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Analysis of Rotation–Vibration Relative Equilibria
on the Example of a Tetrahedral Four Atom Molecule∗

K. Efstathiou†, D. A. Sadovskii†, and B. I. Zhilinskii†

Abstract. We study relative equilibria (RE) of a nonrigid molecule, which vibrates about a well-defined equi-
librium configuration and rotates as a whole. Our analysis unifies the theory of rotational and
vibrational RE. We rely on the detailed study of the symmetry group action on the initial and
reduced phase space of our system and consider the consequences of this action for the dynamics of
the system. We develop our approach on the concrete example of a four-atomic molecule A4 with
tetrahedral equilibrium configuration, a dynamical system with six vibrational degrees of freedom.
Further applications and illustrations of our results can be found in [van Hecke et al., Eur. Phys.
J. D At. Mol. Opt. Phys., 17 (2001), pp. 13–35].
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1. Introduction. This paper unifies modern methods of classical theory of symmetric
Hamiltonian dynamical systems and quantum theory of molecules (and other isolated finite-
particle systems). Considerable progress was achieved in both directions in the last decades
and deep relations between these seemingly distant theories became evident. Significant effort
by mathematicians and molecular physicists to converge the two fields resulted in the qual-
itative theory of highly excited quantum molecular systems based on recent mathematical
developments. We join the two approaches and demonstrate what kind of concrete results
can be immediately obtained in molecular systems [1, 2, 3, 4] by applying powerful meth-
ods of symmetric Hamiltonian systems [5, 6, 7, 8, 9, 10, 11]. We choose a concrete problem
of rotation–vibration of a four-atomic molecule with tetrahedral equilibrium configuration
[12, 13] in order to explain the details of our approach.

1.1. Vibrational relative equilibria or nonlinear normal modes. Montaldi, Roberts, and
Stewart [14, 15, 16] gave a general description of periodic solutions near equilibria of symmetric
Hamiltonian systems: the so-called nonlinear normal modes or relative equilibria (RE). They
related the number of RE to the symmetry group of the system and showed, on several
examples of bound systems of vibrating particles, that this number can be significantly larger
than the number of vibrational degrees of freedom. This mathematical result was not fully
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appreciated by molecular physicists until it was reproduced by an alternate technique [17,
18, 19] based on the analysis of the reduced system in the so-called polyad approximation,
a generalization of the approximation used for two-oscillator systems in [20, 21, 22, 23, 24,
25, 26, 27] and others. It was shown that fixed points of the symmetry group action on the
reduced phase space correspond to vibrational RE. Later work [28, 29, 30]1 uncovered more
fully the correspondence of both approaches and bridged the differences in their tools and
terminology.

1.2. Rotational RE or stationary axes of rotation. Similar analysis of stationary points
of the reduced rotational system [31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43] was initiated
in molecular physics even before the analysis of vibrational RE. In terms of symmetric Ha-
miltonian systems [45, 46, 44], this analysis is equivalent to studying rotational RE [28, 29].
This was demonstrated in the recent study [12] of the rotational structure of the tetrahedral
molecule P4 [47],2 where the energy of rotational RE is derived from the parameters of the
internuclear potential. Our present analysis extends the method in [12] to rotation–vibration
systems.

1.3. Applications in molecular physics and spectroscopy. Classical analysis of different
kinds of RE is used for the description of molecular energy level spectra on the basis of
the classical quantum correspondence principle, which links the topological description of
the classical dynamical system to such qualitative aspects of quantum spectra as existence
of bands, polyads, clusters, and their persistence under small modifications of parameters.
Some of these qualitative characteristics are discussed in the present paper. Review articles
[48, 49, 50, 51, 52, 53]3 give more examples of molecular applications and initiation to formal
theory.

Much of the work in molecular spectroscopy is done using so-called effective model Hamil-
tonians Heff , which describe explicitly only a fraction of degrees of freedom of the system and
treat other degrees effectively. In other words, Heff describe reduced systems, where reduction
is based on a model assumption of approximate separability and/or approximate dynamical
symmetries. Equilibria (stationary points) of Heff are RE of the initial system.

In practice, reduction often remains only an abstract theoretical possibility because param-
eters in the full initial molecular Hamiltonian are unknown. So, parameters of Heff are simply
fitted to experimental data. Classical analogues of such phenomenological model Hamiltoni-
ans can be constructed if excitation is sufficiently high to validate the classical limit. When,
as it is often the case, only some degrees of freedom described by Heff (e.g., rotation) can
be meaningfully treated as classical, the rest (e.g., vibration) is kept quantum. The energies
of such hybrid “semiquantum” systems are eigenvalues that depend on the dynamical vari-
ables of the classical subsystem. The most well-known example of semiquantum energy is the
rotational energy surfaces of vibration-rotation systems [36, 35, 41].

1The approach of Montaldi and Roberts is less oriented to the reduced problem and thus can be potentially
extended to molecules in which separation of vibration and rotation and the introduction of the molecule-fixed
frame is problematic. For the relatively rigid molecules, we consider their approach as being equivalent to ours.

2Among the few different molecules of type A4, the phosphorus P4 is studied experimentally; see [47].
3Our approach follows closely the ideas in [48, 49, 50], which review group actions and their applications

in physics.
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The semiquantum approach turned out to be very fruitful, and numerous vibration-
rotation systems at low vibrational excitation were analyzed in great detail [37, 38, 18, 54, 55,
56, 42, 57, 43, 58]. In particular, typical (universal) modifications of the cluster structure of
the energy level spectrum, or quantum bifurcations, were described in terms of modifications
of the set of stationary points of the energy surfaces. Direct, explicit relation of these station-
ary points to classical RE was established recently in [58, 13]. Other important qualitative
quantum phenomena include rearrangements (crossings) of energy level bands [59, 43, 60] and
quantum monodromy [61, 62], which are interpreted as crossings of semiquantum energies and
are also related to classical RE [60, 63, 64, 65].

1.4. Main idea. We combine recent theories of rotational RE and vibrational nonlin-
ear normal modes in order to study the rotation–vibration problem. Using symmetry and
topology, we find particular solutions (critical orbits) common to a whole class of model sys-
tems with given symmetry and with different potentials. Subsequently, we define a concrete
potential, normalize the classical system, and construct explicitly the effective Hamiltonian
Heff . Using this Hamiltonian, we obtain quantitative predictions for concrete molecular mod-
els, which illustrate general qualitative results. We explain our approach in the example of
rotation–vibration of the four-atomic homonuclear molecule A4 with tetrahedral equilibrium
configuration [47].

2. Basic aspects of the analysis. We review certain general definitions, which are used
later in the paper, and give the plan of the analysis.

2.1. Symmetry group Td and its extensions. Along with translation and rotational sym-
metry, which are present for any isolated finite-particle system in the absence of external fields,
each molecule possesses its own internal symmetry related to the existence of identical par-
ticles. The symmetry group of our system originates from the spatial symmetry group Td

of the tetrahedral equilibrium configuration of A4 and momentum reversal T , which in the
original system sends (q, p) to (q,−p), and is discussed in more detail in section 3.1. Our
initial Hamiltonian is invariant with respect to these symmetries. As an abstract group, Td

is the permutation group of four identical objects. We use the Schönflis point group notation
[67, 66], which is standard in molecular physics. Irreducible representations of Td are most
frequently labeled in molecular physics as A1, A2 (one-dimensional), E (two-dimensional),
and F1, F2 (three-dimensional).

2.2. Vibrational degrees of freedom of an A4 molecule. The A4 molecule has six vibra-
tional degrees of freedom, which constitute the nondegenerate “breathing” mode A1, and the
doubly and triply degenerate modes E and F2. The spectroscopic notation of these modes is
νA1
1 , νE2 , νF2

3 . We use a simplified notation for the coordinates and conjugate momenta of the
modes given in Table 1 and we also use classical complex oscillator variables

z = q + ip, z̄ = q − ip.(2.1)

The zero order vibrational Hamiltonian H0 of A4 represents a 1-oscillator, a 1:1 oscillator,
and a 1:1:1 oscillator with frequencies ωA1 , ωE , and ωF2 , respectively.

2.3. Rotation–vibration Hamiltonian. Assuming that the static equilibrium configura-
tion of A4 about which the atoms are vibrating is well defined and the amplitudes of vibrations
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Table 1
Notation for vibrational and rotational dynamical variables of the A4 molecule. Expression of angular

momenta jα in terms of dynamical variables of a two-dimensional oscillator (Schwinger representation) is used
in this table and throughout the paper.

Subsystem Traditional notation This paper

F2 mode qF2
α , pF2

α , α = x, y, z qi, pi, i = 1, 2, 3

E mode qEα , pEα , α = a, b or 1, 2 qi, pi, i = 4, 5

A1 mode qA1 , pA1 qa, pa
rotation momenta jα, α = x, y, z qi, pi, i = 6, 7

are small, we can separate molecular rotation and define the frame rotating with the molecule.
The molecule is isolated, external fields are absent, and translation of the center of mass is
therefore excluded.

To derive the rotation–vibration Hamiltonian H, we can follow the procedure described
in Chapter 11 of [1] and, more rigorously, in Chapter 7.10 of [68]. The molecule-fixed frame
is related to the equilibrium configuration by the Eckart conditions. The kinetic energy T is
a complicated function

2T =
∑
i

mi

[
(Ω ∧ (R0

i + ri))
2 + ṙ2

i + 2Ω(ri ∧ ṙi)
]

(2.2)

of small vibrational displacement velocities and angular velocities defined with respect to
this frame. The intramolecular potential U can be simply written in terms of vibrational
coordinates. The Hamiltonian form requires rotational angular momenta j, defined in the
molecule-fixed frame, and vibrational coordinates q and momenta p.

To put the initial Hamiltonian in the form suitable for normalization, we Taylor expand
H = T (q, p, j) +U(q) in q and rescale (p, q) to bring the harmonic part to the standard form.
We then express the components of j in terms of coordinates and momenta of the auxiliary two-
dimensional harmonic oscillator in order to treat vibrational and rotational variables in the
same way and use complex variables z in (2.1). The resulting formal power series expression

H = ω(H0 + εH1 + ε2H2 + ε3H3 + · · · )(2.3)

is the starting point of the normal form transformation.
We use the concrete example of the phosphorus molecule P4 with the tetrahedral equi-

librium configuration and harmonic atom–atom bond potential [13] to illustrate our results.
The only two molecular parameters in this example are the energy scale ω and the dimen-
sional smallness parameter ε = (kmr)−1 in the series expansion. Here r, m, and k stand
for the interatomic distance, the mass of the atoms, and the force constant of the potential,
respectively. The values of ε and ω can be used as phenomenological parameters to reproduce
experimental data qualitatively: ε ≈ 2 × 10−2 and ω ≈ 329 cm−1 for P4 [13].

2.4. Reduced system. The approximate dynamical symmetry of the system with Hamil-
tonian (2.3) is defined by the zero order term H0. We suppose that the frequencies νA1 , νE ,
and νF2 are incommensurate; i.e., we assume the absence of any resonances between different
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vibrational modes. In such a case, we can introduce reduced phase spaces for each of the sub-
systems simultaneously. The total reduced phase space is the product of these spaces. The
normal form Heff is an effective rotation–vibration Hamiltonian describing polyads of nonreso-
nant modes A1, E, and F2. For simplicity, we neglect the A1 mode (i.e., we set qA1 = pA1 = 0)
and focus on modes E and F2.

2.4.1. Rotational subsystem; rotational space S
2. Conservation of the total angular

momentum is the consequence of the isotropy of physical space (in the absence of external
fields). The rotational dynamical variables jα (α = 1, 2, 3) are subjected to the constraint
j2
1 + j2

2 + j2
3 = const and the rotational phase space is a two-dimensional sphere S

2, which
can be constructed in the space R

3 with coordinates jα. For the auxiliary two-dimensional
oscillator, used to represent the momenta jα (Table 1), the restriction j2 = const is equivalent
to fixing the sum of two actions.

2.4.2. E-mode subsystem, vibrational space CP 1 ∼ S
2. Exploiting the well-known

equivalence of the two-dimensional 1:1 harmonic oscillator and an angular momentum system,
we introduce vibrational angular momenta v1, v2, v3 [69, 20, 21]. The internal structure of
vibrational polyads formed by the doubly degenerate vibrational mode E can be described in
terms of these dynamical variables. The E-mode polyad sphere S

2 is defined by the equation

v2
1 + v2

2 + v2
3 = n2

e = const

in the ambient space R
3 with coordinates (v1, v2, v3). Any point on this sphere is uniquely

represented by the values of (v1, v2, v3) if we keep in mind that v2
1 + v2

2 + v2
3 is a constant.

The diffeomorphic space CP 1 can be defined in C2 −{0} using the equivalence class of points
z4:z5. Two complex numbers (z4, z5) can be used as coordinates on CP 1

ne
if their modules are

restricted as

|z4|2 + |z5|2 = 2ne

and all pairs (z4, z5), which differ in a common phase factor eiφ, correspond to the same point
of CP 1. For example, coordinates (v1, v2, v3) = (0, 1, 0) and (z4, z5) = (1,−i) = (eiφ, eiφ−π/2)
define the same point.

2.4.3. F2-mode subsystem; vibrational space CP 2. Generalization of the above con-
struction for the F2-mode 1:1:1 oscillator [17, 18, 70] leads to the reduced phase space CP 2

nf
.

The approximate integral of motion equals

1
2(z1z̄1 + z2z̄2 + z3z̄3) = nf ≈ const,

and (z1, z2, z3) can be used as coordinates on CP 2. In fact, we can define a point on the CP k

space as an equivalence class of points on Ck+1 given by their homogeneous coordinates z1 :
z2 : · · · : zk+1 or, equivalently, as a class of points on (z1, z2, . . . , zk+1) ∈ Ck+1 defined up to a
common phase (z1, z2, . . . , zk+1) ∼ eiφ(z1, z2, . . . , zk+1) and such that |z1|2+|z2|2+· · ·+|zk+1|2
is a constant.
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2.4.4. Full reduced phase space CP 2×CP 1×S
2. Before reduction, our initial molecular

system has five vibrational degrees of freedom (if the nondegenerate A1 mode is neglected) and
two auxiliary oscillatory degrees of freedom introduced to describe the rotational subsystem.
Three independent reductions fix the strict integral of motion j (the amplitude of the total
angular momentum) and polyad integrals ne and nf of the doubly degenerate mode E and
the triply degenerate mode F2. The reduced system is left with only four degrees of freedom.
Reduction makes the topology of the reduced phase space more complicated. The total reduced
space is a direct product of the rotational phase sphere, S

2
j , E-mode vibrational polyad sphere

CP 1
ne

∼ S
2, and F2-mode vibrational polyad phase space CP 2

nf
. Omitting extra indexes and

shortening the notation, we represent the topology of the reduced phase space simply as
CP 2 × CP 1 × S

2, where S
2 and CP 1 stand for the rotational and vibrational E-mode phase

spaces, respectively.

2.4.5. Normal form. Once the Hamiltonian function H is in the oscillator form (2.3), we
can normalize it using the standard Lie transform method [71, 72, 73, 74]. All odd orders
[odd degrees in (z, z̄)] vanish in the normal form

Hnf = ω(H0 + ε2H2 + ε4H4 + ε6H6 + · · · ),(2.4)

which is a power series in ε2. To obtain the reduced Hamiltonian Heff , the terms H2k in
(2.4) should be expressed as functions of basic invariant polynomials (of all generators of
the algebra of invariant polynomials) on the reduced phase space CP 2 × CP 1 × S

2. Due to
algebraic dependencies between generators (or “sygyzies”) a special polynomial basis should
be constructed. A general solution to this problem is provided by a Gröbner basis. Two more
specialized polynomial bases—an integrity basis used in invariant theory, and a tensorial basis
used by spectroscopists to represent effective Hamiltonians—can be used. We further discuss
these bases in section 6.4.

2.5. Scheme of the analysis. Our analysis of a finite-particle quantum system includes
several steps: (i) construction of the initial complete classical Hamiltonian H and of the cor-
responding quantum operator; (ii) reduction of H, taking into account strict and approximate
integrals of motion, i.e., the “model”; (iii) analysis of classical RE, relative periodic orbits,
and invariant submanifolds;

(iv) interpretation in terms of quantum energy spectrum. Each step has a general part
and a concrete part. Many important general results follow from the topology of the reduced
phase space and the symmetry group action on it, i.e., from the model.

In the first half of the paper, which includes sections 4 and 5, we find as much information
about our system as possible before any concrete interaction potential bounding the particles is
introduced explicitly and even before any dynamics is studied. After establishing the topology
of the reduced phase space CP 2 ×CP 1 ×S

2 and the invariance symmetry group Td×T of our
system, we study the action of the group Td × T on CP 2 × CP 1 × S

2. To this end, we first
consider the action on the individual factor spaces CP 2, CP 1, and S

2 and then extend it to
the full reduced space. Time reversal T and other reversing symmetries, which include T , are
antisymplectic and should be treated differently from purely spatial symplectic symmetries.

We assume that the reduced Hamiltonian Heff is a generic Td×T invariant Morse function
on CP 2×CP 1×S

2. The RE of our system are stationary points of Heff , which exist anywhere
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Table 2
Classes of conjugated and invariant subgroups of the Td × T group. Part I.

Class4 Structure5 Description and comments

Subgroups of order 1

1 C1 {1} Trivial subgroup.

Subgroups of order 2

1 T {1, T } Momentum (or time) reversal, also denoted as Z2.

6 Cs {1, σα} Reflection in a plane, Td has six conjugated operations σα.

6 Ts {1, Ts} Simultaneous reflection and time reversal,8 also denoted as (σT )
or (σZ2).

3 C2 {1, C2} Rotation by π around one of axes Sa
4 , a = (x, y, z).

3 T2 {1, T2} Rotation by π and time reversal,6 also denoted as (C2T ) or (C2Z2).

Subgroups of order 3

3 C3 {1, C3, C
2
3} Cyclic rotational subgroups corresponding to four different C3 axes

of the Td group.

Subgroups of order 4

1 D2 {1, Cx
2 , C

y
2 , C

z
2} An invariant subgroup of the Td group.

3 S4 {1, S4, C2, S
3
4} Cyclic groups generated by the Sa

4 operations a = (x, y, z).

3 T4 {1, T+4, C2, T−4} Cyclic groups generated by the Sa
4 ◦ T = T a

+4 operations.9

3 C2 × T2 {1, Ca
2 , T b

2 , T c
2 } (a, b, c) is one of the three cyclic permutations of (x, y, z).6

6 Cs × T2 {1, σa1 , T a
2 , T a2

s } These correspond to six different choices of the σa1 symmetry
plane.6,7,8

3 C2v {1, Ca
2 , σ

a1 , σa2} Subgroup of Td. Axis a is one of (x, y, z).7

3 C2 × Ts {1, Ca
2 , T a1

s , T a2
s } Obtained from C2v by combining two reflections and time rever-

sal7,8

3 C2 × T {1, C2, T , T2} direct product of Ca
2 and time reversal. Axis a is one of (x, y, z)6

6 Cs × T {1, σ, T , Ts} corresponding to one of the six conjugated symmetry planes σ of
the Td group.8

Subgroups of order 6

4 C3 × T {1, C3, C
2
3 ,

T , C3T , C2
3T }

Direct product of C3 and time reversal T corresponding to four
different axes C3.

4 C3v {1, 2C3, 3σ} Conjugated subgroups of the spatial symmetry group Td.

4 C3∧Ts {1, 2C3, 3Ts} This group has Ts instead of σd in C3v and is isomorphic to C3v as
an abstract group.8

close to the limit of linearization (i.e., at any arbitrarily small perturbation ε). In the simplest
case, RE are entirely defined by the finite symmetry Td × T of our system. They lie on the
critical orbits of the Td × T action on CP 2 × CP 1 × S

2 (they are isolated fixed points of
this action). The position of these orbits is independent of the interaction potential (and
thus of the particular Hamiltonian). We combine information about critical orbits on each
of the factor spaces of CP 2 × CP 1 × S

2 in order to find all critical orbits on the total space.
Considering Morse theory requirements, local symmetry, and local symplectic coordinates, we
suggest possible stabilities of RE.

Sections 6–9 focus on the dynamical analysis of the reduced system; concrete applications
are presented in sections 10 and 11. As soon as the interaction potential and the Hamiltonian

4–9See the footnotes to Table 3 on the following page.
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Table 3
Classes of conjugated and invariant subgroups of the Td × T group. Part II.

Class4 Structure5 Description and comments

Subgroups of order 8

1 D2 × T { 1, Cx
2 , C

y
2 , C

z
2 ,

T , T x
2 , T y

2 , T z
2 }

Direct product of the D2 subgroup of Td and time reversal
T .

3 C2v × T { 1, Ca
2 , σ

a1 , σa2 ,

T , T a
2 , T a1

s , T a2
s }

Direct product of the Ca
2v subgroup of Td and time reversal

a = (x, y, z).

3 D2d {1, Ca
2 , σ

a1,2 , Cb,c
2 , S±1

4 } Conjugated subgroups of the spatial symmetry group Td.

3 C2v∧T2 {1, Ca
2 , σ

a1,2 , T b,c
2 , T a

±4} Isomorphic to D2d as an abstract group6,7,9; two conju-
gated C2 rotations and two conjugated S4 operations of
D2d are replaced for their products with T .

3 D2∧Ts {1, Ca
2 , T

a1,2
s , Cb,c

2 , T a
±4} Isomorphic to D2d as an abstract group; has two conju-

gated σ reflections and two conjugated S4 operations7,8,9

of D2d replaced for their products with T .

3 S4 × T { 1, S4, C2, S
−1
4 ,

T , T4, T2, T−4}
Direct product of the cyclic subgroup Sa

4 of Td and time
reversal.9

3 S4∧T2

(S4∧Ts)

{1, Ca
2 , T

a1,2
s , T b,c

2 , S±1
4 } Isomorphic to D2d as an abstract group; has two conju-

gated σd reflections and two conjugated C2 rotations6,7,8,9

of D2d replaced for their products with time reversal T .

Subgroups of order 12

1 T Rotational subgroup of the Td group.

4 C3v × T Direct product of a C3v subgroup of Td and time reversal.

Subgroups of order 16

3 D2d × T Direct product of one of the three Da
2d subgroups of Td and

time reversal T .

Subgroups of index two (order 24)

1 T × T Direct product of T and time reversal, also denoted as T ×
Z2.

1 Td Tetrahedral group, isomorphic to the permutation group
π4 as an abstract group.

1 T∧Ts Another realization of π4 obtained from Td by replacing all
improper rotations, namely six σα and six S4 operations,
for their products with time reversal T .

Complete group (order 48)

1 Td × T Direct product of Td and time reversal group T .
4The leftmost column gives the number of conjugated subgroups in the class.
5When all operations in the group correspond to the same rotation axis a, we do not specify the choice of

the axis and omit index a.
6The operation T a

2 = Ca
2 ◦ T is rotation by π around axes a and time reversal; by convention a = (x, y, z)

is one of the axes S4.
7In the Td group, reflection planes σa1 and σa2 intersect on axis Ca

2 , where by convention a is one of (x, y, z);

in the Oh group these planes are called σd.
8The operation Ts = σ ◦ T is reflection in one of the six planes σd and time reversal; in particular, T a1,2

s =

T ◦ σa1,2 .
9The operations T a

±4 = T (Sa
4 )±1 = T ◦ (Sa

4 )±1, where a = (x, y, z), are operations S4 or S−1
4 combined with

time reversal T .
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are introduced explicitly, the value of Heff at critical orbits is found. This gives analytic
expressions for the energy of RE as a function of actions Ne, Nf , and J . Using these energies,
we characterize the multiplet of quantum states with quantum numbers Ne, Nf , and J . We
can also use the quantum analogue of Heff in order to compute energies of individual states.
Using the concrete Hamiltonian, we can check the Morse indexes of all known RE and find, if
necessary, additional RE which do not lie on critical orbits but are nevertheless required by
Morse theory conditions.

3. Finite symmetry group of the system. We briefly review the structure of the tetra-
hedral group Td and its extension Td × T . This group and its subgroups can be considered
as magnetic (or color) crystallographic symmetry groups; see Chapter 2 of [67]. Notation for
such groups is not commonly established. Below we explain our conventions and describe the
abstract group structure of Td × T given by its subgroup lattice (see Tables 2 and 3). We
distinguish only the nonconjugate subgroups of Td × T and study certain sublattices corre-
sponding to reduced or partial symmetry groups. This information is vital for understanding
the stratification of different reduced phase spaces by the action of Td ×T and, in particular,
for finding fixed points and invariant subspaces of this action.

3.1. Time reversal symmetry T . Momentum reversal symmetry T is a nonsymplectic
symmetry operation defined for the original physical 3-space coordinates and conjugate mo-
menta as

(q, p) → (q,−p).

We denote this operation as T , or simply as Z2, and imply that its action in each particular
context is either known or should be specified. We will distinguish the two types of behavior
(two representations of Z2) with regard to momentum reversal by “parity” indexes g (gerade)
and u (ungerade), respectively.

The symmetry operation T is also sometimes called time reversal . We like to make clear
that our operation T acts only on the phase space variables (q, p) and does not involve time
t. This implies that the action of T on the extended phase space is

T : (q, p, t) → (q,−p, t).

It can be seen that, even when the Hamiltonian of the system is invariant with regard to such
operation T , the corresponding equations of motion are not. In fact, this is due to the fact that
the action of T on (q, p) is antisymplectic. Operation T is an example of reversing symmetries.
Another commonly used definition of time reversal extends nontrivially our operation T to
time t:

Tt : (q, p, t) → (q,−p,−t).

This operation preserves the flow of the system with T -invariant Hamiltonian function. In
quantum mechanics, operation T changes the signs of all commutator relations while Tt pre-
serves these signs.

Of course, one can use either T or Tt for the analysis, as long as one understands their
action. For example, action of T and Tt on equilibria is the same, while their action on the
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trajectories γ : t → (q, p) is different. Trajectories T (γ) and Tt(γ) coincide in the phase space
but have different direction. Reversing direction is the result of t → −t, which cannot be
represented as a geometric transformation of the phase space. Since in most cases we do not
work with extended phase spaces, we prefer to define T as just another transformation of the
phase space with coordinates (q, p).

The action of T ∼ Z2 on vibrational normal mode coordinates and conjugate momenta
is, of course, the same as on the 3-space q’s and p’s, and as we go to the complex variables

z = q − ip, z̄ = q + ip,

this action becomes

(z1, z2, z3, z4, z5) → (z̄1, z̄2, z̄3, z̄4, z̄5).(3.1a)

Note that this operation differs from plain “complex conjugation” as shown by

z1 + iz2 → z̄1 + iz̄2.(3.1b)

Molecular angular momentum components (j1, j2, j3) are not invariant with respect to Z2:

(j1, j2, j3) → (−j1,−j2,−j3).(3.1c)

This property of (j1, j2, j3) follows, of course, from the explicit Wilson–Howard definition of
rotational angular momenta in terms of particle coordinates and momenta. At the same time,
we can simply note that time reversal changes the direction of classical rotation and therefore
changes signs of (j1, j2, j3).

3.2. Spatial finite symmetry Td. The spatial symmetry group of the A4 molecule is the
point group of its tetrahedral equilibrium configuration Td. This group, and cubic groups
O and Oh (and to a lesser extent, T and Th) are well known to molecular physicists and
crystallographers. It is generated by the three-fold rotation C3 and the four-fold inversion
rotation S4. The latter can be realized as C4 ◦ Ci, a rotation C4 by angle π/2 followed by
a 3-space inversion Ci, or alternately as rotation by angle −π/2 followed by reflection in
the plane orthogonal to the rotation axis. A particular realization of Td is given in Table 4
and is illustrated in Figure 1. We will use the three symmetry operations in Table 4 for
explicit demonstrations later in the paper. Conventionally, axes x, y, and z are chosen as
S4 axes. Three operations S4 and three inverse operations S−1

4 form a class of six conjugate
elements. Three operations C2 = S2

4 , which rotate by π about the same axes, form a separate
class. Operations C3, which rotate by ±2π/3 about four diagonal axes, such as axis [1, 1, 1]
in Table 4, form one class of eight elements. Finally, there is a class of six reflection planes
denoted σ or Cs; each element Cs can be considered as a combination C2 ◦Ci, where axis C2

is orthogonal to the reflection plane.

3.3. Full finite symmetry group Td × T . The total symmetry group of our system is
the tetrahedral group Td extended to include the time reversal operation T . We exploit
the isomorphism Td × T ∼ Oh ∼ O × T to explain the notation for symmetry operations
and different subgroups of Td × T . Table 5 summarizes correspondence of notation for the
symmetry operations of the three groups.
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Table 4
Matrix representations of basic operations of the Td group illustrated in Figure 1.

A1 A2 F2 E F1

za (z1, z2, z3) (z4, z5) (j1, j2, j3)

C
[111]
3 1 1

(
0 0 1
1 0 0
0 1 0

)
1
2

(
−1 −

√
3√

3 −1

) (
0 0 1
1 0 0
0 1 0

)

Sz
4 1 −1

(
0 1 0

−1 0 0
0 0 −1

) (
1 0
0 −1

) (
0 −1 0
1 0 0
0 0 1

)

Cxy
s 1 −1

(
0 1 0
1 0 0
0 0 1

) (
1 0
0 −1

)
−

(
0 1 0
1 0 0
0 0 1

)

C
[111]
3

Sz
4

Cxy
s

C1

(6)Cs
(3)C2

(4)C3

D2
(3)C2v

(3)S4

(4)C3v

(3)D2d
T

Td

Figure 1. Basic operations of the Td point group (left). The symmetry axis C2 (dashed line) of the Oh

and O groups is orthogonal to the Cs reflection plane (shadowed) of Td. This C2 should not be confused with
axis C2 = S2

4 , which has the same orientation as axis S4. Right: lattice of conjugate subgroups of the Td group.
Left: superscripts give the number of conjugate subgroups in each class.

The lattices of conjugate subgroups of the Oh and Td × T groups are shown in Figures 2
and 3, respectively, in order to compare the Schönflis notation for the classes of Oh [67] to our
notation of the Td × T classes. The 33 classes of conjugate subgroups of Td × T are arranged
according to their order and are further described in Tables 2 and 3. Left superscripts in
Figures 2 and 3 indicate, where necessary, the number of conjugate subgroups in the class.
Invariant subgroups are unique in their class which needs, therefore, no such superscripts.
Subgroups of Oh, which are distinguished by primes, C2v, C

′
2v, and C ′′

2v, D2d and D′
2d, D2h

and D′
2h, D2 and D′

2, C2h and C ′
2h, C2 and C ′

2, Cs and C ′
s, are nonconjugate in Oh but

become conjugate in the larger group SO(3). Such notation is less informative in comparison
with the Td×T notation for the corresponding nonconjugate subgroups, which highlights the
differences between the subgroups explicitly.

3.4. Sublattices corresponding to different images of Td ×T and broken symmetries.
The action of the symmetry group Td×T on the vibrational E-mode polyad space CP 1 is not
effective; the invariant subgroup D2 forms the kernel, and the image (Td×T )/D2 is the group
isomorphic (as an abstract group) to C3v ×T or D3h, see Table 6. We compare the subgroup
lattice of (Td × T )/D2 in Figure 4, right, to the equivalent lattice of D3h (Figure 4, left) in
order to better explain the action of Td × T on CP 1. When characterizing the subgroups of
(Td × T )/D2 we take into account their extension by the kernel D2 in order to preserve the
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Table 5
Correspondence between classes of conjugate elements of the groups Oh, Td × T , and O × T .

Oh Td × T O × T Oh Td × T O × T
1 1 1 Ci T T

8C3 8C3 8C3 8S6 8(T C3) 8(T C3)
3C2 3C2 3C2 3σh 3(T C2) 3(T C2)
6C′

2 6σd 6C′
2 6σd 6(T σd) 6(T C′

2)
6C4 6S4 6C4 6S4 6(T S4) 6(T C4)

Table 6
Homomorphism Td × T → D3h, which defines the group of symmetry transformations of the vibrational

reduced polyad phase space CP 1 of the doubly degenerate mode E. Each element in D3h is an image of four
elements of Td × T . In particular, the identity in D3h is the image of the invariant subgroup D2 of Td × T .

{Td × T } → D3h {Td × T } → D3h

{1, 3C2} → 1 {T , 3(T C2)} → σh

{8C3} → 2C3 {8(T C3)} → 2S3

{6S4, 6σd} → 3C2 {6(T S4), 6(T σd)} → 3σv

relation to the Td × T action on the subspaces CP 2 and S
2 (where Td × T acts effectively).

The Td ×T group has a number of subgroups whose action on classical phase spaces CP 2

and S
2 was described earlier in [17, 70, 18]; action of the D2 × T group on CP 2 was studied

in detail in [70]. The Schönflis notation for spatial finite groups used in these studies can
be misleading if the actual spatial-temporal symmetry operations are not defined explicitly.
In order to compare our present work to [70] we give in Figure 5 the correspondence of the
subgroup lattice of D2×T to that of the group D2h. These two groups realize the same abstract
Abelian group of order 8, and all their subgroups are invariant. As shown in Figure 5, certain
invariant subgroups of D2 × T (or D2h) can be assembled in sets of three according to the
axes Ca

2 , a = {x, y, z}, of the D2 group. These subgroups become conjugate when lifted to
the higher symmetry group Td × T (or Oh).

4. Group action. When a group element acts on the point x on the space P, it can map
x either to a different point x′ on P or to itself. In the latter case the group element belongs
to the local symmetry group or stabilizer of x. The set of points obtained from x by applying
all group elements is called an orbit . Orbits of a finite group G are, obviously, finite sets,
and the maximum number of points in an orbit of the G action equals the number of group
elements or the order [G] of the group. If the stabilizer Gx of the point x is nontrivial, then
the number of points in the orbit equals [G]/[Gx]. In particular, if x is a fixed point of the
group action, it forms a one-point orbit.

Out of all the orbits of the action of the group G on the space P, we distinguish critical
orbits [75, 76]. The stabilizer of a point x on the critical orbit differs from that of any point
in a sufficiently small open neighborhood of x; i.e., points on critical orbits are isolated. As
a consequence, these points must be stationary or critical points of any G-invariant function
f(x) on P. When P is a reduced phase space and f(x) is a reduced Hamiltonian Heff , these
points correspond to RE of the initial system. This makes finding critical orbits the primary
purpose of our group action study [48, 49, 50]. In general, we also look for invariant subspaces
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48Oh

24OTd Th

16(3)D4h

12T (4)D3d

8(3)C4v
(3)C4h

(3)D2d
(3)D′

2d
(3)D4

(3)D2h D′
2h

6(4)S6
(4)D3

(4)C3v

4(3)C4
(3)S4

(3)C2v
(3)C′

2v
(6)C′′

2v
(3)D2 D′

2
(3)C2h

(6)C′
2h

3(4)C3

2(6)C′
s

(6)C′
2 Ci

(3)Cs
(3)C2

1C1

Figure 2. Lattice of conjugate subgroups of the Oh group. The order of all subgroups on the same row is
indicated on the right of the graph.

48Td × T

24TdT∧Ts T×T
16(3)D2d×T
12T (4)C3v×T

8(3)S4∧Ts (3)S4×T (3)D2∧Ts (3)C2v∧T2
(3)D2d

(3)C2v×T D2×T
6(4)C3∧Ts (4)C3v

(4)C3×T

4(3)S4
(3)T4

(3)C2×T2
(3)C2×Ts(6)Cs×T2

(3)C2v D2
(3)C2×T (6)Cs×T

3(4)C3

2(3)C2
(3)T2

(6)Ts (6)Cs T

1C1

Figure 3. Lattice of conjugate subgroups of the Td ×T group; cf. Figure 2. Shorthand notation T2, Ts, and
T4 is used for stabilizers T C2, T σd, and T S4; the order of all subgroups on the same row is indicated on the
right of the graph.

of the reduced phase space P—and especially for the invariant subspaces whose stabilizer is
a purely spatial symmetry subgroup of G.

The symmetry group Td was originally defined as a point group of transformations in the
Euclidean 3-space R

3 with coordinates (x, y, z), which transform in the same way as compo-
nents of the F2 mode (q1, q2, q3). The action of Td is subsequently extended symplectically
on (p1, p2, p3), which transform in the same way as (q1, q2, q3). This defines the action on
(z1, z2, z3). At the same time, momentum reversal T or Z2 is introduced as an antisymplectic
symmetry.

The E-mode variables and rotational variables (j1, j2, j3) transform according to the E
and F1 irreducible representations of the Td group. The action of the symmetry group in these
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C1

D3h

C3v D3 C3h
(3)C2v

C3(3)C
(v)
s (3)C2 C

(h)
s

D2

Td × T

T ∧ Ts Td T× T
(3)D2d× T

T(3)D2∧Ts (3)D2d D2 × T

12

6
4

3
2

1

Figure 4. Left: lattice of conjugate subgroups of the D3h group. Underlined subgroups appear as stabilizers
of the strata of the D3h action on the S

2 sphere. Right: part of the lattice of conjugate subgroups common to
Td×T and (Td×T )/D2. Underlined subgroups appear as stabilizers of the Td×T action on the E-mode polyad
reduced phase space CP 1 ∼ S

2.

D2h

Ca
2v D2 Ca

2h

Ca
2 Ca

s Ci

C1

D2 × T 8

Ca
2 × T2 D2C

a
2 × T 4

Ca
2 T a

2 T 2

C1 1

Figure 5. Subgroup lattices of the D2h group (left) and the D2 × T subgroup of Td × T (right); subgroups
distinguished by superscript a = {x, y, z} are conjugate in the higher groups Oh and Td × T , respectively.

representations is defined by the image of the initial symmetry group. To find the action of
the symmetry group Td and its extension Td×T on different components of the reduced phase
space (the F2-mode space CP 2, the E-mode space CP 1, and the rotational sphere S

2), we
first need to know the image of our symmetry group in the corresponding representations.
We find the image of the group in the particular representation Γ by acting explicitly on the
variables which realize Γ.

Group images and their actions can be very nontrivial even for finite symmetry groups
and should be studied with care. Thus the action of spatial inversion on the reduced phase
space of our system is equivalent to identity, and as a consequence, it suffices to consider pure
rotations C4 and C2 of the O group instead of operations S4 and Cs of the Td group. We will
also see that the image of Td in the E representation is a smaller group C3v and that its action
on the E-mode reduced phase space CP 1 is equivalent to that of a dihedral group D3. We
begin by explaining actions of Td ×T on the reduced phase spaces CP 2, CP 1, and S

2 and on
the total reduced space CP 2 ×CP 1 × S

2 with the action of the rotation group SO(2) (or C∞)
and its finite subgroups Ck, k = 2, 3, 4, . . . , of which C2 is a special case, and by explaining
the action of time reversal T (or Z2). We use operations from Table 4 to illustrate group
actions.

4.1. Rotational subsystem: Action of Td×T on S
2. Unlike components of polar vectors

(x, y, z) and (q1, q2, q3), the angular momenta (j1, j2, j3) are invariant with regard to the 3-
space inversion Ci (i.e., they do not change sign). The image of Td in the F1 representation
realized by (j1, j2, j3) is an isomorphic group O generated by pure rotations. (This group can
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T2

C2

C2

(a) (b) (c) (d)

Figure 6. Action of the C2 × T group on the rotational sphere S
2 and construction of the corresponding

orbit space. (a) Two points with stabilizer C2 are shown as filled black circles; points with stabilizer T2 lie on
the circle shown in bold. (b) The T2 symmetry is reduced; all points inside the disc represent two-point orbits.
(c)–(d) The C2 and T symmetries are reduced; the disc is cut and glued conewise. All points in the shaded
interior in (d) represent generic four-point orbits with stabilizer C1; the black circle corresponds to the two-
point orbit with stabilizer C2; two-point orbits with stabilizer T2 form the boundary, which is a one-dimensional
stratum S

1.
S4∧Ts

Ts

C3∧TsTsCs∧T2

T2

Figure 7. Space of orbits of the Td × T symmetry group action on the rotational phase space S
2. Critical

orbits with stabilizers S4 ∧ Ts, C3 ∧ Ts, and Cs ∧ T2 (C4v, C3v, and C2v in the Oh notation) are shown by the
black square, triangle, and disc, respectively. One-dimensional strata with stabilizers Ts (C′

s) and T2 (Cs) are
shown by solid and dashed border lines. Generic C1 orbits correspond to points in the shaded interior.

be obtained from Td if S4 is replaced with C4 = S4 ◦Ci and Cs with C2 = Cs ◦Ci; see Table 5.)
On the other hand, time reversal T changes the signs of all three components of the angular
momentum, and therefore (j1, j2, j3) realize the F1u representation of Td × T . The image of
Td×T in this representation is the group O×T . The three isomorphic groups Td×T , O×T ,
and Oh are realizations of the same abstract group. Correspondence of their subgroups and
classes of conjugate elements is presented in Figures 2 and 3 and Table 5.

As discussed in section 2.4.1, equation j2 = const defines the reduced rotational phase
space S

2 as a sphere in the ambient space R
3 with coordinates (j1, j2, j3). The action of O×T

on this sphere is often represented in terms of the action of the Oh group of transformations
of the R

3 space (see Figure 7). The Oh notation, or even shorter O group notation, is used
in practically all applications [18, 39, 32, 33, 34] and remains preferred (at least for the study
of a purely rotational system) because geometric transformations in R

3 are very commonly
known. On the other hand, the Td × T notation properly reflects the actual symmetry of the
system and is more adequate.

Any rotation Ck acting on S
2 (as an element of the Oh group of transformations of the

ambient space R
3) has two fixed points, which are the two diametrically opposite points of S

2

situated on the axis. The two points are mapped into each other by the T operation (which
acts as inversion in R

3) and belong to one orbit. This orbit is critical. Reversing operations
Ck ◦ T with k > 2 have no fixed points on S

2. The operation T2 = C2 ◦ T acts in R
3 like a

symmetry plane σ orthogonal to the C2 axis. The set of all points on S
2 invariant with regard

to T2 is a circle S
1, which is the intersection of σ and S

2.
As a simple example, consider the action of the C2×T group on S

2 illustrated in Figure 6



276 EFSTATHIOU, SADOVSKII, AND ZHILINSKII

Table 7
Action of Td × T on the rotational sphere S

2.

Oh stabilizer C4v C3v C2v Cs C′
s C1

Td × T stabilizer S4 ∧ Ts C3 ∧ Ts Cs ∧ T2 T2 Ts C1

Points in orbit 6 8 12 24 24 48
Conjugate stabilizers 3 4 6 3 6 1

48Td × T

24TdT∧Ts T×T
16(3)D2d×T
12T (4)C3v×T

8(3)S4∧Ts (3)S4×T (3)D2∧Ts (3)C2v∧T2
(3)D2d

(3)C2v×T D2×T
6(4)C3∧Ts (4)C3v

(4)C3×T

4(3)S4
(3)T4

(3)C2×T2
(3)C2×Ts(6)Cs×T2 (3)C2v D2

(3)C2×T (6)Cs×T
3(4)C3

2(3)C2
(3)T2

(6)Ts (6)Cs T

1C1

E-mode space CP 1

F2-mode space CP 2

rotational space S2

Figure 8. Lattice of conjugate subgroups of the Td × T group. Subgroups that appear as stabilizers on the
reduced phase spaces S

2, CP 1, and CP 2 are underlined, bold framed, and framed, respectively. The order of all
subgroups on the same row is indicated on the right of the graph; cf. Figure 3.

(with the C2 axis along the z axis). There are three types of orbits: a two-point orbit with
stabilizer C2, a one-dimensional stratum of two-point orbits with stabilizer T2, and a two-
dimensional stratum with trivial stabilizer. The space of orbits is a punctured closed disc
shown in Figure 6, right.

The action of Td × T on S
2 is described in Table 7 and the space of orbits is shown in

Figure 7. Out of 33 classes of the conjugate subgroups of this group, six appear as stabilizers
(see Figure 8). There are 26 fixed points on S

2, which form three critical orbits with stabilizers
S4 ∧ Ts ∼ C4v, C3 ∧ Ts ∼ C3v, Cs ∧ T2 ∼ C2v. Note that, as in the case of any Ck action, each
specific stabilizer in the class of conjugate stabilizers corresponds to two different points in
the orbit.

4.2. E-mode vibrational subsystem: Action of Td × T on CP 1 ∼ S
2. We find the

image of the spatial symmetry group Td in the E representation by considering the action of
Td on the plane R

2 with coordinates (q4, q5) or on a complex plane with coordinates (z4, z5).
From Table 4 we can see that operation Cz

2 = (Sz
4)2 acts trivially on this plane, operation C3

rotates by 2π/3 about the origin, while operations Sz
4 and Cxy

s have the same action on R
2:

they reflect with respect to the axis {q5 = 0} passing through the origin. It follows that the
image of Td is a group D3 (or C3v).

The action of the full symmetry group Td × T on the reduced vibrational phase space
CP 1 is equivalent to that of C3v × T . The kernel of the homomorphism Td × T → C3v × T



ROTATION–VIBRATION RELATIVE EQUILIBRIA 277

T∧Ts

D2∧Ts
D2d × T

D2 × T
D2d × T

D2∧Ts

Figure 9. Space of orbits of the Td×T symmetry group action on the E-mode reduced phase space CP 1 ∼ S
2.

Triangle and circles mark critical orbits with stabilizers T ∧Ts and D2d×T (C3v and C2v in the D3h notation),
respectively. One-dimensional strata with stabilizers D2∧Ts and D2 ×T (σh) form the boundary of the variety,
while generic D2 orbits correspond to points in the interior.

Table 8
Action of Td × T on the polyad phase space CP 1 of the E mode; notation is explained in Table 6.

D3h stabilizer C3v C2v C
(v)
s C

(h)
s C1

(Td × T ) stabilizer T ∧ Ts D2d × T D2 ∧ Ts D2 × T D2

Number of
points in orbit 2 3 6 6 12
conj. stabilizers 1 3 3 1 1
orbits 1 2 ∞ ∞ ∞2

is D2, i.e., the order four invariant subgroup of Td × T described in Table 2. The action of
C3v × T on the E-mode vibrational phase sphere S

2 ∼ CP 1 can be better visualized as the
natural action of the point group D3h of transformations of the Euclidean 3-space R

3 on a
sphere embedded in this space. The correspondence between the D3h notation and symmetry
operations of Td × T is given in Figure 4 and Table 6.

All strata of the Td × T action on the E-mode space CP 1 ∼ S
2 are described in Figure 9

and Table 8. The D3h analogy makes understanding this stratification straightforward. We
can essentially use the approach in section 4.1 and, of course, earlier results for classical C3v

symmetric rotational systems (see section 1), such as a triatomic molecule with equilateral
equilibrium configuration. For example, any rotation in D3h has two fixed points on S

2; the
particular C3 rotation in Table 4 has fixed points with coordinates v = (0,±1, 0) or equally
(z4, z5) = (1,∓i), which form one two-point critical orbit with stabilizer T∧Ts. The stabilizer
of the two other critical orbits is D2d×T . Note that the points in the T∧Ts orbit have exactly
the same stabilizer (because T∧Ts is an invariant subgroup), whereas the three points in each
D2d × T orbit have different conjugate stabilizers.

Dynamical variables of the reduced E-mode system and local canonical coordinates near
points on critical orbits on CP 1 can be classified using irreducible representations of both
Td × T and D3h. Thus, vibrational angular momenta {v1, v2, v3} introduced in section 2.4.2
span the natural reducible representation A2u⊕Eg of the Td×T group (see section 7), which
corresponds to A′′

2 ⊕ E′ of the D3h group. Table 9 gives the relation between the irreducible
representations of the Td×T group and its subgroup (Td∧T )/D2. This correspondence should
be taken into account in order to study vibration-rotation dynamics on CP 1 × S

2, where the
group Td × T acts as D3h and Oh on the vibrational subspace CP 1 and rotational subspace
S

2. We should warn the reader that D3h is not a subgroup of Oh. We simply use standard
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Table 9
Reduction of irreducible representations of Td × T (∼ Oh) into those of (Td × T )/D2 (∼ D3h). The

correspondence is written initially for Oh and its D3d subgroup and is further extended using the isomorphism
D3d ↔ D3h.

Td × T → (Td × T )/D2 Td × T → (Td × T )/D2

∼ Oh → D3d ∼ D3h ∼ Oh → D3d ∼ D3h

A1g → A1g A′
1 A1u → A1u A′′

1

A2g → A2g A′
2 A2u → A2u A′′

2

Eg → Eg E′ Eu → Eu E′′

F1g → A1g ⊕ Eg A′
1 ⊕ E′ F1u → A1u ⊕ Eu A′′

1 ⊕ E′′

F2g → A2g ⊕ Eg A′
2 ⊕ E′ F2u → A2u ⊕ Eu A′′

2 ⊕ E′′

notation for irreducible representations of Oh and D3h.

4.3. F2-mode vibrational subsystem: Action on CP 2. Action of several different point
symmetry groups on the CP 2 space was studied by Zhilinskíı [17]. An example of the exten-
sion to a larger group including the time reversal T was given later in [70]. We summarize the
results of [17] for the symmetry groups O and Td and then take the T element into account.

The action of Td on the 3-space with coordinates (q1, q2, q3), which span the irreducible
representation F2, is effective, and the image corresponds to the whole group. Of course,
the same holds for (p1, p2, p3) and (z1, z2, z3). In order to verify that the action of Td ×
T on the CP 2 space is also effective [17], we can consider the representation realized by
(z1, z2, z3, z̄1, z̄2, z̄3), act by operations in Td × T (use (3.1a) and Table 4), and take the CP 2

restrictions (section 2.4.3) into account. In particular, due to the common phase equivalence,
points (z1, z2, z3) and (−z1,−z2,−z3) are the same on CP 2; i.e., the image of the 3-space
inversion is identity. It follows that the images of the Td, O, and Oh point symmetry groups
are the same (up to an isomorphism between the stabilizers), and we can simply use the O
group whose elements are proper rotations.

For any rotation axis Ck, we should consider a point in CP 2 lying on the axis and a
subspace orthogonal to the axis. The former is obviously an isolated fixed point, while the
latter is a CP 1 ∼ S

2 subspace of CP 2, which contains other Ck symmetric points. As an
example, take rotation about axis z1 that can be most easily understood in the coordinates

z1, ζ =
1√
2
(z2 + iz3), ζ ′ =

1√
2
(z2 − iz3),

subject to the same restriction

|z1|2 + |ζ|2 + |ζ ′|2 = 1

and common phase identification

(z1, ζ, ζ
′) ≡
(
z1e

iφ, ζeiφ, ζ ′eiφ
)

as the initial (z1, z2, z3) in section 2.4.3. When we rotate about z1 by angle ϕ �= 0 so that

(z1, ζ, ζ
′) →
(
z1, ζe

iϕ, ζ ′e−iϕ),
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fixed stabilizer
point in Td × T

� D2d × T
� C3v × T
� S4∧Ts
� C3∧Ts
• C2v × T

Figure 10. Orbits of the O (and Td × T ) group action on the complex projective space CP 2 according to
Zhilinskíı [17]. Colored areas represent nine C2-invariant spheres, which belong to the classes of three and six
spheres (according to their stabilizers).

the fixed point coordinates should satisfy equations(
z1, ζe

iϕ, ζ ′e−iϕ) = (z1e
iφ, ζeiφ, ζ ′eiφ

)
.

For all ϕ �= π (and in particular for all ϕ = 2π/k with k > 2) we have three isolated solutions

A : ζ = ζ ′ = 0, B : z1 = ζ = 0, and C : z1 = ζ ′ = 0;

i.e., two of the three coordinates should vanish. When ϕ = π (rotation C2) our equations
become

(z1,−ζ,−ζ ′) =
(
z1e

iφ, ζeiφ, ζ ′eiφ
)
.

We should take the point (1, 0, 0) and the whole CP 1 subspace with z1 = 0. (Set φ = π to show
explicitly that (0, z2, z3) and (0,−z2,−z3) is the same point of this C2-invariant subspace.)

The action of the entire symmetry group O on the reduced phase space CP 2 is obtained
if we apply the above principle to every rotation in O. The groups Td and O have the same
action on CP 2. The action of Td × T then can be found as an extension by adding the T
element. Results are summarized in Figure 10 reproduced from [17] and in Tables 10–12.
Action of O on CP 2 has five critical orbits (five zero-dimensional strata) characterized in
Table 10. It is important to notice that each of the three points on the D3 orbit correspond to
a different (but conjugate) stabilizer; the same is true for the four points on the D4 orbit. In
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Table 10
Zero-dimensional strata of the CP 2 space under the action of the image of the Td×T (or O×T or Oh×T )

group in the representation spanned by bilinear combinations of vibrational coordinates q and conjugate momenta
p, which transform according to the triply degenerate representation F2 of point symmetry group Td, O, or Oh.

Orbit stabilizer10 Coordinates11 Point stabilizer10

Td O or Oh on CP 2 O or Oh Td

D2d × T D4 × T (1, 0, 0) D
(x)
4 × T D

(x)
2d × T

(0, 1, 0) D
(y)
4 × T D

(y)
2d × T

(0, 0, 1) D
(z)
4 × T D

(z)
2d × T

C3v × T D3 × T (1, 1, 1) D
(c)
3 × T C

(c)
3v × T

(1,−1,−1) D
(d)
3 × T C

(d)
3v × T

(1,−1, 1) D
(b)
3 × T C

(b)
3v × T

(1, 1,−1) D
(a)
3 × T C

(a)
3v × T

S4 ∧ T2 C4 ∧ T2 (1,±i, 0) C
(z)
4 ∧ T (y)

2 S
(z)
4 ∧ T (y)

2

(1, 0,±i) C
(y)
4 ∧ T (x)

2 S
(y)
4 ∧ T (x)

2

(0, 1,±i) C
(x)
4 ∧ T (y)

2 S
(x)
4 ∧ T (y)

2

C3 ∧ Ts C3 ∧ T (d)
2 (1, η2, η), C

(a)
3 ∧ T ⊥

2 C
(a)
3 ∧ T ‖

s

(1, η̄, η̄2)

(1, η, η2), C
(b)
3 ∧ T ⊥

2 C
(b)
3 ∧ T ‖

s

(1, η̄2, η̄)

(1, η2, η̄2), C
(c)
3 ∧ T ⊥

2 C
(c)
3 ∧ T ‖

s

(1, η̄2, η2)

(1, η, η̄), C
(d)
3 ∧ T ⊥

2 C
(d)
3 ∧ T ‖

s

(1, η̄, η)

C2v × T D′
2 × T (1,±1, 0) D

′(z)
2 × T C

(z)
2v × T

(1, 0,±1) D
′(y)
2 × T C

(y)
2v × T

(0, 1,±1) D
′(x)
2 × T C

(x)
2v × T

the case of the C4, C3, and D2 orbits, one stabilizer corresponds to two different orbit points.
Zero-dimensional strata of the action of the symmetry group O×T and Td×T (where T acts
as in (3.1a)) remain the same, but their stabilizers become larger. The order of the symmetry
group O × T is twice that of O and the order of all stabilizers is doubled. The structure of
critical orbits also remains exactly the same except for the stabilizers. Each zero-dimensional
stratum again consists of one orbit.

At the same time, two-dimensional invariant topological spheres S
2 with stabilizers C

(a)
2 ,

a = {x, y, z}, and C
(α)
s , α = 1, . . . , 6, of the Td action on CP 2 (see Figure 10) become further

stratified due to the action of the T -extended group. Below we detail the action of O × T
(and Td × T ) on these invariant manifolds.

Stratification of each of the three C2-invariant S
2 spheres is equivalent to the natural

action of the D2h point symmetry group (see Figure 11, left). The generic two-dimensional

10We give notation for Td, and O or Oh groups.
11Coordinates in terms of (z1, z2, z3), η = exp(iπ/3).
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CP 2

S2

CP 2 × S2

symbol point stabilizer

� Sα
4 ∧ Ts (C4v)

� Dβ �=α
2d ∧ T (D4)

• Cα
2v ∧ T (D2h)

Cα
2 ∧ T β

2 (C2v)
Cα

2 ∧ Ts (C ′
2v)

Cα
2 ∧ T (C2h)

surface generic Cα
2

Figure 11. Correlation between the Ca
2 -invariant sphere on the CP 2 space and Ca

2 -invariant spheres on the
CP 2 × S

2 space whose coordinates on the S
2 space (rotational sphere) are fixed to those of the Sa

4 ∧ Ts points.

CP 2

S2

CP 2 × S2

symbol point stabilizer

� D2d ∧ T (D4)
� C3v ∧ T (D3d)
• C2v ∧ T (D2h)
◦ Cs ∧ T2 on S

2

Cs ∧ T2 (C ′′
2v)

Cs ∧ T (C ′
2h)

surface generic Cs

Figure 12. Correlation between the C
(k)
s -invariant sphere on the CP 2 space and C

(k)
s -invariant spheres on

the CP 2 × S
2 space whose coordinates on the S

2 space (rotational sphere) are fixed to those of the C
(k)
s ∧ T2

points.

stratum has stabilizer C2; three isolated (critical) two-point orbits with stabilizers D2d∧T ,
S4∧T2, and C2v∧T are described in Table 10; three one-dimensional strata with stabilizers
C2∧g, where g = T , T2, or Ts, are listed in Table 11. Together with isolated fixed points,
these strata form C2∧g-invariant circles S

1.

Stratification of the six topological S
2 spheres with stabilizers C

(α)
s deserves special com-

ment. Each such sphere has one exceptional two-point critical orbit with stabilizer C3v∧T (see
Figure 12, left). This orbit cannot be found if we consider only those symmetry operations

that act within the C
(α)
s -invariant sphere, its presence is due to the action of the symmetry

group Td × T on the entire CP 2 space. Disregarding the exceptional C3v∧T orbit, we can

identify the action of the symmetry group Td × T within each C
(α)
s sphere with the natural

action of the C2v point group (on a sphere in a 3-space). This action has two critical one-point
orbits with global stabilizers D2d∧T and C2v∧T (Table 10), which lie on the C2 axis (hor-
izontal axis of the leftmost sphere in Figure 12) and two different one-dimensional families
of orbits with stabilizers Cs∧g, where g = T or T2 (Table 11). Except for the C2v and D2d

points, all other points form two-point orbits of the spatial subgroup C2. The Cs∧g invariant
circles combine respective one-dimensional strata and fixed points.

All two-dimensional invariant subspaces of the Td ×T group action on CP 2 are described
in Table 12. In addition to the two types of invariant spheres S

2, this action has a number of
other two-dimensional invariant subspaces whose stabilizers T , T2, and Ts include reversing
symmetries. Generic stratum on the T , T2, and Ts invariant subspaces includes orbits with
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Table 11
One-dimensional strata on the CP 2 space under the same group action as in Table 10.

Orbit stabilizer12 Coordinates13 Point stabilizer12

Td O or Oh on CP 2 O or Oh Td

C2 ∧ T C2 ∧ T (1,±a, 0) C
(z)
2 ∧ T C

(z)
2 ∧ T

(1,±1/a, 0)

(1, 0,±a) C
(y)
2 ∧ T C

(y)
2 ∧ T

(1, 0,±1/a)

(0, 1,±a) C
(x)
2 ∧ T C

(x)
2 ∧ T

(0, 1,±1/a)

C2 ∧ T2 C2 ∧ T2 (1,±ia, 0) C
(z)
2 ∧ T (x)

2 C
(z)
2 ∧ T (x)

2

(1,±i/a, 0)

(1, 0,±ia) C
(y)
2 ∧ T (z)

2 C
(y)
2 ∧ T (z)

2

(1, 0,±i/a)

(0, 1,±ia) C
(x)
2 ∧ T (y)

2 C
(x)
2 ∧ T (y)

2

(0, 1,±i/a)

C2 ∧ Ts C2 ∧ T (d)
2 (1,±η, 0) C

(z)
2 ∧ T (d)

2 C
(z)
2 ∧ T ‖

s

(1,±η̄, 0)

(1, 0,±η) C
(y)
2 ∧ T (d)

2 C
(y)
2 ∧ T ‖

s

(1, 0,±η̄)

(0, 1,±η) C
(x)
2 ∧ T (d)

2 C
(x)
2 ∧ T ‖

s

(0, 1,±η̄)

Cs ∧ T C
(d)
2 ∧ T (1, 1,±a) C

(1)
2 ∧ T C

(xy)
s ∧ T

(1,−1,±a) C
(2)
2 ∧ T C

(xy)
s ∧ T

(1,±a, 1) C
(3)
2 ∧ T C

(xz)
s ∧ T

(1,±a,−1) C
(4)
2 ∧ T C

(xz)
s ∧ T

(1,±a,±a) C
(5)
2 ∧ T C

(yz)
s ∧ T

(1,±a,∓a) C
(6)
2 ∧ T C

(yz)
s ∧ T

Cs ∧ T2 Cd
2 ∧ T2 (1, 1,±ia) C

(1)
2 ∧ T (z)

2 C
(xy)
s ∧ T (z)

2

(1,−1,±ia) C
(2)
2 ∧ T (z)

2 C
(xy)
s ∧ T (z)

2

(1,±ia, 1) C
(3)
2 ∧ T (y)

2 C
(xz)
s ∧ T (y)

2

(1,±ia,−1) C
(4)
2 ∧ T (y)

2 C
(xz)
s ∧ T (y)

2

(1,±ia,±ia) C
(5)
2 ∧ T (x)

2 C
(yz)
s ∧ T (x)

2

(1,±ia,∓ia) C
(6)
2 ∧ T (x)

2 C
(yz)
s ∧ T (x)

2

24, 8, and 4 points, respectively. The topology of all these subspaces is RP 2.

4.4. Rotational structure of the E mode: Action on CP 1 × S
2 ∼ S

2 × S
2. The

Hamiltonian that describes rotational structure of the E-mode polyads is defined on the
four-dimensional reduced rotation–vibration phase space CP 1 × S

2, the direct product of the
vibrational E-mode polyad space CP 1 (polyad sphere) and rotational sphere S

2. We use

12We give notation for either the Td, O, or Oh group.
13Here a 	= 0,±1,∞, and η = eiϕ, where ϕ 	= kπ/2.
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Table 12
Two-dimensional invariant subspaces of CP 2 under the same group action as in Tables 10 and 11.

Orbit stabilizer14 Coordinates15 Point stabilizer14 Topology
Td O or Oh on CP 2 O or Oh Td

C2 C2 (1, w, 0) C
(z)
2 C

(z)
2 S

2

(1, 0, w) C
(y)
2 C

(y)
2

(0, 1, w) C
(x)
2 C

(x)
2

Cs C
(d)
2 (1, 1, w) C

(1)
2 C

(xy)
s S

2

(1,−1, w) C
(2)
2 C

(xy)
s

(1, w, 1) C
(3)
2 C

(xz)
s

(1, w,−1) C
(4)
2 C

(xz)
s

(1, w, w) C
(5)
2 C

(yz)
s

(1, w,−w) C
(6)
2 C

(yz)
s

T T (1, a, b) T T RP 2

T2 T2 (1, a, ib) T (z)
2 T (z)

2 RP 2

(1, ia, b) T (y)
2 T (y)

2

(1, ia, ib) T (x)
2 T (x)

2

Ts T (d)
2 (1, w, w) T (d1)

2 T (yz)
s RP 2

(1, w,−w) T (d2)
2 T (yz)

s

(1, aη, η2) T (d3)
2 T (xz)

s

(1, aη,−η2) T (d4)
2 T (xz)

s

(1, η2, aη) T (d5)
2 T (xy)

s

(1,−η2, aη) T (d6)
2 T (xy)

s

information on the stratification of the individual factor spaces CP 1 (section 4.2) and S
2

(section 4.1) in order to find the stratification of CP 1 × S
2.

Let (v) and (r) be points on CP 1 and S
2, respectively, and let (v, r) denote points on the

rovibrational (i.e., rotational-vibrational) space CP 1 × S
2. The stabilizer Gv,r of point (v, r)

is an intersection Gv ∩ Gr of stabilizers on CP 1 and S
2. In simple terms, the symmetry of

(v, r) can only be lower than that of its projections (v) and (r). The dimension of the stratum
{v, r} on CP 1 ×S

2 is the sum of the dimensions of strata {v} and {r}. The stratum {v, r} on
the product space is connected if both its projections {v} and {r} on the two factor subspaces
are connected.

Most important and basic to our analysis are critical orbits (v, r). Such orbits can either
be nonconnected parts of a nonzero-dimensional stratum or belong to a stratum {v, r} of
dimension zero. These latter strata occur when both strata {r} and {v} have dimension zero
and there is no stratum of nonzero dimension with stabilizer Gr ∩Gv.

Using the lattice of conjugate subgroups of Td × T in Figure 8, where we indicated all
possible stabilizers Gv and Gr, the reader can easily find the intersections Gv ∩Gr and then
look up the details of the structure of the particular subgroups in Table 2. Indeed, all sub-
groups of a given stabilizer G are found by descending along the lattice paths which originated

14We give notation for either the Td, O, or Oh group.
15Here a, b are real, w is a complex number, and η = eiϕ.
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Table 13
Intersection (correlation) of stabilizers of the Td ×T group action on the E-mode polyad phase space CP 1

(left column) and on the rotational phase space S
2 (top row). For information on the notation and structure

of subgroups of Td × T refer to Table 2. Critical orbits on CP 1 × S
2 are underlined.

Strata16 on the rotational phase space S
2

0D 0D 0D 1D 1D 2D
Strata16 on (4) (3) (6) (3) (6)

the CP 1 space C3∧Ts S4∧Ts Cs∧T2 T2 Ts C1

0D T∧Ts C
(k)
3 ∧Ts Cξ

2∧Ts T ξ2
s C1 T β

s C1

0D (3) D2d × T Ts Sη
4∧Ts

17 Cs∧T2
19 T η

2 Ts
19 C1

Cη
2∧T

ξ
2

20 T ξ
2

20 C1
20

1D (3) D2∧Ts Ts Cη
2∧Ts

17 Ts
19 C1 Ts

19 C1

Cξ
2
18 C1

20 C1
20

1D D2 × T C1 Cη
2∧T

ξ
2

20 T2 T ξ
2 C1 C1

2D D2 C1 Cξ
2 C1 C1 C1 C1

at G. The highest node, where the paths descending from Gv and Gr join, is the intersec-
tion Gv ∩ Gr, i.e., the largest common subgroup of Gv and Gr. All possible intersections
are summarized in Table 13. We comment on them below starting with the low-symmetry
strata.

4.4.1. Noncritical orbits. Generic points (r) on S
2 have stabilizer Gr = C1 (rightmost

column in Table 13). Obviously, these points lift to points (v, r) with trivial symmetry C1

regardless of the stabilizer Gv. The generic stratum {v, r} is of dimension four, has stabilizer
C1, and includes 48-point orbits.

Generic points (v) on CP 1 (bottom row in Table 13) have stabilizer D2, which has three
order-two subgroups Cη

2 with axes η = {x, y, z}. Intersection of D2 with stabilizers Gr equals
C1 in all cases except for the three conjugate subgroups Gη

r = Sη
4∧Ts. Intersection Gη

r ∩D2

is the particular Cη
2 subgroup of D2. The corresponding C2 stratum on CP 1 × S

2 includes
24-point orbits. Since Sη

4∧Ts points on S
2 are critical (fixed), this stratum has dimension two.

The stabilizer Gv = D2∧T of the one-dimensional stratum on CP 1 is an invariant subgroup
of Td×T ; its intersection with subgroups Gr of the same class of conjugate subgroups of Td×T
results again in conjugate subgroups. For Gr = S4 ∧ Ts the intersection is C2 × T2 and the
stratum {v, r} has dimension one. If Gr = T b

2 , where b = {x, y, z}, we have a two-dimensional

16For each space, strata of dimensions zero, one, and two are marked as 0D, 1D, and 2D; the number of
different conjugate stabilizers in the same class of Td × T is given in parentheses. Right superscripts define
concrete conjugate stabilizers: η and ξ label axes (x, y, z) for orbits on CP 1 and S

2, respectively; (k) and
β distinguish stabilizers of orbits on S

2 in the C3 class and the σ class; they can take four and six values,
respectively.

17η = ξ; axes η and ξ are the same.
18η 	= ξ; axes η and ξ are different .
19β = {η1, η2}; stabilizer of the orbits on S

2 of index (β) includes one of the two operations of index {η1, η2};
see text for examples.

20β 	= {η1, η2}; stabilizer of the orbits on S
2 of index (β) does not include operations of index {η1, η2}.
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family {v, r} of 24-point orbits with symmetry T b
2 . If Gr = Cs ∧ T2, the intersection is again

T2; i.e., isolated fixed points (r) on S
2 with stabilizer Cs∧T2 lift to points (v, r) with stabilizer

T2. Since the zero-dimensional stratum Cs∧T2 on S
2 is the closure of the one-dimensional

stratum T2 on S
2, the entire T2 stratum {v, r} is connected. As a consequence, isolated points

(r) with stabilizer Cs ∧ T2 lift to noncritical points (v, r) on the two-dimensional stratum on
CP 1 × S

2.
When both Gv and Gr are not invariant subgroups, the symmetry of the {v, r} stratum

depends on the choice of the subgroup within the class of conjugate subgroups. In the case
of Gv = D2∧Ts and Gr = Ts the intersection can be either Ts or C1. As shown in Table 2,
the element Ca

2 , where a = {x, y, z}, of D2∧Ts distinguishes a particular stabilizer in the
class of three conjugate subgroups. This stabilizer has two Ts subgroups generated by T a1

s

and T a2
s . If, therefore, Gr is one of these two subgroups, then its intersection with Gv is

nontrivial; otherwise Gv ∩Gr = C1. In the case of Gv = D2∧Ts and Gr = T2 the intersection
is always trivial. On the other hand, intersection of Gv = D2∧Ts and C3∧Ts is always a
nontrivial subgroup Ts because one of the two orthogonal symmetry planes T a1,2

s in D2∧Ts
always contains the particular axis C3 of C3∧Ts. In other words, intersection of the set of two
Ts elements in D2∧Ts and three Ts elements in C3∧Ts (which cross on the C3 axis) is never
empty. Observe that the Ts stratum {v, r} has dimension two and is connected. All points in
Table 13 that lift to this stratum become noncritical; the {v, r} parts of dimensions zero and
one form the closure.

4.4.2. Critical orbits (strata of dimension zero). Orbits that project on zero-dimensional
strata of CP 1 and S

2 and have unique stabilizers are critical. The six critical orbits on CP 1×S
2

are characterized below.

Stabilizer on CP 1 T ∧ Ts D2d × T D2d × T
Stabilizer CP 1 × S

2 C3 ∧ Ts S4 ∧ Ts Cs × T2

Number of orbits 2 2 2
Number of points in orbit 8 6 12

We explain how to find these orbits using Table 13.
Consider the stratum {v} with stabilizer Gv = T ∧ Ts, which consists of one two-point

orbit, and the stratum {r} with stabilizer Gr = C3 ∧ Ts, which consists of one eight-point
orbit. Since each of the four conjugate subgroups Gr is a subgroup of Gv, we have the zero-
dimensional stratum {v, r} with stabilizer C3 ∧ Ts, which includes two eight-point orbits (all
points on the orbit {r} lift to the same orbit {v, r}). If for the same {v} we consider {r}
with stabilizer Gr = S4 ∧ Ts, the resulting 12-point orbit {v, r} has the stabilizer C2 ×Ts and
should, therefore, be part of a one-dimensional stratum. Indeed, as can be seen from Figure 8,

T ∧ Ts ∩ S4 ∧ Ts = D2 ∧ Ts ∩ S4 ∧ Ts = C2 × Ts.

Consider now the stratum {v} with stabilizer Gv = D2d × T , which again consists of one
two-point orbit. The intersection of Gv with Gr = S4 ∧ Ts can be the whole Gr (i.e., Gr can
be the subgroup of Gv) if both subgroups include the same element Cη

2 , where axis η can be
x, y, or z. In this case we have a zero-dimensional stratum {v, r} with stabilizer S4 ∧ Ts,
which includes two six-point orbits (all points on the six-point orbit {r} lift to the same orbit
{v, r}). If for the same {v} we take {r} with stabilizer Gr = Cs×T2, this latter stabilizer can
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Table 14
Intersection (correlation) of stabilizers of the Td group action on the F2-mode vibrational phase space CP 2

(left column), on the rotational phase space S
2 (top row, center), and on the E-mode vibrational phase space

CP 1 (top row, right). Critical orbits are underlined.

Strata21 on S
2 Strata21 on CP 1

Strata21 on CP 2 0D 0D 0D 2D 0D 0D 2D

S
(η′)
4 C

(k′)
3 C

(β′)
s C1 T D

(η′)
2d D2

η′≤3 k′≤4 β′≤6 η′≤3

0D D
(η)
2d S4

22 C1 Cs
24 C1 D2 D2d

22 D2

η≤3 C2
23 C1 D2

23

0D S
(η)
4 S4

22 C1 C1 C1 C2 S4
22 C2

η≤3 C1
23 C2

23

0D C
(k)
3v C1 C3

22 Cs
24 C1 C3 Cs C1

k≤4 C1
23 C1

0D C
(k)
3 C1 C3

22 C1 C1 C3 C1 C1

k≤4 C1
23

0D C
(η)
2v C2

22 C1 Cs
24,25 C1 C2 C2v

22 C2

η≤3 C1
23 Cs

24 C2
23

C1

2D C
(η)
2 C2

22 C1 C1 C1 C2 C2
22 C2

η≤3 C1
23 C2

23

2D C
(β)
s C1 C1 Cs

22 C1 C1 Cs
24 C1

β≤6 C1
23 C1

4D C1 C1 C1 C1 C1 C1 C1 C1

again be a subgroup of Gv if both share the same Cs = σ element, which can be either ση1

or ση2 (see Table 2). Since in this case {r} consists of one 12-point orbit, the corresponding
zero-dimensional {v, r} stratum with stabilizer Cs × T2 contains two 12-point orbits.

4.5. Rotational structure of the F2 mode: Action of Td and Td × T on CP 2 × S
2.

We now combine small-amplitude F2-mode vibrations and rotation. The Hamiltonian of this
system is a (Td×T )-invariant function on the six-dimensional reduced phase space CP 2 ×S

2.
The action of the full symmetry group Td × T on CP 2 × S

2 can be found from that on the
individual spaces CP 2 and S

2 using the approach of the previous section; in particular, we

21Strata of dimension s are marked as sD, s = 0, 1, 2, 4. Classes of stabilizers of the strata are listed in Td

notation. Indexes η, k, β distinguish different stabilizers on CP 2 within the same class; indexes η′, k′, β′ are
used for S

2 or CP 1. Refer to Table 2 for information on the notation and structure of subgroups of Td × T .
22Identical subgroups of Td × T : axes η and η′, k and k′, or subgroups β and β′ are the same, i.e., η ≡ η′,

k ≡ k′, or β ≡ β′.
23Different subgroups of Td × T of the same class: axes η and η′, k and k′, or subgroups β and β′ are

different , i.e., η 	= η′, etc.
24Subgroups D

(η)
2d , C

(η)
2v , C

(k)
3v include the symmetry plane β′.

25β′ equals η1 or η2; the point projects on the disconnected zero-dimensional component of the Cη1
s or Cη2

s

stratum on CP 2; see section 4.5.1.
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determine intersections of stabilizers from the subgroup lattice of Td × T .
Essential information can be obtained from the simpler study of the action of the spatial

symmetry group Td whose subgroup lattice is given in Figure 1. As shown in Table 14, the
action of Td on the rotation–vibration space CP 2 × S

2 creates strata of symmetry S4, C2, C3,
Cs, and C1 (generic). Some strata, notably Cs, have disconnected components of different
dimension. By dimension of these strata, we mean the highest dimension of their components.
The C1 stratum has dimension six, components of other strata can be of dimension zero
and two.

4.5.1. Strata and components of dimension zero (critical orbits). The S4 stratum on
CP 2 × S

2 projects on the S4 orbits on the rotational space S
2 and on the D2d or S4 orbits

on the vibrational space CP 2. Each Gr = S
(η′)
4 stabilizer has two fixed points on S

2 (which

belong to the same orbit of the Td action). Each Gv = D
(η)
2d stabilizer has one fixed point on

CP 2 (see Table 10). Consequently, there are two points on CP 2 × S
2 with the same stabilizer

Gr ∩Gv = D
(η)
2d ∩ S

(η)
4 = S

(η)
4 .

The six points corresponding to three different conjugate stabilizers with η = x, y, z form one

six-point orbit, which we label A(4). If for the same Gr we take Gv = S
(η)
4 , we combine two

points on CP 2 (which are in the same orbit) with two points on S
2. It is important to observe

that the resulting four points on CP 2 × S
2 belong to two different orbits: one pair belongs to

orbit B(4) and another to orbit C(4). With three possible axes η taken into account, orbits B
and C contain six points each.

The above description of the S4 orbits B(4) and C(4) can be easily verified on a concrete
example. Such examples are given in Table 15, where the E-mode coordinates (z4, z5) should
at present be ignored. Consider a particular axis η = z (axis 3). The two fixed points on the
CP 2 space have coordinates (Table 10)

(z1, z2, z3) = (1,±i, 0),(4.1a)

and the coordinates of the two fixed points on the S
2 sphere are

(j1, j2, j3) = (0, 0,±1).(4.1b)

(For simplicity, here and in the rest of this section, we drop normalization factors, which
are not essential to our current discussion.) The group Td acts on CP 2 and S

2 in such a way
that any operation in Td that interchanges the two points (4.1a) on CP 2 interchanges the two
points (4.1b) on S

2. The C2 rotation about axis x (axis 1) is an example:

Cx
2 : (z1, z2, z3; j1, j2, j3) → (z1,−z2,−z3; j1,−j2,−j3).

As a result, no operation in Td maps points

B = (1,±i, 0; 0, 0,±1) and C = (1,±i, 0; 0, 0,∓1)

of the CP 2 × S
2 space into each other; these points, therefore, belong to different orbits.
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Table 15
Fixed points of the Td × T group action on the reduced phase space CP 2 × CP 1 × S

2.

(a) Stabilizer Sz
4 (or C4), rf =

√
Nf , re =

√
2Ne, rj = J .

Point
z1

rf

z2

rf

z3

rf

z4

re

z5

re

j1
rj

j2
rj

j3
rj

A1 0 0
√

2 1 0 0 0 1

A′
1 0 0

√
2 1 0 0 0 −1

A2 0 0
√

2 0 1 0 0 1

A′
2 0 0

√
2 0 1 0 0 −1

B1 1 i 0 1 0 0 0 1
B′

1 1 −i 0 1 0 0 0 −1
B2 1 i 0 0 1 0 0 1
B′

2 1 −i 0 0 1 0 0 −1
C1 1 i 0 1 0 0 0 −1
C′

1 1 −i 0 1 0 0 0 1
C2 1 i 0 0 1 0 0 −1
C′

2 1 −i 0 0 1 0 0 1

(b) Stabilizer C3 [111], rf = (
√

2Nf )/
√

3, re =
√
Ne, rj =

√
3J , χ = exp(2πi/3).

Point
z1

rf

z2

rf

z3

rf

z4

re

z5

re

j1
rj

j2
rj

j3
rj

A1 1 1 1 1 i 1 1 1
A2 1 1 1 1 i −1 −1 −1
B1 1 χ χ̄ 1 i 1 1 1
B2 1 χ χ̄ 1 i −1 −1 −1
C1 1 χ χ̄ 1 i −1 −1 −1
C2 1 χ χ̄ 1 i 1 1 1

(c) Stabilizer Cxy
s (or C2), rf =

√
Nf , re =

√
2Ne, rj = J/

√
2.

Point
z1

rf

z2

rf

z3

rf

z4

re

z5

re

j1
rj

j2
rj

j3
rj

A1 1 −1 0 1 0 1 −1 0
A2 1 −1 0 0 1 −1 1 0

The three eight-point critical orbits of the C3 stratum can be described analogously; cf.

Table 15(b). Combination of the C
(k)
3v point on CP 2 and two C

(k)
3 points on S

2 gives two
points on the A(3) orbit. With all four axes C3 taken into account (k = 1, . . . , 4), the orbit has
eight points. The B(3)- and C(3)-type orbits of the C3 action include points (z, j) and (z,−j),
respectively, where (z) and (j) stand for the coordinates of the fixed point on CP 2 and S

2.

The two critical fixed points of the C
(α)
s action on CP 2×S

2 are obtained when we combine

the only isolated fixed point of the C
(α)
s action on CP 2 (see Table 10) with the two respective

points on S
2 (recall that Cs acts both on CP 2 and on S

2 as operation C2 of the O group).

In the particular case of C
(z)
2v and its subgroup C

(xy)
s (set η = z and β′ = η1 = xy in Table

14), we combine the z = (1,−1, 0) fixed point of the C
(xy)
s action on CP 2 with two points

j = ±(1,−1, 0) on S
2. For six conjugate elements Cs, we obtain a 12-point orbit, which is

isolated from the rest of the Cs stratum (because its projection on the CP 2 space is isolated).
This orbit is therefore critical.
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4.5.2. Strata of dimension two. Action of Td on CP 2×S
2 creates two strata of dimension

two, C2 and Cs. The Cs stratum has a disconnected component of dimension zero, described
above. In both cases, we combine isolated fixed points on the rotational space S

2 and points
on the invariant spheres S

2 ⊂ CP 2. This is illustrated in Figure 11 and 12.
We describe first the C2 stratum. Since C2 = S2

4 , points with local symmetry C2 and S4

coincide on the rotational space S
2
j . In the particular example of Cz

2 = (Sz
4)2 these points are

given in (4.1b). We combine points on S
2
j with points on the C2-invariant sphere in CP 2. In

our Cz
2 example, these latter points are (see Table 12)

(z1, z2, z3) = (1, w, 0), Rew �= 0.

All points on CP 2 × S
2 with stabilizer Cz

2 are

(z1, z2, z3; j1, j2, j3) = (1, w, 0; 0, 0,±1), Rew �= 0.

Removing the above restriction on w adds four critical points (1,±i, 0; 0, 0,±1) with stabilizer
Sz

4 and produces two spheres shown in Figure 11, right. These are the only isolated critical
points which remain on the C2-invariant spheres when we add rotation; all other fixed points
which lie on the C2-invariant sphere of the purely vibrational system with phase space CP 2

(i.e., when j = 0) disappear. For example, consider the two D2d points z = (1, 0, 0) and (0, 1, 0)
with stabilizers Dx

2d and Dy
2d, respectively (Table 10 and Figure 11, left). Their rotational

coordinates should necessarily be j = (1, 0, 0) and (0, 1, 0), which project to points on S
2 with

stabilizers Sx
4 and Sy

4 , respectively.
A similar approach can be used to describe the Cs-invariant spheres (the two-dimensional

component of the Cs stratum) in the CP 2 × S
2 space shown in Figure 12, right. In this case,

no critical points remain on the spheres when rotation is added and we lift from CP 2 to
CP 2×S

2. As an example, consider the reflection plane x = y whose action is given in Table 4.
This operation has two fixed points on the rotational sphere S

2
j :

(j1, j2, j3) = (±1,∓1, 0).

(At these points, axial vector j is orthogonal to the plane x = y.) Operation Cxy
s is a

combination of inversion and rotation by π about axis x = −y, i.e., (1,−1, 0). The points on
the CP 1 ∼ S

2 subspace orthogonal to this axis have, therefore, coordinates (see Table 12)

(z1, z2, z3) = (1, 1, w),

and the points of the two Cs-invariant spheres S
2 in the six-dimensional space CP 2 × S

2 are

(z1, z2, z3; j1, j2, j3) = (1, 1, w; ±1,∓1, 0).

Stabilizers of critical points, which are present on the Cs-invariant sphere when j = 0 (Fig-
ure 12, left), are such that these points become noncritical when rotation is added. Thus,
the C2v point with z = (1, 1, 0), which lies on the Cxy

s -invariant sphere of our example, has
the stabilizer Cz

2 and must, therefore, combine with j = (0, 0, 1) in order to have a higher
stabilizer.
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4.5.3. Extension by time reversal T . The action of the full group Td×T on the CP 2×S
2

space creates more strata. For our purposes, however, it is sufficient to observe that the system
of critical orbits of Td × T remains the same, as in the case of Td, and to study the action of
reversal operations on the invariant spheres with stabilizers C2 and Cs.

Internal stratification of the C2-invariant spheres in the CP 2 × S
2 space under the action

of Td × T is shown in Figure 11, right. It can be seen that the action of Td × T on these
spheres is equivalent to the natural action of the C2v group (whose axis C2 is the vertical axis
in Figure 11). In addition to the two isolated S4 points, this action creates one-dimensional
strata with stabilizers C2 × T2 and C2 × Ts.

The Cs-invariant spheres also do not remain homogeneous when reversal operations are
accounted for properly. The action of Td × T on these spheres is equivalent to that of the
group Ch (whose reflection plane is the plane of Figure 12); it creates a (Cs ∧ T2)-invariant
circle on each Cs-invariant sphere in CP 2 × S

2.

4.6. Action on the vibrational subspace CP 2 × CP 1. Description of combined small-
amplitude E- and F2-mode vibrations requires the six-dimensional reduced phase space CP 2×
CP 1. The action of the Td ∧ T symmetry group on the F2-mode subspace CP 2 and on the
whole of CP 2×CP 1 is effective. The action of Td×T on the E-mode subspace is not effective;
see Table 14: any point on this subspace is automatically D2-invariant.

4.6.1. Critical orbits. All critical orbits on CP 2 × CP 1 can be found and classified if
we combine points from Tables 8 and 10 and determine the intersection of their stabilizers
Gf ∩Ge using the lattice from Figure 2, 3, or 8. To find whether the point (orbit) is critical,
we consider the stratum with stabilizer Gf ∩Ge and verify that we deal with an isolated point
(orbit) using projections on the orbit spaces in Figures 9 and 10. As in the previous sections,
we should combine points with identical stabilizers in order to determine the number of orbits
and of points in the orbits. Concrete examples can be found in Table 15 if we ignore the
rotational part (i.e., let j = 0). Results are summarized below.

Stabilizer of the orbits on Number Examples in
CP 2

CP 1
CP 2 × CP 1 of points Table 15

D2d × T D2d × T D2d × T 3 + 3 A
(4)
1,2

S4 ∧ Ts D2d × T S4 ∧ Ts 6 + 6 (B,C)
(4)
1,2

C3v × T T ∧ Ts C3 ∧ Ts 4 + 4 A
(3)
1,2

C3 ∧ Ts T ∧ Ts C3 ∧ Ts 8 + 8 (B,C)
(3)
1,2

C2v × T D2d × T C2v × T 3 + 3 A
(2)
1,2

Here the superscripts (4), (3), and (2) correspond to parts (a), (b), and (c) of Table 15; by k+k
we denote two k-point orbits.

4.6.2. Invariant subspaces of CP 2 × CP 1. Three D2d-invariant points on CP 2 are the
only points whose stabilizer includes D2. Combining these points with the whole E-mode
space CP 1 ∼ S

2 gives three D2-invariant spheres S
2 in the six-dimensional space CP 2 × S

2.
Six Cs-invariant spheres on CP 2 combined with, respectively, six D2d-invariant points of the
E-space give 12 Cs-invariant spheres S

2 in CP 2 × S
2. The stabilizer D2 of the E-mode space

CP 1 ∼ S
2 has three conjugate Ca

2 subgroups with a = {x, y, z}. Consequently, there are three
C2-invariant subspaces S

2
(F ) × S

2
(E). Points with higher symmetry lie on each of the above

subspaces.



ROTATION–VIBRATION RELATIVE EQUILIBRIA 291

4.7. Action on the full reduced phase space CP 2 × CP 1 × S
2. In order to describe

the simultaneous rotation and small amplitude E- and F2-mode vibrations of the A4 molecule
(rotational structure of all combination polyads nν2 + mν3), we need the eight-dimensional
total classical reduced phase space CP 2 × CP 1 × S

2. In this section, we find critical (fixed)
points of the Td×T action on CP 2×CP 1×S

2 by combining points on the three factor spaces.
Fortunately, most of the work has already been done in the previous sections. We can take
critical orbits A, B, and C on CP 2 × S

2 found in section 4.5 and combine them with critical
orbits of the Td×T action on the E-mode space CP 1 while matching the stabilizers carefully.
It can be seen in the examples of Table 15 that orbits A, B, and C are duplicated in the
presence of E-mode vibrations. Indexes 1 and 2 distinguish two different possible projections
(z5, z6) on the E-mode space CP 1. We use shorter Td notation for stabilizers in Table 15.
Extending the symmetry group Td by the time reversal T does not modify the critical orbits;
it merely doubles the order of stabilizers, which become S4 ∧ Ts, C3 ∧ Ts, and Cs × T2. We
comment briefly on these orbits.

The orbit stabilizer is defined as a class of conjugate subgroups; the point stabilizer is an
individual subgroup in that class. As before, we match concrete point stabilizers. The Sz

4

operation has (1 + 2), 2, and 2 fixed points on the F2-mode space CP 2, E-mode space CP 1,
and rotational sphere S

2, respectively. The 3× 2× 2 = 12 points on CP 2 ×CP 1 ×S
2 with the

stabilizer Sz
4 are listed in Table 15. To complete orbits of the Td group action we should add

points with stabilizers Sx
4 and Sy

4 (which are obtained from the given points using symmetry
operations R such that Sα

4 = R ◦ Sz
4 ◦ R−1). The total of 36 points can split into six orbits

with stabilizer S4. In particular, points A1 and A′
1 in Table 15 belong to the same six-point

orbit (which also includes two points with stabilizer Sy
4 and two points with stabilizer Sx

4 ).
A similar argument shows that there are 12 points on CP 2×CP 1×S

2 for each of the four

conjugate stabilizers C
(k)
3 (Table 15(b), where points A′, B′, and C ′ are omitted for brevity).

The total of (3 × 2 × 2) × 4 = 48 points on CP 2 × CP 1 × S
2 is made up of six eight-point

orbits with stabilizer C3.
The remaining two critical orbits on CP 2×CP 1×S

2 have stabilizer Cs. We construct these
orbits by taking points with stabilizer Cα

s on the CP 2×S
2 subspace (section 4.5) and combining

them with the appropriate two D2d points on the E-mode space CP 1 (see Table 15(c)), as
in the case of the stabilizer S4. For six conjugate subgroups Cs we have 24 critical points on
(the zero-dimensional component of) the Cs stratum of CP 2 ×CP 1 × S

2, which separate into
two 12-point orbits.

5. Prediction of RE. This section is a reward for our painstaking study of the Td × T
group action on CP 2 × CP 1 × S

2. The reduced Hamiltonian Heff is a (Td × T )-invariant
function on CP 2 × CP 1 × S

2 and it must have stationary points at all critical orbits of the
Td×T action, which we found in the previous section (Table 15). Stationary points of Heff are
equilibria of the reduced system and are RE of the initial system with six vibrational degrees
of freedom.26

26In order to simplify the analysis of the reduced system for P4, the A1-mode subsystem is excluded in [13]
by setting qA1 = pA1 = 0 and na = 0; the model potential function was developed to cubic terms only. The
number of degrees of freedom can be counted in several ways. Translational degrees of freedom can be trivially
separated. Out of three rotational degrees of freedom, two can be reduced to account for the preservation of
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RE correspond to families of special 3-tori in the initial phase space (see footnote 26)
and are characterized entirely by symmetry and the values of the three integrals nf , ne, and
j. The value of Heff (energy) at RE and stability of RE are the primary characteristics of
our system. Table 15 becomes, therefore, our most important result in view of practical
applications. (Note that RE forming one symmetry group orbit are equivalent and it suffices
to analyze stability and energy for one RE in the orbit.)

In this section, we are preoccupied with general understanding and description of possible
functions Heff . In particular, we want to know if such functions can have stationary points
only on critical orbits, i.e., have the minimum number of stationary points. We place RE on
critical group orbits and suggest possible stability. Assuming that Heff is a Morse function on
the space CP 2 ×CP 1 × S

2, we make sure that possible sets of stationary points satisfy Morse
inequalities for this space and its invariant subspaces. We then find the simplest possible set
(or sets) of RE, which correspond to the simplest Morse Hamiltonian(s) on CP 2 × CP 1 × S

2

invariant with respect to the symmetry group of the system Td × T . We can expect that at
low perturbation (or excitation) our Heff is such a simplest function.

The main purpose of this paper is the analysis of the complexity of the set of RE of systems
combined of different subsystems. Our first observation in this context follows directly from
the group action study in section 4. The RE set of the entire system is far from being a
simple combination of the RE of the subsystems. As an example, take the F2- and E-mode
subsystems, which have 9 and 27 RE, respectively. These RE are also known as “nonlinear
normal modes” [14, 15, 16]. They combine nonlinearly; there are 48 RE of the combined E–F2

system corresponding to critical orbits on the CP 2 × CP 1 phase space (see section 4.6).
Finding critical orbits on high-dimensional spaces constructed as a direct product of sim-

pler spaces is greatly facilitated by tracing the correlation between critical orbits on subspaces
and those on the complete space (for example, see section 4.5, Figures 11 and 12). Our sec-
ond main observation is that the simplest (Td × T )-invariant Morse-type function Heff with
stationary points placed exclusively on critical orbits can be defined on individual subspaces
S

2, CP 1, and CP 2. However, when we go to a product space, such as CP 2 × S
2, the situ-

ation becomes more complicated and there must be RE (stationary points of Heff) lying on
noncritical group orbits.

5.1. Consequences of local symmetry for linear stability. We can use our results on the
critical orbits of the Td×T group action on CP 2×CP 1×S

2 to find the position of corresponding
RE and compute their energy for any given Hamiltonian Heff . To find more about these RE
without using any concrete Heff , we should classify small phase space displacements x from
them (coordinates on the tangent plane) according to the irreducible representations of their
stabilizers. In this work, we are interested in one particular kind of group action, which

the length of the angular momentum vector and its projection on a laboratory fixed frame. This leaves six
vibrational degrees of freedom and one rotational degrees of freedom, sometimes called “internal” degrees of
freedom. However, we replace internal rotational degrees of freedom with two constrained oscillatory degrees of
freedom, so there is a total of eight initial degrees of freedom (and a phase space of dimension 16), of which two
represent one physical rotational degrees of freedom, and one representing the A1 mode is ignored. Reduction
with respect to all integrals na, nf , ne, and j leads to the reduced system on the space CP 2×CP 1×S

2 with four
degrees of freedom. The corresponding dynamical symmetry is T 4. If we neglect na by setting qA1 = pA1 = 0
before reduction, we restrict the initial system to seven degrees of freedom, and the dynamical symmetry is T 3.
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is induced on CP 2 × CP 1 × S
2 by spatial and reversal symmetries of the initial molecular

rotation–vibration system. This action can be studied in the example of the SO(2) group
(axial symmetry) and its discrete cyclic subgroups Ck (rotation by 2π/k with k = 2, 3, 4, . . . )
acting on the initial coordinates of our system as groups of transformations.

We begin by describing a number of nondegenerate equilibria e with nontrivial stabi-
lizers Ge = Ck and corresponding Ge-invariant local quadratic Hamiltonians H0 such that
H0(e) = 0. The local symmetry of e results in certain restrictions on H0 and on the stabil-
ity. We compute the Hessian matrix ∂2H0/∂x

2. Displacements that transform according to
different rows of the same irreducible representation Γe form a degenerate eigenvalue block
of ∂2H0/∂x

2. The number of negative eigenvalues of this matrix, or the Morse index , enters
in Morse inequalities in section 5.2; the Poincaré index gives the sign of det(∂2H0/∂x

2). In
order to determine the stability of e, we consider H0 as a Hamiltonian, establish local sym-
plectic structure J , and compute the eigenvalues of the corresponding Hamiltonian matrix
J ∂2H0/∂x

2. Hamiltonian stability and the Morse index are related unambiguously only in
the case of dimension two (reduced system with one degree of freedom). The Poincaré index,
which can be computed from the Morse index, gives some characteristics of linear Hamiltonian
stability in systems with any degrees of freedom. Subsequently, we use our results to study
the RE of our system.

5.1.1. Ck-invariant quadratic Hamiltonians on R
2. We define the action of the rotation

group SO(2) on the real variables (x1, x2) using the 2 × 2 orthogonal matrix

Mm(ϕ) =

(
cosmϕ sinmϕ

− sinmϕ cosmϕ

)
, m = 0, 1, 2, . . . ,

and consider quadratic functions H0(x1, x2), which are invariant with respect to SO(2) or its
discrete subgroups Ck (rotation by ϕ = 2π/k). For each given m we take k > m. Furthermore,
it suffices to consider k ≤ 2m. The point e = (x1, x2) = 0 is a critical orbit and, therefore,
an equilibrium of H0. If the two displacements (x1, x2) about e transform as components of a
two-dimensional real irreducible representation, then e can only be a minimum or a maximum
of H0 with signature (++) or (−−) (Morse index 0 or 2), respectively, but not a saddle (+−)

with index 1.
Invariants of our SO(2) action are constructed using combinations

ξ = x1 + ix2 and ξ̄ = x1 − ix2,

which transform as conjugate irreducible one-dimensional complex representations ±m of
SO(2). The pair (x1, x2) realizes a two-dimensional representation of SO(2), which is irre-
ducible over reals. Descending to Ck, we should check whether this representation remains
irreducible (over reals). For m = 1 and m = 2 this is the case for all k �= 2 and k �= 4,
respectively. When m = 2 and k = 4, the image of C4 becomes C2. The corresponding
quadratic forms are given in Table 16. We can see that the case k = 2m is stable (elliptic)
when c2 − ab < 0 or unstable (hyperbolic) otherwise, while the k �= 2m equilibrium is always
stable.



294 EFSTATHIOU, SADOVSKII, AND ZHILINSKII

Table 16
Invariant local quadratic Hamiltonians with one and two degrees of freedom encountered in our study.

The action of Ck on the phase plane R
2 with coordinates (x1, x2) is given by the 2 × 2 orthogonal matrix

Mm(ϕ) with ϕ = 2π/k; the action of Ck on the phase space R
4 with coordinates (x1, x2, x3, x4) is defined by

diag(Mm′ ,Mm′′)(ϕ). The action of the subgroups of Td × T on the local coordinates (x1, x2, y1, y2) is given in
Table 18.

Stabilizer Ck-invariant quadratic form Eigenvalues27,28

Case 2D: m = 1, 2, etc., k > m, and ω = dx ∧ dy

C2m
1
2
ax2 + 1

2
by2 + cxy

[
±
√
c2 − ab

]
, 1

2
{a + b±Dabc}

C2m+1
1
2
a(x2 + y2) [±ia], {a, a}

Case A: m′ = 1, m′′ = 1, and ω = dx1 ∧ dy1 + dx2 ∧ dy2

C2
1
2
a′x2

1 + 1
2
a′′x2

2 + 1
2
b′y2

1 + 1
2
b′′y2

2 No restrictions

+ (all possible cross terms)

Ck(k > 2) 1
2
a(x2

1 + x2
2) + 1

2
b(y2

1 + y2
2)

[
±
√
c2 − ab + id,±

√
c2 − ab− id

]
+ c(x1y1 + x2y2) + d(x1y2 − x2y1)

1
2

{
a + b±Dabcd

}
× 2

Case A with extended symmetry Tk = Ck × T , where T : (x1, x2, y1, y2) → (x1, x2,−y1,−y2)

T2
1
2
a′x2

1 + 1
2
a′′x2

2 + 1
2
b′y2

1 + 1
2
b′′y2

2 No simple restrictions

+ cx1x2 + dy1y2
1
2

{
b′ + b′′ ±Db′b′′d, a

′ + a′′ ±Da′a′′c

}
Tk(k > 2) 1

2
a(x2

1 + x2
2) + 1

2
b(y2

1 + y2
2) [±i

√
ab] × 2, {a, b} × 2

Case A with full symmetry and ω = dx1 ∧ dy1 + dx2 ∧ dy2

C2v × T 1
2
a′x2

1 + 1
2
a′′x2

2 + 1
2
b′y2

1 + 1
2
b′′y2

2

[
±i

√
a′b′,±i

√
a′′b′′
]
, a′, b′, a′′, b′′

D2d × T 1
2
a(x2

1 + x2
2) + 1

2
b(y2

1 + y2
2) [±i

√
ab] × 2, {a, b} × 2

C3v × T 1
2
a(x2

1 + x2
2) + 1

2
b(y2

1 + y2
2) [±i

√
ab] × 2, {a, b} × 2

Case B: m′ = 1, m′′ = 2, and ω = dx1 ∧ dy1 + dx2 ∧ dy2

C3
1
2
a′(x2

1 + y2
1) + 1

2
a′′(x2

2 + y2
2) 1

2

[
i(a′ − a′′) ± ∆, i(a′′ − a′) ± ∆

]
+ c(x1x2 − y1y2) + d(x1y2 + y1x2)

1
2

{
a′ + a′′ ±Da′a′′cd

}
× 2

C4
1
2
a′(x2

1 + y2
1) + 1

2
a′′x2

2 + 1
2
b′′y2

2 + cx2y2 [±ia′,±
√
c2 − a′′b′′]{

a′, a′, 1
2
(a′′ + b′′ ±Da′′b′′c)

}
Ck(k > 4) 1

2
a′(x2

1 + y2
1) + 1

2
a′′(x2

2 + y2
2) [±ia′,±ia′′], {a′, a′′} × 2

Case B with full symmetry and ω = dx1 ∧ dy1 + dx2 ∧ dy2

C3 ∧ Ts
1
2
a′(x2

1 + y2
1) + 1

2
a′′(x2

2 + y2
2) 1

2

[
i(a′ − a′′) ± ∆, i(a′′ − a′) ± ∆

]
+ c(x1x2 − y1y2)

1
2

{
a′ + a′′ ±Da′a′′c

}
× 2

S4 ∧ T2
1
2
a′(x2

1 + y2
1) + 1

2
a′′x2

2 + 1
2
b′′y2

2

[
±ia′,±i

√
a′′b′′
]
, {a′, a′, a′′b′′}

5.1.2. Ck-invariant quadratic Hamiltonians on R
4. We define the action of the SO(2)

group on the four-plane R
4 with coordinates (x1, x2, x3, x4) using the matrix (Mm′ 0

0 Mm′′
),

where the submatrices Mm′ and Mm′′ act on the (x1, x2)-subspace and the (x3, x4)-subspace,

27Eigenvalues of the Hamiltonian and Hessian matrices are given in square [ ] and curly {} brackets, respec-
tively; ×2 indicates multiplicity.

28∆ =
√

4(c2 + d2) − (a′ + a′′)2, Dabcd =
√

(a− b)2 + 4(c2 + d2), Dabc = Dabc0.
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respectively. (The case of the diagonal SO(2) action on R
2 × R

2.) Invariants of this action
can be readily constructed using

ξ = (x1 + ix2) and η = (x3 + ix4)

together with their conjugates ξ̄ and η̄. The four variables ξ, η, ξ̄, η̄ realize irreducible
representations m′, m′′, −m′, −m′′, respectively. We consider several situations of interest to
our later study.

In the case of m′ = 1 and m′′ = 2, we have two quadratic SO(2) invariants 1
2ξξ̄ and

1
2ηη̄. When SO(2) is lowered to C3, we also have ξη and ξ̄η̄, which transform like exp(±3iϕ).
Similarly, η2 and η̄2 transform like exp(±4iϕ) and are the two extra invariants in the case
of C4.

In the case of m′ = m′′ = 1 (and generally for m′ = m′′), our SO(2) action has four
quadratic invariants: the familiar 1

2ξξ̄,
1
2ηη̄, and the cross terms ξη̄, ηξ̄. The same four remain

if SO(2) is lowered to Ck and k > 2. When k = 2, each coordinate xi realizes real one-
dimensional irreducible antisymmetric representation. All 10 quadratic monomials xjxi are,
therefore, C2-invariant.

Generic Ck-invariant real quadratic forms in (x1, x2, x3, x4) constructed using the above
invariants are presented in Table 16. As can be seen from this table, Hamiltonian stability
of e = (0, 0, 0, 0) depends on m′, m′′, k, and the symplectic form ω. The eigenvalues of the
Hessian at (0, 0, 0, 0), which are also given in Table 16, are used in the Morse theory analysis.
Furthermore, we can see that additional symmetry, such as the time reversal extension for
case A critical orbits (see sections 4.3, 4.5.3 and Table 15), can simplify the situation quite
radically.

5.1.3. Points on S
2 and CP 1. Consider a nondegenerate critical point e with stabilizer

Ge on the 2-sphere S
2 or on the diffeomorphic space CP 1. The group Ge is defined as a group

of transformations of the ambient Euclidean space R
3, which embeds S

2 (see section 4). We
want to know how Ge acts on the 2-plane R

2
(e) tangent to S

2 or CP 1 at e. It suffices to consider

the circle group Ge = SO(2) and its subgroups Ck. A straightforward computation shows that
the image of SO(2) and Ck in the representation spanned by the Euclidean coordinates (x, y)
on R

2
(e) is again SO(2) and Ck and that x ± iy span representations ±1. Then, following

section 5.1.1, the point e on S
2 and CP 1 with stabilizer Ck, k > 2, is always stable; points

with stabilizer C2 can also be unstable.

5.1.4. Points on CP 2. As before, we study a special case of the group action on the
CP 2 space induced by the natural action (vector representation) of the group SO(2) and its
subgroups Ck on the complex 3-space with coordinates (z1, z2, z3). This action is defined by
a 3× 3 orthogonal matrix M . The action on the corresponding real 6-space with coordinates
(q1, q2, q3, p1, p2, p3) is given by the matrix (M 0

0 M
) with one copy of M acting on the q space

and the other on the p space. The above action of SO(2) with the symmetry axis z3, and of
the corresponding discrete subgroups Ck with k > 2, on CP 2 has three isolated fixed points
(see section 4.3 and [17]):

A = (0, 0, 1), B = (1,±i, 0).
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Table 17
Generic equilibria on CP 2 in the presence of the natural action of the cyclic group Ck and its extensions.

Equilibrium29 ∂2H0
30 J ∂2H0

31

A C2 × T No simple restrictions

C2v × T 4, 2, 0 ii

3, 1 ir

2 rr

A Ck × T , k > 2 4, 0 ii 1:1

2 rr 1:1

Equilibrium29 ∂2H0
30 J ∂2H0

31

B C3 4, 2, 0 ii

2 c

B C4 4, 2, 0 ii

3, 1 ir

B Ck, k > 4 4, 2, 0 ii

(In Table 15 we use notation B,C for points of type B.) In the C2 case, only the A-type fixed
point is isolated. It is also useful to recall that the stabilizer of the A points in the case of
the Td × T action on CP 2 includes T (see Table 10) and that Ck can be extended easily to
Tk = Ck × T .

Any Ck-invariant Morse Hamiltonian H on CP 2 has nondegenerate stationary points of
types A and B. Let z be one of these points and let C

2
(z) ∼ R

4
(z) be the plane tangent to CP 2

at z. This plane is a chart of CP 2 with four real displacement coordinates (q′, p′, q′′, p′′). The
zero order H0(q

′, p′, q′′, p′′) of the Taylor expansion of H near z is a nondegenerate quadratic
form. We study the action of Ck on (q′, p′, q′′, p′′) and find which generic forms in Table 16
correspond to H0. Table 17 gives the summary of the results.

The action of Ck on R
4
(z) can be found by direct computation; see also section 10. The

matrix of the rotation about axis z3 by an arbitrary angle ϕ is

M(ϕ) =

⎛
⎜⎝ cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1

⎞
⎟⎠ .

We can see right away that four small real quantities (q1, q2), and (p1, p2), which define a
displacement from point A (in the appropriate chart of CP 2),

dA = (q1 + ip1, q2 + ip2, 1)

transform like two copies of the real two-dimensional representation ±1 of the group SO(2).
Consequently, the forms of case A in Table 16 with (x1, x2, y1, y2) corresponding to (q1, q2, p1, p2)
represent generic Ck and (Ck × T )-invariant Morse functions locally at point A. The C2 × T
form can be further simplified if we consider the full C2v × T stabilizer of the actual fixed
point of the Td × T action. In that case H0 has only four terms q2

1, q
2
2, p

2
1, and p2

2. Hamilto-
nian (linear) stability analysis of the A-type equilibria in the case of the full Td × T action is
straightforward (see Table 17) because the linearized system separates in initial phase space
coordinates and the analysis reduces to combining two systems with one degree of freedom.

29Type and local symmetry (stabilizer) of equilibria on CP 2; see section 5.1.4 and Table 15 and compare to
Table 16.

30Possible Morse index derived from the corresponding Hessian eigenvalues in Table 16.
31Possible eigenvalues of the Hamiltonian matrix: i and r stand for the imaginary and the real eigenvalue

pair, respectively; 1:1 indicates resonance, c denotes four complex eigenvalues.
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When we use the same approach for

dB = (1, i + q2 + ip2, q3 + ip3) = (1, i + z2, z3),

we should project the transformed vector

M(ϕ)dB =
(
eiϕ + z2 sinϕ, ieiϕ + z2 cosϕ, z3

)
back to the initial chart of CP 2 and Taylor expand to the first order in (q2, p2, q3, p3),

M(ϕ)dB
∣∣
chart

=
[
eiϕ + z2 sinϕ

]−1
M(ϕ)dB

≈
(
1, i + e−2iϕz2, e

−iϕz3
)
.

We can now see that (q3, p3) and (q2, p2) realize representations ±1 and ±2 of SO(2), respec-
tively. Therefore, quadratic forms of case B in Table 16 with (x1, y1, x2, y2) corresponding to
(q2, p2, q3, p3) represent generic Ck-invariant Morse functions locally at point B. For all points
B(k) with k > 3, linearization separates in the initial coordinates (q2, p2) and (q3, p3). As in
case A, stability analysis of these equilibria is simple. Point B(3) turns out to be the only
interesting case, where the localized system is intrinsically four-dimensional; cf. [97].

5.1.5. Stability analysis of stationary points on CP 2 in the presence of Td × T . In
the previous section, we showed that linear stability of stationary points on CP 2 (vibrational
RE) can be predicted by analyzing possible local Hamiltonians for RE whose stabilizer is an
SO(2) group or a discrete cyclic subgroup Ck of this group. For the five types of vibrational
RE labeled A(2), A(3), B(3), A(4), and B(4) (see Table 15) we take subgroups C2, C3, and C4,
respectively. The latter can be regarded as the principal symmetry operations of the respective
stabilizers C2v × T , C3v × T , C3∧T , D2d × T , and S4∧T . At the same time, prediction of
stability of these RE can be further improved if we account for the full stabilizers.

To this end we proceed as before in section 5.1.4. We define local displacement coordi-
nates (x1, y1, x2, y2) near the stationary point on CP 2 and determine the action of the full
stabilizer G on these coordinates. Knowing the action, we find the representation of G real-
ized by (x1, y1, x2, y2) and construct the typical G-invariant quadratic form H(x1, y1, x2, y2).
We choose (x1, y1, x2, y2) so that the local 2-form is dx1 ∧ dy1 + dx2 ∧ dy2 and consider
H(x1, y1, x2, y2) as a Hamiltonian function of local linearization near the RE.

In order to define (x1, y1, x2, y2) we rotate the initial coordinates (z1, z2, z3) so that in the
new coordinates (z′1, z

′
2, z

′
3) the principal symmetry axis of the stabilizer becomes axis z′1. The

direction of the two other axes can be chosen as shown below:
Stabilizer (z1, z2, z3) Map (z′1, z

′
2, z

′
3)

D
(x)
2d × T

√
2n(1, 0, 0) E

√
2n(1, 0, 0)

S
(x)
4 ∧ T (y)

2

√
n(0, 1, i) E

√
n(0, 1, i)

C
(z)
2v × T

√
n(1, 1, 0) M1

√
2n(1, 0, 0)

C
[111]
3v × T

√
2
3
n(1, 1, 1) M2

√
2n(1, 0, 0)

C
[111]
3 ∧ T ‖

s

√
2
3
n(1, η2, η̄2) M2

√
neiπ/6(0, 1, i)

where z′ = Mz, E = diag(1, 1, 1),

M1 =

⎛
⎜⎝

√
2

2

√
2

2 0

−
√

2
2

√
2

2 0
0 0 1

⎞
⎟⎠ , and M2 =

⎛
⎜⎜⎝

1√
3

1√
3

1√
3

1√
2

0 − 1√
2

− 1√
6

2√
6

− 1√
6

⎞
⎟⎟⎠ .
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Using the approach in section 5.1.4, we can show that the position of the RE in the new
coordinates (z′1, z

′
2, z

′
3) is (1, 0, 0) for type A and (0, 1,±i) for type B. We define displacement

vectors

dA =
(
z1, x1 + iy1, x2 + iy2

)
,

with z1 =
√

2n− |z2|2 − |z3|2, and

dB =
(
x1 + iy1, z

′
2, i

√
n +

√
2x2 + iy2/

√
2
)
,

with z′2 =
√
n− |z′1|2 − |z′3|2. Note that, instead of projecting on an R

4
(x,y) chart of CP 2 as

we do in section 5.1.4, we represent the points of CP 2 by fixing the total phase of (z′1, z
′
2, z

′
3)

so that Im(z′1) = 0 in the case of dA and Im(z′2) = 0 in the case of dB (cf. section 2.4.3).
Each symmetry operation R in the stabilizer G is realized initially as a linear transformation
of the space R

3 defined by a real matrix MR. The same transformation applies to C
3 with

coordinates (z′1, z
′
2, z

′
3). To realize this transformation on CP 2, we should correct or restore

the phase of MRz
′ in order to obey our phase condition. Therefore we define

RdA =
[MRz̄]1∣∣[MRz̄]1

∣∣MRdA and RdB =
[MRz̄]2∣∣[MRz̄]2

∣∣MRdB.

To find the action on (x, y) we Taylor expand RdA and RdB at (x, y) = 0 and compare them
to the initial vectors dA and dB. Results are summarized in Table 18. As can be concluded
from this table, displacements (x, y) realize the following representations of the respective
stabilizers:

Point Stabilizer Representation spanned by (x, y)

A(2) C2v × T A2g(x1) ⊕A2u(y1) ⊕B1g(x2) ⊕B1u(y2)

A(3) C3v × T Eg(x1, x2) ⊕ Eu(y1, y2)

B(3) C3∧Ts E(x1, y1) ⊕ E(x2,−y2)

A(4) D2d × T Eg(x1, x2) ⊕ Eu(y1, y2)

B(4) S4∧T2 B1(y2) ⊕B2(x2) ⊕ E(x1, y1)

Here we denote irreducible representations of T -extended groups using notation of correspond-
ing point groups [66].

The above decomposition of representations realized by local displacements into irre-
ducible representations makes construction of local quadratic Hamiltonians straightforward.
In the case of A(k) and B(4) RE, all quadratic invariants are just linear combinations of scalar
squares of displacements transforming according to different irreducible representations, such
as
[
Eg(x1, x2)

]2
= x2

1 + x2
2, etc. The case of B(3) is the only case where a scalar product

of two different displacements transforming according to the same irreducible representation
E occurs. Generic local quadratic Hamiltonians for each RE are listed in Table 16. The
brute-force way to find these Hamiltonians is by projecting the most general homogeneous
second degree polynomial in (x1, x2, y1, y2) using the operator |G|−1∑

R∈GR, where G is the
stabilizer of the RE in question.
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Table 18
Action of stabilizers on local displacements from the stationary points on CP 2.

Action of D
(x)
2d × T on Eg⊕Eu

R Rx1 Rx2 Ry1 Ry2

E x1 x2 y1 y2

Cx
2 −x1 −x2 −y1 −y2

Cy
2 −x1 x2 −y1 y2

Cz
2 x1 −x2 y1 −y2

σyz x2 x1 y2 y1

σyz −x2 −x1 −y2 −y1

S4 x2 −x1 y2 −y1

S−1
4 −x2 x1 −y2 y1

R Rx1 Rx2 Ry1 Ry2

T x1 x2 −y1 −y2

T x
2 −x1 −x2 y1 y2

T y
2 −x1 x2 y1 −y2

T z
2 x1 −x2 −y1 y2

T yz
s x2 x1 −y2 −y1

T yz
s −x2 −x1 y2 y1

S4T x2 −x1 −y2 y1

S−1
4 T −x2 x1 y2 −y1

Action of C
(z)
2v × T on A2g⊕A2u⊕B1g⊕B1u

R Rx1 Rx2 Ry1 Ry2

E x1 x2 y1 y2

Cz
2 x1 −x2 y1 −y2

σxy −x1 x2 −y1 y2

σxy −x1 −x2 −y1 −y2

R Rx1 Rx2 Ry1 Ry2

T x1 x2 −y1 −y2

T z
2 x1 −x2 −y1 y2

T xy
s −x1 x2 y1 −y2

T xy
s −x1 −x2 y1 y2

Action32 of C
[111]
3v × T on Eg⊕Eu

R Rx1 Rx2 Ry1 Ry2

E x1 x2 y1 y2

C3 −ax1 − bx2 bx1 − ax2 −ay1 − by2 by1 − ay2

C2
3 −ax1 + bx2 −bx1 − ax2 −ay1 + by2 −by1 − ay2

σxy x1 −x2 y1 −y2

σyz −ax1 + bx2 bx1 + ax2 −ay1 + by2 by1 + ay2

σzx −ax1 − bx2 −bx1 + ax2 −ay1 − by2 −by1 + ay2

T x1 x2 −y1 −y2

C3T −ax1 − bx2 bx1 − ax2 ay1 + by2 −by1 + ay2

C2
3T −ax1 + bx2 −bx1 − ax2 ay1 − by2 by1 + ay2

T xy
s x1 −x2 −y1 y2

T yz
s −ax1 + bx2 bx1 + ax2 ay1 − by2 −by1 − ay2

T zx
s −ax1 − bx2 −bx1 + ax2 ay1 + by2 by1 − ay2

Action of S
(x)
4 ∧ T (y)

2 on B1⊕B2⊕E

R Rx1 Rx2 Ry1 Ry2

E x1 x2 y1 y2

Cx
2 −x1 x2 −y1 y2

S4 y1 −x2 −x1 −y2

S−1
4 −y1 −x2 x1 −y2

R Rx1 Rx2 Ry1 Ry2

T y
2 −x1 −x2 y1 y2

T z
2 x1 −x2 −y1 y2

T yz
s y1 x2 x1 −y2

T yz
s −y1 x2 −x1 −y2

Action32 of C
[111]
3 ∧ T ‖

s on E⊕E

R Rx1 Rx2 Ry1 Ry2

E x1 x2 y1 y2

C3 −ax1 − by1 −ax2 + by2 bx1 − ay1 −bx2 − ay2

C2
3 −ax1 + by1 −by2 − ax2 −bx1 − ay1 bx2 − ay2

T xy
s ax1 − by1 ax2 + by2 −bx1 − ay1 bx2 − ay2

T yz
s −x1 −x2 y1 y2

T zx
s ax1 + by1 ax2 − by2 bx1 − ay1 −bx2 − ay2

32Notation a = 1/2, b =
√

3/2.
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5.2. Application of Morse theory. Simplest Morse Hamiltonians. Consider a manifold
P whose topology is described by dimP + 1 Betti numbers bk. Particularly useful is the
combination of these numbers, called the Euler characteristics Σ. A Morse function f on P
is smooth and has only nondegenerate stationary points. Let ck be the number of stationary
points of f of Morse index k. The set of dimP Morse inequalities

s∑
k=0

(−1)s−kck ≥
s∑

k=0

(−1)s−kbk, 0 ≤ s < dimP,

and the Euler–Poincaré equation

dimP∑
k=0

(−1)k ck =
dimP∑
k=0

(−1)k bk = Σ,

express the relation between ck and topological invariants bk and Σ.
In the presence of a nonfree action of group G on P , all isolated points on the critical orbits

of this action must be stationary points of f . The Morse function f with a minimal possible
number of stationary points on P (in the presence of the specific group action) represents a
class of simplest Morse functions. In the most trivial situations, such functions would have
stationary points only on the isolated critical points. We should, therefore, check whether
(and how) placing stationary points exclusively on the isolated points of critical orbits can
satisfy the above Morse theory requirements. Table 19 gives Betti numbers for S

2 and CP 2

and suggests systems of stationary points on the vibrational spaces CP 2 and CP 1 and the
rotational space S

2 satisfying Morse theory in the presence of the Td × T group action. We
begin with the simplest Morse Hamiltonians on each factor space of the total reduced phase
space CP 2 × CP 1 × S

2. Such Hamiltonians describe isolated F2-mode or E-mode vibrational
systems (polyads) or pure rotation.

5.2.1. Morse functions on the rotational space S
2. Among the 26 fixed points of the Td×

T action on S
2 (Table 7), six points with stabilizer S4∧T and eight points with stabilizer C3∧Ts

should be elliptic. The Morse conditions are satisfied if the 12 points with stabilizer Cs×T2 are
hyperbolic (unstable): 6−12+8 = 2. The two possible simplest Morse Hamiltonians differ in
sign: one has six maxima and eight minima while the other has this structure turned upside-
down. If the internuclear adiabatic potential of the A4 molecule can be well approximated
as a sum of six pairwise interaction terms and all vibrations are frozen, then the minima are
located at the six S4 points [12] as shown in Figure 13, left.

We like to note that stationary points of simplest Morse functions of purely rotational
systems (rotational RE of nonrigid bodies) should not necessarily be fixed points on S

2. Thus
in the case of the lowest possible symmetry of such systems T (no spatial symmetry), neither
of the three pairs of equivalent RE has a fixed position on S

2. Another example is the C2 ×T
system in Figure 6: four (two pairs) of its six RE can lie anywhere on the invariant circle.

5.2.2. Morse functions on the E-mode phase space CP 1. Critical orbits of the Td ×T
action on CP 1 are presented in Figure 9 and Table 8. The two equivalent T ∧Ts (C3v) points
should be elliptic. The Morse conditions are satisfied if, out of the two three-point orbits with
stabilizer D2d × T , one contains elliptic points and the other hyperbolic points. The freedom
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Table 19
Betti numbers bk and Euler–Poincaré characteristics Σ for the spaces CP 2 and CP 1 ∼ S

2 (top). Number
and type of stationary points of the simplest Morse function on the F2-mode space CP 2, E-mode space CP 1, and
rotational sphere S

2 in the presence of the symmetry group Td × T . The frame indicates additional stationary
points of the possible nonsimplest Morse function on CP 2.

Space b0 b1 b2 b3 b4 b5 b6 Σ

CP 1 ∼ S
2 1 0 1 2

CP 2 1 0 1 0 1 3
CP 1 × S

2 1 0 2 0 1 4
CP 2 × S

2 1 0 2 0 2 0 1 6

Space c0 c1 c2 c3 c4 c5 c6 Σ

CP 1 3D2d × T 3D2d × T 2T ∧ Ts 2

S
2 6S4 ∧ Ts 12Cs ∧ T2 8C3 ∧ Ts 2

CP 2 4C3v × T 6C2v × T 8C3 ∧ Ts 6S4 ∧ Ts 3D2d × T 3

CP 2 4C3v × T 6C2v × T 3D2d × T
8C3 ∧ Ts

6Cs ∧ T2

6Cs ∧ T2
6S4 ∧ Ts 3

CP 2 × S
2 8C(3) 12Cs 6C(4) 6A(4) 12A(2) 8A(3) 8B(3) 12Cs 6B(4) 6

Figure 13. Simplest purely rotational (left) and E-mode vibrational (right) Morse Hamiltonians (often
called energy surfaces) of the A4 molecule as functions on the phase spaces S

2 and S
2 ∼ CP 1. The bounding

potential of the A4 molecule is approximated as a sum of pairwise harmonic atom–atom interaction terms;
see [12].

of choice is limited to having two maxima and three minima or vice versa. As before, we can
predict which of the two possibilities is realized in A4 using the simple atom–atom vibrational
potential of [12, 13]. It turns out that at fixed action ne the two C3v-symmetric RE have
maximum energy; see Figure 13. Note that the same happens in the case of the E mode of
the A3 molecule, such as H+

3 [19], whose equilibrium configuration is an isosceles triangle.

5.2.3. Morse functions on the F2-mode phase space CP 2. Among the fixed points of
the Td × T action on CP 2 (see Tables 10 and 17) only points with stabilizers C2v ∧ T and
S4∧T2 (D2 and C4 in the short notation) can have odd Morse indexes. Table 19 demonstrates
how Morse inequalities for CP 2 are satisfied if stationary points lie only on the critical orbits.
We can interchange points of indexes 1 ↔ 3 or/and 0 ↔ 4 to obtain other possible simplest
Morse functions. Table 20 shows how this simplest set of stationary points respects Morse
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Table 20
Stationary points of the (Td × T )-invariant Morse Hamiltonians on CP 2 (see Table 19) projected on the

C2- and Cs-invariant spheres.

Stabilizer of Signature (index) Number of
sphere orbit on CP 2 on S

2 points on S
2

Simplest Morse Hamiltonian:
C2 D2d × T [++++] (0) [++] (0) 2

S4 ∧ T2 [+++−] (1) [+−] (1) 2
C2v ∧ T [+−−−] (3) [−−] (2) 2

Cs D2d × T [++++] (0) [++] (0) 1
C2v ∧ T [+−−−] (3) [+−] (1) 1
C3v × T [−−++] (2) [−−] (2) 2

Nonsimplest Morse Hamiltonian:
C2 D2d × T [+−+−] (2) [+−] (1) 2

S4 ∧ T2 [++++] (0) [++] (0) 2
C2v ∧ T [+−−−] (3) [−−] (2) 2

Cs D2d × T [+−+−] (2) [+−] (1) 1
C2v ∧ T [+−−−] (3) [+−] (1) 1
Cs ∧ T2 [+++−] (1) [++] (0) 2
C3v × T [−−++] (2) [−−] (2) 2

Figure 14. Position of RE (left) and vibrational F2-mode Hamiltonian (right) of the A4 molecule restricted
to the Cs-invariant sphere in the phase space CP 2. White circles denote extra (nonfixed) RE; other markers
correspond to fixed points in Figure 12 (left). The bounding potential of A4 is approximated as a sum of pairwise
atom–atom harmonic interaction terms [13].

theory requirements for the C2- or Cs-invariant spheres in Table 12 and in Figures 11 and 12
(left). It can be further verified that requirements for all closed invariant subspaces of CP 2

are satisfied.
Computation with the atom–atom potential [13] (in the limit of independent vibrational

and rotational motions) suggests that the simplest Morse Hamiltonian is not realized in real A4

molecules. Instead we expect a Hamiltonian with 12 additional equivalent RE with stabilizer
Cs∧T2, which are situated in pairs on the (Cs∧T2)-invariant main circle of the six Cs-invariant
spheres, as shown in Figure 14. When the energy of the system (or the action nf ) changes,
these two RE can move along the invariant circle. The set of RE of this nonsimplest system
is characterized in the second to last row of Table 19 and in Table 20, bottom.

5.2.4. Morse functions on combined spaces. The Betti numbers bk and Euler charac-
teristics Σ for the smooth manifold P , which is a product P ′×P ′′, follow from those for factor
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spaces P ′ and P ′′,

bk =
∑

i+j=k

b′ib
′′
j , Σ =

dimP∑
k=0

(−1)kbk,

where indexes i, j, and k go from 0 to dimP ′, dimP ′′, and dimP = dimP ′ + dimP ′′,
respectively. In many cases we can analyze RE on P by combining the rules for P ′ and P ′′;
the most interesting case turns out to be that of CP 2 × S

2 (F2-mode vibration and rotation).
Satisfying Morse conditions on invariant subspaces becomes increasingly important in high

dimensions. Thus, even before attempting to consider whether the “minimum” set of the 12
AC2 , six (A,B,C)C4 , and eight (A,B,C)C3 stationary points (see Table 15—ignore indexes

1,2) satisfies all conditions for CP 2 × S
2, we can check if this set works for the subspaces of

CP 2 × S
2. Going back to section 4.5 and Figure 12, we conclude immediately that our set

is incomplete. Indeed, we should expect at least two stationary points (a maximum and a
minimum) on each of the twelve Cs-invariant spheres in CP 2 × S

2—yet none of the fixed
points of the Td × T action lies on these spheres. Therefore, the set of stationary points
on the CP 2 × S

2 space (rotation–vibration RE) includes necessarily at least two 12-point
noncritical Cs-orbits. Adding these 24 points, the simplest Morse function on CP 2 × S

2

can be constructed; one possibility is presented in the last row of Table 19. This function
corresponds to the Coriolis-dominated structure, which we will discuss on the example in
section 11.

5.3. RE in the initial phase space. RE of the A4 molecule in the initial phase space can
be largely, and in some cases entirely , reconstructed using the qualitative information on the
symmetry group action on the reduced phase space CP 2 ×CP 1 × S

2 and stationary points of
the reduced Hamiltonian. Thus all purely rotational RE of a tetrahedral molecule correspond
to the stationary rotation around the symmetry axis of their stabilizers. For the S4 ∧ T
stabilizer we take axis C4, and for Cs × T2 we take the C2 axis orthogonal to the symmetry
plane. Vibrational RE of the E- and F2-mode systems form families of basic periodic orbits in
the initial phase space parameterized by the values of integrals ne and nf . Rotation–vibration
RE of our system are labeled by the values of integrals j, ne, and nf and can be reconstructed
as appropriate combinations of the periodic motions of the subsystems, which correspond to
the combined stationary points on the reduced phase space CP 2 × CP 1 × S

2 (see Table 15)
and which become 3-tori (see footnote 26) in the original phase space of the system. We will
characterize these RE in more detail and illustrate the results on the concrete example of the
A4 molecule introduced in section 2.3 and [13].

5.3.1. RE of the E-mode system. Neglecting rotation and interaction with other vibra-
tional modes, the E-mode system can be described by the Hamiltonian

H = ωe
[
H0 + V (q)

]
,(5.1a)

where

H0 =
1

2

2∑
i=1

(
q2
Ei

+ p2
Ei

)
=

1

2

(
p2
E1

+ p2
E2

)
+ V0(5.1b)
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Figure 15. Hénon–Heiles potential V0(q) + εV (q) computed for ε = 0.1 and h/hsaddle = 0.2, 0.45, 0.7, 0.9
(bold contour), 1, 1.2, . . . (gray). Nonlinear normal modes of the Hénon–Heiles oscillator (E-mode system)
reconstructed using ε8 normal form with ε = 0.1 and h/hsaddle = 0.9 (colored).

is the Hamiltonian of the 1:1 harmonic oscillator, and the anharmonic part of the D3 symmetric
potential equals

V (q) = ε

(
1

3
q2
E1

− q2
E2

)
qE1 + · · · .(5.1c)

The potential V0 + V is shown in Figure 15. We can see that to the lowest order in ε our
E-mode system is equivalent to the Hénon–Heiles oscillator, which has the same symmetry
D3 × T ∼ D3h. (Note that the E-mode system of triatomic molecules with the equilateral
triangle equilibrium, e.g., H+

3 [19], also has the same symmetry and the same lowest order

Hamiltonian.) In our A4 example [13], ε = −3
√

3
4 ε and ωe = ω.

The RE of the E-mode system are, of course, reconstructed in the same way as the RE
of the Hénon–Heiles oscillator [77, 14, 15, 16, 18, 19, 78]. We represent trajectories of this
system at a given fixed energy h using their projection in the configuration space, a plane
R

2
q with coordinates (qE1 , qE2). To distinguish between trajectories with the same coordinate



ROTATION–VIBRATION RELATIVE EQUILIBRIA 305

image, we specify their direction. The boundary of the classical motion is the h-level set of
V0(q)+V (q). (We consider small amplitudes and are not interested in the unbounded motion
of the Hénon–Heiles system at large energies.)

The symmetry group Td × T acts on R
2
q (see section 4.2) like the planar point group D3.

Operations in this group {1, 2C3, 3C2} act naturally on the RE projections in the R
2
q space.

The time reversal T acts trivially on the coordinate space R
2
q while changing signs of the

momenta p and thus reversing the flow of the dynamical system. It follows that T changes
the direction of the periodic trajectories and of their image in R

2
q . All we should do in order to

reconstruct qualitatively the projection of the RE in R
2
q is to suggest two curves with stabilizer

T ∧ Ts and two groups of three curves with stabilizer D2d × T (see critical orbits in Table 8).
In [77, 14, 15, 16] these RE are called Π7,8, Π3,4,5, and Π6,7,8, respectively.

Since the group (T ∧Ts)/D2 = {1, 2C3, 2(C2T )} does not include the time reversal T itself,
the two periodic trajectories Π7,8 are mapped into each other by T and share the same image
in R

2
q . The image is a closed C3-invariant loop shaped as a smoothed equilateral triangle

(Figure 15, right). It is easy to check that any of the three reflections C2 also map Π7 ↔ Π8,
while the operations C2T leave them invariant. The trajectories Π3,4,5 and Π6,7,8 project on
lines (degenerate loops) in R

2
q because their stabilizer (D2d × T )/D2 = C2 × T includes time

reversal T . Such lines should necessarily begin and end on the boundary of the motion, where
the trajectory has a turning point and approaches the boundary at a right angle. This leaves
two possibilities (Figure 15, right): three straight lines on the three C2 axes and three curved
lines, each intersecting one of the C2 axes at a right angle.

5.3.2. RE of the F2-mode system. Neglecting rotation and interaction with other vibra-
tional modes, the F2-mode system can be described by the Hamiltonian

H = ωf

[
H0 + εV1(q) + ε2H2(q, p) + · · ·

]
,

where

H0 =
1

2

3∑
i=1

(
q2
i + p2

i

)
=

1

2

(
p2
1 + p2

2 + p2
3

)
+ V0

is the Hamiltonian of the 1:1:1 harmonic oscillator and

V1(q) = q1q2q3

is the lowest order anharmonic part of the Td symmetric potential. The potential V0 + εV1

illustrated in Figure 16 appears as a direct three-dimensional analogue of the two-dimensional
Hénon–Heiles potential in (5.1c). However, the (small) fourth degree term

V2(q) = q4
1 + q4

2 + q4
3

should also be included for the more general description of the reduced system [98]. (Note
that any Td symmetric potential can be written as a polynomial in V0, V1, and V2.) In the
concrete potential of the A4 molecule [13], we have

V (q) = V0 + ε
3

2 (2)1/4
V1 + ε2

(
7
√

2

64
V2 −

5
√

2

16
V 2

0

)
,
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V (q) D2d × T

C3v × T C2v × T

C3 × Ts S4 × T2

Figure 16. Qualitative representation of the equipotential surface of the F2-mode system (top left). Non-
linear normal modes (RE) of the three-dimensional analogue of the Hénon–Heiles oscillator (F2-mode system)
reconstructed for ε = 1 and energy H0 = 0.118.
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while ωf =
√

2ωe. The molecular F2-mode Hamiltonian H2 also contains the kinematic term
ε2 1

8 [p × q]2 related to the angular momentum induced by the F2-mode vibrations.
The RE of the F2-mode system in Figure 16 (cf. Figure 8 in [18] and [98]) can be recon-

structed qualitatively using the method in the previous section. We project trajectories of this
system in the configuration space R

3
q , where they stay inside a tetrahedral cavity bounded by

the h-level of V (q); see Figure 16, top left. We classify curves in this cavity by their stabiliz-
ers. RE with stabilizers D2d × T , C3v × T , and C2v × T (D4, D3, and D2 in the shorthand
notation of section 4.3) are T -invariant. They project to lines in R

3
q , which are passed in both

directions. Like Π1,2,3 of the Hénon–Heiles system, the D2d × T and C3v × T RE lie on the
corresponding symmetry axes C4 and C3. The C2v×T RE lie in the symmetry planes Cs and
are slightly curved; they resemble, therefore, Π4,5,6. RE with stabilizers S4 × Ts and C3 ∧ Ts
are similar to the “circular” RE Π7,8. They project on closed directed curves in R

3
q . In the

crudest approximation, these RE can be represented as circles lying in the plane orthogonal
to the respective axes C4 and C3. The S4 × Ts RE develops a characteristic “bow tie” twist
(see Figure 16), which brings the circular symmetry down precisely to S4 × Ts. The C3 ∧ Ts
RE has a triangular shape similar to that of Π7,8 and bends slightly out of plane like the trim
on a skullcap. We can further observe that the energy–action characteristics of the F2-mode
RE (see Table 19 and sections 5.1.4 and 5.2.3) also shows a certain similarity to the E-mode
system: At given fixed action nf , the energy of “circular” RE tends to be higher than that of
“linear” RE.

5.4. Quantum predictions. Quantum manifestations of RE are very familiar to physicists
working on highly excited rotating molecules [31, 32, 33, 34, 18]. Within our more general
context we should consider these manifestations for reduced phase spaces of dimension greater
than two and products of two (or more) reduced phase spaces with two (or more) dynamical
integrals of motion. The latter are quantized, and the corresponding quantum numbers label
polyads or multiplets of quantum levels whose internal structure (at given fixed values of
integrals) is analyzed using RE. In our system we have three dynamical integrals j, ne, and
nf , and three corresponding quantum numbers J , Ne, and Nf , which all take integer values.

5.4.1. Systems with one dynamical integral. The most well-known quantum “signature”
of classical RE is the presence of quantum states localized predominantly near one particular
stable RE (a basic stable periodic orbit). In the simplest situation, all nodes of the quantum
wavefunction lie along the periodic orbit, and the number of nodes N (up to Maslov’s correc-
tion µ negligible in the classical limit of large N) equals (2π)−1 times the action integral taken
along the orbit that in turn equals the value of the dynamical integral n for the particular RE
and energy h,

N + µ = n(h) =
1

2π

∮
H(p,q)=h

p dq,

where µ = K/2 for a K-dimensional harmonic oscillator. The energy of such a state is as
close to h, i.e., to the classical maximum or minimum energy, as possible. With excitation
of oscillations about the RE growing, the nodal pattern becomes less trivial and localization
disappears eventually.
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Stable RE manifest themselves clearly in the structure of the energy levels. The energy
level structure largely depends on the dimension of the reduced phase space P and the sym-
metry present. The reduced system near a stable RE on P can be represented as a nonlinear
oscillator of dimension 1

2 dimP . If the area of classical stability in the phase space is suffi-
ciently large (compared to �) we can even observe a “family” of states. If 1

2 dimP > 1, the
harmonic oscillator frequencies can be (partially) degenerate due to the local symmetry of
the RE. In the case of k equivalent RE, our reduced system is represented locally as a k-well
oscillator. The depth of the wells (or the height of the barrier) is determined by the stability
of the RE. We observe k-level quasi-degenerate quantum states or clusters. The cluster, which
is closest in energy to the classical RE limit, has the smallest splitting.

We should well distinguish the quasi-degeneracy of quantum states caused by the degen-
eracy of the local oscillator system and by the presence of several equivalent (by symmetry)
stable RE, respectively. We also recall that the presence of the symmetry group with multi-
dimensional (degenerate) irreducible representations can further complicate the analysis of
the energy level patterns because quantum states with wavefunctions transforming according
to rows of the same irreducible representation are strictly degenerate.

5.4.2. Examples of simple cluster structures. The most well-known molecular example
of the correspondence between quantum energy levels and classical RE is the structure of
individual (isolated) rotational multiplets (section 1.2). In this case P ∼ S

2, 1
2 dimP = 1.

We observe simple regular sequences of rotational clusters. Near the limiting RE energy, the
system of almost equidistant sequences resembles a k-well one-dimensional harmonic oscillator;
the energy separation between the RE and the closest (first) cluster is approximately half the
distance between the clusters, i.e., half-quantum.

The 2J + 1 multiplet of the ground vibrational state of a spherical top molecule [31, 32,
33, 34, 79] has six-fold and eight-fold clusters corresponding to stable RE (stable stationary
axes of rotation) with stabilizers C4 and C3, respectively. The energy region near the unstable
RE with stabilizer Cs separates the two cluster systems. In the case of A4 (section 5.2) the
six-fold clusters lie at the bottom energies.

Asymmetric top molecules, such as H2O, have three paired RE. The RE in each pair cor-
respond to classical rotation about one of the principal inertia axes in two different directions
and are related by time reversal. Four RE (in two pairs) are stable and rotational levels form
respective two-fold clusters (doublets).

A similar cluster structure is known for vibrational systems with P ∼ S
2, such as the

E-mode system in H+
3 [19], and in A4 (section 5.2 and 5.3.1). Vibrational polyads of these

systems are labeled by quantum number Ne = 0, 1, . . . and contain Ne +1 levels (to complete
the rotational analogy use Je = 1

2Ne); two-fold and three-fold clusters lie near the top and
bottom polyad energies, respectively. These E-mode clusters are formed when vibrational
excitation is high enough to have at least five quantum states in the polyad (Ne > 4). Other
vibrational systems with reduced phase space S

2 include a number of triatomic molecules
with nearly 1:1 resonant stretching vibrations, notably H2O and O3 [22, 23, 24, 25, 26, 27].
The so-called local modes of these molecules are nothing else but a pair of stable equivalent
RE, which bifurcates (very early) from the initial “normal mode” RE as the polyad quantum
number n rises. The corresponding “local mode states” form doublets; they are commonly
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associated with vibrations localized on the particular atom–atom bond.

5.4.3. Quantum F2-mode system. So far in this section, we have summarized the fun-
damentals of quantum interpretation of RE that are largely known. New aspects begin here.
The reduced phase space P ∼ CP 2 of the F2-mode system is a compact space of real di-
mension four, and 1

2 dimP = 2. This means that we have a finite number of quantum states
in each polyad with quantum number Nf = 0, 1, . . . and that the number of states is given
by a polynomial in Nf of degree 2. More precisely, the polyads of the 1:1:1 oscillator have
1
2(Nf + 1)(Nf + 2) states.

Predicting and understanding the internal structure of the F2-mode polyads begins with
the RE analysis. Taking into account Morse theory requirements for CP 2 (see section 5.1.4
and Table 17) and its Cs- and C2-invariant symplectic subspaces S

2 (section 5.2.3) we can
suggest stability of the set of RE in the second to last row of Table 19. One possibility is
given below.

RE Stabilizer Signature Stability Type

6C4 S4 ∧ T2 [−−−−] ii B,C(4)

12Cs Cs ∧ T2 [−−−+] ir Not fixed

8C3 C3 ∧ Ts [++−−] c B,C(3)

3D4 D2d ∧ T [+−+−] rr 1:1 A(4)

6D2 C2v ∧ T [−+++] ir A(2)

4D3 C3v ∧ T [++++] ii 1:1 A(3)

Here, as in Table 17, we use i and r to mark imaginary and real eigenvalue pairs of the local
linearized Hamiltonian; c stands for four complex eigenvalues.

Using only Nf and energy H is insufficient to untangle the rich energy level spectrum of
the polyad. Since the system is not integrable (there is no third global integral), all we can
do is label localized states of different kinds with different sets of additional “good” quantum
numbers. When the local approximation separates into the i and/or r subsystems, quantum
analysis becomes straightforward. Thus, near the two stable (elliptic) RE, which are denoted
ii, our system can be represented as a two-dimensional oscillator.

At the minimum polyad energy H(A(3)) we have an oscillator with four equivalent equi-
libria or “wells.” Near each equilibrium it is described as a two-dimensional D3 symmetric
oscillator with 1:1 resonant harmonic frequencies. In other words, we encounter a four-fold
analogue of the Hénon–Heiles system. Provided that the A(3) RE is sufficiently stable (the
wells are deep) we may expect to find a series of “small polyads” labeled by an additional
“good” quantum number Ñ = 0, 1, . . . � Nf . The structure is similar to that already dis-
cussed for the E-mode system, albeit the number of levels is quadrupled. In particular, the
first level with Ñ = 0 (the lowest level in the polyad) is a four-fold cluster. At the maxi-
mum polyad energy H(B(4)) we find a six-well two-dimensional oscillator. The wells are C4

symmetric and have two frequencies which are, in general, incommensurate. The level system
associated with the B(4) RE can be described using two additional local quantum numbers
Ñ ′ and Ñ ′′; the first level (the highest level in the polyad) is a six-fold cluster.

5.4.4. Combined systems with several dynamical integrals. Multiplets of combined sys-
tems are labeled with several quantum numbers. For example, rotation–vibration multiplets
of the F2-mode system are labeled with a pair of numbers (J,Nf ) and contain 1

2(Nf +1)(Nf +
2)(2J + 1) states. The structure of such multiplets can be analyzed using our results for
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the individual subsystems, the principles of combining rotational and vibrational RE, and, of
course, the set of critical orbits of the Td × T action given in Table 15. The new idea here is
that we can continue to distinguish between the two kinds of motion, rotation and vibration,
while both of them are treated classically.

In typical molecules, vibrational and rotational quanta differ by a magnitude, and the
common experimental situation is that J � Nf . In this limit, it is often possible to separate
the whole rotational–vibrational polyad into bands, branches, or, in the terminology of [80],33

vibrational components and consider the latter for different J at fixed Nf (or/and Ne). How
do RE reflect this band structure? The answer is simple: points in Table 15 with the same
rotational coordinates (j1, j2, j3) give different classical limits within the same component.
Thus the F2-mode system has three kinds of bands A, B, and C.

We recall that F2-mode vibrations induce angular momentum π. Rotational multiplets
of the F2-mode polyads are split into branches due to the Coriolis coupling of J and π and
are labeled with the additional “good” quantum number R of the angular momentum J + π
[81]. The Nf = 1 fundamental state has π = 1. This state splits into three branches with
R = J − 1, J , J + 1, which diverge linearly as J increases. The “circular” RE of type
B,C (see section 5.3.2) have maximal angular momentum π and are the classical limit for
the R = J ± 1 branches; the A-type RE have zero momentum and give the limit of the
R = 0 branch. Provided that we add the two extra nonfixed RE of symmetry Cs ∧ T2 (see
section 5.2.4), each classical limit branch has three types of RE with shorthand labels C4, C2,
and C3; the internal structure of branches can be analyzed like that of an isolated rotational
state in section 5.2.1.

Similar analysis for the E-mode system shows that it has two types of branches A1 and
A2 (see Table 15—ignore the F2 part (z1, z2, z3) and use time reversal where necessary). In
particular, the Ne = 1 state has two branches. The splitting between them is determined by
higher order rotation–vibration interactions.

The number of vibrational states and, correspondingly, the number of quantum branches,
increases with vibrational excitation. The number of critical orbits and of corresponding
rotational–vibrational RE remains the same. Quantum branches that lie at “intermediate
energies” far from the limit given by the RE can be considered in the same way as quantum
states at intermediate energies of purely vibrational polyads (sections 5.4.2 and 5.4.3), i.e.,
as states with more complex vibrational localization. The RE analysis of the rovibrational
structure is simpler for low vibrational polyads.

The number of quantum states in each band and possible intersections of bands (vibra-
tional components) which can change this number is the subject of further qualitative study of
bands. This study is beyond the scope of the present basic RE analysis. We mention only that
each band can be assigned a topological index (Chern index) [82], which gives the difference
between the number of states 2J + 1 of an isolated rotational multiplet and the number of
states in the band. The sum of these indexes over all components of the polyad equals zero.
Thus the number of states in the Coriolis branches of the F2-mode fundamental state equals
2R+ 1 and the indexes are ±2 and 0. In the E-mode polyads the indexes can equal only 2 or
4 modulo 6 [80].

33Note that the index introduced in this work equals one-half of the Chern index introduced in [82].
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6. Dynamical invariants of the reduced system. In the previous sections we analyzed
the action of the symmetry group on the reduced phase space of our system and predicted
its RE entirely on the basis of this analysis. We defined RE explicitly (Table 15) in terms
of coordinates (z, z̄) of the initial system (2.1). Any given reduced Hamiltonian Heff can be
expressed in terms of (z, z̄) and the energy–action characteristics of fixed RE can be computed.
Stability of RE can be determined using local expansions of Heff . Those RE whose position
on the reduced phase space changes (as a function of energy or parameters) are found as
conditional extrema of Heff(z, z̄) on the reduced phase space.

The use of initial coordinates (z, z̄) has, however, obvious limitations. These coordinates
are not well suited to studying dynamics on the reduced phase space CP 2 × CP 1 × S

2. The
more appropriate way to analyze the reduced system is in terms of dynamically invariant
functions, which can be constructed of (z, z̄) [44]. In the following sections we show how
invariant polynomials in (z, z̄) can be used to describe the reduced system. We will use
invariants to (i) express the reduced Hamiltonian Heff most compactly and unambiguously,
(ii) define nonlinear coordinates on the reduced phase space CP 2 × CP 1 × S

2, (iii) describe
the action of the symmetry group Td × T on this space, (iv) describe the dynamics of the
reduced system, and (v) characterize RE in terms of both their position on CP 2 × CP 1 × S

2

and stability.
We consider appropriate dynamical symmetry and its reduction in order to introduce

dynamical invariants of degree 2 in (z, z̄) (section 6.2 and Table 21), which generate the ring
of all invariant polynomials. All terms in Heff can be expressed as various powers of these
generators. In section 6.3 we describe the structure of the ring of invariant polynomials using
the Molien generating function, and later in section 6.4 we define an integrity basis in order
to represent uniquely each invariant polynomial in this ring. In particular, all remaining
dependence on the A1 variables is expressed as a power series in the 1-oscillator action na.
This happens because the A1 vibration does not change the geometry of the molecule.

6.1. Reduction of the initial rovibrational system and normal form Heff . The zero order
Hamiltonian of our system is a sum of three harmonic oscillators,

H0 = ωA1na + ωEne + ωF2nf + 0j,(6.1a)

where na, ne, nf , and j represent oscillators with degeneracy 1, 2, 3, and 2, respectively.
Explicit definition in terms of initial symplectic variables (z, z̄) is given in Table 21. The first
three oscillators describe the A1, E, and F2 vibrational modes, respectively. The reduced
rotational subsystem is lifted to an auxiliary degenerate two-oscillator system with dynamical
variables (z6, z7, z̄6, z̄7), which is more convenient in computations.

The complete initial rotation–vibration Hamiltonian H is a power series in dynamical
variables (z, z̄),

H = H0 + εH1 + ε2H2 + · · · ,(6.1b)

where ε is a smallness parameter, and different perturbation terms are characterized below.
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Table 21
Generators of the dynamical symmetry group action describing dynamics on CP 2 × CP 1 × S

2.

Definition

na
1
2
(zaz̄a)

j 1
4
(z6z̄6 + z7z̄7)

j2
1
4
(z6z̄7 + z7z̄6)

j3
1
4
(z6z̄7 − z7z̄6)i

j1
1
4
(z6z̄6 − z7z̄7)

ne
1
2
(z4z̄4 + z5z̄5)

v1 − 1
4
(z4z̄5 − z5z̄4)i

v2
1
4
(z5z̄5 − z4z̄4)

v3
1
4
(z4z̄5 + z5z̄4)

Definition

nf
1
2
(z1z̄1 + z2z̄2 + z3z̄3)

x3
1
2
(z1z̄1 − z2z̄2)

n3
1
2
(z3z̄3)

s1
1
2
(z2z̄3 + z3z̄2)

t1
1
2
(z2z̄3 − z3z̄2)i

s2
1
2
(z1z̄3 + z3z̄1)

t2
1
2
(z3z̄1 − z1z̄3)i

s3
1
2
(z1z̄2 + z2z̄1)

t3
1
2
(z1z̄2 − z2z̄1)i

Order Degree Type of the term

ε z3 Cubic anharmonic terms
ε2 z4 Quartic anharmonic terms

z2j Coriolis interaction
j2 “Rigid rotor” rotation

When the frequencies ωA1 , ωE , and ωF2 are incommensurate, na, ne, and nf can be
regarded as three approximate integrals of motion with values Na (see footnote 26), Ne, and
Nf , respectively. The fourth integral j with the value J is the amplitude of the total angular
momentum, which is strictly conserved.

We can now reduce (normalize) perturbations H1, H2, etc. in (6.1b) by removing all
terms which do not Poisson commute with integrals nf , ne, and j. (Note that a priori
{H, j} = 0 since j is a strict integral.) In other words, we reduce the action of the dynamical
4-torus symmetry group T

4 (see footnote 26) on the initial 16-dimensional phase space with
coordinates (z, z̄). This group is defined by the flow of four Hamiltonian vector fields Xnf

,
Xne , Xna , and Xj . The normalized Hamiltonian Heff , also called the reduced and/or effective
Hamiltonian, or simply the normal form, is invariant with regard to this flow.

6.2. Invariant polynomials of the oscillator symmetry. The dynamical symmetry of each
oscillator subsystem has the form

ϕ : R
1 × Ck → Ck : (t, z) → exp(it) z,(6.2a)

where dimension k can be 3 (F2 mode), 2 (E mode and rotation), or 1 (A1 mode). The
conjugate vector z̄ transforms, of course, as follows:

(t, z̄) → exp(−it) z̄.(6.2b)

It follows that all monomials in (z, z̄) that are invariant with respect to ϕ are of even total
degree and have the same degree in z and z̄, e.g., ziz̄j , zizj z̄mz̄l, etc. Furthermore, all invariant
polynomials can be expressed using quadratic monomials of the form zz̄ (or similar homoge-
neous polynomials of degree 2), which generate the multiplicative ring R of all polynomials
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invariant with respect to ϕ. Since ϕ is a flow of the vector field of the linearized system with
Hamiltonian

H0 =
1

2
zz̄ =

1

2
(z1z̄1 + z2z̄2 + · · · + zkz̄k),

all polynomials in this ring Poisson commute with H0, which is an integral of motion for the
reduced system.

Generators are defined explicitly in Table 21. In the case of the rotational subsystem,
the generators are the familiar components j1, j2, and j3 of the angular momentum whose
amplitude j is a constant. Since the reduced phase space of the 1:1 oscillator and that of the
rotator are diffeomorphic, CP 1 ∼ S

2, the generators v1, v2, and v3 for the E-mode polyads
can also be considered as components of an angular momentum with fixed amplitude 1

2ne [69].
The reduced F2-mode oscillator system is described by nine linearly independent generators.
The integral of motion nf , and polynomials x3 and n3, are combinations of the actions of the
individual oscillators,

nk =
1

2
zkz̄k, k = 1, 2, 3.

Invariants s and t can be considered as inner and exterior products of 2-vectors,

sα =
1

2
(zβ, z̄β) · (zγ , z̄γ), tα =

i

2
(zβ, z̄β) ∧ (zγ , z̄γ).

This construction of invariants goes back to Weyl [83].

6.3. Generating function for oscillator symmetry. Once the action of the dynamical
symmetry on the initial phase space Ck of the k-oscillator is defined explicitly in (6.2) we
can compute the Molien generating function g(λ), a heuristic tool [48, 49, 50, 84] suggesting
certain structural characteristics of the ring of invariant polynomials in (z, z̄). The function
g(λ) can be obtained directly from the Molien theorem [83]

g(λ) =
1

2π

∫ 2π

0

dt

det(1 − λUt)
,(6.3)

where the 2k×2k matrix Ut represents the action of the dynamical symmetry in (6.2) on both
z1, . . . , zk and z̄1, . . . , z̄N , i.e., on all phase space variables used to construct invariants. We
can see from (6.2) that Ut is a diagonal matrix

Ut = diag
(
eit, . . . , eit︸ ︷︷ ︸

k times

, e−it, . . . , e−it︸ ︷︷ ︸
k times

)
,(6.4)

and that

g(λ) =
1

2π

∫ 2π

0

dt

(1 − λeit)k(1 − λe−it)k
.(6.5)

After changing to the complex unimodular variable

θ = exp(it), dt =
dθ

iθ
,(6.6)
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the integral (6.5) becomes a Cauchy integral

g(λ) =
1

2πi

∮
|θ|=1

θk−1dθ

(1 − λθ)k(θ − λ)k
.(6.7)

Here we note that the formal real variable λ is used in Taylor series expansions of g(λ) and
the value of λ can be assumed arbitrarily small. In particular, we can have |λ−1| > 1. Since
our integral has a single pole θ = λ of order k ≥ 1 within the unit circle |θ| = 1, the Cauchy
integral formula yields

g(λ) =
1

(k − 1)!

∂k−1

∂θk−1

θk−1

(1 − λθ)k

∣∣∣∣∣
θ=λ

,(6.8)

and in particular,34

gC1/S1
(λ) = 1/(1 − λ2),(6.9a)

gC2/S1
(λ) = (1 + λ2)/(1 − λ2)3,(6.9b)

gC3/S1
(λ) = (1 + 4λ2 + λ4)/(1 − λ2)5,(6.9c)

gCk/S1
(λ) =

k−1∑
s=0

(
k − 1
s

)2
λ2s

/
(1 − λ2)2k−1.(6.9d)

Here the formal variable λ represents any of the variables z and z̄. Since all invariants are of
even degree in z and z̄, the degree in λ is also even. We can, therefore, change to variable

µ = λ2,

which represents generators in Table 21. We can also omit one factor (1− λ2) in the denomi-
nator of (6.9) that represents the principal oscillator invariant. Then

gCP 1(µ) = (1 + µ)/(1 − µ)2,(6.10a)

gCP 2(µ) = (1 + 4µ + µ2)/(1 − µ)4.(6.10b)

6.4. Integrity basis. All functions invariant with respect to the dynamical symmetry
(6.2a), and in particular the reduced Hamiltonian (the normal form) Heff in (2.4), can be
expressed in terms of generator invariants in Table 21. Coefficients ck in the Taylor series for
the corresponding Molien function g(λ) at λ = 0 give the total number of linearly independent
invariant polynomials of degree k. Even though the generators themselves are linearly inde-
pendent, there are algebraic relations between them and the representation of ck invariants of
degree k in terms of such generators is not unique.

For example, the components of the angular momentum obey the relation

j2
1 + j2

2 + j2
3 = j2 = const.

34Alternative derivation of generating functions (6.9) was given in [84].
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Due to this relation, the ring of all invariant polynomials generated multiplicatively by (j1, j2, j3)
is not free. To express any member of this ring unambiguously we can use monomials of the
type ja1 j

b
2j

c
3, where a and b are arbitrary nonnegative integers and c equals 0 or 1. In other

words, the ring generated by (j1, j2, j3) has the structure [48, 49, 50]

R(j1, j2) • {1, j3},

where R is a polynomial ring generated freely by j1 and j2. This structure is described by
the Molien generating function

gj = (1 + µj)/(1 − µj)
2,(6.11)

where the formal variable µj represents any of (j1, j2, j3), the two denominator factors (1−µj)
suggest two main (or principal) invariants of degree 1 in (j1, j2, j3), while numerator terms 1
and µj suggest auxiliary invariants of degrees 0 and 1. Such decomposition of generators into
principal and auxiliary is called integrity basis.35 Our example shows that the choice of such
basis is not unique. Thus we can equally use (j2, j3) and j1. Similarly, all E-mode invariant
polynomials constitute the ring

R(v2, v3) • {1, v1}

described by the generating function

ge = (1 + µe)/(1 − µe)
2.(6.12)

Note that v1 changes sign under time reversal T , while v2 and v3 are T -invariant. Choosing
v1 as an auxiliary (numerator) invariant is convenient for further symmetrization with respect
to T .

The choice of the integrity basis is more difficult in the case of the 1:1:1 oscillator system
(F2 mode) with the reduced space CP 2.36 There are nine quadratic relations (“sygyzies” of
the first order) among the generators,

t21 + s2
1 − 4n3n2 = 0, t1t2 − s1s2 + 2s3n3 = 0, s2t3 + s3t2 + 2n1t1 = 0,(6.13a)

t22 + s2
2 − 4n3n1 = 0, t1t3 − s1s3 + 2s2n2 = 0, s1t3 + s3t1 + 2n2t2 = 0,(6.13b)

t23 + s2
3 − 4n1n2 = 0, t2t3 − s2s3 + 2s1n1 = 0, s1t2 + s2t1 + 2n3t3 = 0,(6.13c)

as well as other relations of higher degree. The Molien generating function

gf = (1 + 4µf + µ2
f )/(1 − µf )

4,(6.14)

with µf representing any of the generators {x3, n3, s, t}, suggests that all four principal in-
variants can be chosen from {x3, n3, s, t} and that there should be four auxiliary invariants of

35Such decomposition is known as integrity basis [83], homogeneous system of parameters [110], or Hironaka
decomposition [111].

36The number of principal and auxiliary invariants and their degrees in (z, z̄) can be deduced from the Molien
generating function. This function, however, does not suggest the explicit construction of the generators, which
may not be unique or may not be possible at all.
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degree 1 and one of degree 2. The choice of four main invariants is far from arbitrary. One
possible representation of the structure of this ring is

R(x3, s1, s2, s3) • {1, n3, n
2
3, t1, t2, t3}.

If we use this integrity basis, relations (6.13) should, of course, be rewritten in order to replace
n1 and n2 as

n1 = 1
2(nf − n3 + x3), n2 = 1

2(nf − n3 − x3).

To obtain an unambiguous expression of the reduced rotation–vibration Hamiltonian Heff

defined on CP 2 × CP 1 × S
2, we should combine the three integrity bases introduced above.

The direct multiplication of the three rings is described by the generating function

g = gfgegj =
1 + µf + 3µ̄f + µ2

f

(1 − µf )4
1 + µ̄e

(1 − µe)2
1 + µ̄j

(1 − µ̄j)2
,

where µ and µ̄ stand for T -invariants and T -covariants. We can use main invariants

R(x3, s1, s2, s3, v2, v3, j1, j2)

and auxiliary invariants

{1,v1, j3, n3, n
2
3, t1, t2, t3, v1j3, n3v1, n

2
3v1,

t1v1, t2v1, t3v1, n3j3, n
2
3j3, t1j3, t2j3, t3j3,

n3v1j3, n
2
3v1j3, t1v1j3, t2v1j3, t3v1j3 }.

All polynomials in the above integrity basis are chosen to be either invariant or pseudoinvariant
(change sign) with respect to the time reversal T ; the pseudoinvariants are underlined. This
helps further symmetrization in section 7. Of course, we should multiply our ring by all
integrals R(nf , ne, j). More rigorously, we should first express the normalized Hamiltonian
Hnf in terms of the above integrity basis and R(nf , ne, j), and only then we replace nf , ne, j
with their constant values Nf , Ne, and J , and thus obtain the reduced Hamiltonian Heff .

7. Dynamical invariants symmetrized with respect to finite symmetries. While the
integrity basis introduced above in section 6.4 serves the purpose of dynamical (oscillator)
symmetry reduction, further modifications should, in principle, follow in order to take the
finite symmetry of our system into account. In particular, a symmetrized basis allows us to
express (2.4) using the minimum number of (linearly independent) terms whose coefficients
can be treated by spectroscopists as free phenomenological (or “adjustable”) parameters.

7.1. Symmetry properties of dynamical invariants. We first find the action of the sym-
metry group Td ×T on the generators in Table 21. Before considering Td ×T , we explain the
action of two basic symmetry elements, the rotation Ck and the time reversal T .
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7.1.1. Spatial axial symmetry. Consider a rotation Cϕ of the Euclidean 3-space about
axis 1 by angle ϕ, which equals 2π/k in the case of the discrete operation Ck with k = 2, 3, . . . .
The action of Cϕ on the coordinates (q1, q2, q3) is defined by the familiar 3 × 3 orthogonal
matrix (

1 0

0 M(2ϕ)

)
, M(ϕ) =

(
cosϕ sinϕ

− sinϕ cosϕ

)
.(7.1)

Components of the angular momentum (j1, j2, j3) also transform according to this matrix.
To understand the action of Cϕ on the E-mode reduced space CP 1, consider the rotation

of the complex plane with coordinates (z4, z5) defined by matrix M(ϕ) in (7.1) (recall that
we rotate the (q4, q5) and (p4, p5) planes simultaneously) and show that the corresponding
rotation of the 3-space with coordinates (v1, v2, v3) defined in Table 21 is given by the 3 × 3
matrix in (7.1). It follows that for the 2-sphere S

2, which is defined as v2
1 + v2

2 + v2
3 = 1

4N
2
e

and is isomorphic to CP 1, axis v1 is the corresponding symmetry axis of rotation. It can be
equally verified that (due to the particular choice of variables (j1, j2, j3) in Table 21) similar
rotation of the (z6, z7) plane corresponds to the symmetry axis j3.

To find how Cϕ acts on the CP 2 space, we can rotate the complex space C3 with coordi-
nates (z1, z2, z3) using the matrix (

M(ϕ) 0

0 1

)
,

where M(ϕ) is the 2 × 2 matrix in (7.1), and show by a direct calculation that the action of
this operation on the invariants(

x3√
2
,
s3√
2

)
,

(
s2√
2
,
s1√
2

)
,

(
t1√
2
,
t2√
2

)
, n3, t3,

is given by the matrix diag
(
M(2ϕ),M(ϕ),M(ϕ), 1, 1

)
, i.e., that these invariants realize rep-

resentations of the SO(2) group of indexes ±2, ±1, ±1, 0, and 0, respectively.

7.1.2. Time reversal symmetry T (or Z2). Recalling the action of T on the initial
vibrational variables (z, z̄), we can see that vibrational generators v2, v3, s1, s2, s3, x3, and
n3 defined in Table 21 are invariants of the Z2 action, while v1, t1, t2, and t3 are covariants,

(s1, s2, s3) → (s1, s2, s3),(7.2a)

(x3, n3, v2, v3) → (x3, n3, v2, v3),(7.2b)

(t1, t2, t3, v1) → (−t1,−t2,−t3,−v1).(7.2c)

Integrity basis polynomials in section 6.4 are chosen as either T -invariant or T -covariant
(antisymmetric or antisymmetric with respect to T ). We can easily symmetrize this basis
with respect to T by taking squares of the principal T -covariants j1 and j2 and excluding
all auxiliary covariants. The corresponding transformation of the generating function gfgegj
[48, 49, 50] begins with multiplying by

(1 + λ)2/(1 + λ)2 = (1 + µ̄j)
2/(1 + µ̄j)

2
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(to transform the denominator) followed by expanding the numerator and sorting out all
numerator terms which represent T -invariants. The resulting generating function

1 + µ + 19µ2 + 6µ3 + 19µ4 + µ5 + µ6

(1 − µ)6(1 − µ2)2
,(7.3)

where µ replaces any of formal variables {µf , µe, µj} and {µ̄f , µ̄e, µ̄j} for T -invariants and T -
covariants, respectively, describes polynomials on the phase space CP 2 ×CP 1 ×S

2, which are
invariant with regard to both dynamical and time reversal symmetry. The detailed expression
for the numerator of (7.3) shows the origin of the auxiliary integrity basis invariants:

1 + µf + µ2
f + 3µ̄f µ̄e + 3µ̄eµ̄j + 9µ̄f µ̄j + 3µ̄2

j

+ 3µf µ̄
2
j + 3µf µ̄eµ̄j + 3µ2

f µ̄eµ̄j + 3µ2
f µ̄

2
j

+ 9µ̄f µ̄eµ̄
2
j + 3µ̄f µ̄

3
j + µ̄eµ̄

3
j + µf µ̄eµ̄

3
j + µ2

f µ̄eµ̄
3
j .

7.1.3. Finite symmetry Td × T . The action of Td × T on the dynamical variables in
Table 21 can, in principle, be found on the basis of sections 7.1.1 and 7.1.2 if we introduce
an appropriately rotated coordinate frame to study each particular axial symmetry element
of the Td group. Otherwise we can consider tensor products

[
zE × z̄E

]Γ
and

[
zF2 × z̄F2

]Γ′

of vectors zF2 = (z1, z2, z3) and zE = (z4, z5) that transform according to irreducible repre-
sentations Γ or Γ′ of Td (and Td × T ) and express these products in terms of invariants in
Table 21. A straightforward calculation using Clebsch–Gordan coefficients for cubic groups
[85, 86, 87, 88, 89, 90, 91, 92, 93]37 gives

ne =

√
2

2

[
zE × z̄E

]A1
,

v1 = −i

√
2

4

[
zE × z̄E

]A2
,

(v2, v3) =

√
2

4

[
zE × z̄E

]E
,

nf =

√
3

2

[
zF2 × z̄F2

]A1
,(

3n3 − nf√
3

, x3

)
= − 1√

2

[
zF2 × z̄F2

]E
,

(t1, t2, t3) = − i√
2

[
zF2 × z̄F2

]F1
,

(s1, s2, s3) = − 1√
2

[
zF2 × z̄F2

]F2
.

37Our parameters h
Ω(K,Γ)
ff correspond to t

Ω(K,Γ)
ff in [92] times a constant (see [13]). The values of parameters

are in spectroscopic units of energy, cm−1.
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The transformation properties of the generators now can be obtained explicitly from the ma-
trices in Table 4 and equations in section 7.1.2. In particular, (t1, t2, t3) and (s1, s2, s3) realize
irreducible representations F1u and F2g of Td × T . We can further note that the compo-
nents of the 3-vectors qF2 , pF2 , and zF2 = qF2 − ipF2 transform according to the irreducible
representation of index 1 of the 3-space rotation group SO(3). We can also show that

nf , (t1, t2, t3), and

(
s1, s2, s3,

3n3 − nf√
3

, x3

)

transform according to the irreducible representations of SO(3) of indexes 0, 1, and 2, respec-
tively.

Variables (j1, j2, j3) are components of the total angular momentum, which is an axial
vector transforming according to the irreducible representation 1 of the SO(3) group and F1

of the O group. We can see from (3.1c) that (j1, j2, j3) realize an irreducible representation F1u

of Td×T . (This Oh-like notation should not be confused with F1g, which is the representation
of the spatial group Oh ⊂ O(3) realized by (j1, j2, j3).)

7.2. Symmetrized integrity basis. Once the symmetry properties of the dynamical vari-
ables are established, the integrity basis in sections 6 and 7.1.2 can be symmetrized with
regard to the finite group Td × T and can be used to describe the ring of all polynomials
invariant with regard to Td × T .

7.2.1. Symmetrized basis for the rotational subsystem. The ring R of polynomials in
{j1, j2, j3} invariant with respect to the action of Td × T has the same structure as the ring
of polynomials in {x, y, z} invariant with respect to the action of the Oh group of transfor-
mations of R

3. In both cases we construct an integrity basis using the components of the
triply degenerate irreducible representation F1u realized by {j1, j2, j3}. The Molien generat-
ing function g(A1g, F1u;λ) in Table 22 indicates that the ring R is freely generated by three
invariants j2, r4, and r6 of degree 2, 4, and 6, respectively. (In molecular literature these
invariants have several definitions, such as Ω4 and Ω6 in [31, 79] and R4(4,A1) and R6(6,A1) in
[85, 86, 87, 88, 89].) Thus, up to degree 6 in j, a purely rotational effective Hamiltonian of a
tetrahedral (or octahedral) molecule has only six parameters corresponding to terms j2, j4,
r4, j

6, j2r4, and r6.
To express terms in the reduced rotation–vibration Hamiltonian we also need to construct

Γ-covariants (i.e., polynomials that transform according to representation Γ) for all irreducible
representations Γ of Td × T . Corresponding Molien generating functions g(Γ, F1u;λ) have, of
course, the same denominator as g(A1g, F1u;λ) but also have a numerator num(Γ) which
describes auxiliary Γ-covariants. The ring of Γ-covariants is a product of freely generated
R(j2, r4, r6) and a finite set of numerator Γ-covariants. One possible explicit choice of these
covariants is suggested in Table 22. (See [94] for the discussion of integrity bases for point
groups.)
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Table 22
Molien functions and possible explicit definition for invariants (Γ = A1g) and Γ-covariants of the action

of the Oh group (and of the isomorphic group Td × T ) constructed from the components {x, y, z} of the triply
degenerate irreducible representation F1u.

K38 Γ num(Γ)39 Invariants and Γ-covariants40

0 A1g 1 x2 + y2 + z2

4 x4 + y4 + z4

6 x2y2z2

9 A1u λ9 xyz(x2 − y2)(y2 − z2)(z2 − x2)
6 A2g λ6 (x2 − y2)(y2 − z2)(z2 − x2)
3 A2u λ3 xyz

2 Eg λ2 + λ4 {
√

3(y2 − z2), y2 + z2 − 2x2}
4 {

√
3(y4 − z4), y4 + z4 − 2x4}

5 Eu λ5 + λ7 xyz{y2 + z2 − 2x2,
√

3(z2 − y2)}
7 xyz{y4 + z4 − 2x4,

√
3(z4 − y4)}

4 F1g λ4 + λ6 + λ8 {(y2 − z2)yz, (z2 − x2)zx, (x2 − y2)xy}
6 {(z4 − x4)zx, (z4 − x4)zx, (x4 − y4)xy}
8 {(x6 − y6)xy, (z6 − x6)zx, (x6 − y6)xy}
1 F1u λ + λ3 + λ5 {x, y, z}
3 {x3, y3, z3}
5 {x5, y5, z5}
2 F2g λ2 + λ4 + λ6 {yz, zx, xy}
4 {x2yz, y2zx, z2xy}
6 {x4yz, y4zx, z4xy}
3 F2u λ3 + λ5 + λ7 {x(y2 − z2), y(z2 − x2), z(x2 − y2)}
5 {x2(y2 − z2), y2(z2 − x2), z2(x2 − y2)}
7 {x4(y2 − z2), y4(z2 − x2), z4(x2 − y2)}

7.2.2. Symmetrized basis for the E-mode subsystem. The three components {v1, v2, v3}
of the induced vibrational angular momentum of the E-mode transform according to the
reducible representation A′′

1 ⊕E′ of D3h (v1 transforms according to A′′
1 and {v2, v3} span the

doubly degenerate irreducible representation E′). The structure of the integrity basis for the
invariant and Γ-covariant polynomials in {v1, v2, v3}, i.e., for the functions on the vibrational
E-mode phase space CP 1 ∼ S

2, is described by the Molien functions g(A′
1, A

′′
1 ⊕E′;µ, λ) and

g(Γ, A′′
1 ⊕ E′;µ, λ) in Table 23.

Table 23 also suggests the explicit form of the integrity basis polynomials. One of the
principal second degree invariants is, of course, the oscillator integral 1

2ne = v2
1 + v2

2 + v2
3.

We also note that the cubic invariant v3
2 − 3v2v

2
3 represents the three-fold symmetry and that

the reduced vibrational E-mode Hamiltonian should go up to degree 6 in the initial variables

38Maximum index of the irreducible representation of SO(3).
39Molien function for Γ-covariants g(Γ, F1u;λ) equals

num(Γ)

(1 − λ2)(1 − λ4)(1 − λ6)
= num(Γ) g(A1g, F1u;λ).

40Axes {x, y, z} correspond to symmetry axes C4.



ROTATION–VIBRATION RELATIVE EQUILIBRIA 321

Table 23
Molien functions and possible explicit definition for invariants and Γ-covariants of the action of the D3h

group (and of the isomorphic group (Td × T )/D2) constructed from the components z ⊕ {x, y} of the represen-
tation A′′

1 ⊕ E′.

Γ num(Γ)41,42 Invariants and Γ-covariants43,44

A′
1 1 x2 + y2 + z2, z2, x3 − 3xy2

A′′
1 µ z

A′
2 λ3 3yx2 − y3

A′′
2 λ3µ z(3yx2 − y3)

E′ λ + λ2 {x, y}, {y2 − x2, 2xy}
E′′ µ(λ + λ2) {zy,−zx}, {2xyz, z(x2 − y2)}

Table 24
Molien generating functions for invariants (Γ = A1g) and Γ-covariants of the action of the Oh group (and

of the isomorphic group Td × T ) constructed from the components {x, y, z} of the triply degenerate irreducible
representation F2g.

Γ45 num(Γ)46,47

A1g 1 + λ3 + λ4 + λ5 + λ6 + λ9

A2g 2λ3 + λ4 + λ5 + 2λ6

Eg λ + 2λ2 + λ3 + 2λ4 + 2λ5 + λ6 + 2λ7 + λ8

F1g λ2 + 3λ3 + 5λ4 + 5λ5 + 3λ6 + λ7

F2g λ + 2λ2 + 3λ3 + 3λ4 + 3λ5 + 3λ6 + 2λ7 + λ8

A1u λ3 + λ4 + 2λ5 + λ6 + λ9

A2u λ2 + λ3 + λ4 + λ5 + λ6 + λ7

Eu λ2 + 2λ3 + 3λ4 + 3λ5 + 2λ6 + λ7

F1u λ + λ2 + 3λ3 + 4λ4 + 4λ5 + 3λ6 + λ7 + λ8

F2u 2λ2 + 3λ3 + 4λ4 + 4λ5 + 3λ6 + 2λ7

(q, p) in order to represent adequately the symmetry of the system.

7.2.3. Symmetrized basis for the F2-mode subsystem. Generating functions for the
invariants and covariants of the O and Td group action on the CP 2 are given in [84]. The
generating function for the invariants has the form

1 + 2λ3 + 3λ4 + 3λ5 + 2λ6 + λ9

(1 − λ2)2(1 − λ3)(1 − λ4)
.(7.4a)

41Molien function for Γ-covariants g(Γ, A′′
1 ⊕ E′;µ, λ) equals

num(Γ)

(1 − λ2)(1 − λ3)(1 − µ2)
= num(Γ) g(A′

1, A
′′
1 ⊕ E′;µ, λ).

42Formal variables µ and λ represent z and {x, y}, respectively.
43In the case of the E-mode {z, x, y} = {v1, v2, v3}.
44Axes z and x correspond to symmetry axes C3 and C2.
45g and u label T symmetric and T antisymmetric representations.
46All functions have the same denominator as in (7.4b).
47The formal variable λ represents zz̄, where z is any of (z1, z2, z3).
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The corresponding integrity basis is further simplified due to the T -symmetrization, which
removes half of the auxiliary (numerator) invariants. The function (7.4a) becomes

1 + λ3 + λ4 + λ5 + λ6 + λ9

(1 − λ2)2(1 − λ3)(1 − λ4)
.(7.4b)

Generating functions for covariants are given in Table 24.
Coefficients ck of terms λk in the formal series expansion of the generating functions

in Table 24 equal the number of linearly independent polynomials of the kind zkz̄k. Thus
expansion of the function (7.4b)

1 + 2λ2 + 2λ3 + 5λ4 + 5λ5 + · · ·(7.5a)

suggests that there are two linearly independent (Td×T )-invariant terms z3z̄3. This does not
include polynomials built with powers of the scalar nf that can be taken into account if we
divide (7.4b) by one more (1 − λ). Then the corresponding formal series

1 + λ + 3λ2 + 5λ3 + 10λ4 + 15λ5 + · · ·(7.5b)

indicates five terms of degree 3, of which three should, obviously, contain nf . In fact there is
n3
f and two terms of the kind nfz

2z̄2.
The generators of the rings of Td and (Td×T )-invariants and covariants can be constructed

from the polynomials of the forms[
abc
pqr

]
= za1z

b
2z

c
3z̄

p
1 z̄

q
2 z̄

r
3 +

{
column

permutations

}
(7.6a)

and (
abc
pqr

)
=

[
abc
pqr

]
+

[
pqr
abc

]
.(7.6b)

In particular, nf = 1
2 [100100 ]. The Molien functions in Table 24 characterize heuristically the

structure of these rings. The denominator of the function (7.4b) tells us that there are two
z2z̄2, one z3z̄3, and one z4z̄4 principal integrity basis invariants, which can enter in any
degree in the expression for other invariants and covariants. The concrete choice of these four
principal invariants, [

110
110

]
,

[
200
020

]
,

[
111
111

]
,

(
400
022

)
,(7.7a)

and five nontrivial auxiliary (numerator) invariants,(
300
120

)
,

(
301
121

)
,

(
410
032

)
,

(
411
033

)
,

(
702
144

)
−
(

612
054

)
,(7.7b)

is suggested in [84].
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7.2.4. Symmetrized basis for the complete system. Once we take all symmetries into
consideration and combine the three subsystems, the integrity basis becomes very complicated.
Resulting symmetrized principal polynomials and a large number of auxiliary polynomials
require high powers of dynamical variables and will not be used here. Instead, we will study
both the group action of Td × T and the dynamics of the reduced system in terms of simpler
dynamical invariants in Table 21. In the next section we briefly describe the tensorial basis,
which we use to express the effective Hamiltonian Heff (normal form).

7.2.5. Tensorial bases used in molecular literature. Instead of using an integrity basis of
the kind described above, spectroscopists represent their effective Hamiltonians using tensorial
bases constructed by the rules of the tensorial product of the finite symmetry group of the
system. For example, the F2-mode Coriolis term is constructed as[

i
[
zF2 × z̄F2

]F1 × jF1

]A1

= −
√

2√
3
(t, j).

(This term is invariant with regard to a larger group SO(3).) Such bases guarantee complete-
ness but cannot exclude the possibility of linear dependence among terms of a given order. At
low orders, where such dependencies are few or nonexistent, this is tolerable. Explicit construc-
tion of all linearly independent terms of a given degree using the standard coupling scheme of
tensors adopted in molecular spectroscopy is often nontrivial. The difficulty increases rapidly
with degree. Of course, all spectroscopic tensors can be expressed using generators in Table 21.
Some of the most frequently used terms [13] are given in Tables 25 and 26.

8. Group action, fixed points, and invariant subspaces. The action of the symmetry
group of our system Td×T on the reduced phase space CP 2×CP 1×S

2 is not free. Our main
interest is in the fixed points of this action and in the subspaces of CP 2 × CP 1 × S

2, which
are invariant with regard to the spatial symmetry group Td and are therefore dynamically
invariant.

In section 4 we analyzed the action of Td × T using complex dynamical variables z of the
initial system (see section 2.2). Below we obtain the same results using the dynamical invari-
ants in Table 21 and their symmetry properties. These invariants serve both as dynamical
variables of the reduced system and as polynomial “coordinates” on the reduced phase space
CP 2 × CP 1 × S

2. We use invariants in order to remove the dynamical symmetry Gdyn = T
4

(see footnote 26 and section 6.1) and to avoid the ambiguity of the (z, z̄) coordinates. (Indeed,
the values of generators in Table 21 specify uniquely a Gdyn orbit, which corresponds to a
distinct point on CP 2 × CP 1 × S

2.) At the same time, we cannot label orbits of the finite
group Td × T because our polynomials are not symmetrized with regard to Td × T . Instead
we find concrete fixed points (and invariant subspaces) for concrete stabilizer subgroups of
Td × T . Results are summarized in Tables 27 and 28.

8.1. Fixed points in the presence of spatial axial symmetry. We return to the general
discussion of the axial symmetry in section 7.1.1. The action of any spatial rotation Ck with
k = 2, 3, . . . ,∞ on the CP 1 space and on the isomorphic 2-sphere S

2 has two fixed points.
These points lie on the symmetry axis. Thus in the j3 axis example,

j1 = j2 = 0, j3 = ±J.
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Table 25
Expression of spectroscopic tensors used in effective rotation–vibration Hamiltonians for the E and F2

modes in terms of dynamical invariants.

H0
ff nf

H0
ee ne

H
1(1,F1)
ff −

√
2√
3
(t3j3 + t2j2 + t1j1)

J2 j2

V A1
eeee 2

(
1

4
n2
e − v2

1

)
V E
eeee

√
2
(

1

4
n2
e + v2

1

)
V A1
ffff

1

3
(s2

1 + s2
2 + s2

3) + n2
3 −

2

3
nfn3 +

1

3
x2

3

V E
ffff

√
2

6

(
3

2
n2 +

3

2
n2

3 +
1

2
x2

3 − nfn3 − s2
1 − s2

2 − s2
3

)
V F2
ffff

1

2
√

3
(n2

f − x2
3 + 2nfn3 − 3n2

3)

V F1
efef

1

2
√

3
nfne +

1

2
√

3
(3n3 − nf )v2 +

1

2
x3v3

V F2
efef

1

2
√

3
nfne −

1

2
√

3
(3n3 − nf )v2 −

1

2
x3v3

H
2(0,A1)
ff −4

3
nf j

2

H
2(2,E)
ff

√
2(3n3 − nf + x3)j

2
2 − 2

√
2
(
n3 −

1

3
nf

)
j2

+
√

2(3n3 − nf − x3)j
2
1

H
2(2,F2)
ff − 4√

3
(s1j3j2 + s2j3j1 + s3j2j1)

H2(0,A1)
ee −2

√
2√
3
nej

2

H2(2,E)
ee 2

√
6 v2

(
2

3
j2 − j2

2 − j2
1

)
+ 2

√
2 v3(j

2
1 − j2

2)

H3(3,A2)
ee −16

√
3 v1j3j2j1

J4 j4

H4(4,A1) 16

√
10√
3

(
j4
2 + j4

1 + j2
2j

2
1 − j2(j2

1 + j2
2) +

1

5
j4
)

In the complex coordinates (z6, z7) these points can be represented as (1, 0) and (0, 1). The
analysis is the same for the E-mode space.

Rotation Ck with k > 2 acting on the CP 2 space has three fixed points. The action of
this operation on the dynamical invariants is described in section 7.1.1 for the case of rotation
about z3 (take ϕ < π because k > 2). In this case, we find that

x3 = s3 = s2 = s1 = t1 = t2 = 0

at the fixed points. Substitution into (6.13) gives

(1 − η)η = (1 − η)t3 = η2 − t23 = 0,
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Table 26
Relation between low degree polynomials constructed in terms of integrity basis and spectroscopic tensorial

terms. Only leading terms are taken into account (i.e., classical limit commutativity of variables is assumed).[
100
100

]
2H0

ff[
100
100

]2
4V A1

ffff + 4
√

2V E
ffff + 4

√
3V F2

ffff[
110
110

]
2
√

3V F2
ffff[

200
020

]
8V A1

ffff − 4
√

2V E
ffff[

100
100

]3
8
√

3

(
V EF2,EF2
fff,fff + V F2F2,F2F2

fff,fff + V A1F2,A1F2
fff,fff

)
+24

√
3V EF1,EF1

fff,fff + 8V F2A1,F2A1
fff,fff[

100
100

][
110
110

]
4V F2A1,F2A1

fff,fff + 8
√

3V EF1,EF1
fff,fff + 4

√
3V F2F2,F2F2

fff,fff[
100
100

][
200
020

]
8
√

3

(
2V A1F2,A1F2

fff,fff − V EF1,EF1
fff,fff − V EF2,EF2

fff,fff

)
[
111
111

]
4

3
V F2A1,F2A1
fff,fff(

300
120

)
4
√

3

(
4V A1F2,A1F2

fff,fff − V F2F2,F2F2
fff,fff − 2V EF2,EF2

fff,fff

)

where n1 = n2 = 1
2η ≥ 0 and of course n3 = Nf − η ≥ 0. This system has three solutions,

all isolated fixed points on CP 2, with (t3/Nf , η/Nf ) equal to (0, 0), (1, 1), and (1,−1), re-
spectively. The first solution is invariant with regard to time reversal T , while the other two
constitute one T orbit. In the complex coordinates (z1, z2, z3) these points can be represented
as (1, 0, 0) and (0, 1,±i).

In the special case of the C2 rotation we can only assert that

s2 = s1 = t1 = t2 = 0.

This leaves two possibilities: an isolated fixed point

n3 = Nf , n1 = n2 = t3 = s3 = 0,

and a 2-sphere defined as

n3 = 0, t23 + s2
3 + x2

3 = N2
f .

In the original (z1, z2, z3) coordinates, the former is again the point (1, 0, 0), while the latter
is the CP 1 subspace of CP 2, where z3 = 0.
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Table 27
Points in the critical orbits of the Td × T group action on the reduced phase space CP 2 × CP 1 × S

2

characterized by values of dynamical invariants in Table 21. Points are listed without their time reversal (T )
companions; upper and lover signs in the ± and ∓ notation correspond to different orbits with subscript indices
1 and 2, respectively. Matrices of stabilizers Sz

4 , C
[111]
3 , and Cxy

s are given in Table 4.

Orbit
x3

Nf

s1

Nf

s2

Nf

s3

Nf

n3

Nf

t1
Nf

t2
Nf

t3
Nf

v1

Ne

v2

Ne

v3

Ne

j1
J

j2
J

j3
J

Stabilizer

A
(2)
1,2 0 0 0 −1 0 0 0 0 0 ∓ 1

2
0 1√

2

−1√
2

0 Cxy
s

0 0 0 1 0 0 0 0 0 ∓ 1
2

0 1√
2

1√
2

0

1
2

0 −1 0 1
2

0 0 0 0 ± 1
4
±

√
3

4
1√
2

0 −1√
2

1
2

0 1 0 1
2

0 0 0 0 ± 1
4
±

√
3

4
1√
2

0 1√
2

− 1
2

1 0 0 1
2

0 0 0 0 ± 1
4
∓

√
3

4
0 1√

2

1√
2

− 1
2

−1 0 0 1
2

0 0 0 0 ± 1
4
∓

√
3

4
0 1√

2

−1√
2

A
(3)
1,2 0 2

3
2
3

2
3

1
3

0 0 0 ∓ 1
2

0 0 1√
3

1√
3

1√
3

C
[111]
3

0 2
3

− 2
3

− 2
3

1
3

0 0 0 ∓ 1
2

0 0 1√
3

−1√
3

−1√
3

0 − 2
3

2
3

− 2
3

1
3

0 0 0 ∓ 1
2

0 0 −1√
3

1√
3

−1√
3

0 − 2
3

− 2
3

2
3

1
3

0 0 0 ∓ 1
2

0 0 −1√
3

−1√
3

1√
3

B
(3)
1,2 0 − 1

3
− 1

3
− 1

3
1
3

1√
3

1√
3

1√
3

∓ 1
2

0 0 1√
3

1√
3

1√
3

C
[111]
3

0 − 1
3

1
3

1
3

1
3

1√
3

−1√
3

−1√
3

∓ 1
2

0 0 1√
3

−1√
3

−1√
3

0 1
3

− 1
3

1
3

1
3

−1√
3

1√
3

−1√
3

∓ 1
2

0 0 −1√
3

1√
3

−1√
3

0 1
3

1
3

− 1
3

1
3

−1√
3

−1√
3

1√
3

∓ 1
2

0 0 −1√
3

−1√
3

1√
3

C
(3)
1,2 0 − 1

3
− 1

3
− 1

3
1
3

−1√
3

−1√
3

−1√
3

∓ 1
2

0 0 1√
3

1√
3

1√
3

C
[111]
3

0 − 1
3

1
3

1
3

1
3

−1√
3

1√
3

1√
3

∓ 1
2

0 0 1√
3

−1√
3

−1√
3

0 1
3

− 1
3

1
3

1
3

1√
3

−1√
3

1√
3

∓ 1
2

0 0 −1√
3

1√
3

−1√
3

0 1
3

1
3

− 1
3

1
3

1√
3

1√
3

−1√
3

∓ 1
2

0 0 −1√
3

−1√
3

1√
3

A
(4)
1,2 0 0 0 0 1 0 0 0 0 ∓ 1

2
0 0 0 1 Sz

4

1 0 0 0 0 0 0 0 0 ± 1
4
∓

√
3

4
1 0 0 Sx

4

−1 0 0 0 0 0 0 0 0 ± 1
4
±

√
3

4
0 1 0 Sy

4

B
(4)
1,2 0 0 0 0 0 0 0 1 0 ∓ 1

2
0 0 0 1 Sz

4

− 1
2

0 0 0 1
2

1 0 0 0 ± 1
4
∓

√
3

4
1 0 0 Sx

4

1
2

0 0 0 1
2

0 1 0 0 ± 1
4
±

√
3

4
0 1 0 Sy

4

C
(4)
1,2 0 0 0 0 0 0 0 −1 0 ∓ 1

2
0 0 0 1 Sz

4

− 1
2

0 0 0 1
2

−1 0 0 0 ± 1
4
∓

√
3

4
1 0 0 Sx

4

1
2

0 0 0 1
2

0 −1 0 0 ± 1
4
±

√
3

4
0 1 0 Sy

4

8.2. Fixed points of the Td × T group action.

8.2.1. Stabilizer S4. Orientation of the Sz
4 axis in Table 4 corresponds to the one used

in section 8.1 for the general case of a Ck axis; solutions for fixed points with stabilizer C4 on
the F2-mode space CP 2 and on the rotational space S

2 are already given above in section 8.1.
On the E-mode space CP 1 ∼ S

2; the image of the Sz
4 operation is a rotation about axis v2 by
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Table 28
Invariant subspaces of CP 2 × CP 1 × S

2 with stabilizers Cxy
s and Cz

2 .

Values of dynamical variables and defining equation(s)

Stabilizer
x3

Nf

s1

Nf

s2

Nf

s3

Nf

n3

Nf

t1
Nf

t2
Nf

t3
Nf

v1

Ne

v2

Ne

v3

Ne

j1
J

j2
J

j3
J

Orbit
size Topology

Cz
2 0 0 0 0 1 0 0 0 ν1 ν2 ν3 0 0 1 6

ν2
1 + ν2

2 + ν2
3 = 1

4
S2

Cz
2 ξ 0 0 σ 0 0 0 τ ν1 ν2 ν3 0 0 1 6

τ2 + σ2 + ξ2 = 1, ν2
1 + ν2

2 + ν2
3 = 1

4
S2 × S2

Cxy
s 0 σ σ η 1 − η τ −τ 0 0 1

2
0 1√

2

−1√
2

0 12

2τ2 + 2σ2 + (2η − 1)2 = 1 S2

0 σ σ η 1 − η τ −τ 0 0 − 1
2

0 1√
2

−1√
2

0 12

angle π. Consequently, at the two fixed points on this space, v1 = v3 = 0.

8.2.2. Stabilizer C2. We can consider the Cz
2 stabilizer using directly the results in sec-

tion 8.1. There is a fixed point and an invariant 2-sphere in CP 2 and two fixed points on the
rotational sphere S

2 (the fixed points are the same as in the case of Sz
4). Furthermore, the

whole E-mode space CP 1 ∼ S
2 is invariant because operations Cz

2 , Cx
2 , and Cy

2 act trivially
on this space. There is, therefore, no restriction on (v1, v2, v3). On the full reduced space
CP 2 × CP 1 × S

2 we can have a point, an invariant 2-sphere, or an S
2 × S

2 space.

8.2.3. Stabilizer C3. In the case of C3, we also expect three fixed points on CP 2 and
two points on CP 1 and S

2 each. We first recall that (j1, j2, j3) transform according to the
irreducible representation F1 of the Td group. Considering the matrix representation of F1

for the particular operation C
[111]
3 in Table 4, we can see immediately that a point on the

rotational sphere S
2 remains invariant (stable) with respect to this operation only if

j1 = j2 = j3.

Furthermore, since

j2
1 + j2

2 + j2
3 = j2 = J2,

the two possible solutions for the fixed points on S
2 are

j1 = j2 = j3 = ±J/
√

3.

These two points form one T orbit. There are four axes C3 (four conjugate subgroups C3v of
the Td group) and there is one orbit of the action of the full group Td × T that includes all
eight points on S

2 with stabilizer C3.
Vibrational E-mode polynomials v1 and (v2, v3) are chosen so that they transform ac-

cording to the irreducible representations A2 and E of Td (see section 7). When the E-mode
reduced phase space is defined using equation

v2
1 + v2

2 + v2
3 =

1

4
n2
e =

1

4
N2

e
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as a 2-sphere in the ambient 3-space with coordinates (v1, v2, v3), the action of the C3 operation
is equivalent to the C3 rotation about axis v1. (This illustrates the abstract statement that the
image of the Td group in this case is a dihedral group D3.) The two points that are invariant
with regard to this operation lie on the v1 axis (on the diametrically opposite ends),

v1 = ±1

2
Ne, v2 = v3 = 0.

Since v1 has the symmetry A2, these points are mapped into each other by operations S4 and
Cs of Td and, therefore, they are equivalent and form one two-point orbit. Operation T also
maps these points into each other.

To find the fixed points on CP 2 with stabilizer C
[111]
3 , we note that polynomials (s1, s2, s3)

and (t1, t2, t3) transform according to the irreducible representations F2 and F1 of the Td

group, respectively. From matrices in Table 4 we conclude that at the fixed points on CP 2,

s1 = s2 = s3 = σNf , t1 = t2 = t3 = τNf ,(8.1a)

where σ and τ are dimensionless. We further note that at the same fixed point (with stabilizer

C
[111]
3 ) polynomials

(
3n3 − nf√

3
, x3

)
,

which transform according to the irreducible representation E, should vanish, i.e.,

3n3 − nf = x3 = n1 − n2 = 0,(8.1b)

and since n1 + n2 + n3 = Nf we obtain

n1 = n2 = n3 =
1

3
Nf .(8.1c)

Substituting conditions (8.1) into relations (6.13) produces equations

{
(1 + 3σ)τ = 0, σ2 + τ2 =

4

9
, σ2 − τ2 =

2

3
σ

}

with two kinds of solutions:

(τ, σ) =

(
0,

2

3

)
and

(
± 1√

3
,−1

3

)
.

Combining fixed points on S
2, CP 1, and CP 2 for the same stabilizer, i.e., the group generated

by the C
[111]
3 operation in Table 4, we obtain the fixed points on CP 2 × CP 1 × S

2 listed in
Table 27.
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8.2.4. Stabilizer Cs. In the case of Cs, solution for the fixed points on the rotational
sphere S

2 and on the E-mode space CP 1 ∼ S
2 is again quite simple. Indeed, using F1 and E

matrices of the Cxy
s example in Table 4 we find that these fixed points are defined as

j1 = −j2, j3 = 0 and v1 = 0, v3 = 0.

On the F -mode space CP 2 we look for a fixed point and a Cs-invariant sphere (see section 8.1).
In the particular case of the Cxy

s -invariant points we find that

t3 = 0, t1 = −t2 = τNf , s1 = s2 = σNf , x3 = 0.

Using the notation

n1 = n2 =
η

2
Nf ≥ 0, n3 = (1 − η)Nf ≥ 0, s3 = sNf ,

we obtain from relations (6.13) that

τ2 + σ2 = 2(1 − η)s = 2(1 − η)η,

η2 − s2 = τ(η − s) = σ(η − s) = 0.

These equations have two kinds of solutions: an isolated point with

η = 1, s = −1, σ = τ = 0,

which is listed in Table 27, and a 2-sphere defined by

η = s, 2τ2 + 2σ2 + (2η − 1)2 = 1.

8.3. Orbits of the Td × T action. To find the orbits of equivalent fixed points of the
Td × T action we take the fixed points found in the previous section for concrete stabilizers
in Table 4 and act on them by all symmetry operations of Td × T . We use the symmetry
properties of dynamical invariants (generators in Table 21) described in section 7.1.3. These
invariants are not symmetrized with regard to Td × T and their values (which play the role
of “coordinates” on CP 2 × CP 1 × S

2) differ for the points in the orbit. On the contrary, the
value and behavior of any Td × T invariant function, such as the reduced Hamiltonian Heff ,
remains the same.

Table 27 presents orbits of the Td×T action on CP 2×CP 1×S
2. The list of fixed points in

each orbit starts with the particular point found in section 8.2. Since time reversal images of
points can be easily found using (7.2), we omit them for brevity so that each orbit in Table 27

has twice the number of points listed. For example, the orbit A
(4)
1 with stabilizer S4 × T has

six equivalent fixed points, which correspond to three conjugate symmetry operations Sz
4 , Sx

4 ,

and Sy
4 of the Td group. The other six-point orbit A

(4)
2 differs from A

(4)
1 in the way the F2-

and E-mode coordinates are combined.
Invariant subspaces in Table 28 also are representatives of orbits of equivalent subspaces.

There are six 2-spheres with stabilizer C2, six S
2×S

2 spaces with the same stabilizer, and two
different orbits of twelve 2-spheres with stabilizer Cs. Explicit coordinate representations for
all these spaces can be obtained in the same way as obtained for the fixed points.



330 EFSTATHIOU, SADOVSKII, AND ZHILINSKII

Table 29
Further stratification of the invariant subspaces of CP 2 ×CP 1 ×S

2 with stabilizers Cxy
s and Cz

2 (Table 28)
due to residual group action.

Stabilizer Equations Topology

Cz
2 × T2 v1 = 0 S1

Cz
2 × Ts v2 = 0 S1

Cz
2 × T2 v1 = x3 = ξ = 0 T2 = S1 × S1

Cz
2 × Ts v2 = s3 = σ = 0 T2 = S1 × S1

Cxy
s × (T2, Ts) σ = 0 S1

8.4. Residual group action on invariant subspaces. Invariant subspaces of the Td group
action on CP 2 × CP 1 × S

2, which are characterized in Table 28, are not homogeneous spaces
with regard to the Td×T action. This has, of course, important consequences for the dynamics,
which we will analyze later.

First we can verify whether some of the fixed points of the Td×T group action in Table 27
lie on any of the invariant subspaces. The presence of fixed points indicates that there is some
nontrivial residual action of Td×T on the subspace. Continuing the Cz

2 example in Table 28,

we find that two points A
(4)
1 and A

(4)
2 lie on the C2-invariant E-mode sphere, and four points

B
(4)
1 , B

(4)
2 , C

(4)
1 , and C

(4)
2 lie on the C2-invariant space S

2 × S
2. In the particular case of Cz

2 ,
the residual Td action is equivalent to the rotation by π about axes t3 and v2 in the respective
ambient 3-spaces.

A complete study of all residual symmetries can be easily done by selecting all operations
of the Td×T group which map invariant subspaces into themselves. Such selection is, of course,
greatly simplified by the fact that many invariants take definite fixed values (see Table 28).
Thus when studying symmetry operations acting on the invariant space S

2×S
2 with stabilizer

Cz
2 , we consider only those operations of Td × T which leave j3 invariant (such as rotations

around axis 3) or change its sign (such as reflections Cs in the planes containing axis 3). In
the latter case, we should add the T operation to restore the sign of j3. Another simplifying
observation is that invariants used as coordinates on the subspaces often transform according
to (rows of) different irreducible representations of the Td group. In that case the residual
group can have only one-dimensional representations.

Residual group action of Td × T on the invariant subspaces of the action of the spatial
group Td on CP 2 ×CP 1 ×S

2 is characterized in Table 30. We can see that the residual action
on the C2 and Cs invariant spaces is equivalent to that of a C2v and a Ch group, respectively.
(As before we use point group analogies of groups which include reversing operations T , Ts, or
T2.) Due to the presence of this residual action, invariant subspaces contain lower-dimensional
strata in addition to just fixed points; see Tables 29 and 30.

9. Dynamics of the reduced system. Classical equations of motion for the reduced sys-
tem can, in principle, be obtained using initial dynamical variables (z, z̄) and the Poisson
bracket

{z, z̄} = {q + ip, q − ip} = −2i
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Table 30
Residual action of Td × T on the dynamical invariants used to represent invariant subspaces in Table 28;

note that T2 and Ts stand for C2 ◦ T and Cs ◦ T , respectively.

Spaces with stabilizer Cz
2 2-sphere with stabilizer Cxy

s

Dynamical Classes of Td × T
invariants I, C2 T2 S4 Ts

F
(3)
1u t3, j3 1 1 1 1

E
(1)
g v2, n3 1 1 1 1

E
(2)
g x3, v3 1 1 −1 −1

F
(3)
2g s3 1 −1 −1 1

A2u v1 1 −1 −1 1

Dynamical Classes
invariants I, Cs T2

E
(1)
g v2, n3 1 1

F1u
t1 − t2√

2
,
j1 − j2√

2
1 1

F2g
s1 + s2√

2
1 −1

if we consider the reduced Hamiltonian Heff as a function of (z, z̄). These equations of motion
should preserve all symplectic symmetries of Heff , i.e., remain invariant with regard to the
dynamical (oscillator) symmetry and to the action of the spatial group Td described in sec-
tion 7. We can, therefore, represent them in terms of invariants in Table 21 and thus obtain
equations of motion on CP 2 × CP 1 × S

2. A more elegant approach is to study the Poisson
algebra generated by the invariants and then obtain the same equations directly.

9.1. Poisson algebra of dynamical invariants. Invariants in Table 21 generate a multi-
plicative ring R of polynomials invariant with regard to the oscillator symmetry. The Poisson
bracket of any two generators in Table 21 is itself a dynamically invariant polynomial function,
which is a member of R. We say that R has a Poisson structure. Invariant polynomials in
Table 21 generate a Poisson algebra and can be used as dynamical variables. The integrals j,
ne, and nf are Casimirs. To compute the structure of the algebra, we can return to the (z, z̄)
representation.

For the E-mode invariants and, of course, for the angular momentum components, we
obtain the standard algebra so(3),

{jα, jβ} = εαβγ jγ , {vα, vβ} = εαβγ vγ ,

and the Euler–Poisson equations,

d

dt
jα = {Heff , jα} =

∂Heff

∂jγ
jβ − ∂Heff

∂jβ
jγ .(9.1a)

Dynamics on the CP 2 space is described by the system of equations for eight invariant poly-
nomials, which can be considered as independent dynamical variables. Since all these polyno-
mials are quadratic in (z, z̄), their Poisson brackets are also quadratic and can be expressed
as their linear combinations. Resulting Poisson algebra is characterized in Table 31. Given
the structure matrix M in this table, equations of motion can be written as

θ̇ = MT∇θHeff ,(9.1b)

where θ is a vector θ = (x3, s1, s2, s3, n3, t1, t2, t3) and MT = −M.
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Table 31
Poisson algebra of the invariants describing dynamics on CP 2 × CP 1 × S

2 (F2- and E-mode polyads and
rotational subsystem). Here x1 = n2 − n3, x3 = n1 − n2, x2 = n3 − n1, and x1 + x2 + x3 = 0.

s1 s2 s3 n3 t1 t2 t3
x3 −t1 −t2 2t3 0 s1 s2 −2s3

s1 −t3 t2 t1 2x1 −s3 s2

s2 −t1 −t2 s3 2x2 −s1

s3 0 −s2 s1 2x3

n3 s1 −s2 0
t1 t3 −t2
t2 t1

j2 j3
j1 j3 −j2
j2 j1

v2 v3

v1 v3 −v2

v2 v1

9.2. Canonical variables in the limit of linearization. In section 8.2 we found RE, or
equilibria of the reduced system, as isolated fixed points (critical orbits) of the Td×T action.
To study dynamics near these RE, and in particular to determine their stability, we should
linearize Heff near them. Linearization in terms of (z, z̄) variables was already introduced in
section 5.1.4.

Similarly to finding coordinates of RE in section 8.2, linearizing near an RE can be under-
stood on the example of a Ck symmetric RE whose symmetry axis is oriented as in section 7.1.1.

Axis Sz
4 (or C4) has such an orientation, and coordinates of the RE A

(4)
1,2 and B

(4)
1,2 on the CP 2

space and rotational sphere S
2 (see Table 27) define, in fact, fixed points and RE for any Cz

k

action on these spaces with k = 3, 4, . . . ,∞.
Consider first the familiar simple case of the rotational sphere S

2 described by (j1, j2, j3)
or by scaled variables

j̃i =
ji√
J
, i = 1, 2, 3.(9.2)

At the fixed point j3 = J , the only nonzero Poisson bracket is {j1, j2} = j3 (Table 31), and con-
sequently the scaled variables (j̃1, j̃2) become the standard canonical coordinate–momentum
pair in the limit of linearization near the relative equilibrium with j3 = J . Near the second
fixed point on S

2 with j3 = −J (which is the time reversal image of the first point) canonical
variables will be (j̃2, j̃1); i.e., j̃2 will play the role of coordinate and j̃1 the role of conjugate
momentum.

The E-mode space CP 1 is isomorphic to a sphere S
2 defined in the ambient 3-space with

coordinates (v1, v2, v3). We should scale these coordinates as follows:

ṽi =
vi
√

2√
Ne

, i = 1, 2, 3.(9.3)

The Sz
4 operation acts on the E-mode sphere as rotation by π about axis v2; the two fixed

points with v2 = ±Ne/2 lie on this axis. In the limit of linearization near these points we use
canonical coordinates (ṽ1, ṽ3) and (ṽ3, ṽ1).

On the F2-mode space CP 2 we proceed in a similar fashion [97]. We compute the Poisson
structure in Table 31 at each relative equilibrium and then find canonical variables of the
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Table 32
Standard canonical coordinates and conjugate momenta for the linearization near RE with stabilizer Sz

4 .

Space Mode48 A
(4)
1 B

(4)
1 B

(4)
1

CP 2 F2 t̃1, s̃1
s̃2 − t̃1√

2
,
s̃1 − t̃2√

2

s̃1 + t̃2√
2

,
s̃2 + t̃1√

2
s̃2, t̃2 x̃3, s̃3 s̃3, x̃3

CP 1 E ṽ1, ṽ3 ṽ1, ṽ3 ṽ1, ṽ3

S
2 rot j̃1, j̃2 j̃1, j̃2 j̃2, j̃1

linearization limit. After changing to scaled variables

ãi =
ai√
2Nf

, a = s, t, n, x, i = 1, 2, 3,(9.4)

we obtain the results in Table 32.
Another way to proceed is to find coordinates near each RE on CP 2 without demanding

that these coordinates be canonical. The set of coordinate invariants ζ
(c)
i (i = 1, . . . , 4) that

we use is selected from among the invariants ni, si, and ti (i = 1, 2, 3) such that the syzygy
relations (6.13), together with the constraint n1 + n2 + n3 = Nf , can be solved in order to

express the remaining invariants ζ
(r)
i (i = 1, . . . , 5) in terms of ζ

(c)
i and Nf .

We find a set of invariants with the above property by checking that the conditions of the
implicit function theorem are satisfied. Specifically, let Fi (i = 1, . . . , 9) be the left-hand sides

of the syzygy relations (6.13) and F10 = n1 + n2 + n3 −Nf . The invariants ζ
(r)
i are selected

in such a way that the 10 × 5 matrix

∂(Fi)

∂(ζ
(r)
j )

(9.5)

has rank 5. Then ζ
(r)
i can be expressed in terms of ζ

(c)
i and Nf . There is usually more than

one choice for ζ
(c)
i , but not all choices are equally acceptable. Since we need to actually solve

the equations Fi = 0, we must try to find a set ζ
(c)
i such that the solution takes a simple form.

This can be done only by inspecting the solutions in each case.

For example, for the A(4) point (1, 0, 0) with stabilizer D
(x)
2d × T , we find that ζ(c) =

(s2, s3, t2, t3) is a suitable set of invariants. The values of these invariants on the specific RE
are ζ(c)∗ = (0, 0, 0, 0). We define the displacement vector

dA
(4)

i = ζi = ζ
(c)
i − ζ

(c)∗
i , i = 1, . . . , 4.

Notice that near the RE we can express all the invariants in terms of the displacements ζi.
An important difference with regard to the previous discussion is that the displacements

here are not necessarily canonically conjugate variables. It is therefore important to calculate
the linearized Poisson structure near each RE. In order to do this we calculate each Poisson
bracket {ζi, ζj} using the invariants, and then we express the result as a function of the

48Notation as in Table 21 with n ≡ Nf .
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Table 33
Dynamically invariant local coordinates at the RE on the F2-mode space CP 2.

Type of RE Poisson algebra49

A(4) D
(x)
2d × T

ζ2 ζ3 ζ4
s2 = ζ1 0 −2n 0
s3 = ζ2 0 2n
t2 = ζ3 0
t3 = ζ4

A(2) C
(z)
2v × T

ζ2 ζ3 ζ4
n2 − 1

2
n = ζ1 0 0 n
s1 = ζ2 n 0
t1 = ζ3 0
t3 = ζ4

A(3) C
(z)
2v × T

ζ2 ζ3 ζ4
s2 − 2n/3 = ζ1 0 0 −2n/3
s3 − 2n/3 = ζ2 2n/3 0

t2 = ζ3 0
t3 = ζ4

B(3) C
[111]
3 ∧ T ‖

s

ζ2 ζ3 ζ4

s2 + n/3 = ζ1 −n/
√

3 0 n/3
s3 + n/3 = ζ2 −n/3 0

t2 − n/
√

3 = ζ3 n/
√

3

t3 − n/
√

3 = ζ4

B(4) S
(x)
4 ∧ T (y)

2

ζ2 ζ3 ζ4
n3 − 1

2
n = ζ1 −n 0 0
s1 = ζ2 0 0
s2 = ζ3 n
t2 = ζ4

displacements ζi, keeping terms only up to first order. We can follow the above program for
all the RE. The results are summarized in Table 33. Observe that for most cases in this table
it is immediately obvious how to define standard canonically conjugate variables. Thus in the
case of the A(3) point, we can define canonically conjugate variables (ξ, η),

ξ1 = αζ2, η1 = αζ3, ξ2 = αζ4, η2 = αζ1, α =
√

3
2Nf

,

such that the local 2-form is dξ1 ∧ dη1 + dξ2 ∧ dη2. The only case where the proper definition
of the canonical variables is not obvious is the case of the B(3) point.

To conclude this section, we should add one important remark. The above canonical (or
noncanonical) variables can only be used to study linear Hamiltonian equations of the reduced
system near the RE. This limitation is due to the fact that the symplectic form near the RE
has a standard matrix ( 0 1

−1 0
) only to the first order (in the limit of linearization). When

nonlinear equations of motion near the RE are sought (e.g., when bifurcations of the RE are
studied) this form should be further “flattened” in higher orders; see section V.8.2 of [11].

9.3. Dynamics on invariant subspaces of CP 2 ×CP 1 × S
2. In section 8.4 and Table 28

we describe three possible types of subspaces of the reduced phase space CP 2×CP 1×S
2 that

49Notation as in Table 21 with n ≡ Nf .
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are invariant with regard to the (symplectic) action of the spatial group Td and are therefore
dynamically invariant subspaces of the reduced system. These subspaces are either 2-spheres
S

2 ∼ CP 1 or a product of 2-spheres S
2 ×S

2. Dynamics on each S
2 can be described by Euler–

Poisson equations. The corresponding “angular momentum” algebras so(3) are constructed
below.

The construction is most straightforward in the case of the C2-invariant S
2 subspace of

CP 2 (which can be represented using complex coordinates (z1, z2) and z3 = 0). We can see
from Tables 21 and 28 that the three so(3) components can be chosen as

(Y1, Y2, Y3) =

(
s3

2
,
t3
2
,
x3

2

)
.

Restricting the Poisson algebra in Table 31 to the Cz
2 -invariant sphere defined in Table 28

shows that this is indeed so(3),

{Yα, Yβ} = εαβγYγ ,

with Casimir

Y 2
1 + Y 2

2 + Y 2
3 =

(
Nf

2

)2

.

Dynamics on the S
2 × S

2 invariant subspace in Table 28 is described using an so(3) × so(3)
algebra. The second so(3) is generated by (v1, v2, v3), commutes with (Y1, Y2, Y3), and has the
Casimir

v2
1 + v2

2 + v2
3 =

(
Ne

2

)2

.

Dynamical variables for the Cxy
s -invariant sphere in Table 28 are obtained analogously.

Restricting the Poisson algebra in Table 31, we find polynomials

(X1, X2, X3) =

(
t1 − t2

2
√

2
,
s1 + s2

2
√

2
,
2s3 −Nf

2

)

=

(
τ√
2
,
σ√
2
,
2η − 1

2

)
Nf ,

which form the so(3) algebra, such that

X2
1 + X2

2 + X2
3 =

(
Nf

2

)2

, {Xi, Xj} = εijkXk.

10. Existence and stability of RE. RE are special stationary solutions of the equations of
motion (9.1), which in many cases are defined entirely by symmetry and exist for any generic
small symmetry-preserving perturbation. Isolated fixed points of the Td × T group action
on the reduced phase space CP 2 × CP 1 × S

2 found in section 8 are necessarily stationary
solutions of (9.1) and are therefore representing RE. We show how to determine the stability
of these RE using the reduced Hamiltonian Heff defined as a function on CP 2 × CP 1 × S

2.
Subsequently, we search for other RE, which are not fixed by the action of the finite symmetry
group.
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10.1. Linear stability of fixed RE. Fixed RE of our system correspond to fixed points of
the group action found in sections 8.1 and 8.2 (see Table 10, 15, and 27). Stability of these RE
was already analyzed in section 5.1.4, where we studied analytical Poincaré surfaces of section
using initial phase space variables (z, z̄). Here we use invariants in Table 21 to study RE
stability directly on CP 2 × CP 1 × S

2, i.e., without lifting back to the initial phase space. As
before, we can explain our approach in the example of axial symmetry with axis Ck oriented
as Cz

4 (see sections 8.1 and 9.2).
Analysis on CP 2 is the most difficult [97]. Using canonical variables of the linearization

limit found in section 9.2 and Table 32, we come to the problem of determining linear stability
of a stationary point in different canonical planes. Each such plane has its origin at the relative
equilibrium, and the stabilizer Ck of the RE acts as a rotation Ck′ about the origin. In general,
the actions of Ck on the initial 3-space and on the particular canonical plane can differ. We
have shown in section 7 that these actions are the same, and k = k′ for all planes except
(x3, s3), where k′ = k/2.

In the case of C3 and Ck with k > 4, canonical coordinate–momentum pairs in each of the
four symplectic planes transform according to a pair of conjugate complex representations of
the symmetry group (which correspond to two representations of the SO(2) group of indexes
±m). Variables x3 and s3 in the case of C4 and all variables in the case of C2 transform
according to different real one-dimensional irreducible representations.

In order to take into account the full symmetry group Td×T , as in section 5.1.5 we should
find the action of the stabilizer of each RE on the local variables ζi, defined in section 9.2.
As before, we need to define the action of the elements R of the stabilizer G of each RE
on the displacement vector d = {ζi}i=1,...,4. For this we act with R on the original complex
variables (z1, z2, z3). This action induces a linear action LR on the invariants, and a nonlinear
action NR on the displacements ζi. The last action is computed by expressing ζi in terms of

the invariants ζ
(r)
i , acting on them with LR, and expressing the result again in terms of the

displacements ζi. The action N
(1)
R is then defined as the linearization of NR.

The results are presented in Table 34. We can find from this table that the reducible
representation of each stabilizer spanned by the variables ζi is decomposed into exactly the
same irreducible representations as the representation of the stabilizer spanned by the local
variables (x1, x2, y1, y2) of section 5.1.5.

10.2. Finding additional stationary points on invariant subspaces. In sections 8.4 and 9.3
and in Tables 28 and 30 we describe subspaces of CP 2×CP 1×S

2 whose stabilizers are purely
spatial subgroups of Td×T . Such subgroups are symplectic and the subspaces are dynamically
invariant subspaces of the reduced system. To find equations of motion on these subspaces
we can simply restrict the reduced Hamiltonian Heff using Table 28 and express it in terms
of dynamical variables (Y1, Y2, Y3) or (X1, X2, X3), defined in Table 33, and/or (v1, v2, v3).
Equations of motion then can be generated using the respective so(3) algebras. Before a gen-
eral solution is attempted, resulting equations first can be restricted to the one-dimensional
strata of the residual group action (see section 8.4). All stationary points found should satisfy
Morse conditions for the respective subspace.

As explained in section 5, we should study the Cs-invariant subspace, which is a 2-sphere
with no critical orbits of the symmetry group action (no RE fixed by symmetry). This sphere
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Table 34
Action of stabilizers on dynamically invariant local coordinates on CP 2 defined in Table 33.

Action of D
(x)
2d × T on Eg⊕Eu for the A(4) RE

R Rζ1 Rζ2 Rζ3 Rζ4
E ζ1 ζ2 ζ3 ζ4

Cx
2 −ζ1 −ζ2 −ζ3 −ζ4

Cy
2 ζ1 −ζ2 ζ3 −ζ4

Cz
2 −ζ1 ζ2 −ζ3 ζ4

σyz ζ2 ζ1 −ζ4 −ζ3
σyz −ζ2 −ζ1 ζ4 ζ3
Sx

4 −ζ2 ζ1 ζ4 −ζ3
(Sx

4 )−1 ζ2 −ζ1 −ζ4 ζ3

R Rζ1 Rζ2 Rζ3 Rζ4
T ζ1 ζ2 −ζ3 −ζ4

Cx
2 T −ζ1 −ζ2 ζ3 ζ4

Cy
2T ζ1 −ζ2 −ζ3 ζ4

Cz
2T −ζ1 ζ2 ζ3 −ζ4

σyzT ζ2 ζ1 ζ4 ζ3
σyzT −ζ2 −ζ1 −ζ4 −ζ3
Sx

4 T −ζ2 ζ1 −ζ4 ζ3
(Sx

4 )−1T ζ2 −ζ1 ζ4 −ζ3

Action of S
(x)
4 ∧ T (y)

2 on B1⊕B2⊕E for the B(4) RE

R Rζ1 Rζ2 Rζ3 Rζ4
E ζ1 ζ2 ζ3 ζ4

Cx
2 ζ1 ζ2 −ζ3 −ζ4

Sx
4 −ζ1 −ζ2 ζ4 −ζ3

(Sx
4 )−1 −ζ1 −ζ2 −ζ4 ζ3

R Rζ1 Rζ2 Rζ3 Rζ4
σyzT −ζ1 ζ2 −ζ4 −ζ3
σyzT −ζ1 ζ2 ζ4 ζ3
Cy

2T ζ1 −ζ2 ζ3 −ζ4
Cz

2T ζ1 −ζ2 −ζ3 ζ4

Action of C
(z)
2v × T on A2g⊕A2u⊕B1g⊕B1u for the A(2) RE

R Rζ1 Rζ2 Rζ3 Rζ4
E ζ1 ζ2 ζ3 ζ4
Cz

2 ζ1 −ζ2 −ζ3 ζ4
σxy −ζ1 ζ2 ζ3 −ζ4
σxy −ζ1 −ζ2 −ζ3 −ζ4

R Rζ1 Rζ2 Rζ3 Rζ4
T ζ1 ζ2 −ζ3 −ζ4

Cz
2T ζ1 −ζ2 ζ3 −ζ4

σxyT −ζ1 ζ2 −ζ3 ζ4
σxyT −ζ1 −ζ2 ζ3 ζ4

Action of C
[111]
3v × T on Eg⊕Eu for the A(3) RE

R Rζ1 Rζ2 Rζ3 Rζ4
E ζ1 ζ2 ζ3 ζ4

C
[111]
3 −ζ1 − ζ2 ζ1 −ζ3 − ζ4 ζ3

(C
[111]
3 )2 ζ2 −ζ1 − ζ2 ζ4 −ζ3 − ζ4

σyz ζ2 ζ1 −ζ4 −ζ3
σzx ζ1 −ζ1 − ζ2 −ζ3 ζ3 + ζ4
σxy −ζ1 − ζ2 ζ2 ζ3 + ζ4 −ζ4
T ζ1 ζ2 −ζ3 −ζ4

C
[111]
3 T −ζ1 − ζ2 ζ1 ζ3 + ζ4 −ζ3

(C
[111]
3 )2T ζ2 −ζ1 − ζ2 −ζ4 ζ3 + ζ4

σyzT ζ2 ζ1 ζ4 ζ3
σzxT ζ1 −ζ1 − ζ2 ζ3 −ζ3 − ζ4
σxyT −ζ1 − ζ2 ζ2 −ζ3 − ζ4 ζ4

Action of C
[111]
3 ∧ T ‖

s on E⊕E for the B(3) RE

R Rζ1 Rζ2 Rζ3 Rζ4
E ζ1 ζ2 ζ3 ζ4

C
[111]
3 −ζ1 − ζ2 ζ1 −ζ3 − ζ4 ζ3

(C
[111]
3 )2 ζ2 −ζ1 − ζ2 ζ4 −ζ3 − ζ4
σyzT ζ2 ζ1 ζ4 ζ3
σzxT ζ1 −ζ1 − ζ2 ζ3 −ζ3 − ζ4
σxyT −ζ1 − ζ2 ζ2 −ζ3 − ζ4 ζ4
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S
2 has an invariant circle S

1 with stabilizer T2, which is defined by X2 = 0 (or equivalently
s1 = s2 = σ = 0). The Morse requirements of two stationary points, a minimum and a
maximum, for both the sphere S

2 and its invariant subspace S
1 can be satisfied if the two

points lie on S
1. To find these points we first restrict Heff to the Cs sphere using Table 28 and

reexpress it as a function of dynamical variables (X1, X2, X3). If Heff(X) is a Morse function,
we will always find at least two stationary points of Heff(X) on the T2-invariant circle S

1.
Such points are particular solutions to the Euler–Poisson equations

Ẋ =

⎛
⎝ 0 X3 −X2

−X3 0 X1

X2 −X1 0

⎞
⎠T∇XHeff(X) = 0,(10.1)

where we should set X2 = 0.

11. Examples.

11.1. Vibrational structure of the F2-mode polyads. Possible configurations and differ-
ent types of stability of the RE of the F2-mode subsystem were studied in section 5.3.2. In
section 5.2.3 we emphasized the difference between simplest and nonsimplest Hamiltonians on
CP 2 and described the system of RE in each case. Below we study this system in more detail
on a model example, which is discussed in more detail in [98].

The Hamiltonian of a molecule, which has the F2 mode, can be written as ωHν3
vib + H ′,

where to order ε2

Hν3
vib =1

2(q2
1 + p2

1) + 1
2(q2

2 + p2
2) + 1

2(q2
3 + p2

3) + εK3q1q2q3 + ε2Kt
1
2(q4

1 + q4
2 + q4

3)

+ ε2Ks
1
2(q2

1 + q2
2 + q2

3)
2 + ε2Kl

1
2

[
p × q

]2
,(11.1a)

and H ′ represents other degrees of freedom and interaction of these degrees with the F2-
mode subsystem (cf. section 5.3.2). In order to study this subsystem, we should consider
H ′ explicitly, normalize the Hamiltonian ωHν3

vib + H ′, and then restrict the obtained normal
form on CP 2 by setting to zero all dynamical variables of other subsystems. This approach
was used in [13] for the case of the A4 molecule, where we set to zero integrals j, Ne, and
Na, angular momenta (j1, j2, j3), and E-mode vibrational variables (v1, v2, v3); see Table 21.
Furthermore, the simple atom–atom bond model of A4 used in [13] gives

Constant ω K3 Kl Ks Kt

Value
√

2 3/25/4 2−5/2λ −5/29/2 7/2−9/2
.(11.1b)

Here the parameter λ is introduced so that the value of Kl obtained in [13] corresponds to λ =
1. In the present study we focus on the F2-mode subsystem without taking interactions with
other subsystems into account. To this end we use a simplified model, where H ′ is neglected
before normalization. This model turns out to be sufficient for studying the transition from
the simplest to the nonsimplest Hamiltonian on CP 2.

The normal form of (11.1a) Hν3
eff = n + ε2Hν3

2 + · · · can be expressed using invariants in
Table 21. In the second order Hν3

2 we obtain



ROTATION–VIBRATION RELATIVE EQUILIBRIA 339

Term Coefficient

ε2 n2 1
2
(K2

3/24 + Kl + Ks + 3Kt/4)

ε2 (s2
1 + s2

2 + s2
3)

1
2
(−K2

3/4 −Kl + Ks/2)

ε2 (2nn3 − 3n2
3 − x2

3)
1
2
(K2

3/24 + Kl −Ks/2 − 3Kt/4)

Taking the Td ×T symmetry into account (Table 25), we can verify that Hν3
2 has indeed only

three independent terms:

Term Coefficient

ε2 V A1
ffff (5Ks − 4Kl −K2

3 + 3Kt)/4

ε2 V E
ffff (Ks + Kl + K2

3/4 + 3Kt/2)/
√

2

ε2 V F2
ffff (Ks + Kl −K2

3/6)
√

3/2

In fact, the Hamiltonian Hν3
2 has been long suggested by Hecht [95] as a model Hamiltonian

for describing the internal structure of the F2-mode polyads. Hecht expressed his model Hν3
2

in terms of

n2 = V A1
ffff +

√
2V E

ffff +
√

3V F2
ffff ,(11.2a)

t2 = t21 + t22 + t23 =
[
p × q

]2
= n2 − 3V A1

ffff ,(11.2b)

m = n2
1 + n2

2 + n2
3 = V A1

ffff +
√

2V E
ffff ,(11.2c)

where the “vibrational angular momentum” t2 is often denoted as l2 [95, 96]. Considering
relations (6.13), we note an alternative to m or t,

s2 = s2
1 + s2

2 + s2
3 = 2n2 − 2m− t2.(11.2d)

Hecht’s representation

Hν3
2 = c0n

2 + clt
2 + cmm,(11.3)

or, alternatively,

Hν3
2 = c′0n

2 + c′lt
2 + css

2(11.3′)

is particularly convenient for the order ε2 classification of qualitatively different normal forms
Hν3

eff on CP 2
n . We remark that the term n2 is just an additive (“scalar”) energy constant (for

the reduced system on CP 2
n , i.e., within one n polyad). Neglecting this term, the energies of

RE of the F2-mode system with Hamiltonian (11.3) or (11.3′) are given below.

Type of RE H2n
−2 − c′0 H2n

−2 − c0

C2v × T A cs
1
2
cm

C3v × T A 4
3
cs

1
3
cm

C3 ∧ Ts B c′l + 1
3
cs cl + 1

3
cm

D2d × T A 0 cm

S4 ∧ T2 B c′l cl + 1
2
cm

Cs ∧ T2 (c′l)
2(c′l − 1

4
cs)

−1

It follows that reciprocal energies of RE of such system and, therefore, the structure of the
vibrational polyads of the F2 mode, are described (to the lowest order) by one parameter, the
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t2–limit m–limit s2–limit (−t2)

0 1/4 1/2 1
dimensionless parameter α = π−1 tan−1(cs/c

′
l)

A(3)

A(2)

A(4)

B(3)

B(4)

�
��

Cs

�� [96] � �this work

H2

n2

1

0

−1
l = n

n− 2

n− 4

Figure 17. Reciprocal energies (in units of n2 and without scalar part c′0n
2) of RE (bold lines) and the

structure of the n = 10 quantum polyad (thin blue lines) of the F2-mode system in the second order model
(Hecht’s Hamiltonian (11.3′)).

ratio of cl and cm or c′l and cs. To study all possibilities we set c′l and cs in (11.3′) to cos(απ)
and sin(απ), respectively. Resulting RE energies H2n

−2 − c′0 are shown in Figure 17.
We call the three principal limiting cases of the F2-mode system with α = 0, 1

4 , and
1 the t2, m, and (−t2) limits, respectively (see Figure 17). All these limits have continuous
symmetries and the system is integrable. The s2 limit shown in Figure 17 is indicated primarily
for convenience. It has no simple integrals and, probably, is not integrable.

The symmetry group of the t2 limit contains the spatial group SO(3). The energy in this
limit is a function of the vibrational angular momentum t2 = l2, which is zero for the A-type
RE and maximum l = n for the B-type RE. The corresponding quantum polyad is split into
multiplets with l = n, n − 2, . . . . The (−t2) limit is the same as the t2 limit, albeit for the
opposite sign of energies.

The spatial symmetry of the m limit is cubic, so this limit better represents the symmetry
of the system. However, this limit has continuous dynamical symmetry T 3 = S1 × S1 × S1.
The energy can be represented as a function of three integrals in involution (n1, n2, n3), i.e.,
actions of individual oscillators, such that n1 + n2 + n3 = n. The quantum states can be
labeled with the three corresponding quantum numbers. The number of degenerate states is
normally given by the number of permutations of the set of the three integers [N1, N2, N3]. In
the n = 10 example in Figure 17, it is either 3 or 6 (maximum).

Transition between the t2 and m limits has been studied by Patterson [96], who remarked
that F2-mode polyads of certain molecules, such as SiF4, SF6, and UF6, belong to the interval
of α = [0, 1

4 ]. On the other hand, our prediction for P4 suggests that the ν3 polyads of
this molecule fall into the α ≥ 1

2 category. A complimentary approach to classifying ν3-
mode systems is by specifying the intervals of α-values, where the second order normalized
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Hamiltonian (11.3′) represents particular classes of (Td×T )-invariant Morse functions on CP 2

introduced in section 5.2.3. We can see in Figure 17 that there are at least three such regions.
Furthermore, we notice that the Hν3

2 Hamiltonian is of the simplest Morse type only on the
interval α = (π−1 tan−1 2, 1

2), where the additional nonfixed RE of symmetry Cs∧T2 does not
exist.

In this paper we would like to uncover the precise role of the vibrational angular momentum
term (p× q)2 in the transition between the simplest and nonsimplest RE structures. To this
end we detail our example in section 5.3.2. Note that even though (p × q)2 enters in both
the initial Hamiltonian (11.1a) and the normalized (i.e., n-polyad) Hamiltonian (11.3′), the
actual vibrational angular momentum of the system is measured by the parameter Kl of
(11.1a) and not by the effective parameter cl or c′l. Therefore, we should take the vibrational
Hamiltonian (11.1a), replace Kl with λKl, use constants (11.1b) obtained in [13], and make
λ vary between, for example, 0 and 2. Normalizing and using the (s2, t2, n) representation
(11.3′) with parameters (11.1b) gives

cs
c′l

=
5K2

3 + 18Kt

18Kt + 12Ks −K2
3 − 24λKl

=
51

5 − 16λ
.

It follows that we study the F2-mode system near the s2 limit in the range α ≈ [0.469, 0.655];
see Figure 17.

The stability analysis of RE for λ = 0, i.e., without the vibrational angular momentum
term (p× q)2 in (11.1a), shows that the corresponding normal form Hν3

eff is a Morse function
on CP 2 of the simplest kind. In the A4 molecule model of [13] (with λ = 1 and α ≈ 0.567),
Hν3

eff is of the nonsimplest kind. The transition from the simplest to the nonsimplest case is
clearly related to the (p × q)2 term. The RE energy computed using the normal form of the
Hamiltonian (11.1) as a function of the parameter λ is shown in Figure 18, where we also
indicate the Morse signatures and stability types of the RE. As can be seen in this figure,
the B-type RE, which are shaped as loops in the configuration space (see Figure 16) and
thus induce the maximum vibrational angular momentum, respond largely to the change of λ,
while the energy of the A-type RE remains unchanged. As a consequence, the RE structure
as a whole has to change qualitatively. This change involves two bifurcations.

The first bifurcation happens at λ = 5/16 (α = 0). The B(4) relative equilibrium, which
was unstable with Morse index 1 (Poincaré index +2) for λ < 5/16, becomes stable with
index 0 (+4) for λ > 5/16. At the moment of bifurcation the energies of the B(4) and A(4)

RE are equal, then as λ increases, the energy of B(4) becomes greater. At the same time,
the A(4) relative equilibrium, which was stable with Morse index 0 (+4), becomes doubly
unstable with Morse index 2 (0). In order for the Morse conditions to be satisfied globally, a
new relative equilibrium bifurcates from A(4). This is the Cs ∧ T2 symmetric RE described in
section 5.2.3. The new relative equilibrium is unstable with Morse index 2 (0). Part of the
described bifurcation can be regarded as a so-called “pitchfork bifurcation,” or a bifurcation
with broken symmetry Z2. Indeed, the system restricted to the Cs sphere (see section 5.2.3)
undergoes such bifurcation. Taken to the whole four-dimensional space, this phenomenon is
more complex because it involves the B(4) relative equilibrium.

The second bifurcation happens at λ = 11/8 (α ≈ 0.1). The moment of bifurcation is easy
to notice because the second normal form energies of the B(3) and A(4) RE (i.e., values of the
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s2–limit P4 [13]

Figure 18. Quantum (grey lines) and classical RE (bold lines) correlation diagram for the F2-mode system
described by the one-parameter family of Hamiltonians (11.1) with fixed ε = 1 and classical action n = 10 3

2
.

Quantum polyads are computed for Nf = 10. Morse index and Hamiltonian stability are indicated for each RE;
EE, EH, HH, and FF stand for elliptic–elliptic (stable), elliptic–hyperbolic (unstable), hyperbolic–hyperbolic
(doubly unstable), and focus–focus (complex unstable), respectively. Circles mark level clusters discussed in the
text. To compare to Figure 17, inverse the energy axis.

Hamiltonian (11.3′) shown in Figures 18 and 17) become equal. The B(3) relative equilibrium
undergoes a Hamiltonian Hopf bifurcation [97, 98], and from a focus–focus (complex unstable)
relative equilibrium at λ < 11/8 it becomes elliptic (linearly stable) at λ > 11/8. The Morse
index does not change. Unlike the previous case, the Morse requirements remain satisfied
globally and there is no need for changing the number and/or stability of other RE.

Information on the RE of the system with Hamiltonian (11.1) can be used to characterize
the spectrum of the corresponding quantum system as proposed in section 5.4.3. We consider
the RE energies as functions of the action n and compare them to the quantum energy levels
(see Figure 19). Levels with the same quantum number Nf form a polyad whose structure can
be related to the reciprocal RE energies for corresponding classical action n = Nf + 3

2 . Like
RE, polyads are described using the normalized Hamiltonian Hν3

eff , where we can distinguish
between “scalar” and “splitting” terms. The former depend only on n and describe an average
increase in energy; the latter describe the internal structure of polyads. In the simplest
approximation given by the second order normal form (11.3′), or the Hecht Hamiltonian, the
internal structure of polyads is described by one-parameter α; see Figure 18.

Provided that the model potential of the P4 molecule [13] is qualitatively correct, the ν3

polyads of P4 should correspond to the value of α ≈ 0.6 near the so-called s2 limit. The
most characteristic feature of the ν3 polyads with such α is the presence of level clusters at
the A(3) end (maximum in Figure 17 and minimum in Figures 18 and 19). The limiting A(3)

cluster has four levels and in the case of Nf = 10 decomposes into symmetry components
A+F (Figure 18). At higher Nf = 15 (Figure 19) we can even see the second cluster of eight
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Figure 19. Spectrum of quantum levels and energies of the RE of the F2-mode system with Hamilto-
nian (11.1) with ε = 1 and λ = 0 (left), λ = 1 (right). Circles mark Nf = 15 level clusters discussed in the
text, and classical RE energy is plotted for n = Nf + 3

2
.

levels with components F + F + E. As can be seen in Figures 18 and 19, the A(3) clusters
remain insensitive to large variations of the structure parameter α or λ. The situation is more
unclear at the opposite energy end of the ν3 polyads. If, as predicted, α > 1

2 , then the B(4)

clusters of six levels should appear as shown in Figure 18 (top right) and 19 (topmost level
of the Nf = 10, . . . , 15 polyads). They decompose as A + F + E for Nf = 10 and F + F for
Nf = 15. If, however, α for P4 turns out to be sufficiently smaller than 1

2 , then we should

expect A(4) clusters of three levels (such as the lowest energy levels of the Nf = 10 polyad
for α = 0.4 in Figure 17). Furthermore, if the B(3) relative equilibrium becomes sufficiently
stable, a corresponding eight-fold cluster might also show up.

Several aspects should be taken into account in order to continue our analysis of the ν3

polyad structure presented in this paper. A simple analysis based on energy separation fails as
different systems of localized states overlap, and complimentary information on expectation
values of characteristic dynamical invariants should be used. Degeneracy of quantum states
caused by symmetry can either enhance or obscure the presence of level clusters. The position
of the limiting localized state and the corresponding RE depends on the stability of the RE
and the relation between n and Nf .

11.2. Rotational structure of the F2-mode polyads. Consider an effective Hamiltonian
Heff commonly used to describe rotational structure of low excited F2-mode vibrations. In
the spectroscopic notation of Table 25, this Hamiltonian can be written as

Heff = ωfnf + Bj2 −Dj4 − h
2(0,A1)
ff

4

3
nf j

2(11.4a)

+ h
1(1,F1)
ff H

1(1,F1)
ff +

∑
Γ=E,F2

h
2(2,Γ)
ff H

2(2,Γ)
ff(11.4b)
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+
∑

K=1,3

h
3(K,F1)
ff H

3(K,F1)
ff −

√
30

8
DtH

4(4,A1),(11.4c)

where ωf is harmonic frequency of the F2 mode, B is the rotational constant of the molecule
(for a tetrahedral molecule A4 with four atoms of mass m whose equilibrium positions lie at
a distance R from the center of mass, the constant B equals 1/(2mR2)), and hff , D, and Dt

are parameters of higher order terms in the reduced Hamiltonian. We can omit the terms
(11.4a), which have constant value in the reduced system. The energies of fixed RE can be
found straightforwardly as values of the Heff in (11.4) at the points listed in Table 27.

To find the two remaining RE, we restrict Heff in (11.4) to the Cs-invariant sphere using
the definition of this sphere in Table 28 and express the result as a function of dynamical
variables X of the Cs restricted system,

HCs
eff = b(J)X1 − a(J)X3 + c(J,Nf ),(11.5)

where

a =
√

2h
2(2,E)
ff J2 − 2√

3
h

2(2,F2)
ff J2,

b = −2
√

2√
3

h
1(1,F1)
ff J +

[
8
√

2√
3

h
3(1,F1)
ff +

4√
5
h

3(3,F1)
ff

]
J3

√
3
,

c = DtJ
4 +

√
2

6
h

2(2,E)
ff NfJ

2 +
1√
3
h

2(2,F2)
ff NfJ

2.

Note that HCs
eff is linear in X and that it is invariant with regard to Td × T and to its

subgroup T2 and therefore cannot depend linearly on X2. Equations of motion (10.1) for this
Hamiltonian are very simple:

Ẋ = (−aX2, bX3 + aX1,−bX2).

Setting X2 = 0 in these equations gives the condition for an equilibrium point of HCs
eff on the

T2-invariant circle,

bX3 + aX1 = 0,

which should be satisfied together with the defining equation of the circle

X2
1 + X2

3 =
1

4
N2

f .

Since a(J) and b(J) depend differently on J ; the two solutions

(X1, X2, X3) = ± Nf

2
√
b2 + a2

(b, 0,−a)

move along the circle when J changes: when J is small and b � a they are close to the point
where X3 = 0; at large J they approach X1 = 0. The energies of these RE are

±Nf

2

√
b(J)2 + a(J)2 + c(J,Nf ).(11.6)
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Table 35
Energy of rotation–vibration RE in the case of low excited F2-mode vibrations of a tetrahedral molecule A4.

Point50 Energy of RE (values of Heff)

A(2) −
√

2

3
h

2(2,E)
ff NfJ

2 − 2√
3
h

2(2,F2)
ff NfJ

2 + DtJ
4

A(3) −8
√

3

9
h

2(2,F2)
ff NfJ

2 +
8

3
DtJ

4

A(4) −4
√

2

3
h

2(2,E)
ff NfJ

2 − 4DtJ
4

B,C(3) ∓
√

2√
3
h

1(1,F1)
ff NfJ +

4
√

3

9
h

2(2,F2)
ff NfJ

2

±4
√

2

3

(
h

3(1,F1)
ff +

2
√

2√
15

h
3(3,F1)
ff

)
NfJ

3 +
8

3
DtJ

4

B,C(4) ∓
√

2√
3
h

1(1,F1)
ff NfJ +

2
√

2

3
h

2(2,E)
ff NfJ

2

±4
√

2

3

(
h

3(1,F1)
ff −

√
2√
15

h
3(3,F1)
ff

)
NfJ

3 − 4DtJ
4

The simplest way to compare the energies of RE in Table 35 and (11.6) to molecular energy
levels is to plot all of them in a form of an energy-momentum diagram for fixed vibrational
integral Nf . In the lowest excited vibrational quantum state of the ν3 mode, also called the

fundamental or harmonic state, the quantum number N̂f , equals 1 which corresponds to the
classical value Nf = 1 + 3

2 .
We illustrate our results using the Hamiltonian Heff (without the scalar part (11.4a)),

which describes the ν3 vibration of the CH4 molecule. Parameters of this Hamiltonian can be
taken from [92].

h
1(1,F1)
ff −0.706007 Dt 4.42516 × 10−6

h
2(2,E)
ff 1.5760 × 10−2 h

2(2,F2)
ff −0.7220 × 10−2

h
3(1,F1)
ff −0.635 × 10−4 h

3(3,F1)
ff −0.187 × 10−4

The quantum energy level spectrum of the ν3 = 1 state is shown schematically by the shaded
area. This spectrum exhibits three characteristic branches formed due to the first order
Coriolis interaction [81]. As shown in section 7.2.5 and Table 25, the term describing this
interaction in the reduced system is the scalar product (t, j), which has spherical symmetry,
i.e., to the first order; the energy depends on the angle between the 3-vectors t and j. Assuming
H1 ∝ (t, j), as in the case of CH4, the energy is maximal, minimal, or zero when t and
j are parallel (RE of type B), antiparallel (RE of type C), or orthogonal (RE of type A),
respectively. Since the quantity (t, j) is (approximately) conserved, we can introduce another
angular momentum r = j − t and represent the first order energy as function of r2, t2, and j2

called “rotational,” “vibrational,” and total angular momenta, respectively. In the quantum

50Fixed points of the Td × T group action on CP 2 × CP 1 × S
2 defined in Table 27; signs + and − in the

notation ± (equivalently, − and + in ∓) correspond to points B and C, respectively.
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Figure 20. Energies of rotation–vibration RE for the ν3 mode of the CH4 molecule. Colored lines show
classical energies (see Table 35 and equation (11.6)) with Nf set to 5

2
; indices (2, 3, 4) on the right give the

symmetry of the corresponding RE. Thin black lines show the same energies with Nf = 1; shaded area represents
quantum multiplets.

state with N̂f = 1, the quantum number t̂ equals 1 and the quantum number r̂ takes the
values of ĵ− 1, ĵ, and ĵ+1. These values label the three Coriolis branches of the ν3 = 1 state.

Bold lines in Figure 20 represent energies of the nine RE (two noncritical orbits are given
in (11.6) and seven critical orbits in Table 35) with Nf set to its classical value 1+ 3

2 . The same
energies—but with Nf = 1—are shown by thin lines, which border exactly the three rotational
branches of quantum levels. This suggests a straightforward semiclassical interpretation. The
RE energy with Nf = 5

2 gives classical limit (classical extremum) energy for rotation–vibration
levels; with Nf = 1 we approximate vibrational quantum energy of the state localized near
the corresponding RE and obtain classical limit energy for the rotational structure only. In
the case of the Hamiltonian (11.4) whose vibrational part is quadratic, this approximation
matches exactly the extrema of the so-called “rotational energy surfaces” [32, 36, 35], which
are obtained when all rotational operators in Heff are replaced by their quantum analogues.
Further examples can be found in [58, 13, 12].

12. Discussion of the results. This paper, together with [13], reports on the first sub-
stantial attempt to extend the analysis of molecular energy levels based on RE (also known as
nonlinear normal modes and, in some cases, local modes, principal periodic orbits, stationary
axes of rotation, etc.) from simple, often model systems to complex rotation–vibration Hamil-
tonians of real molecules. Our predecessors (see section 1) studied classical vibrational systems
with two or three degrees of freedom [14, 15, 16, 77, 70], notably a great number of triatomic
molecules [19, 22, 23, 24, 25, 26, 27, 99, 100, 101, 102, 103, 104, 105, 106], and rotational sys-
tems [31, 32, 33, 34, 37, 38, 55, 28, 29, 12]. Generalization of these studies to combined systems
led to “hybrid” quantum classical systems [36, 35, 41, 42, 43, 56, 107, 108, 109]. We take the
next step by studying the whole of the combined system classically and using the results for
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the interpretation and prediction of the corresponding quantum system. We consider the ex-
ample of the rotating tetahedral molecule A4 with six internal vibrational degrees of freedom,
a system which is, arguably, at the limit of molecular systems whose rotation–vibration energy
levels have already been studied in detail.

Our principal molecular result is the relation of rotation–vibration RE and the structure
of the rotation–vibration energy level spectrum. Thus, we show how extremal quantum states
in the rotation–vibration multiplet are associated with particular periodic rotation–vibration
motion of the molecule. We took advantage of the simplicity of the classical RE description in
order to analyze the structure of highly excited energy levels in different limits. In particular,
we compared the structure of rotationally excited polyads to that in the case of high purely
vibrational excitation. We found that when the interaction of the rotational and vibrational
subsystems is significant, RE become qualitatively different from what can be expected for
(or deduced from) the separable system. We predicted qualitative modifications of the system
of RE and then followed it with a concrete example. This is our main mathematical result.

We also took advantage of the rich topological structure and high symmetry of our exam-
ple system in order to predict and explain many important basic qualitative features of this
complex system. Subsequently, we confirmed our predictions quantitatively. In particular we
analyzed existence and stability of rotation–vibration RE. We extend this study to different
parametric limits of molecular potential and corresponding limiting cases of the normalized
system (polyads). Our more specialized mathematical results concern group-theoretical as-
pects of combining two subsystems, in particular the analysis of the group action on the
combined phase space on the basis of the action on individual subspaces. The last, but not
least, is the dynamically invariant formulation of the theory in section 9, which is the weapon
of choice for further analysis of the hidden regular structures of seemingly irregular highly
excited molecular states.
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starting from inter-nuclear potential, European Phys. J. D At. Mol. Opt. Phys., 7 (1999), pp. 199–
209.
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diabolic points, Europhys. Lett., 6 (1988), pp. 573–578.
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teractions dans les molécules toupies sphèriques, Canad. J. Phys., 55 (1977), pp. 1802–1828.



ROTATION–VIBRATION RELATIVE EQUILIBRIA 351
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