characteristic

A function f defined on a manifold M is called a Morse function if all its stationary points
m ∈ M are nondegenerate, i.e. the determinant of the Hessian at m is not zero, det D2f (m) �= 0.
The Morse index j of a nondegenerate stationary point m of f is defined as the number of
negative eigenvalues of D2f (m). Stationary points of a Morse function f must obey cer-
tain relations, called Morse inequalities, that are expressed in terms of the Betti numbers of
M . The dim M + 1 Betti numbers bj , j = 0, . . . , dim M , are non-negative integers that
depend only on topological properties of M . More precisely, bj is the dimension of the j th
homology group of M with integer coefficients. These numbers and the Euler characteristic
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Bdim M = ∑dim M
j=0 (−1)j bj for the spaces encountered in our work are given below.

Manifold M dim M Betti numbers Bdim M

CP2 4 b0 = 1, b1 = 0, b2 = 1, b3 = 0, b4 = 1 3
CP1 ∼ S2 2 b0 = 1, b1 = 0, b2 = 1 2
S1 1 b0 = 1, b1 = 1 0

If cj is the number of stationary points of f with Morse index j , and

Cj = cj − Cj−1 for j = 1, . . . , dim M and C0 = c0,

Bj = bj − Bj−1 for j = 1, . . . , dim M and B0 = b0,

then the Morse inequalities hold, namely

Cj � Bj for j = 0, . . . , n − 1 and Cdim M = Bdim M. (B.1)

In the case of CP2 the inequalities (B.1) become

c0 � 1, c1 − c0 � −1, c2 − c1 + c0 � 2,

c3 − c2 + c1 − c0 � −2, c4 − c3 + c2 − c1 + c0 = 3.
(B.2)

Remark B.1. The minimal number of stationary points of a Morse function h on CP2 in the
absence of symmetries is three. When h has just three stationary points, Morse inequalities
(B.2) become equalities and h is called a perfect Morse function.

Appendix B.2. Linear stability types

Consider a Hamiltonian H : R4 → R of a k degrees of freedom (k-DOF) system which has
a stationary point (equilibrium) m. The spectral stability of point m is determined by the
eigenvalues of the Hamiltonian matrix H ∈ sp(2k, R) of the linearized equations of motion
at m. Recall that if λ ∈ C is one of the eigenvalues of the Hamiltonian matrix H, then −λ

and λ̄ are also eigenvalues of H. In a 1-DOF system there are two cases, elliptic (E) or stable
with two imaginary eigenvalues ±iω and hyperbolic (H) or unstable with two real eigenvalues
±λ. A generic equilibrium of a 2-DOF Hamiltonian system can be of one of the four possible
linear stability types.

EE Elliptic–elliptic when eigenvalues ±iω1, ±iω2, where ω1,2 ∈ R\{0}, lie on the imaginary
axis. The quantities ω1 and ω2 are called frequencies.

EH Elliptic–hyperbolic when two of the eigenvalues are real and two are imaginary.
HH Hyperbolic–hyperbolic when all eigenvalues are real.
CH Complex–hyperbolic when λ �= 0 is neither real nor imaginary and the eigenvalues form

a quadruplet λ, −λ, λ̄, −λ̄.

There are also two cases that become generic in the presence of symmetry.

2E Degenerate elliptic when two pairs of equal eigenvalues (±iω) and (±iω) with ω ∈ R\{0}
lie on the imaginary axis.

2H Degenerate hyperbolic when two pairs of equal eigenvalues (±λ) and (±λ) with λ ∈ R\{0}
lie on the real axis.

All these case are illustrated in figure B1. In a 1-DOF system the correspondence between the
two stability types and the Morse index is simple: a stable point can be of index 0 or 2, while
an unstable point has Morse index 1.
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Figure B1. Types of linear stability of an equilibrium of a 2-DOF Hamiltonian system.

Lemma B.1. In 2-DOF Hamiltonian systems we have the following relation of possible linear
stability types and Morse indices.

Morse index 0 or 4 1 or 3 2
Stability type EE EH EE, HH, CH

Proof. Consider normal forms of quadratic Hamiltonians for 2-DOF systems [37] and compute
possible Morse indices for each one of them. �

Appendix B.3. Linearization near stationary points on CP2

We explain how to compute linearized equations of motion in a local symplectic chart T ∗R2(ξ)

at the stationary point ξ ∈ CP2(n) in order to determine the linear stability of ξ . Note that
even though different local charts can be chosen, the linear stability type of ξ or the Morse
index of ξ do not depend on the choice of coordinates.

We denote invariants in (5) as πj , j = 1, . . . , 9, and use four of these invariants as
coordinates αk , k = 1, . . . , 4, in T ∗R2(ξ). If the α are chosen correctly then it should be
possible to express the remaining five invariants βl , l = 1, . . . , 5 near ξ in terms of the α and
n using relations 	i , i = 0, . . . , 9 in (6). We ensure this requirement is met by means of the
implicit function theorem. We take the 9 × 10 Jacobian matrix ∂	i/∂πj evaluated at ξ , where
i = 0, . . . , 9 and j = 1, . . . , 9, and select five rows and five columns of this matrix so that
the determinant of the resulting 5 × 5 submatrix is non-zero. Invariants β1, . . . , β5 correspond
to the selected columns, and relations 	̃m(β; α, n), m = 1, . . . , 5, correspond to the selected
rows; note that 	0 ∈ {	̃}. We can now solve the relations {	̃m} for βl in terms of αk and n. If
the choice of {β} and {	̃} is not unique, we aim at such choice that yields the simplest possible
expressions βl(α, n).

In order to study the system near ξ , we introduce the displacements δαk of αk from their
values αk(ξ), i.e. δαk = αk − αk(ξ). The local coordinates δα = (δα1, . . . , δα4) are not
necessarily canonical coordinates in T ∗R2(ξ). However, it is always possible to find a linear
transformation

(χ, ψ) = (χ1, χ2, ψ1, ψ2) = B · δα

such that the variables (χ, ψ) are canonical at (χ, ψ) = 0. The Poisson brackets of these
variables evaluated near (χ, ψ) = 0 are {χ1, χ2} = {ψ1, ψ2} = {χ1, ψ2} = {χ2, ψ1} =
O(χ, ψ) and {χ1, ψ1} = {χ2, ψ2} = 1 + O(χ, ψ).

Appendix C. Classification of the two-dimensional Hénon–Heiles systems

Consider the two-dimensional Hénon–Heiles system with Hamiltonian (1). The finite
symmetry group of this system is D3 × T , where D3 is the dihedral group of transformations
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of the configuration 2-plane of (1) with coordinates (x, y). Near the linearization limit ε → 0
we can normalize (1) with regard to the Hamiltonian

H0 = 1
2 (z̄xzx + z̄yzy)

of the 1 : 1 resonant harmonic oscillator. The reduced system has the Poisson algebra so(3)

generated by the three quadratic invariants of the respective S1 action

j =

j1

j2

j3


 = 1

4


 zxz̄y + zyz̄x

izx z̄y − izy z̄x

zx z̄x − zyz̄y


 , (C.1)

with Casimir H0 = 2j . For all j > 0 the reduced phase space is the 2-sphere S2
j ∼ CP1 of

radius j defined by the equation j 2
1 + j 2

2 + j 2
3 = j 2 in the ambient space R3 with coordinates

(j1, j2, j3) (see [38, 39]).
Symmetrization of (C.1) with respect to the D3 × T action is described by the generating

function

g(λ) = 1

(1 − λ2)(1 − λ3)
,

where λ stands for any angular momentum component in (j1, j2, j3). The ring of all S1×D3×T
polynomials is generated freely by j and two other invariants, which can be chosen as

µ = j 2 − (j 2
1 + j 2

3 ) = j 2
2 , ξ = 1

2j3(3j 2
1 − j 2

3 ). (C.2)

It follows that the normal form of (1) can be expressed as

H̃ε = 2j + ε2(cmµ + c0j
2) + ε4(c3ξ + c0mµj + c00j

3) + O(ε5) (C.3)

with constants cm, c0, c3, c0m, c00. Note that µ is SO(2) symmetric and we must go to order ε4

in order to reproduce correctly the discrete symmetry of the two-dimensional Hénon–Heiles
system. Rescaling (C.3) by ε2 and dropping constants and terms that depend only on j , we
obtain the principal terms of the reduced Hamiltonian

Ĥε : S2
j → R, Ĥε = Km µ + ε2K3ξ, (C.4a)

where Km and K3 are constants of the same order of magnitude which can always be expressed
using (cm, c0, c3, c0m, c00) and parameters (j, ε). In particular, Km is a linear function of j .
In the simplest case of (1) with a ‘classic’ Hénon–Heiles cubic potential scaled by ε these
constants are fixed. Since (C.4a) is not a homogeneous polynomial in (z, z̄), the analysis for
j > 0 is simplified if we parameterize (C.4a) after normalizing µ and ξ by j so that

Ĥ = Km j 2 µ

j 2
+ ε2K3 j 3 ξ

j 3
= cos α

µ

j 2
+ sin α

ξ

j 3
, tan α = ε2j

K3

Km

. (C.4b)

(In other words, we project on a sphere of radius 1.) The obvious important difference of
(C.4b) with the three-dimensional Hénon–Heiles system studied in the main body of this
paper is that here α depends on the ratio of coefficients in front of the terms of different orders,
and is, therefore, determined by the perturbation smallness parameter ε and the value of the
dynamical parameter j . A direct normal form computation for (1) gives

α = tan−1

[
16ε2j

6 − ε2j

]
.

At first sight this suggests that even though we have no external parameters in the system, we
can move between different members of the family (C.4b) by increasing j . In reality, however,
ε2j should be small. In fact, we can see from (C.3) that values larger than ε2j ≈ 1

12 give
energies above the saddle point energy (6ε2)−1 of the potential in (1). This means that physical
values of α are 0 � α � 0.07π .

Analysis of RE of the two-dimensional Hénon–Heiles systems is quite similar to the one
we conducted in this paper. Of course, this analysis is simpler since it deals with an action
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Figure C1. Energy h of the stationary points of the reduced Hamiltonian Ĥ in (C.4b) as a function of
the parameter α. The dashed curve marks the energy of additional stationary points with symmetry
C2; the darkest shadowed area represents reduced energies of physically possible two-dimensional
Hénon–Heiles systems with Hamiltonian (1); αc = tan−1 4

3 .

of a smaller group D3 × T on a smaller phase space S2
j . Results are well-known [3, 5, 6]. At

small α (C.4b) is a D3 × T -invariant function on S2
j of the simplest kind with eight stationary

points in three different critical orbits characterized below.

Traditional Conjugacy class Values of Linear
notation of stabilizers µ ξ stability

�1,2,3 C2 × T 0 j 3/2 H (+−)

�3,4,5 C ′
2 × T 0 −j 3/2 E (++)

�7,8 C3 j 2 0 E (−−)

These points correspond to the eight nonlinear normal modes of the two-dimensional Hénon–
Heiles system with Hamiltonian (1). All such systems are of this simplest type. Extending
the analysis of (C.4b) to non-physical values of α (see figure C1) we find that on the interval
(αc, π−αc) this function has six extra stationary points with stabilizer C2. As we increase
α, these new points appear pairwise in the ‘pitchfork’ bifurcation with broken T symmetry
of the three points �3,4,5 which happens when α = αc = tan−1 4

3 . Then, the new points
participate in a threefold ‘touch-and-go’ bifurcation of �7,8 at α = π

2 , and disappear in a
pitchfork bifurcation of �1,2,3 at α = π −αc. There are, therefore, four qualitatively different
classes of reduced systems with Hamiltonian (C.4b). These classes are shown in figure C1;
only class I can be realized in systems with Hamiltonian (1).
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[1] Hénon M and Heiles C 1964 The applicability of the third integral of motion: some numerical experiments
Astron. J. 69 69–73

[2] Rod D L and Churchill R C 1985 A guide to the Hénon-Heiles Hamiltonian Singularities and Dynamical Systems
ed S N Pnevmatikos (New York: Elsevier) pp 385–95

[3] Sadovskiı́ D A 2001 Normal forms, geometry, and dynamics of atomic and molecular systems with symmetry
Symmetry and Perturbation Theory: Proc. International Conf. SPT2001 ed D Bambusi et al (Singapore:
World Scientific)

[4] Fulton N, Tennyson J, Sadovskiı́ D A and Zhilinskiı́ B I 1993 Nonlinear normal modes and localized vibrations
of H+

3 and D+
3 J. Chem. Phys. 99 906–18

[5] Churchill R C, Kummer M and Rod D L 1983 On averaging, reduction and symmetry in Hamiltonian systems
J. Diff. Eqns 49 359–414



446 K Efstathiou and D A Sadovskiı́

[6] Montaldi J, Roberts M and Stewart I 1988 Periodic solutions near equilibria of symmetric Hamiltonian systems
Phil. Trans. R. Soc. Ser. A 325 237–93

[7] Montaldi J, Roberts M and Stewart I 1990 Existence of nonlinear normal modes of symmetric Hamiltonian
systems Nonlinearity 3 695–730

[8] Landau L D and Lifshitz E M 1958 Quantum Mechanics (Oxford: Pergamon)
[9] Hammermesh M 1962 Group Theory and its Application to Physical Problems (Oxford: Pergamon)

[10] Efstathiou K, Sadovskiı́ D A and Cushman R H 2003 Linear Hamiltonian Hopf bifurcation for point group
invariant perturbations of the 1:1:1 resonance Proc. R. Soc. A at press

[11] Efstathiou K, Sadovskiı́ D A and Zhilinskiı́ B I 2003 Analysis of rotation-vibration relative equilibria on the
example of a tetrahedral four atom molecule SIAM J. Appl. Dyn. Syst. (SIADS) submitted

[12] �Zhilinskiı́ B I 1989 Teori �ya slo�zhny �kh molekul �yarny �kh spektrov (Moscow: Moscow University Press) (English
title: Theory of Complex Molecular Spectra) (in Russian)

[13] Michel L and Zhilinskiı́ B I 2001 Symmetry, invariants, topology. Basic tools Phys. Rep. 341 11–84
[14] Weinstein A 1973 Normal modes for nonlinear hamiltonian systems Invent. Math. 20 47–57
[15] Sadovskiı́ D A and Zhilinskiı́ B I 1993 Group theoretical and topological analysis of localized vibration-rotation

states Phys. Rev. A 47 2653–71
[16] Ferrer S, Lara M, Palacián J, San Juan J F, Viartola A and Yanguas P 1998 The Hénon and Heiles problem in
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