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Avant propos

It is a great pleasure for me to introduce these lecture notes. In the
last few years after our first meeting in 1997 I have been constantly
learning from Richard Cushman and am glad to be one of his co-workers.
What I appreciate the most in Richard’s lectures and in his work is
that he presents and studies modern mathematics based on examples of
concrete dynamical systems which he considers in great detail. As such
his approach is very accessible to physicists and practitioners.

The five lectures are presented in the way they were given, except for
interchanging Lecture IV and V back to their intended logical order.
Some comments and discussion are added separately at the end of each
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lecture. The idea of these lecture notes is to give a very informal intro-
duction to Richard’s work. We even tried to preserve some of the style of
Richard’s presentation peppered with such phrases as “don’t be caught
dead in the water”, “you will eat crow”, “sneaky gadget”, “dirty trick”,
“this is deep”, etc. We feel that this personalization is inseparable from
the imprint his lectures left in our heads. We therefore attempted to
take full advantage of the lecture note format, especially since a more
conventional and detailed presentation of the subject can be found in [5]
(known to connoisseurs as “the blue book”).

The title of these lectures originates from a comment of Hans Duis-
termaat on the blue book [5]. He remarked that Lagrange was proud to
have stated in the front matter to Mécanique Analytique (Paris, 1788)
that his book had no pictures. Hans suggested that in the dedication to
the blue book should appear the statement: “This book uses no polar
coordinates”.

Initially the number of volunteers to write up these notes was larger
and each could choose which lecture was closest to his work and interests.
In the end, Konstantinos worked on the harmonic oscillator and I was
left with practically everything else. Fortunately, Richard himself came
to my rescue. He wrote up the Euler top (I should confess that he used
this as an occasion to further polish his presentation which deviates a bit
from the original lecture) and an appendix which contains his solution
of his “homework” problem. I concentrated on the spherical pendulum
(one of Richard’s favorites) and on the editorial work. Richard Morrison
volunteered as a technical editor and I like to end by citing him :

I have to confess that my understanding of Cushman’s lectures was not maxi-
mal, and indeed I volunteered for this project to motivate my working through
his notes at a more steady pace than had I been doing it purely for fun. ...
given the speed that Cushman lectures and my unfamiliarity with the mathe-
matics at the time, I don’t really have what could be described as a complete
set of accurate figures in my notes from the lectures. On the bright side,
my (somewhat nominal) involvement with this project has meant I have been
motivated to work a little on the notes and increase my understanding (no
doubt they would have been relegated to gathering dust along with many
other things that I have little time for academically).

It seems to me that much of this applies equally to the rest of us.

D. Sadovskíı, Boulogne-sur-Mer
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1 Lectures I and II.
The two-dimensional harmonic oscillator

We will be dealing with ‘simple’ integrable systems: 2D harmonic oscillator,
Euler top, and spherical pendulum. People often ask why Cushman still works
on these examples. He replies: because they are tricky.

1.1 The harmonic oscillator

1.1.1 Preliminaries
Configuration space. The configuration space of the two-dimensional
harmonic oscillator is R2 with coordinates x = (x1, x2).

Phase space. The phase space is T ∗R2 ∼= R4 with coordinates (x, y) =
(x1, x2, y1, y2).

Canonical 1-form. On T ∗R2 the canonical 1-form is

Θ = y1 dx1 + y2 dx2 = 〈y,dx〉.

Symplectic form. The symplectic form on T ∗R2 is the closed nonde-
generate 2-form

ω = −dΘ = dx1 ∧ dy1 + dx2 ∧ dy2 (1.1)

with the matrix representation

ω =
(

dx
dy

)t (
0 I2

−I2 0

) (
dx
dy

)
. (1.2)

Hamiltonian function. The Hamiltonian function of the two dimen-
sional harmonic oscillator is

H : T ∗R2 → R : (x, y) '→ 1
2 (x2

1 + y2
1) + 1

2 (x2
2 + y2

2). (1.3)

Vector field. The corresponding Hamiltonian vector field

XH = 〈X1,
∂

∂x
〉 + 〈X2,

∂

∂y
〉

is computed using XH ω = dH = −X2 dx + X1 dy. We get

X1 =
∂H

∂y
and X2 = −∂H

∂x
. (1.4)

Therefore the equations of motion of the harmonic oscillator are

ẋ = y and ẏ = −x. (1.5)
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Flow. The solution to the above equations is the one parameter family
of transformations

φH
t (x, y) = A(t) =

(
(cos t) I2 −(sin t) I2

(sin t) I2 (cos t) I2

)(
x
y

)
(1.6)

This defines an S1 action on T ∗R2, which is a map from R to Sp(4,R)
that sends t to the 4 × 4 symplectic matrix A(t), which is periodic of
period 2π.

As Poincaré liked to say, formulae are not the answer. This means that we
have not solved our problem yet.

Symplectic group. A real 2n × 2n matrix is symplectic if it satisfies
the relation

AtJA = J. (1.7)

These matrices form a Lie group denoted by Sp(2n,R). The Lie algebra
sp(2n,R) of the symplectic group Sp(2n,R) consists of the Hamiltonian
matrices X that satisfy XtJ + JX = 0.

Conservation of energy. We calculate

LXH H = 〈y,
∂H

∂x
〉 − 〈x,

∂H

∂y
〉 = 〈y, x〉 − 〈x, y〉 = 0 (1.8)

This shows that H is constant along the integral curves of XH .

Invariant manifold. Therefore the manifold

H−1(h) = {(x, y) ∈ R4 x2 + y2 = 2h, h > 0} ∼= S3√
2h

(1.9)

is invariant under the flow of XH .

1.1.2 S1 symmetry.

S1 action on R2. The configuration space R2 is invariant under the
S1 action

S1 × R2 → R2 : (t, x) (→ Rtx,

where Rt is the matrix
(

cos t − sin t
sin t cos t

)

.

Lift. This map lifts to a symplectic action Φt of S1 on phase space
T ∗R2 that sends (x, y) to Φt(x, y) = (Rtx,Rty).
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Generator. This infinitesimal generator of this action is

Y (x, y) =
d

dt t=0

Φt(x, y) = (−x2, x1,−y2, y1). (1.10)

Conservation of angular momentum. The vector field Y is Hamil-
tonian corresponding to the Hamiltonian function

L(x, y) = 〈y, (x2,−x1)〉 = x1y2 − x2y1,

that is, Y = XL. L is readily recognized as the angular momentum.
The hamiltonian of the harmonic oscillator is an integral of XL.

Check. Since H(Φt(x, y)) = H(x, y), we find that

0 = LXLH = {H,L} = −{L,H} = −LXH L. (1.11)

Invariant manifold. Since both H and L are integrals of XH , the
manifold

Mh,! = H−1(h) ∩ L−1(!) (1.12)

is invariant.

What is it? I claim that in most cases it is a 2-torus. How do we derive this?

We have to diagonalize the flow.

1.1.3 The geometry of Mh,!.

Diagonalize L. In order to understand the geometry of the set Mh,!,
we want to find a transformation in Sp(4,R)∩O(4,R) that diagonalizes
L. Such a transformation P is given by

(
x
y

)
=

(
A −B
B A

)(
ξ
η

)
, (1.13)

where A =
(

0 0
1 −1

)
and B =

(−1 −1
0 0

)
.

Transform. In the new coordinates (ξ, η) the functions H and L be-
come

H̃(ξ, η) = (H ◦P )(ξ, η) = 1
2 (η2

1 + ξ2
1 + η2

2 + ξ2
2) (1.14)

and

L̃(ξ, η) = (L ◦P )(ξ, η) = 1
2 (−η2

1 − ξ2
1 + η2

2 + ξ2
2), (1.15)

respectively.
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Level sets. We have

Mh,! = H−1(h) ∩ L−1(!) = H̃−1(h) ∩ L̃−1(!). (1.16)

The level set Mh,! is determined by

η2
2 + ξ2

2 = h + !

η2
1 + ξ2

1 = h − !.

Therefore

Mh,! =






∅, if |!| > h

0, if h = ! = 0
S1, if |!| = h, h > 0
T2, if |!| < h.

(1.17)

Energy-momentum mapping. Define

EM : R4 → R2 : (x, y) %→ (H(x, y), L(x, y)). (1.18)

Obviously EM−1(h, !) = Mh,!.

Bifurcation diagram. We summarize the preceding discussion of the
level sets of the energy-momentum mapping in the bifurcation diagram
that shows the change of topological type of EM−1(h, !) as (h, !) changes,
see figure 1.1.

!

h

S1

S3

T2!
!!"

pt

Fig. 1.1. The bifurcation diagram.
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Regular values of EM. R = {(h, !) ∈ R2 |!| < h, h > 0} is the set of
regular values of the energy-momentum map. For (h, !) ∈ R the fibers
EM−1(h, !) are 2-tori. This is a consequence of the Arnol’d-Liouville
theorem, since dH and dL are linearly independent on EM−1(R), XH

and XL are complete, and EM−1(R) is an open dense subset of T ∗R2.

The Arnol’d-Liouville theorem. (A very powerful result, Avez and
others are somewhere in here too.) We consider a symplectic manifold
(M2n,ω) and a Hamiltonian function H : M 2n → R. Consider a collec-
tion of n functions F1 = H,F2, . . . , Fn such that

1. F1, . . . , Fn are integrals of XH and the corresponding vector fields
XFi have flows which are defined for all time.

2. {Fi, Fj} = 0 for all i, j.
3. dF1 ∧ · · · ∧ dFn $= 0 on an open dense subset of M 2n.

Define the momentum map EM : M 2n → Rn : x → (F1(x), . . . , Fn(x)).
If

4. the set of regular values R of EM is a nonempty open subset of
Rn, and

5. for c ∈ R, the set EM−1(c) is compact1 and connected,

then EM−1(c) is an n-torus.

The Arnol’d-Liouville theorem is boring, because it tells us everything there
is to know about connected components of fibers of the energy momentum
mapping corresponding to regular values. But what about the singular values?
Knowing all individual fibers is not going to finish the problem either. We
should also understand how these fibers fit together.

At this point we know the topological type of each fiber of the energy-
momentum mapping of the harmonic oscillator, but we can not say
anything about the way that S3 is made up from 2 circles and a bunch
of 2-tori. This is the question that we study next.

1.2 U(2) momentum map

Quadratic integrals. We now find all the quadratic integrals of XH .
Any quadratic function on R4 can be expressed as

F (x, y) = 1
2

(
x
y

)t (
−B At

A C

)(
x
y

)
(1.19)

1 Compactness is needed to make sure that near a given torus we should find other
tori on which the motion is also quasi-periodic.
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where A, B and C are 2 × 2 matrices with B = Bt and C = Ct.

Hamiltonian vector field. The corresponding hamiltonian vector field
is

XF (x, y) =
(

A B
C −At

)(
x
y

)
(1.20)

where XF ∈ sp(4,R).

Statement. For any two quadratic functions F and H

0 = LXH F = {F,H} ⇔ [XH ,XF ] = 0. (1.21)

Application. When XH =
(

0 −I
I 0

)

, XF =
(

A C
B −At

)

and 0 =

[XH ,XF ], then

XF =
(

A −B
B A

)
, (1.22)

where A, B are 2 × 2 real matrices such that A = −At and B = Bt.

The Lie algebra u(2). By definition

u(2) = {A ∈ gl(2,C) Āt + A = 0} (1.23)

Setting A = A + iB we see that the set of solutions (1.22) is isomorphic
to u(2) (the Lie algebra of U(2)).

Hamiltonian. Consider the linear vector field Xv(z) = v(z) with v ∈
sp(4,R), then Xv is hamiltonian with hamiltonian function

Fv(z) = 1
2 ω(v(z), z) (1.24)

Therefore if v is of the form (1.22), then Fv is an integral of XH . Let Q
be the set of quadratic integrals of XH .

A basis for Q. Since Q is isomorphic to u(2) we can find a basis for Q
by taking a basis of u(2) and then tranforming it. We select the following
basis for u(2):

ε1 = ( 0 i
i 0 ) ε2 =

(
0 −1
1 0

)
ε3 =

(
i 0
0 −i

)
ε4 = ( i 0

0 i ) . (1.25)
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and then take the corresponding Hamiltonian matrices in sp(4,R) and
their Hamiltonian functions. This way we get the basis

w1(x, y) = x1x2 + y1y2

w2(x, y) = x1y2 − x2y1

w3(x, y) = 1/2(x2
1 + y2

1 − x2
2 − y2

2)
w4(x, y) = 1/2(x2

1 + x2
2 + y2

1 + y2
2),

(1.26)

for Q. We see that Q with the usual Poisson bracket is a Lie algebra
isomorphic to u(2). The commutation relations between the four basis
functions wi are given in the following table

{wi, wj} w1 w2 w3 w4

w1 0 2w3 −2w1 0
w2 −2w3 0 2w2 0
w3 2w1 −2w2 0 0
w4 0 0 0 0

The Lie group U(2). By definition

U(2) = {u ∈ GL(2,C) ūtu = I}
= {

(
a −b
b a

)
∈ GL(4,R) ata + btb = I, atb = bta, a, b ∈ GL(2,R)}

∼= Sp(4,R) ∩ O(4,R)
(1.27)

Consider the linear action Φ : U(2) × R4 → R4 : (u, z = (x, y)) '→ u(z).
Φu is a linear symplectic map on (R4,ω).

Flow. If u ∈ u(2), then Φexp tu is the flow of the linear hamiltonian
vector field

Xu(z) =
d

dt t=0

Φexp tuz = u(z). (1.28)

Associated to Xu is the hamiltonian function

Ju(z) = 1
2 ω(u(z), z). (1.29)

The function Ju depends linearly on u.
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Momentum map. We define the U(2) momentum map J : R4 → u(2)∗

of the U(2) action Φ to be J(x, y)(u) = Ju(x, y). If E∗
j is the dual basis

of u(2)∗ then

J(x, y) =
∑

j

wj(x, y)E∗
j . (1.30)

J intertwines the linear action of U(2) on R4 with the coadjoint action
of U(2) on u(2)∗, that is,

J(Uz) = Adt
U−1J(z). (1.31)

Some people call the coadjoint action the dual action. Actually it is the
contragradient action.

Check.

J(Uz)u = Ju(Uz) = 1
2 ω(u(Uz), Uz)

= ω(U−1uUz, z) = JU−1uU (z) = J(z)(U−1uU)
= J(z)(AdU−1u) = Adt

U−1(J(z)u). !

In the original problem we saw only S1 symmetry which acted on the config-
uration space. Now we found a larger symmetry which acts on phase space.

Killing form. By definition the Killing form on u(2) is

k : u(2) × u(2) → C : (u, v) #→ − 1
2 trace(uv̄t). (1.32)

Let J̃ : R4 → u(2) : z #→ k! ◦J(z). Then

J̃(z) = (w1(z), w2(z), w3(z), w4(z))

because the εj ’s form an orthonormal basis with respect to k.

1.3 Hopf fibration

Hopf map. Define the Hopf map (formerly known as J̃) by

H : R4 → R4 : z = (x, y) #→ (w1(z), w2(z), w3(z), w4(z)). (1.33)

Obviously

w2
1 + w2

2 + w2
3 = w2

4. (1.34)
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Hopf fibration. Restricting H to the sphere

S3√
2h

= {(x, y) ∈ R4 x2
1 + x2

2 + y2
1 + y2

2 = 2h} (1.35)

we get the Hopf fibration

F : S3√
2h

→ S2
h : z = (x, y) #→ w = (w1(z), w2(z), w3(z)) (1.36)

where

S2
h = {(w1, w2, w3) ∈ R3 w2

1 + w2
2 + w2

3 = h2}. (1.37)

1.3.1 Properties of the Hopf fibration

Property 1. Let w ∈ S2
h. Then F−1(w) is a great circle on S3√

2h
.

Proof.
Case 1. w ∈ S2

h − {(0, 0,−h)}. Suppose (x, y) ∈ F−1(w). Since x2
1 +

y2
1 + x2

2 + y2
2 = 2h and x2

1 + y2
1 − x2

2 − y2
2 = 2w3 it follows that x2

1 + y2
1 =

h + w3 > 0. Therefore we may solve the linear equations
(

x1 y1

−y1 x1

)(
x2

y2

)
=

(
w1

w2

)
(1.38)

to obtain

w1x1 − w2y1 + (h + w3)x2 = 0
w2x1 + w1y1 + (h + w3)y2 = 0.

The above equations define a 2-plane Πw in R4, since
(

w1 −w2 h+w3 0
w2 w1 0 h+w3

)

has rank 2. Hence F−1(w) ⊆ Πw∩S3√
2h

. Reversing the argument shows
that Πw ∩ S3√

2h
⊆ F−1(w).

Case 2. w = (0, 0,−h). Then x2
1 + y2

1 = 0 which implies x1 = y1 = 0.
Thus

F−1(w) = {(0, x2, 0, y2) ∈ R4 x2
2 + y2

2 = 2h}, (1.39)

which is a great circle and it is S3√
2h

∩ {x1 = y1 = 0}. !

Consequence 1. Each fiber of the Hopf fibration is a single orbit of
the harmonic oscillator of energy h. In other words, the orbit space
H−1(h)/S1 of the harmonic oscillator of energy h is S2

h.

Property 2. Let w, v ∈ S2
h with w '= v. Then F−1(w) and F−1(v) are

linked once in S3√
2h

.
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Proof. Since v != w, the 2-planes Πv and Πw are transverse, that is,
Πv ∩ Πw = {0}. Let Π be any 3-plane containing Πw. Then Πv !⊆ Π,
so Πv ∩ Π = !v which is a line through the origin. Π ∩ S3√

2h
is a great

2-sphere S2√
2h

with equator Πw ∩S3√
2h

. Let H+ be an open hemisphere
of S2√

2h
whose closure has boundary Πw ∩S3√

2h
. Since !v ∩Πw = {0}, !v

intersects H+ at one point p. Hence the great circle Πv∩S3√
2h

intersects
H+ only at p. Thus the fibers F−1(v) and F−1(w) are linked once in
S3√

2h
. !

Consequence 2. There is no global Poincaré section for the flow of XH

on H−1(h).

Proof. Suppose that a 2-disc D2 ⊆ S3√
2h

is a global cross section. Since
every orbit of XH on S3√

2h
is a circle, it would follow that S3√

2h
is

homeomorphic to D2 × S1. But two distinct orbits of XH , are two
distinct fibers of the Hopf fibration. Therefore they are linked in S3√

2h

but they would be unlinked in D2×S1. This is impossible if these sets are
topologically the same. The same argument works for any topological
2-manifold in S3√

2h
. !

Consequence 3. The orbit space H−1(h)/S1 is not a submanifold of
H−1(h).

Proof. See the last sentence of the proof of consequence 2. !

Consequence 4. We need at least two local Poincaré sections. (In fact,
two are enough. We will see that the orbit space is a 2-sphere. Any S2

requires two charts.)

Visualization. We visualize S3 using stereographic projection. In fig-
ure 1.2 we have drawn the level sets of w1 (the angular momentum).
Each level set is a 2-torus. The two critical points of the energy-
momentum map correspond to the two thick black curves in figure 1.2,
given by (0, 0, t) and (cos t, sin t, 0). Both curves are circles, thinking of
S3 as R3 together with a point at infinity.

Proof of consequence 4. Select any level set ! of w1 with |!| < h and
consider the two open disks A and B in figure 1.3. Each open disk is
a local Poincaré section, since any orbit that begins on one of the disks
crosses the same disk again. !
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Fig. 1.2. Visualization of S3

A
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2
2
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−2−2 −2

1

−1

0

0

0
0

A

B

Fig. 1.3. Poincaré disks used to construct the orbit space (left). The orbit
space H−1(h)/S1 = S2

h (right).

The orbit space. (For all except Boris Zhilinskíı: an orbifold is an orbit
space of a locally free action.) Our local Poincaré sections (figure 1.3,
left) are charts of the orbit space. every orbit intersects at least once one
of the two disks. We glue them together and obtain a 2-sphere. Indeed,
as shown in figure 1.3, left, an orbit that begins on a point q ∈ ∂A will
cross ∂B at a point p exactly once before returning to its initial point.
Identifying q and p gives a 2-sphere, which is the orbit space H−1(h)/S1,
see figure 1.3. The orbit space S2 is not sitting in the energy level S3

(shown in figure 1.2); thus S2 is an abstract manifold (as Hopf showed in
1935). Indeed, every orbit intersects the orbit space S2 transversally. So
if our S2 were a submanifold of S3 then S3 would decompose as S1×S2.
But it does not. Thus S3 is a nontrivial S1 bundle over S2.
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We have completed regular reduction (= Marsden-Weinstein reduction).

1.4 Normalization

1.4.1 Dynamics on the orbit space

Harmonic oscillator symmetry. Consider a map K : T ∗R2 → R
that factors through the u(2) momentum map J̃ : T ∗R2 → R4, that is,
there is a smooth function K̃ : R4 → R such that K(x, y) = J̃ ∗K̃(x, y).
In other words

K(x, y) = K̃(w1(x, y), w2(x, y), w3(x, y), w4(x, y)) (1.40)

Integral. K is an integral of XH , that is, LXH K = 0.

Induced equations of motion on R4. Since {wj , w4} = 0 for j =
1, . . . , 4, we obtain

ẇj = {wj , K̃} =
3∑

k=1

{wj , wk}
∂K̃

∂wk

=
3∑

k=1

3∑

l=1

2εjklwl
∂K̃

∂wk
= 2(∇K̃ × w)j

for j = 1, 2, 3 and ẇ4 = 0.

Restrict to H−1(h). Restricting K̃ to H−1(h) gives

K̃h(w1, w2, w3) = K̃(w1, w2, w3, h). (1.41)

Induced equations of motion on R3. Set w = (w1, w2, w3). Then

ẇ = 2(∇K̃h × w) (1.42)

is satisfied by integral curves of a vector field X on R3.

Invariant manifold. The sphere S2
h is invariant under the flow of the

vector field X.

Check.

LX〈w,w〉 = 2〈w, ẇ〉 = 4〈w,∇K̃h(w) × w〉 = 0. (1.43)
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X is hamiltonian. Consider the matrix of the Poisson structure

W (w) = ({wj , wk}) = 2




0 −w3 w2

w3 0 −w1

−w2 w1 0



 (1.44)

Since kerW (w) = span{w} and TwS2
h = span{w}⊥, the matrix W (w)

∣∣
TwS2

h

is invertible. On S2
h define the symplectic form

ω(w)h(u, v) = 〈W t(w)−1u, v〉.

Since W t(w)y = −2w × y = z we have

w × z = w × (−2w × y) = −2w × (w × y) = −2(w 〈w, y〉 − y 〈w,w〉)
= 2y 〈w,w〉 = 2h2 y,

which implies y = 1
2h2 w × z. Therefore

ωh(w)(u, v) =
1

2h2
〈w × u, v〉 =

1
2h2

〈w, u × v〉. (1.45)

The vector field X is hamiltonian with respect to ωh with hamiltonian
function K̃h, because

ωh(w)(X(w), u) =
1
h2

〈w, (∇K̃h × w) × u〉 =
1
h2

〈w × (∇K̃h × w), u〉

=
1
h2

〈−w 〈∇K̃h, w〉 + ∇K̃h 〈w,w〉, u〉 = 〈∇K̃h, u〉 = dK̃h(w)u,

where u, v ∈ TwS2
h.

Complex variables. On R4 introduce complex variables

zj = xj + iyj z̄j = xj − iyj .

Hamiltonian. The Hamiltonian of the harmonic oscillator becomes

H̃(z1, z2) = 1
2 (z1z̄1 + z2z̄2).

Symplectic form. The symplectic form ω becomes

Ω =
1
2i

(dz1 ∧ dz̄1 + dz2 ∧ dz̄2).
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Vector field. The hamiltonian vector field corresponding to H̃ satisfies

XH̃ Ω = dH̃, (1.46)

where

H̃ = 1
2 (z1 dz̄1 + z2 dz̄2 + z̄1 dz1 + z̄2 dz2).

Using equation (1.46) a calculations shows that

XH̃ = i

(
z1

∂

∂z1
+ z2

∂

∂z2
− z̄1

∂

∂z̄1
− z̄2

∂

∂z̄2

)
.

whose flow is

φH̃
t (z1, z2, z̄1, z̄2) = (eitz1, e

itz2, e
−itz̄1, e

−itz̄2).

Quadratic integrals. In complex coordinates

w1 = Im z1z̄2 w2 = Re z1z̄2

w3 = 1
2 (z1z̄1 − z2z̄2) w4 = 1

2 (z1z̄1 + z2z̄2).
(1.47)

Assertion. The integrals w1, w2, w3, w4 generate the algebra of poly-
nomials invariant under the flow of the harmonic oscillator vector field
XH .

Proof. Consider a monomial M = zj1
1 zj2

2 z̄k1
1 z̄k2

2 such that

0 = LXH̃
M = i(j1 + j2 − k1 − k2)M.

Then M is invariant under the flow φH̃
t if and only if j1 + j2 = k1 + k2.

We write the factors of M in two lists
j1︷ ︸︸ ︷

z1 · · · · · · z1

j2︷ ︸︸ ︷
z2 · · · z2

z̄1 · · · z̄1︸ ︷︷ ︸
k1

z̄2 · · · · · · z̄2︸ ︷︷ ︸
k2

Since these lists have equal length, their entries can be paired off. This
expresses M as a product of z1z̄1, z1z̄2, z2z̄1 and z2z̄2. !

Consequence. By a theorem of Schwarz (a heavy theorem about smooth
invariant functions on [37] ) every smooth integral of XH factors through
J̃ .
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1.5 Normalization of the Hénon-Heiles hamiltonian

Hamiltonian. The Hénon-Heiles hamiltonian is

H : R4 → R : (x, y) "→ 1
2 (y2

1 + y2
2 + x2

1 + x2
2) +

ε

3
(x3

1 − 3x1x
2
2). (1.48)

Normalization. Normalizing H means that we find a symplectic change
of coordinates so that the new Hamiltonian has a two dimensional har-
monic symmetry, that is, it commutes with w4 up to a certain order, see
[11] for more details.

Normalized Hénon-Heiles. The normalized Hénon-Heiles hamilto-
nian up to sixth order is

H = H(2) + ε2H(4) + ε4H(6) + · · · (1.49)

where

H(2) =
1
2
w4

H(4) =
1
48

(7w2
2 − 5w2

4)

H(6) =
1
64

(
−67

54
w3

4 − 7
8
w2

2w4 −
28
9

w3
3 +

28
3

w2
1w3

)
.

(1.50)

1.5.1 The Hénon-Heiles hamiltonian normalized up to 4th order

Restrict. We sit on the constant energy surface w4 = h, that is, on the
set S2

h. The fourth order normalized hamiltonian restricted to S2
h is

Hh = H
∣∣
S2

h
=

h

2
+

ε2

48
(7w2

2 − 5h2). (1.51)

Simplification. Simplify the hamiltonian Hh by removing the additive
constants and rescaling time. We get

Hh = w2
2. (1.52)

Critical points of Hh on S2
h. In order to find the critical points of Hh

on the surface S2
h we solve

(0, 0, 0) = DHh(w) + λDG(w) and G(w) = 0, (1.53)

where

G : R3 → R : (w1, w2, w3) "→ w2
1 + w2

2 + w2
3 − h2.
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Solutions. The system of equations for the critical points is

2λw1 = 0
2w2 + 2λw2 = 0

2λw3 = 0

and the constraint w2
1 + w2

2 + w2
3 = h2. For λ != 0 the solutions of these

equations are w1 = 0, w3 = 0, w2 = ±h, λ = −1. These correspond to
two critical points p± = (0,±h, 0). For λ = 0 the solution is w2 = 0,
w2

1 + w2
3 = h2. This is a critical submanifold of S2

h, which is the heavy
darkened circle in figure 1.4.
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Fig. 1.4. Constant level sets of the reduced Hénon-Heiles Hamiltonian Hh of
order 4 on the reduced phase space S2

h; heavy darkened circle is the critical
set at w2 = 0.

Hessian. The Hessian of Hh

∣∣
S2

h
at the critical points p± is

D2Hh

∣∣
S2

h
(p±) = (D2Hh − D2G)

∣∣
Tp±S2

h
, (1.54)

where TwS2
h = kerDG(w). Since DG(p±) = (0,±2h, 0), we see that

ker DG(w) = span{e1, e3}. Therefore

D2H
∣∣
S2

h
(p±) =

((
0

2
0

)
−

(
2

2
2

))∣∣
span{e1,e3}

= −2I2 (1.55)

and the critical points p± are maxima of Hh on S2
h.

Until 1982 physicists did not know how to carry on since the 4th order system
remained degenerate.
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Our function behaves like a Morse function at the two critical points with
w2 = ±1. These points remain in place and will remain stationary due to
symmetry, a small perturbation will not destroy them. On the contrary,
the critical circle is a nondegenerate Bott-Morse critical submanifold. It
will nearly completely disappear due to the small perturbation of higher
order.

1.5.2 The Hénon-Heiles hamiltonian normalized up to 6th order
Restrict We sit on the constant energy surface S2

h. The sixth order
normalized hamiltonian restricted to S2

h is

Hh = H(2) + ε2H(4) + ε6H(6)

=
7
48

w2
2 +

ε2

64

(
−7h

8
w2

2 − 28
9

w3
3 +

28
3

w2
1w3

)

Critical points. To find the critical points of Hh|S2
h we solve

(0, 0, 0) = DHh(w) + λDG(w) and G(w) = 0 (1.56)

where

G : R3 → R : (w1, w2, w3) #→ w2
1 + w2

2 + w2
3 − h2

as before.

Solutions. The system of equations for the critical points is

7ε2

24
w1w3 + 2λw1 = 0

7
24

w2 −
7ε2h

256
w2 + 2λw2 = 0

7ε2

48
w2

1 − 7ε2

48
w2

3 + 2λw3 = 0.

together with the constraint w2
1 +w2

2 +w2
3 = h2. We search for solutions

where w2 = 0. Set λ = 7ε2µ/24. Then the above system of equations
becomes

w1w2 + 2µw1 = 0
w2

1 − w2
3 + 4µw3 = 0

w2
1 + w2

3 = h2

The solutions of this system are w1 = 0, w3 = ±h, µ = ± 1
2 h and

w1 = ± 1
2

√
3h, w3 = ± 1

2 h, µ = ∓ 1
2 h.
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Geometry. Because of the introduction of the sixth order term, the
nondegenerate critical manifold that we had for the fourth-order hamil-
tonian breaks up into 6 critical points: three of them stable (elliptic)
and three unstable (hyperbolic) that are connected by their stable and
unstable manifolds (figure 1.5). For a geometric explanation of this bi-
furcation see [4]. This picture does not change qualitatively if we add
higher order terms to the hamiltonian.
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Fig. 1.5. Constant level sets of the reduced Hénon-Heiles hamiltonian Hh of
order 6 on the reduced phase space S2

h.

Reconstruction. In the case of the 4th order normalized Hénon-Heiles
hamiltonian, we found two critical points p± = (0,±h, 0) and a critical
manifold w2 = 0. After reconstruction, the critical points become peri-
odic orbits in phase space, while the critical manifold becomes a 2-torus
on which the flow of the normalized hamiltonian has rotation number 0.

In the case of the 6th order normalized Hénon-Heiles hamiltonian, we
found eight critical points. Six of the critical points have w2 = 0 while
the other two are again p± = (0,±h, 0). Three of the critical points with
w2 = 0 are elliptic, while the other three are hyperbolic. The hyperbolic
critical points are connected by their stable and unstable manifolds.
After reconstruction these manifolds form a 2-torus in phase space that
intersects itself three times cleanly along three circles.
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A Comments on lecture I. Hénon-Heiles system

A great number of papers on this system has appeared since the first
publication by Hénon and Heiles in 1964 [22], see [33] for a brief review.
It has served both as a model of a nonintegrable (chaotic) system and
as a test bed for various normalization techniques. Although originat-
ing in astronomy, the Hénon-Heiles system is quite popular in molecular
physics where it has many analogues, such as doubly degenerate vibra-
tions of a triatomic molecule A3 (for example H+

3 [18]) or of a tetrahedral
molecule AB4. Here we discuss aspects of the Hénon-Heiles system re-
lated to its finite symmetry which simplify significantly the analysis in
[3]. Despite extensive work, this paper has been overlooked.
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Fig. A.1. Hénon-Heiles potential V (x) calculated for ε = 0.1 and E/Esaddle =
0.2, 0.45, 0.7,0.9, 1, 1.2, . (left); Relative equilibria (nonlinear normal modes)
of the Hénon-Heiles system reconstructed from the ε8 normal form at the
energy E/Esaddle = 0.9 (right).

The spatial symmetry group of (1.48) is a dihedral group D3. The
full symmetry group is D3 × T where T is a Z2 symmetry of the kind
(q, p) → (q,−p) or equivalently z → z̄, which is often called time rever-
sal or momentum reversal . Operations of the spatial group D3 commute
with the oscillator symmetry S1. Operations which involve T are anti-
symplectic and do not commute with S1.

A.1 Invariants and integrity basis

Dynamical invariants. As in the lecture, we consider quadratic poly-
nomial invariants of the oscillator symmetry. For obscure historical rea-
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sons1, our definition differs by a factor 2, namely,

H0 = 2J = 1
2 (z2z̄2 + z1z̄1) = w4,

J =
(

J1
J2
J3

)
= 1

4

( z2z̄1+z1z̄2
iz2z̄1−iz1z̄2
z2z̄2−z1z̄1

)
= 1

2

( w2
w1

−w3

)
.

The Poisson algebra generated by the components of the 3-vector J is the
standard so(3) with bracket {Ja, Jb} = εabcJc and the Casimir J = |J|
(or H0).

Action of D3 × T . The action of the symmetry group D3 × T on the
components of J is equivalent to the action of the point group D3h of
transformations of R3 with coordinates (J1, J2, J3) [20]. Since J2 is
invariant with respect to any rotation of the initial coordinate plane
(x1, x2), it is convenient to choose J2 along the vertical axis in R3.
Then time reversal T , which sends (J1, J2, J3) to (J1,−J2, J3) (as can
be verified directly), acts as the horizontal reflection plane of D3h.

Integrity basis. Due to the relation

J2
1 + J2

2 + J2
3 = J2 = 1

4 h2. (A.1)

the ring R of invariant polynomials generated by J and (J1, J2, J3) is
not free. To analyze the normalized system we should have the way to
express the normal form Hnf uniquely in terms of (J1, J2, J3, J). The
standard recipe for this is a Gröbner basis. We use a slightly more sophis-
ticated integrity basis which (when it works) has certain advantages. An
integrity basis consists of principal and auxiliary polynomials. The ring
R decomposes as R[J, Ja, Jb] ⊕ Jc R[J, Ja, Jb] meaning that any mem-
ber of R can be written uniquely as a real polynomial in the principal
polynomials {J, Ja, Jb} and Jc times another polynomial in {J, Ja, Jb}.
Using (A.1) any power of J3 can be represented this way.

In general, the number of principal polynomials equals the dimension
of the reduced phase space (which is 2 for S2

h) plus the number of in-
tegrals of motion (we have one such integral J). Since the values of
principal polynomials distinguish orbits of the action of the dynamical
symmetry, they can serve as coordinates for charts of the reduced phase
space, while auxiliary polynomials can be used to distinguish different
charts. Thus for the reduced space S2

J we need two charts Jc > 0 and
Jc < 0 with coordinates (Ja, Jb).
1 Our factors correspond to the quantum mechanical analogue of (A.1) called

Schwinger [38] or boson representation of the angular momentum system.



234 IV No Polar Coordinates

Molien function. An explicit construction of an integrity basis is aided
by knowing the Molien generating function. The generating function
for the polynomials in four initial phase space variables (z1, z2, z̄1, z̄2)
invariant with respect to the S1 oscillator symmetry is

g(λ) = (1 + λ2)/(1 − λ2)3. (A.2)

Here the formal variable λ represents one of {z, z̄}. This function can be
computed directly from Molien’s theorem in representation theory. It
indicates that there are three principal invariants represented by terms
1 − λk in the denominator and one nontrivial auxiliary invariant repre-
sented by terms λk in the numerator. Since k = 2, all invariants are
of degree 2 in {z, z̄}. This kind of information is invaluable in high
dimensional situations.

Fully symmetrized integrity basis. Our polynomials {J1, J2, J3} are
not symmetric with respect to D3 × T . The group D3 × T acts on
(J3, J1, J2) in the same way as D3h acts on (X,Y,Z) in 3-space, that is,
(J3, J1, J2) span the E ⊕ A2 representation of D3h. The Molien gener-
ating function for the D3 × T invariant polynomials in (J1, J2, J3) is

g(E ⊕ A2 → A1;λ) =
1

(1 − λ2)(1 − λ3)
.

This can be obtained straightforwardly from the action of the finite
group D3 × T on (J1, J2, J3). Note that here λ stands for any one of
{J1, J2, J3}. We conclude that the ring of all polynomial invariants of the
combined action of D3×T and oscillator symmetry S1 is freely generated
by (n, µ, ξ), where n is the main oscillator invariant (see (A.1)), and µ
and ξ are polynomials in {J1, J2, J3} of degree 2 and 3 respectively. The
invariants {n, µ, ξ} can be chosen explicitly as follows

n = 2J, µ = J2
2 , ξ = 1

2 J3(3J2
1 − J2

3 ). (A.3)

This means that the normalized Hénon-Heiles Hamiltonian is a function
Hnf(n, µ, ξ) with n later relegated as a parameter. This basic result
of invariant theory has not been appreciated in the numerous studies
on the Hénon-Heiles system, including Cushman’s early work in [7] and
his lecture in Peyresq. Yet, this observation along with the rest of our
comment is entirely in the spirit of Cushman’s contemporary approach
to the analysis of reduced systems [5].
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A.2 Qualitative analysis of the reduced system

Most of the qualitative information on the Hénon-Heiles system pre-
sented in the lecture can be obtained simply from the S2

h topology of
the reduced phase space and the full use of the symmetry group action
on it.

Table A.1. Critical orbits of the D3 × T ∼ D3h action on the reduced
phase space S2

h of the Hénon-Heiles system. The C3 ∧ T 2 subgroup of
D3 × T is generated by C3 and T 2 = C2 ◦ T ; the groups C3 ∧ T 2, D3,
and C3v are isomorphic as abstract groups. “Historic” labels Πk were
introduced for the nonlinear normal modes in [3, 29] and used in [18].

orbit stabilizer ξ/J3 µ/J2 (J3, J1, J2), J

Π7,8 C3 ∧ T 2 0 1 (0, 0,±1)
Π4,5,6 C2 × T −1/2 0 (1, 0, 0), (cos 2π

3 ,± sin 2π
3 , 0)

Π1,2,3 C′
2 × T 1/2 0 (−1, 0, 0), (cos π

3 ,± sin π
3 , 0)

Stratification of the reduced phase space. The action of the sym-
metry group D3 × T on S2

h ⊆ R3 follows from the action of the point
group D3h of transformations acting on R3 with coordinates (X,Y,Z) =
(J3, J1, J2). This action has 8 fixed points which form three critical or-
bits characterized in table A.1. Note the immediate advantage of fully
symmetrized main invariants {ξ, µ} over the coordinates (J3, J1, J2).
The values of (ξ, µ) represent entire orbits of the group action. This
amounts to introducing polar coordinates by the back door, which is a
no no, according to Cushman.

Orbit space. As shown in figure A.2, right, the orbit space O of the
D3 ×T action on S2

h is the semialgebraic variety in R3 with coordinates
(ξ, η, t) defined by

0 ≤ µ

J2
≤ 1 − t2,

|ξ|
J3

≤ 1
2 t3, t ∈ [0, 1].

Each point in the interior of O represents a 12-point generic orbit of the
D3 × T group action. Its three singular boundary points correspond to
critical orbits in table A.1. The other boundary points represent 6-point
orbits with nontrivial stabilizers T or T s. Knowing how D3h acts on
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Fig. A.2. Relative equilibria of the Hénon-Heiles system as stationary points
of the reduced Hamiltonian HJ

nf on the reduced phase space S2
J . On the left we

show HJ
nf as a function on S2

J . The shaded area on the right and central panel
represents the orbit space (orbifold) O of the D3 × T action on S2; straight
lines in the right panel are constant level sets of the simplest D3×T -invariant
Morse Hamiltonian H = µ + εξ.

the S2
h (figure A.2, centre), we see that O is the image of the triangular

petal on S2
h cut out by the three symmetry planes: two vertical planes

intersecting at the angle π/3 and the horizontal plane. Those who prefer
using “pure algebra” (and avoid any scent of polar coordinates) would
do better by considering

J = det
[

∂(µ, ξ, J)
∂(J1, J2, J3)

]
= −6J1J2(3J2

3 − J2
1 ) = 0

and observing that the boundary and singular points of O, that is, its 1
and 0-dimensional strata on S2

h, correspond to simple and double zeroes
of J .

Symmetric Morse functions. We now ask the question: what is a
typical D3 × T symmetric function H on S2

h? We characterize H pri-
marily by finding its set of critical points which in our case correspond
to relative equilibria of our system. Points on the critical orbits are iso-
lated and must be critical points of H. Points in the same orbit are
equivalent and therefore have the same stability. Furthermore, the two
equivalent points Π7,8 must be elliptic (stable) because of their high lo-
cal symmetry. If we further assume that H is a Morse function, that is,
a function with only nondegenerate critical points, and remember that
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Morse’s relation for the Euler characteristic of the 2-sphere is

c0 − c1 + c2 = 2,

where c0, c1, and c2 are the number of maxima, saddle (hyperbolic), and
minima of H, we can conclude that a function H with minimum possible
number of critical points has three equivalent elliptic points and three
equivalent saddle points in addition to Π7,8. One possible such simplest
Morse function is drawn in figure A.2, left.1 It has maxima at Π7,8,
minima at Π1,2,3 and saddle points at Π4,5,6. The other possibility is to
have an oblate shape with two minima at Π7,8 and three maxima. Tra-
jectories of the reduced system shown in figure 1.5 are constant level sets
of H which can be obtained as intersections of the surface in figure A.2
left, and spheres of different radii.2

Simplest polynomial Morse Hamiltonian. The most natural way
to construct the simplest Morse Hamiltonian H explicitly is to consider
H as a polynomial in (µ, ξ) defined on the orbit space O. It can be seen
that a linear function H(µ, ξ) = aµ+ bξ with nonzero a and b is generic.
Indeed, while µ alone is too symmetric (it has axial symmetry S1),
together with the cubic invariant ξ it reproduces all symmetry properties
of D3 × T correctly. The absence of auxiliary integrity basis invariants
also indicates that we need no other terms in H. In general, coefficients
in H(µ, ξ) are functions of the parameter J . Since ξ is of higher degree
in (z, z̄) than µ, the contribution b(J) is likely to be smaller (at least
for low values of J) than a(J). Therefore, the reduced Hénon-Heiles
system at low J should be qualitatively correctly represented by the
level sets of H = µ + εξ where 0 < ε # 1. As shown in figure A.2,
right, the family of constant level sets of such H on the orbifold O has
three exceptional (critical) levels which pass at Π1,2,3, Π4,5,6, and Π7,8.
The extremal levels correspond necessarily to stable relative equilibria,
the critical level at the intermediate energy HΠ4,5,6 contains unstable
relative equilibria and their stable/unstable manifold (separatrix).

1 Plots of this kind are used in molecular physics to represent effective rotational
energy of nonrigid molecules as function of the orientation of the total angular
momentum J (orientation of the rotation axis), they are called rotational energy
surfaces [21]

2 Note that vertical axis in figure A.2 corresponds to the horizontal axis w2 in
figure 1.5.
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Fig. A.3. Image of the energy-momentum map (shaded area), energies of rela-
tive equilibria (solid lines) and quantum energies (circles) of the Hénon-Heiles
system with ε = 0.1 obtained using order ε6 normal form Hnf . The classical
action (momentum) 2J = n equals N + 1 where N is the polyad quantum
number.

A.3 Normal form and remarks on further analysis

Now, after the Hénon-Heiles system has been understood qualitatively,
we compute the normal form

Hnf = n − ε2
( 5

12n2 − 7
3µ

)

− ε4
( 67

432n3 + 7
36µn − 56

9 ξ
)

+ . . . , (A.4)

where the coefficients in the higher orders are listed below.

order 1 µn−2 ξn−3 µ2n−4 µξn−5

ε6n4 − 42229
155520 − 76447

6480
2093
135

115171
1944

ε8n5 − 15624833
18662400 − 11656729

2332800
353843
8100

2217943
233280

6701639
4050

It comes as little surprise that Hnf is a function of (µ, ξ) and param-
eter n. We can use table A.1 to find the energy of Hnf at the critical
points Πk. The results plotted against n give the image of the energy-
momentum map EM of the system, see figure A.3. Note that the EM
map of H = µ + εξ has qualitatively the same image.

We now look at reconstruction. In other words, we lift constant en-
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ergy sets of Hnf on the orbifold O first to the reduced phase space S2
h

and then all the way back to the initial phase space R4. This process is
a good exercise for those who like to understand the role of the D3 × T
symmetry of the system in detail. From the same point of view, it is
helpful to compare the image of the EM map in figure A.3 to that in
figure 1.1 and to reconstruct EM−1(h, n). In the simple case of relative
equilibria Πk, we can describe qualitatively the corresponding periodic
orbits S1 in R4 entirely on the basis of their local symmetry properties
(stabilizers) listed in table A.1. This reproduces the results of [3, 29].
Figure A.1, right, demonstrates how these periodic orbits can be re-
constructed analytically using the inverse normal form transformation.
Finally we can consider quantum analogue of our system on the basis of
the EBK torus quantization, see figure A.3.

We conclude with one more remark. We have seen that much of the
analysis of the normalized Hénon-Heiles system can be simplified, if not
avoided entirely, after we take discrete symmetries into account. Of
course this does not reflect the general situation. In certain cases, typ-
ically when symmetries are low and dimensions are high, the critical
point analysis of the kind presented in the first two lectures becomes
necessary. Rather the general conclusion should be that analyzing sym-
metries helps to distinguish specific properties of the system from more
common dynamical behaviour.

2 Lectures III and V. The Euler top

Physically the Euler top is a rigid body which is spinning around its
(fixed) center of mass with no other forces acting upon it.

2.1 Preliminaries on the rotation group

Rotation group. The group of rotations in R3 is

SO(3) = {A ∈ GL(3,R) AtA = I and detA = 1}.

Lie algebra. The Lie algebra of SO(3) is

so(3) = {X ∈ gl(3,R) X + Xt = 0}

with Lie bracket [X,Y ] = XY − Y X.
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Isomorphism. (R3,×) " (so(3), [ , ]). The isomorphism is

x =




x1

x2

x3



 → x̂ =




0 −x3 x2

x3 0 −x1

−x2 x1 0



 = X.

Properties of this isomorphism. x̂(y) = Xy = x × y, and [x̂, ŷ] =
x̂ × y; for A ∈ SO(3), Ax̂A−1 = Âx.

Inner product on so(3). Define an inner product on so(3) as

k(X,Y ) = − 1
2 trXY t = 〈x̂, ŷ〉,

where 〈 , 〉 is the Euclidean inner product on R3.

2.2 Traditional derivation of the equations of motion

Here we derive the equations of motion of the Euler top in the traditional
nonhamiltonian manner. We use Coriolis’ theorem and the conservation
of angular momentum.

2.2.1 Reference frames

Let V be a three dimensional real vector space with Euclidean inner
product 〈 , 〉. A frame of reference F is a positively oriented orthonormal
basis {f1, f2, f3} of V . A vector v ∈ V looks like the vector x ∈ R3 in
the frame F means v =

∑3
i=1 xi fi. Corresponding to the frame F

is its coframe F∗ = {f∗
1 , f∗

2 , f∗
3 }, where f∗

i (fj) = δij . Suppose that
A = {a1, a2, a3} is another reference frame such that the vector v ∈ V
looks like the vector X ∈ R3, that is, v =

∑3
i=1 Xi ai. Let A be the 3×3

matrix whose ijth entry is f∗
i (aj), that is, aj looks like the jth column of

A in the frame F . Then

x = AX, (2.1)

because

xi = f∗
i (

3∑

j=1

xj fj) = f∗
i (

3∑

j=1

Xj aj) =
3∑

j=1

f∗
i (aj)Xj .

In other words, the vector v ∈ V , which in the frame F looks like the
vector x ∈ R3, in the frame A looks like the vector X.
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2.2.2 Rotating frame
Let

A : R → SO(3) : t "→ A(t) = col(a1(t), a2(t), a3(t)).

Then A = {a1(t), a2(t), a3(t)} is a frame for V whose jth member aj(t)
looks like the jth column of A(t) with respect to the fixed frame F . We
say that A is a frame which rotates with respect to the fixed frame F .

2.2.3 Coriolis’ theorem
Before starting the derivation Richard points out that “Physicists don’t know
how to prove this theorem”. Before a fight between the mathematicians and
physicists in the audience has time to break out Daryl Holm replies “Don’t
mock the alligator until you’ve crosed the river safely.” The lecture continues.

Let x : R → R3 : t "→ x(t) be a differentiable function. Suppose that
Ξ : R → V : t "→ Ξ(t) is a motion in V so that its position Ξ(t) at time
t in the fixed frame F looks like x(t), while its position in the rotating
frame A looks like X(t). Then from (2.1) we obtain

x(t) = A(t)X(t). (2.2)

Differentiating (2.2) gives

dx

dt
= A′(t)X + A(t)

dX

dt
= A′(t)A−1(t)x + A(t)

dX

dt
. (2.3)

The velocity of t "→ Ξ(t) at time t with respect to the fixed frame F
is a vector in V which looks like dx

dt , while with respect to the rotating
frame A it is a vector in V which looks like dX

dt . The skew symmetric
matrix A′(t)A−1(t) is an infinitesimal motion in the fixed frame. The
corresponding vector ω(t) ∈ R3, where

ω̂(t) = A′(t)A−1(t),

is the angular velocity in the fixed frame at time t of the rotating frame.
We can rewrite (2.3) as

dx

dt
− ω(t) × x(t) = A(t)

dX

dt
, (2.4)

which is a form of Coriolis’ theorem (in the fixed frame). Define Ω(t) to
be the vector in R3 which looks like ω(t) in the rotating frame, that is,

ω(t) = A(t)Ω(t). (2.5)

Using the definition of ω(t) we find that

ω̂(t) = A′(t)A−1(t) = A(t)(A−1(t)A′(t))A−1(t).



242 IV No Polar Coordinates

Taking the hat of both sides of (2.5) gives ω̂(t) = A(t)Ω̂(t)A−1(t). Thus

Ω̂(t) = A−1(t)A′(t).

Thus we may rewrite (2.3) as

dx

dt
= A(t)[A−1(t)A′(t)X +

dX

dt
] = A(t)[Ω̂(t)X +

dX

dt
]

= A(t)[Ω(t) × X +
dX

dt
], (2.6)

which is another form of Coriolis’ theorem (in the rotating frame).

Richard says that he has now crosed the river safely.

2.2.4 Constant angular momentum

Suppose we have a rigid body B in R3 made up of a finite number of
point masses mi at position ri, not all on a single line through the origin.
Suppose that the center of mass of B lies at the origin O of R3 and that
B is subjected to no external forces.

Fix the frame E = {e1, e2, e3} consisting of the standard basis vectors
in R3. We call E the space frame. The angular momentum of B with
respect to the space frame is given by

" =
∑

i

mi ri × vi, (2.7)

where vi = dri
dt is the velocity of the ith point mass in B with respect to

the space frame. " is constant throughout the motion of B.

Proof. Differentiating (2.7) gives

d"

dt
=

∑

i

mi
dri

dt
× vi +

∑

i

miri ×
dvi

dt
=

∑

i

ri ×
d(mivi)

dt
=

∑

i

ri ×Fi.

Fi is the total force exerted on the ith point mass.

Fi = F int
i + F ext

i ,

where F int
i and F ext

i is the internal and external forces, respectively.
F int

i =
∑

j #=i F int
ij , where F int

ij is the force exerted on the ith particle by
the jth particle of the body. But action and reaction are equal and lie
along a line joining the ith and jth particle, that is,

0 = ri × F int
ij + rj × F int

ji = (ri − rj) × F int
ij .
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Consequently,
∑

i

ri × F int
i =

∑

i,j
i!=j

ri × F int
ij =

∑

i<j

ri × F int
ij +

∑

j<i

ri × F int
ij

=
∑

i<j

(ri × F int
ij − rj × F int

ij ) = 0.

Thus
d!

dt
=

∑

i

ri × Fi =
∑

i

ri × (F int
i + F ext

i ) =
∑

i

ri × F ext
i = 0. !

2.2.5 Euler’s equations
Attach an orthonormal frame to B with origin at O in R3. As B rotates,
the attached frame rotates with it and thus defines a differentiable curve
R → SO(3) : t $→ A(t). The column vectors of A(t) define the body
frame. Let L = A(t)−1! be the angular momentum in the body frame.
Coriolis’ formula (2.6) applied to ! gives

d!

dt
= A(t)[Ω(t) × L +

dL

dt
], (2.8)

Since d!
dt = 0, we obtain

dL

dt
= L × Ω, (2.9)

where L is the angular momentum in the body frame and Ω is the
angular velocity of the body in the body frame. Now

L = I(Ω). (2.10)

I is the moment of inertia tensor of B in the body frame. I does not
depend on t as the body is rigid, which means that the positions and the
magnitudes of the masses are constant in the body frame. Thus (2.9)
can be written as

I(Ω̇) = I(Ω) × Ω, (2.11)

which are called Euler’s equations. We may choose the body frame
so that {e1, e2, e3} are the principal axes of B, that is, I(ej) = Ij ej

for j = 1, 2, 3. From now on we assume that 0 < I1 < I2 < I3. In
components (2.11) reads

I1 Ω̇1 = (I2 − I3)Ω2Ω3

I2 Ω̇2 = (I3 − I1)Ω1Ω3 (2.12)
I3 Ω̇3 = (I1 − I2)Ω1Ω2.
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Let a = I−1
1 , b = I−1

2 , c = I−1
3 (so 0 < c < b < a) and let pj = IjΩj .

Then (2.12) becomes

ṗ1 = −(b − c) p2p3

ṗ2 = (a − c) p1p3 (2.13)
ṗ3 = −(a − b) p1p2.

2.3 Qualitative behavior of solutions of Euler’s equations

To describe the qualitative behavior of the solutions of Euler’s equations
(2.11), we note that the functions

E = 1
2 〈IΩ,Ω〉 = 1

2 〈I
−1(p), p〉 (2.14)

L = 〈IΩ, IΩ〉 = 〈p, p〉 (2.15)

are constant on the solutions of (2.11) and thus are constant on the
solutions of (2.13).

Check.

Ė = 〈I(Ω̇),Ω〉 = 〈I(Ω) × Ω,Ω〉 = 0

and

L̇ = 2 〈I(Ω̇), I(Ω)〉 = 〈I(Ω) × Ω, I(Ω)〉 = 0. !

The function E is a Morse function on the 2-sphere S2
|!| defined by

〈p, p〉 = |!|2. It has six nondegenerate critical points: 2 of Morse index
0, 2 of index 1, and 2 of index 0.

Check. If p0 is a critical point of E on S2
|!|, then

0 = dE(p0) − λ0 dL(p0) = (I−1 − λ0 id)p0 and 〈p0, p0〉 = |!|2.

Then p0 is an eigenvector of length |!| of I−1 = diag(a, b, c) correspond-
ing to the eigenvalue λ0. Thus

p0 =






±|!|e1, when λ0 = a
±|!|e2, when λ0 = b
±|!|e3, when λ0 = c.
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The Hessian of E
∣∣
S2

|!|
at the critical point p0 is

D2(E
∣∣
S2

|!|
)(p0) = (D2E(p0) − λ0 D2L(p0))

∣∣
Tp0S2

|!|

= (I−1 − λ0 id)
∣∣
Tp0S2

|!|

=






diag(b − a, c − a), p0 = ±|"|e1

diag(a − b, c − b), p0 = ±|"|e2

diag(a − c, b − c), p0 = ±|"|e3.

Its Morse index is 2, 1, 0, if p0 is ±|"|e1, ±|"|e2, and ±|"|e3, respectively.
!

According to the Morse lemma, the level sets of E
∣∣
S2

|!|
near p0 = ±|"|e1

or ±|"|e3 are circles, whereas those near p0 = ±|"|e2 are hyperbolas. In
fact the 1

2 b|"|2-level set of E
∣∣
S2

|!|
is

1
2 (a p2

1 + b p2
2 + c p2

3) = 1
2 b

p2
1 + p2

2 + p2
3 = |"|2.

Multiplying the first equation above by |"|2 and subtracting 1
2 b times

the second equation gives

0 = 1
2 (a − b)p2

1 − 1
2 (b − c)p2

2

=1
2 (

√
a − b p1 +

√
b − c p2)(

√
a − b p1 −

√
b − c p2).

This means that the 1
2 b|"|2-level set of E on S2

|!| is the intersection of S2
|!|

with two transverse 2-planes (which intersect along the p3-axis). Thus
the 1

2 b|"|2-level set of E
∣∣
S2

|!|
is the union of two great circles. All other

level sets are diffeomorphic to two circles, except for 1
2 a|"|2 and 1

2 c|"|2,
which are two distinct points.

2.4 Quantitative behavior of solutions of Euler’s equations

2.4.1 A crash course in Jacobi elliptic functions

In order to solve Euler’s equations quantitatively, we need Jacobi elliptic
functions. Consider the system

ẋ = yz
ẏ = −xz
ż = −k2xy,

(2.16)
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on R3, where the parameter k lies in (0, 1). Define the Jacobi elliptic
functions sn, cn, and dn as the solution

t → (x(t), y(t), z(t)) = (sn(t; k), cn(t; k),dn(t; k)) (2.17)

of (2.16) with initial condition (0, 1, 1). The functions

x2 + y2 and k2x2 + z2

are integrals of (2.16). Hence

sn2(t; k) + cn2(t; k) = 1
k2sn2(t; k) + dn2(t; k) = 1,

which implies that for all t ∈ R

|sn(t; k)| ≤ 1, |cn(t; k)| ≤ 1 and k′ =
√

1 − k2 ≤ dn(t; k) ≤ 1. (2.18)

Since x2 + y2 = 1 and k2x2 + z2 = 1, we may drop the equations for dy
dt

and dz
dt from (2.16) and obtain

dx

dt
=

√
(1 − x2)(1 − k2x2). (2.19)

Since the right hand side of (2.19) is positive when x ∈ (−1, 1), we find
that

x %→ t(x) =
∫ x

0

dx√
(1 − x2)(1 − k2x2)

(2.20)

is a smooth inverse to the function

x : R → (−1, 1) : t %→ x(t) = sn(t; k).

Because t(±1) = ±K(k) = ±K is finite, the function x is continuous
on [−1, 1]. Thus sn(K; k) = 1, which implies that cn(K; k) = 0 and
dn(K; k) = k′. From the definition of t(x) it follows that for k = 0 and
1 the Jacobi elliptic functions degenerate to trigonometric functions.
Explicitly, for k = 0 we have

sn(t; 0) = sin t, cn(t; 0) = cos t, and dn(t; 0) = 1;

while for k = 1 we have

sn(t; 1) = tanh t, cn(t; 1) = sech t, and dn(t; 1) = sech t.

We now show that sn, cn, and dn are periodic. Let

ξ(t) =
cn(t; k)
dn(t; k)

, η(t) = −k′ sn(t; k)
dn(t; k)

, and ζ(t) = k′ 1
dn(t; k)

.
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Then t → (ξ(t), η(t), ζ(t)) is an integral curve of (2.16) with initial con-
dition (1, 0, k′). But so is t → (sn(t + K; k), cn(t + K; k), dn(t + K; k)).
Hence

sn(t + K; k) =
cn(t; k)
dn(t; k)

cn(t + K; k) = −k′ sn(t; k)
dn(t; k)

dn(t + K; k) = k′ 1
dn(t; k)

.

This implies that sn(t; k) and cn(t; k) are periodic of period 4K(k), while
dn(t; k) is periodic of period 2K(k).

2.4.2 Explicit solutions of Euler’s equations

Using Jacobi elliptic functions we find explicit solutions of Euler’s equa-
tions. There are two cases which correspond to the two types of stable
relative equilibria, see figure 2.5. This is a bit messy.

Case 1. |$|2b ≥ 2h ≥ |$|2c.

Solving

a p2
1 + b p2

2 + c p2
3 = 2h

p2
1 + p2

2 + p2
3 = |$|2

for p2
1 and p2

3 we obtain

p2
1 =

1
a − c

(2h − |$|2c − (b − c)p2
2)

p2
3 =

1
a − c

(−2h + |$|2a − (a − b)p2
2).

(2.21)

Thus the equation ṗ2 = (a − c) p1p3 becomes

dp2

dt
=

√
(2h − |$|2c − (b − c)p2

2)(−2h + |$|2a − (a − b)p2
2). (2.22)

We now transform (2.22) into (2.19). Let

τ = t n, where n =
√

(b − c)(a|$|2 − 2h)

x = p2

√
b − c

2h − |$|2c
,
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and

k2 =
(a − b)(2h − |!|2c)
(b − c)(|!|2a − 2h)

.

Then

dτ

dx
=

dτ

dt
/

(
dx

dp2

dp2

dt

)

=

√
(b − c)(|!|2a − 2h)

√
b−c

2h−|!|2c

√
2h − |!|2c − (b − c)p2

2)(|!|
2a − 2h − (a − b)p2

2)

=
1√

(1 − x2)(1 − k2x2)
. (2.23)

Consequently, x(τ) = sn(τ ; k) = sn(nt; k). From (2.23) and (2.21) we
obtain

p1(t) = A cn(nt; k)
p2(t) = B sn(nt; k)
p3(t) = C dn(nt; k),

where

A2 =
2h − |!|2c

a − c
, B2 =

2h − |!|2c
b − c

, and C2 =
|!|2a − 2h

a − c
.

The signs of the square roots are chosen so that t "→ (p1(t), p2(t), p3(t))
sweeps out a connected component of E−1(h) ∩ L−1(|!|2).

Case 2. |!|2a ≥ 2h ≥ |!|2b.

A similar argument gives

p1(t) = Adn(nt; k)
p2(t) = B sn(nt; k)
p3(t) = C cn(nt; k),

where

n =
√

(a − b)(2h − c|!|2), k2 =
(b − c)(a|!|2 − 2h)
(a − b)(2h − |!|2c)

,

and

A2 =
2h − |!|2c

a − c
, B2 =

a|!|2 − 2h
a − b

, C2 =
a|!|2 − 2h

a − c
.
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Exercise: if two of the moments of inertia are equal you get the case
of precession, which can be integrated with sines and cosines.

2.5 The Euler-Arnol’d equations

We know all the solutions of Euler’s equations and seem to know every-
thing, yet we still have to integrate Ȧ(t) to obtain the motion of the top
in space.

To find the motion of the Euler top B in the space frame, assuming
we know the solution t !→ Ω(t) = I−1(p(t)) of Euler’s equations (2.12),
we first convert the curve Ω : R → R3 : t !→ Ω(t) of angular velocities
into a curve ξ : R → so(3) : t !→ ξ(t) of infinitesimal motions. To do
this we choose ξ(t) so that ξ(t) = Ω̂(t). Since ξ(t) = A(t)−1 dA

dt we have

dA

dt
= A(t) ξ(t), (2.24)

which is a system of linear differential equations with time dependent
coefficients. Here A : R → SO(3) : t !→ A(t) is the curve we would
like to find, as it describes the motion of the body in the space frame.
Equations (2.24) and (2.16) are the Euler-Arnol’d equations of a rigid
body with respect to the space frame. To find a particular solution of the
Euler-Arnol’d equations of course initial conditions need to be imposed.
Note that if t !→ (ξ(t), A(t)) is a solution of the Euler-Arnol’d equations
and if A0 is a fixed rotation, then t !→ (ξ(t), A0(A(t))) is also a solution
of the Euler-Arnol’d equations.

Euler’s equations (2.13) only describe the motion of the angular velocity
vector Ω(t) (or the angular momentum vector L(t) = I(Ω(t))) in a frame
corotating with the body. Note that this corotating frame is not an
inertial frame. With respect to the space frame the angular momentum
vector " is actually constant through out the motion of the body. The
center of mass of the body is fixed at the origin. The body does not
necessarily come back to the same position even if the motion of the
angular momentum vector L in the body frame is periodic. If the angular
momentum vector has returned after time t to the same position in the
body frame, all one can conclude is that the body frame has rotated in
space around the angular momentum vector ". To describe the motion of
B in space we have to determine how much the body frame has rotated
about the angular momentum vector " after time t. First we choose a
better space frame, namely a frame F̃ = {f̃1, f̃2, f̃3} so that the angular
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momentum of the body lies along the positive f̃3-axis. Let A0 be the
matrix whose jth column looks like ej in the new space frame. Then the
angular momentum vector looks like !̃ = A0! = |!|f̃3 in the new space
frame {f̃1, f̃2, f̃3}. Write Ã(t) = (A0 A)(t). The jth column of Ã(t)
describes the jth member of the body frame in the new space frame.

Physicists are a tough bunch of people. They like the old stuff. They still
think that Poinsot solves everything, even though Poincaré did not. Now you
think that Cushman’s going to fall on his nose — but he didn’t!

2.5.1 Qualitative Poinsot description

Since

I−1(L(t)) = Ω(t) = (Ã(t))−1ω(t),

in order to describe the motion of the body in space it suffices to know
the angular velocity vector ω(t) in the new space frame. We now give
a geometric interpretation, due to Poinsot [31], of the curve t !→ −ω(t),
see figure 2.1.

e1

e2

e3

O

Ã(t)
ω = Ã(t)Ω

" = Ã(t)L

•

O

O′
Π

L = I ω

Pt

E

α
α

Ω
Et

Fig. 2.1. Poinsot description of Euler top, the reference ellipsoid is on the left
and the moving one is on the right.

I had a lot of trouble reading Goldstein [19] about all this, and usually this
means that he is wrong (at least in my experience). Your best reference
remains Whittaker [42].

Recall Ω(t) lies on the reference ellipsoid E = {Ω ∈ R3 〈IΩ,Ω〉 = 2h}.
Since ω(t) = Ã(t)Ω(t), the vector ω(t) lies on the ellipsoid Et which is
obtained by applying the rotation Ã(t) to the reference ellipsoid.

That is what rotating coordinates is all about guys!
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We give more details. If Ĩ(t) = Ã(t) I(Ã(t))−1 denotes the matrix of the
moment of inertia tensor with respect to the space frame {f̃1, f̃2, f̃3},
then Et = {ω ∈ R3 〈Ĩ(t)ω,ω〉 = 2h}. We may think of Et as an ellipsoid,
which moves with respect to the space frame {f̃1, f̃2, f̃3}, with center of
mass fixed at O. The inner product between the angular momentum
vector "̃ = Ĩ(t)ω(t) in the space frame and the angular velocity vector
ω(t) in the space frame is 2h and "̃ is constant. Hence −ω(t) lies on a
fixed affine plane Π, which is perpendicular to "̃ and consists of those
vectors whose inner product with −"̃ is 2h. Let −ω(t) be the vector
→

OPt. The point Pt lies on the plane Π as well as on the moving ellipsoid
Et.

Fix t = t0. Since the normal to Et at Pt is

grad−ω〈I(t)ω,ω〉 = −2 I(t)ω = −2 "̃,

which is parallel to "̃, the plane Π is tangent to Et at Pt. Thus Pt is the
point of contact of the ellipsoid Et with Π. Consider the point P0 on the
reference ellipsoid whose image under Ã(t0) is Pt0 . The velocity of the
image of P0 under Ã(t) with respect to the space frame at t = t0 is

ω ×
→

OPt = ω × (−ω) = 0.

This means that the moving ellipsoid Et rolls without slipping on the
plane Π. Its center of mass is fixed at O, which is a constant height 2h

|"|
above Π. Thus t → −ω(t) is the curve traced out on the invariant plane
Π by the point of contact Pt of the rolling ellipsoid Et.

Many people – including Arnol’d – stop here without showing how to find the
point of contact Pt. Thus Poinsot is not a quantitative solution as it should
be. We have to find Pt and show what the body is doing.

2.5.2 Integration of the Euler-Arnol’d equations

Given a solution t '→ Ω(t) of Euler’s equations, we now find a formula
for the position Ã(t) of the body frame with respect to the space frame
{f̃1, f̃2, f̃3}.

Now, what is the most friendly parametrization of the rotation group? Some
people will say Euler angles — without even thinking. I use a different one,
namely, two orthonormal vectors.

Write x(t) for the first column of Ã(t) and y(t) for the second. Then

Ã(t) = (A0 A)(t) = col(x(t), y(t), x(t) × y(t)), (2.25)
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with

〈x(t), x(t)〉 = 1, 〈y(t), y(t)〉 = 1, and 〈x(t), y(t)〉 = 0. (2.26)

Note that
dÃ

dt
= Ã(t)ξ(t), so equation (2.24) takes the form

col
(
ẋ(t), ẏ(t), ˙(x × y)(t)

)
= col

(
x(t), y(t), (x × y)(t)

)( 0 −Ω3 Ω2
Ω3 0 −Ω1

−Ω2 Ω1 0

)
.

Because the third column in the above equation is redudant, we see
that the Euler-Arnol’d equations (2.24) and (2.16) are equivalent to the
following vector equations

ẋ = Ω3 y − Ω2(x × y), (2.27a)
ẏ = −Ω3 x + Ω1(x × y), (2.27b)

I(Ω̇) = I(Ω) × Ω. (2.27c)

subject to the constraints (which follow from (2.26))

x2
1 + x2

2 + x2
3 = 1, (2.28a)

y2
1 + y2

2 + y2
3 = 1, (2.28b)

x1y1 + x2y2 + x3y3 = 0. (2.28c)

With no choice of chart of any kind we have reduced the motion of the Euler
top in space to six equations (plus restrictions). These equations are Hamil-
tonian even though the symplectic form is a mes. This is in the blue book
[5]. There is no other reference. Numerically these equations are incredibly
stable near the unstable manifold where the motion of Euler’s top is the most
interesting.

Since we have chosen the body frame so that the matrix of the moment
of inertia tensor I is diag(I1, I2, I3) and since

I(Ω) =L = (Ã(t))−1"̃ = Ã(t)
t
"̃ = |"| Ã(t)

t
f̃3

= |"| row(x(t), y(t), (x × y)(t))f̃3, (2.29)

we obtain

x3 = |"|−1I1 Ω1 = M1 (2.30a)
y3 = |"|−1I2 Ω2 = M2 (2.30b)

x1y2 − x2y1 = |"|−1 I3Ω3 = M3. (2.30c)

Suppose that we know a solution t %→ Ω(t) = (Ω1(t),Ω2(t),Ω3(t)) of
Euler’s equations (2.16) whose energy is h and whose angular momentum
has magnitude |"|. The rotating frame {x, y, x× y} gives the position of
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the body with respect to the space frame {f̃1, f̃2, f̃3}. We want to find
how much the f̃1-f̃2-component of the vector x has rotated about the
f̃3-axis after time t. More precisely, we seek a differential equation for
the angle θ that the projection of x on the f̃1-f̃2-plane makes with the
f̃1-axis.

f̃1
θ

y

x × y

x

" = |"| f̃3

f̃2

Fig. 2.2. Definition of the angle θ.

Because Ω = (Ω1,Ω2,Ω3) are assumed to be known functions of time,
from (2.30a) and (2.30b) we see that x3 and y3 are also known. Elim-
inating x3 and y3 from (2.27a), (2.27b), (2.28a), (2.28b), (2.28c) and
using (2.30a) and (2.30b) gives

d

dt

(
x1

x2

)
= |"|I−1

3 M3

(
y1

y2

)
− |"|I−1

2 M2

(
−M1 y2 + M2 x2

M1 y1 − M2 x1

)

d

dt

(
y1

y2

)
= −|"|I−1

3 M3

(
x1

x2

)
+ |"|I−1

1 M1

(
−M1 y2 + M2 x2

M1 y1 − M2 x1

)

x2
1 + x2

2 = 1 − |"|−2I2
1 Ω2

1 = 1 − M2
1 (2.31a)

y2
1 + y2

2 = 1 − |"|−2I2
2 Ω2

2 = 1 − M2
2 (2.31b)

x1y1 + x2y2 = −|"|−2I1I2 Ω1Ω2 = −M1M2. (2.31c)

Suppose that Ω "=
(
± |!|

I1
, 0, 0

)
. This is equivalent to assuming that the

solution t → Ω(t) of Euler’s equations of energy h and magnitude of
the angular momentum |"| does not correspond to either one of the
equilibrium points ± 1

I1
e1. Consequently, the right hand side of (2.31a)

is never zero. Writing (2.31c) and (2.30c) as

(
x1 x2

−x2 x1

)(
y1

y2

)
=

(
−M1M2

M3

)
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We may solve this equation for y1 and y2 obtaining

y1 =
−1

1 − M2
1

(
M1M2 x1 + M3 x2

)
(2.32a)

y2 =
1

1 − M2
1

(
M3 x1 − M1M2 x2

)
. (2.32b)

In studying the Hopf fibration in the 2-dimensional harmonic oscillator (sec-
tion 1.3), we have had to solve similar linear equations.

We now obtain the world’s simplest differential equation (linear with
time dependent coefficients)! Substituting (2.32a) and (2.32b) into the
second equation above (2.31a) gives

dx1

dt
= α x1 − β x2

dx2

dt
= β x1 + α x2,

(2.33)

where

α = |#|(I−1
2 − I−1

3 )
M1M2M3

1 − M2
1

= I1(I3 − I2)
Ω1(t)Ω2(t)Ω3(t)
|#|2 − I2

1Ω2
1(t)

β = |#| I−1
2 M2

2 + I−1
3 M2

3

1 − M2
1

= |#| I2Ω2
2(t) + I3Ω2

3(t)
|#|2 − I2

1Ω2
1(t)

.

(2.34)

It cannot be that ridiculously simple — but it is. After all we are on a circle.

The angle θ that the projection of the vector x on the f̃1-f̃2 plane
makes with the f̃1 axis is tan−1(x2/x1). Therefore, using (2.33),

θ̇ =
x1ẋ2 − x2ẋ1

x2
1 + x2

2

= β. (2.35)

Oops, polar coordinates are trying to stick their ugly pus in here — but θ is
an angle parametrizing a circle, so we are OK.

Integrating (2.35) gives

θ(t) = θ(0) + |#|
∫ t

0

I2 Ω2
2(s) + I3 Ω2

3(s)
|#|2 − I2

1 Ω2
1(s)

ds. (2.36)

I am not a master of Weierstras’ theory of elliptic functions, so I won’t do
this integral. But Whittaker [42] is and he does it. See also [1].

θ is the rotation angle (a physical parameter) of the flow of the Euler-
Arnol’d equations on a connected component of E−1(h)∩L−1(#), which
is a 2-dimensional torus.
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Montgomery [28] has found the rotation angle by hard work.

Knowing t !→ θ(t) and the t !→ Ωi(t) we will now find the curve of
rotations

t !→ Ã(t) = col(x(t), y(t), (x × y)(t)),

which determines the position of the body with respect to the space
frame {f̃1, f̃2, f̃3}. From the definition of θ and (2.31a) we find that

x1(t) =
√

x2
1 + x2

2 cos θ =
√

1 − M2
1 cos θ (2.37a)

x2(t) =
√

1 − M2
1 sin θ (2.37b)

x3(t) = M1, using (2.30a).

Substituting (2.37a) and (2.37b) into (2.32a) and (2.32b) gives

y1(t) =
−1√

1 − M2
1

[
M1M2 cos θ + M3 sin θ

]
(2.38a)

y2(t) =
1√

1 − M2
1

[
M3 cos θ − M1M2 sin θ

]
(2.38b)

y3(t) = M2, using (2.30b). (2.38c)

Therefore

(x × y)1(t) =
−1√

1 − M2
1

[
M1M3 cos θ − M2 sin θ

]

(x × y)2(t) =
−1√

1 − M2
1

[
M2 cos θ + M1M3 sin θ

]

(x × y)3(t) = M3, using (2.30c).

Thus we have found the curve t → Ã(t) of motion of the body in space
under the assumption that we know t → Ω(t) and t → θ(t).

So this is the solution of the Euler-Arnol’d equations – complete, straight-
forward, explicit, except for one quadrature. You can grumble, but not very
much.

2.5.3 Quantitative Poinsot description
Using the curve t !→ Ã(t), which describes the motion of the body in
space, we give an explicit parametrization of the curve t !→ −ω(t) traced
out by the point of contact of the rolling moment of inertia ellipsoid on
the invariant plane Π. This makes Poinsot’s description of the motion
of the Euler top in space quantitative.

We now find the instantaneous angular velocity ω(t) of the body B
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at time t with respect to the new space frame. By definition ω(t) =
Ã(t)Ω(t). We compute the components of ω(t) as follows. From the
construction of Ã(t) we have

ω1(t) = x1 Ω1 + y1 Ω2 + (x × y)1Ω3

=
1√

1 − M2
1

{[
Ω1 − M1(M1Ω1 + M2Ω2 + M3Ω3)

]
cos θ +

+
[
Ω3M2 − Ω2M3

]
sin θ

}

=
1√

1 − M2
1

{[
Ω1 − 2|#|−1hM1

]
cos θ −

[
Ω2M3 − Ω3M2

]
sin θ

}
.

A similar argument gives

ω2(t) =
1√

1 − M2
1

{[
Ω2M3 − Ω3M2

]
cos θ +

[
Ω1 − 2|#|−1hM1

]
sin θ

}
.

Also

ω3(t) = M1Ω1 + M2Ω2 + M3Ω3 = 2|#|−1h.

Note that this confirms that the inner product of the angular velocity
vector with the angular momentum vector |#|f̃3 is constant. The above
results may be written in matrix form as




ω1

ω2

ω3



 =




Ω1 − 2|#|−1hM1 −(Ω2M3 − Ω3M2) 0
Ω2M3 − Ω3M2 Ω1 − 2|#|−1hM1 0

0 0 1









cos θ√
1−M2

1

sin θ√
1−M2

1

2|#|−1h





=




cosu − sinu 0
sinu cosu 0

0 0 1








R cos θ
R sin θ

2|#|−1h



 ,

where

tanu(t) =
Ω2M3 − Ω3M2

Ω1 − 2|#|−1hM1

=
|#|(I3 − I2)Ω2(t)Ω3(t)

(|#|2 − 2I1h)Ω1(t)
(2.39a)

and

R(t) =

√
(Ω1 − 2|#|−1hM1)2 + (Ω2M3 − Ω3M2)2

1 − M2
1

=
1
|#|

√
(|#|2 − 2I1h)2 Ω2

1(t) + |#|2(I3 − I2)Ω2
2(t)Ω2

3(t)
|#|2 − I2

1Ω2
1(t)

.

(2.39b)
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Therefore we obtain

t → ω(t) =




R(t) cos(θ(t) + u(t))
R(t) sin(θ(t) + u(t))

2|#|−1h



 . (2.40)

Remember that u(t) is obtained from our solution to the Euler’s equa-
tions. For the curve Γ traced out on the invariant plane Π by the point
of contact Pt of the rolling ellipsoid Et we get

t → −ω(t) =




R(t) cos(θ(t) + u(t) + π)
R(t) sin(θ(t) + u(t) + π)

−2|#|−1h



 . (2.41)

So we have parameterized Γ at no additional cost. Γ lies in an annulus

A = {(ϕ, R) ∈ Π 0 < Rmin ≤ R(t) ≤ Rmax}

and is alternately tangent to a different component of the boundary
of A. The rotation angle θ of the flow of the Euler-Arnol’d equations
on a connected component of E−1(h) ∩ L−1(#) is the angle between
every second (and not every) point of tangency on the same boundary
component, if a#2 > 2h > b#2 and this angle plus 2π, if c#2 < 2h < b#2.
For more details see [1] and [5].

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

Fig. 2.3. The rotation angle of the flow of the Euler-Arnol’d equations on a
2-torus in E−1(h) ∩ L−1(!) as determined by the Poinsot description. The
moments of inertia in this example are I1 = 1, I2 = 2, and I3 = 2.9; |!| is
set equal to 1, initial point (x, y) =

(
1√
2
, 0, 1√

2
, 0, 1, 0

)
, the initial point for

Euler’s equations is (Ω1, Ω2, Ω3) =
(

1√
2
, 0, 1

2.9
√

2

)
with Euler energy h = .344,

the Euler period is 17, and rotation number equals 1.1666.
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2.6 Abstract derivation of equations of motion

In this section we give a Hamiltonian derivation of the Euler–Arnol’d
equations.

2.6.1 Geodesic equations on a Lie group

Let G be a Lie group with the algebra g. On phase space T ∗G with
its canonical symplectic form ω̃ suppose that we have a hamiltonian
H̃ : T ∗G → R. Consider the map left translation by g ∈ G, namely,

Lg : G → G : h → g · h.

We have the left trivialization

λ̃ : G × g∗ → T ∗G : (g,α) $→ (TgLg−1)tα = αg.

Warning. This trivialization does not give coordinates, because for

ξ ∈ g the coordinate vector fields Xξ(g) =
d

dt t=0

Lexp tξ(g) on G, which

are dual to the 1-forms αξ, do not commute.

2.6.2 Hamilton’s equations on a Lie group

On G × g∗ we have the 2-form Ω̃, which is the pull back by λ̃ of the
canonical 2-form ω̃. Thus

Ω̃(g,α)
(
(TeLgξ,β), (TeLgη, γ)

)
= −β(η) + γ(ξ) + α([ξ, η]),

where ξ, η ∈ g and α,β, γ ∈ g∗, see [5]appendix A. Pulling H̃ back by λ̃
gives the Hamiltonian

H̃ = λ̃∗H̃ : G × g∗ → R : (g,α) $→ H̃(g,α).

By definition, the hamiltonian vector field XH̃ satisfies XH̃ Ω̃ = dH̃.
The integral curves of XH̃ are the solutions of the Euler-Arnol’d equa-
tions

ġ = TeLgD2H̃(g,α)

α̇ = −(TeLg)tD1H̃(g,α) + adt
D2H̃

α
(2.42)

These are Hamilton’s equations on the Lie group G.

Suppose that H is left invariant , that is, H̃(αgh) = H̃(αh), Then

H̃(g · h,α) = H̃(h,α).
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Since D1H̃ = 0, the Euler–Arnol’d equations become

ġ = TeLgD2H̃(g,α)

α̇ = adt
D2H̃

α.
(2.43)

2.6.3 Special case
Let H∗(αg) = 1

2 k∗(g)(αg,αg) be a hamiltonian on T ∗G, where k∗ is a
left invariant dual metric on G. In other words,

k(g)(vg, wg) = k∗(g)
(
k∗(g)!(vg), k∗(g)!(wg)

)

is a left invariant metric on G. The hamiltonian H∗ is purely kinetic.
We now show that the solutions of the Euler-Arnol’d equations (2.43)
for H∗ give the geodesic flow on the Lie group G.

Pull back the Hamiltonian system (H∗, T ∗G, ω̃) by the map k" : TG →
T ∗G. The resulting Hamiltonian on (TG,ω = k!ω̃) is

H(vg) = 1
2 k(g)(vg, vg)

. Pulling the symplectic form ω back by the left trivialization of TG

λ : G × g → TG : (g, v) #→ vg = TeLgv

gives a 2-form Ω on G × g on TG. Explicitly,

Ω(g, v)((TeLgξ, v), (TeLgη, w)) = −k(v, η)+k(w, ξ)+k(v, [ξ, η]), (2.44)

where k = λ∗k(e). The Hamiltonian H becomes

H = λ∗H : G × g → R : (g, v) → 1
2 k(v, v),

which is a left invariant metric on G× g. By definition the hamiltonian
vector field XH(g, v) = (TeLgX1,X2) satisfies

XH Ω = dH. (2.45)

We compute XH as follows. From (2.45) and (2.44) we obtain

−k(X2, η)+k(X1, w) + k(v, [X1, η]) = Ω(g, v)((TeLgX1,X2), (TeLgη, w))
=dH(g, v)(TeLgη, w) = D1H(g, v)TeLgη + D2H(g, v)w
=k(v, w), (2.46)

for every (w, η) ∈ g. In (2.46) set η = 0. Then k(X1, w) = k(v, w) for
every w ∈ g. Since k is nondegenerate, we have X1 = v. In (2.46) set
w = 0. Then

k(X2, η) = k(v, [v, η]) = k(B(v), η),
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for every η ∈ g. This implies X2 = B(v). Consequently, the Euler-
Arnol’d equations are

ġ = TeLgv

v̇ = B(v).
(2.47)

These are equations for geodesics on G of the left invariant metric k.

2.6.4 An even more special case

Now we restrict ourselves to the case when G is semisimple. Then g has
an Ad-invariant nondegenerate inner product k called the Killing metric.

Using a k-symmetric invertible linear mapping I : g → g, called the
generalized moment of inertia tensor, we can write every metric k on g

as

k(v, w) = k(I(v), w).

Thus for every η ∈ g

k(I(B(v)), η) = k(B(v), η) = k(v, [v, η]) = k(I(v), [v, η]) = k([I(v), v], η),

since k is Ad-invariant. Consequently, B(v) = I−1([I(v), v]). Hence
the Euler-Arnol’d equations for geodesics of a left invariant metric on a
semisimple Lie group are

ġ = TeLgv

v̇ = I−1[I(v), v].
(2.48)

Now suppose that G = SO(3) and g = so(3) # (R3,×). In addition,
suppose that k is the Euclidean inner product on R3 and that the mo-
ment of inertia tensor I is diag(I1, I2, I3). Then the solutions of the
Euler-Arnol’d equations (2.48) give integral curves of a vector field V on
SO(3) × R3 which satisfy

Ȧ = AΩ̂

I(Ω̇) = I(Ω) × Ω,
(2.49)

The above equations are the Euler-Arnol’d equations for the Euler top.
They are geodesic equations and are Hamiltonian even though they do
not look like it.

2.6.5 Integrals and reduction

The vector field V on SO(3) × R3 has two integrals:
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Energy. E(A,Ω) = 1
2 〈I(Ω),Ω〉.

Check.

Ė = 〈I(Ω̇),Ω〉 = 〈I(Ω) × Ω,Ω〉 = 0.

and

Angular momentum. L(A,Ω) = AIΩ.

Check.

L̇ = ȦI(Ω) + AI(Ω̇) = A
(
Ω̂(I(Ω))

)
+ A(I(Ω) × Ω)

= A(Ω × I(Ω) + I(Ω) × Ω) = 0. !

Angular momentum L comes from the lift of the action of left translation
of SO(3) on itself to T SO(3). This action is Hamiltonian and commutes
with the Hamiltonian H, which is a left invariant metric on SO(3). We
have arranged that on SO(3) × R3 we have L(A,Ω) = ! = |!| e3. Thus
L is constant on the integral curves of V . Consequently,

L−1(!) = {(A, I−1A−1!) ∈ SO(3) × R3 A ∈ SO(3)}

is an invariant manifold of the vector field V , which is diffeomorphic to
SO(3).

Solid ball model of SO(3). Consider an open ball B3
π ⊆ R3, whose

closure has boundary which is a 2-sphere S2
π of radius π (see fig. 2.4).

Every point in B3
π is a vector ! of length less than π and defines a unique

rotation about axis ! by angle |!| < π. The vectors ±! define rotation
about ±! by angle ±|!|. We should be more careful with the points on S2

π

where |!| = π. In this case, ±! define the same rotation. Therefore, we
should identify diametrically opposite points of S2

π, so that it becomes
real projective 2-space RP2. To obtain all of SO(3) we add B3

π and
obtain real projective 3-space RP3.1 We obtain the same picture of

Fig. 2.4. Solid ball model of SO(3).

SO(3) ([5], p. 95) when we define the covering map S3 → SO(3) ' RP3.
1 We have already seen that so(3) ! R3. Correspondingly, SO(3) is locally an R3.

Globally it is an RP3.
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The 3-sphere S3 of unit radius is the space of all quaternions2 q of unit
length, qq̄ = 1. There is a one to one correspondence between these q s
and the matrices

(
α β

−β α

)
∈ SU(2), α,β ∈ C, |α|2 + |β|2 = 1,

which in turn correspond to rotations.1 The exact correspondence is
given by the two to one covering map ρ : SU(2) → SO(3); q $→ Rq,
where Rq is a real linear map

Rq : R3 ⊆ H → R3 ⊆ H : x → q · x · q̄,

and x = x1i + x2j + x3k ∈ R3 ⊆ H. It can be shown that Rq is
a rotation of R3 with its standard Euclidean inner product. It it is
easy to see that q and −q correspond to the same rotation Rq. Thus
ker ρ = Z2. Geometrically, this means that if we identify antipodal
points q and −q on the 3-sphere S3 ⊆ R4 we obtain real projective
3-space RP3. (This is similar to identifiying antipodal points on S2,
which produces RP2.) After identifying antipodal points, the covering
map ρ is a diffeomorphism. Hence SO(3) is RP3.

2.6.6 Reduction

Reduction on the $ level set of L. Consider the isotropy group

SO(3)! = {B ∈ SO(3) B$ = $} & S1

of the action

SO(3)× (SO(3)× so(3)) → SO(3)× so(3) : (B, (A, Ω̂) → (BA,BΩ̂B−1),

which comes from the lift of the action of inverse of right multiplication
by SO(3) on itself to the left trivialization of the tangent bundle T SO(3)
of SO(3). We have an action of SO(3)! on L−1($) defined by

Φ : SO(3)! × L−1($) → L−1($) : (B, (A,Ω)) $→ (BA,Ω),

Check.

L(BA,Ω) = B(AIΩ) = BL(A,Ω) = B$ = $.

We now show that Φ is a proper free action with the orbit space S2
|!|.

2 Recall that quaternions H are real linear combinations of (1, i, j, k), where i2 =
j2 = k2 = −1 and ij = k together with its cyclic permutations.

1 Recall that SU(2) → SO(3) is a two to one homomorphism of groups. The variables
α and β are known as Caley–Klein parameters for SU(2).
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Proof. If (A,Ω) ∈ L−1(!) and B ∈ SO(3)! then ΦB(A,Ω) = (A,Ω)
implies that BA = A. Thus B = e, the identity element of SO(3).
Hence the action Φ is free. Furthermore, since SO(3)! is compact, Φ
is a proper action. Consequently, the orbit space L−1(!)/SO(3)! is a
smooth manifold.

Reduction map. Recall that ! = |!|e3. The reduction map removing
the SO(3)! symmetry on L−1(!) is

π! : L−1(!) → S2
|!| : (A, I−1A−1!) #→ z = A−1! = |!|A−1e3.

Check. If π!(A,Ω) = π!(A′,Ω′), then A−1! = (A′)−1! implies A′A−1 =
B ∈ SO(3)!. Thus

(A′,Ω′) =
(
A′, I−1(A′)−1!

)
=

(
BA, I−1(A−1B−1!)

)

= (BA, I−1A−1!) = ΦB(A,Ω).

Therefore, π−1
! is a unique Φ-orbit in L−1(!) and the orbit space

L−1(!)/SO(3)! is S2
|!|. !

Precomposing the reduction map π! with the two to one covering map
S3 → SO(3) gives the Hopf fibration. In other words, the double covering
of the reduction map π! is the Hopf fibration.

Note that SO(3) $ RP3 is not simply connected. Consequently, linking
numbers cannot be defined for two closed curves in SO(3). That is why
we need S3. The double cover of the integral curves of the Euler top on
a level set of angular momentum lie in S3 and have linking number 1.

Reduced equations on S2. From ! = AI(Ω) and z = A−1! it fol-
lows that z = I(Ω). Thus the reduced equations of motion are Euler’s
equations on S2

|!|, namely,

ż = I(Ω̇) = I(Ω) × Ω = z × I−1(z).

Euler’s equations are Hamilton’s equations with respect to the symplec-
tic form

ω|!|(z)(u, v) =
1

2|!|2 〈z, u × v〉

and correspond to the reduced Hamiltonian

H|!|(z) = 1
2 〈I

−1(z), z〉.
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H|!| is a Morse function on S2
|!|. H|!| is a Morse function with 6

nondegenerate critical points: 2 of index 0, 2 of index 1, and 2 of in-
dex 2 which are maxima, hyperbolic, and minima, respectively (see fig-
ure 2.5).1 For each regular value |!| the level set of H|!| on S2

|!| consists
of two equivalent disconnected circles. The nontrivial level set where
H|!| = hs = 1

2 b|!|2 is a heteroclinic connection and consists of two un-
stable relative equilibria connected by two great circles – their stable
and unstable manifolds.

Fig. 2.5. Trajectories of the reduced Euler top on S2
|!|.

Qualitative reconstruction. We now reconstruct the geometry of the
level sets of the reduced Hamiltonian H|!| on S2

|!|. This will describe how
the level sets of the energy foliate a level set of angular momentum.
Because the reduced Hamiltonian H|!| is a Morse function on S2

|!| and
because the Hamiltonian

H
∣∣
L−1(!)

: L−1(!) → R

is SO(3)! invariant, it follows that H
∣∣
L−1(!)

is a Bott-Morse function on
SO(3) with 6 nondegenerate critical circles: two of index 0, two of index
1 and two of index 2. Each critical point of H|!| lifts under the reduction
map π! to a critical circle of H

∣∣
L−1(!)

on L−1(!). A regular level set of
H|!| lifts to two smooth 2-tori T2. The singular level set of H−1

|!| (hs)
corresponding to the hyperbolic critical points and their heteroclinic
stable and unstable manifolds lifts to two 2-tori which intersect cleanly
along two circles.
1 Each pair of critical points with the same index lie on the same orbit of a nontrivial

finite symmetry group D2 × Z2 of the Euler top. They are said to be equivalent.
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We now show how these level sets of H|!| fit together to form L−1(!).
Remove a small open 2-disk D about the north pole of S2

|!| and use
stereographic projection to map S2

|!| − D onto a region E ⊆ R2. The
relative equilibria (except the one at the north pole) and the stable and
unstable manifold are mapped into three points corresponding to elliptic
relative equilibria and two circles which intersect transversely at point
corresponding to the hyperbolic relative equilibria, respectively. The
three elliptic points each lie in a compact region D1 ∪ D2 bounded by
the circles, see figure 2.6.

!!!!" D

1 2

(0, 0, r)

3

4

5
pr−→ 1′ 2′3′

4′

5′
#

∂ prD
$
$
$%

E

&
&
&
&'

D2
$
$
$
$(

D1

Fig. 2.6. The level sets of the reduced Hamiltonian flattened out. Stereo-
graphic projection of S2 without the north pole (0, 0, r).

Remove the solid torus E×S1 from SO(3). We have to replace (D1∪D2)×
S1 (which is homeomorphic to E×S1) in the cored apple SO(3)−(E×S1),
see figure 2.7.

)))))*

C+

!!!!!" C−

A B C

D D′

C′
B′ A′

Fig. 2.7. The “cored apple” SO(3) − C and the solid cylinder core C = (D1 ∪
D2) × [0, 1] (left). Replacement of core with no twists (right).

The problem is: how many twists do we give the core, which is the solid
cylinder C = (D1 ∪D2)× [0, 1], (whose ends are identified antipodally in
the solid ball model of SO(3) and give (D1∪D2)×S1) before replacing it
in the cored apple SO(3) − (E × S1)? No twists does not work, because
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then H
∣∣
L−1(!)

would have two critical circles of elliptic type instead
of three, see figure 2.7. One and one half twists do not work either,

Fig. 2.8. Foliation of L−1(!) by the level sets of H|L−1(!).

because then H
∣∣
L−1(!)

would have three critical circles of elliptic type
whose two fold cover would have linking number more than one in S3.
Generalizing this shows that placing the core C back in the cored apple
with one half a twist is the only one possible. Thus we have obtained a
global qualitatively accurate picture of how the level sets of H

∣∣
L−1(!)

fit
together to form L−1(!), see figure 2.8.

B Comments on lecture III.

B.1 The herpolhode

The curve traced out by the point Pt of contact of the moment of in-
ertia ellipsoid rolling on the invariant plane was called the herpolhode
by Poinsot [31]. It comes from the Greek word herpes meaning snake.
Poinsot drew a picture of a snakelike herpolhode. On §9 page 472 Routh
[34] gives a proof that the herpolhode has no inflection points for a phys-
ically realizable Euler top, that is, one in which the principal moments
of inertia satisfy the inequalities

I1 ≤ I2 + I3, I2 ≤ I1 + I3 and I3 ≤ I1 + I2.

Thus the herpolhode is not snakelike at all. Routh says that Darboux
[14] was the first to show this. Whittaker [42] leaves this as an exercise
(# 29 on page 174) and refers to Lecornu [24] for a short proof.

In figure B.1 below we see that the herpolhode can indeed be snakelike
for nonphysical Euler tops.
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Fig. B.1. The herpolhode for an unphysical Euler top with moments of inertia
I1 = 1, I2 = 2.8, and I3 = 7. Angular momentum has magnitude equal to 1;
the Euler period is 13.21, and rotation number equals 0.5532.

B.2 Finite symmetries of the reduced Euler top

We saw in the lectures III and V that there is a great deal of similarity
between the harmonic oscillator and the Euler top. The obvious dif-
ference between these systems is the remaining finite symmetry group.

For the Hénon-Heiles system (section A) this group is D3×T . From its
action on the reduced phase space S2

h we found all critical points (relative
equilibria) of the simplest reduced Hamiltonian for low energies. What
is the symmetry of the rigid rotor? The reduced Hamiltonian

H|!| = 1
2 (I−1

1 L2
1 + I−1

2 L2
2 + I−1

3 L2
3)

is invariant with respect to any changes of the signs of L1, L2, and L3.
These operations form the group of order 8 with the structure D2 ×Z2.
Taking into account that L = (L1, L2, L3) is an axial 3-vector which
changes sign under time reversal T ∼ Z2 : L #→ −L, we can readily come
up with the physical realization of this group in terms of transformations
of the 3-space R3 with coordinates (L1, L2, L3). Rotations C(a)

2 by angle
π about any of the principal axes of inertia 1, 2, or 3 constitute the
abelian group D2, which is extended by time reversal T . Since the latter
is equivalent to an inversion of R3, the group D2×T corresponds to the
Schoenflies point group D2h; the three mutually orthogonal reflection
planes of D2h correspond, of course, to combinations C2 ◦T . The action
of D2 × T on S2 is the action of the spatial group D2h on a sphere
in R3 (see figure B.2). It has six fixed points, which are grouped into
three pairs of equivalent points (two-point orbits) with stabilizers C (a)

2 ,
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I3

I1

I2

Fig. B.2. Action of the D2× T group on the sphere S2 (left). Reduced rigid
body Hamiltonian H|!| for |!| = 1, 1

2 I−1
1 = 0.4, 1

2 I−1
2 = 0.8, and 1

2 I−1
3 =

1.25 as a simplest D2× T -invariant Morse function on S2 (right). Black and
white stripes on the surface correspond to constant h (energy) levels drawn
equidistantly, the width is ≈ 0.05.

a = 1, 2, 3. The two equivalent points are mapped into each other by
operations C(b)

2 , b != a and correspond to a rotation about a stationary
axis a in two opposite directions (〈L, ea〉 = ±|!|).

A generic Morse function on S2 is required by the topology of this
space to have two stationary points, a maximum and a minimum. In
the presence of symmetry all critical points of the group action are neces-
sarily stationary. The simplest D2 ×T -symmetric Morse function on S2

has six points situated on the critical orbits of the D2 × T action. Two
points are minima, two are maxima, and two are hyperbolic (saddles),
so that Euler’s equation for the sphere remains satisfied. If I1 > I2 > I3

then the values of H|!| lie in the interval 1
2 I−1

1 ≤ h ≤ 1
2 I−1

3 , and the
value at the hyperbolic critical point (= unstable relative equilibrium)
equals 1

2 I−1
2 . The Hamiltonian H|!| is the simplest D2 × T symmetric

Morse function on S2. We have plotted H|!| in figure B.2, right, as a
surface function defined over the sphere S2. This representation is a fa-
miliar sight to many molecular physicists, who call it a “rotational energy
surface” [21]. The constant energy levels painted on this surface show
the trajectories of the reduced system. Many asymmetric top molecules,
such as H2O, O3, have the zero-order rotational Hamiltonian of the type
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H|!|. Higher order molecular terms emerge because the molecule is not
rigid, that is, because there are interactions with vibrations.

Fig. 2.3. Spherical pendulum.

3 Lecture IV. The spherical pendulum and monodromy

Spherical pendulum was discovered by Dutchman Christiaan Huygens
about twenty years before Newton’s Principia.1

This is immediately followed by confusion concerning the correct Dutch pro-
nunciation of the name Huygens. A heated exchange with a Dutch grad stu-
dent Bob Rink follows. The lecture continues.

3.1 The unconstrained system

Phase space. Give TR3 coordinates (x, y). We can confuse it with
T ∗R3 because we have the standard Euclidean inner product 〈 , 〉 on
R3. In fact TR3 # R3 × R3.

Symplectic form. The standard symplectic form on TR3 is

ω̃ =
∑

dxj ∧ dyj .

The unconstrained hamiltonian on TR3 is

H̃(x, y) = 1
2 〈y, y〉 + 〈x, e3〉.

S1 symmetry. The unconstrained system (H̃, T R3, ω̃) has an S1 sym-
metry given by

S1 × TR3 → TR3 : (t, (x, y)) '→ (Rtx,Rty), (3.1)

where Rt =
(

cos t − sin t 0
sin t cos t 0
0 0 1

)
is the matrix of rotation about axis e3 by

angle t.
1 The work by Huygens (1629–1695) apeared in 1673, thirty years after Newton

was born (1642). There are indications that Huygens understood this system
earlier, see more in [5] on p. 402 and [40]. Principia [30] was published in 1687.
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The unconstrained S1-momentum map associated to the S1-action
(3.1) is

L̃(x, y) = x1y2 − x2y1.

3.2 Constrained system

Constrained phase space. The phase space of the constrained system
(= the spherical pendulum) is

TS2 = {(x, y) ∈ TR3 〈x, x〉 − 1 = 0, 〈x, y〉 = 0}.

The constrained symplectic form on TS2 is ω = ω̃
∣∣
TS2 .

Hamiltonian. On (TS2,ω) the spherical pendulum hamiltonian is

H(x, y) = H̃(x, y)
∣∣
TS2 .

The equations of motion of the spherical pendulum are

ẋ = y

ẏ = −e3 +
(
〈x, e3〉 − 〈y, y〉

)
x.

(3.2)

They determine the integral curves of the Hamiltonain vector field XH

on (TS2,ω), see p. 148 and 296 in [5]. Actually, equations (3.2) define
a vector field on T R3 whose restriction to TS2 is XH . To see this we
need to verify that TS2 is an invariant manifold of (3.2).

Check.
d

dt
〈x, x〉 = 2〈x, ẋ〉 = 2〈x, y〉 = 0,

d

dt
〈x, y〉 = 〈ẋ, y〉 + 〈x, ẏ〉 = 〈y, y〉 − 〈x, e3〉 +

(
〈x, e3〉 − 〈y, y〉

)
〈x, x〉

= 0

on TS2. !
Now, those people who use polar coordinates will give you only one system of
equations for the spherical pendulum. In fact, they need at least two, since
TS2 requires at least two charts.

S1 symmetry. The S1 symmetry of the spherical pendulum is

S1 × TS2 → TS2 :
(
t, (x, y)

)
'→ (Rtx,Rty). (3.3)
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The S1-momentum map of the spherical pendulum is L = L̃
∣∣
TS2 .

Conserved quantity. Since S1 action (3.3) preserves the constrained
Hamiltonian H, we find that the Lie derivative of the momentum L with
respect to the Hamiltonian vector field XH of the spherical pendulum
vanishes identically. Thus the spherical pendulum is Liouville integrable.

3.3 Reduction of S1 symmetry

To remove the S1 symmetry of the spherical pendulum we use invariants,
because the S1-action (3.3) is not free.

When you have compact group actions, invariant theory is the way to go. For
general proper actions the situation is more complicated.

Algebra of invariants. The algebra of polynomials on TR3 which are
invariant under the S1 action (3.1) is generated by

σ1 = x3 σ3 = y2
1 + y2

2 + y2
3 σ5 = x1y1 + x2y2

σ2 = y3 σ4 = x2
1 + x2

2 σ6 = x1y2 − x2y1.

Relation. The above invariants satisfy the relation

σ2
5 + σ2

6 = σ4(σ3 − σ2
2), where σ4 ≥ 0, σ3 ≥ σ2

2 . (3.4)

This relation defines the orbit space TR3/S1, which is a connected,
irreducible semialgebraic variety in R6.

Orbit map. The orbit map is

π : TR3 → R6 : (x, y) $→
(
σ1(x, y), . . . ,σ6(x, y)

)
.

In other words, each of the fibers of π is a unique S1 orbit of the action
(3.1). The orbit space TR3/S1 is singular, because the S1 action on
TR3 leaves the points (0, 0, x3, 0, 0, y3) fixed.

Another orbit space. What we really want is the orbit space of the
S1 action (3.1) restricted to TS2. This is the orbit space TS2/S1 of
the S1 action (3.3). We obtain the defining equations of TS2/S1 if we
add two more relations to (3.4) (which come from the equations defining
TS2), namely,

σ4 + σ2
1 = 1 and σ5 + σ1σ2 = 0. (3.5)
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The gadget defined by (3.4) and (3.5) has no chance to be smooth be-
cause the action is not free. Singularities of TS2/S1 contain dynamical
information. We can use (3.5) to get rid of σ4 and σ5 in (3.4). We obtain

σ2
1σ

2
2 + σ2

6 = (σ3 − σ2
2)(1 − σ2

1) = σ3(1 − σ2
1) − σ2

2 + σ2
1σ2

2 .

Simplifying gives the following description of TS2/S1 as a semialgebraic
variety in R4 (with coordinates (σ1,σ2,σ3,σ6)).

σ2
2 + σ2

6 = σ3(1 − σ2
1), where |σ1| ≤ 1 and σ3 ≥ 0. (3.6)

The reduced phase space. The (singular) reduced phase space P! of
the spherical pendulum is the orbit space L−1(")/S1, where " is the value
of the momentum L. In terms of invariants L is σ6. Thus P! is defined
by adding the relation σ6 = " to equation (3.6). Thus as a subvariety
of R3 (with coordinates (σ1,σ2,σ3)), the singular reduced space P! is
defined by

σ2
2 + "2 = σ3(1 − σ2

1), |σ1| ≤ 1, σ3 ≥ 0.

In other words, P! is a σ6 = " slice of the orbit space TS2/S1. When
" $= 0, P! is

σ3 =
σ2

2 + "2

1 − σ2
1

and |σ1| < 1,

which is smooth and is diffeomorphic to R2. When " = 0 we have a
“canoe” (see figure 3.1), whose two singular points (±1, 0, 0) are the
fixed points of the S1 action on TS2.
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Fig. 3.1. Reduced phase spaces P!.
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Note that all these guys P! have Poison structure and there is reduced dy-
namics but I am not going to talk about it. The map (x, y) !→ (σ1, σ2, σ3)
looks very much like a Hopf fibration but it is not and I will not discus this
either. I have completed reduction for the spherical pendulum.

3.4 Analysis of the reduced system

Reduced Hamiltonian. On the singular reduced space P! we have the
reduced Hamiltonian

H! : P! ⊆ R3 → R : (σ1,σ2,σ3) #→ 1
2 σ3 + σ1.

Critical values of H! on P!. How does H! = h intersect P!?

Calculus is difficult to use when P! has singularities. So we use a little bit of
algebra instead. Computations proceed at maximum speed so that no one in
the audience can follow what is happening.

Consider a family of 2-planes πh : 1
2 σ3 + σ1 = h. Look for values of

h where the intersection of πh with P! has a point with multiplicity
greater than 1. In other words, we look for those values (h, #) for which
polynomial

P (σ1,σ2) = σ2
2 + #2 − 2(h − σ1)(1 − σ2

1), |σ1| ≤ 1,

in (σ1,σ2) has a zero of multiplicity greater than 1 and σ1 lies in [−1, 1].
(The polynomial P is obtained by eliminating σ3 from the defining equa-
tion of P! using σ3 = 2(h−σ1). This is equivalent to σ2 = 0 and finding
those values of (h, #) where the cubic polynomial

p(σ1) = (h − σ1)(1 − σ2
1) − 1

2 #2, (3.7)

in σ1 has a zero of multiplicity greater than 1 in [−1, 1]. Let s ∈ [−1, 1] be
a zero of p of multiplicity at least 2 and let t ∈ R be zero of multiplicity
at least 1. Then necessarily

p(σ1) = σ3
1 − hσ2

1 − σ1 + h − 1
2 #2 = (σ1 − s)2(σ1 − t)

= σ3
1 − (2s + t)σ2

1 + s(s + 2t)σ1 − s2t.

Comparing coefficients of powers of σ1 gives

2s + t = h, s(s + 2t) = −1, and − s2t = h − 1
2 #2.

Solving the above equations for {h, #} gives

h = 1
2 (3s2 − 1)/s

#2 = −(1 − s2)2/s,
(3.8)
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where s ∈ [−1, 0)∪{1}. The first two equations in (3.8) give a parametriza-
tion of the discriminant locus ∆ of p. When s varies between −1 and
0, the parametrization traces out two 1-smooth branches of the discrim-
inant locus ∆, which join together when s = −1 and form an angle.
When s = 1, (h, !) = (1, 0) is an isolated point of the discriminant locus
∆. Thus 1 is a critical value of the reduced Hamiltonian H1 on the
reduced space P0 corresponding to the critical point (1, 0, 0), which is a
singular point of P0, see figure 3.2.
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-2 -1 0 1 2

! (momentum)

h (energy)

! once pinched 2-torus

! point {pt}

! periodic orbit S1
!

! regular 2-torus T2
h,!

"
"
"
""#

RP3

"
"
"#

S3

Fig. 3.2. Image and fibers of the energy-momentum map EM of the spherical
pendulum.

Energy-momentum map EM. The energy momentum map of the
spherical pendulum is

EM : TS2 → R2 : p %→ (H(p), L(p)).

The region bounded by the black curves in figure 3.2 is the image of
EM. Its set of regular values is the grey shaded region; the black curves
are the singular values of EM (= critical values of H!) together with the
big dots, which mark the critical values (1, 0) and (−1, 0). Recall that
critical values of H! are the same as critical values of H

∣∣
L−1(!)

which in
turn are the same as critical values of the energy-momentum map EM.

3.5 Reconstruction

What is the topology of individual fibers EM−1(h, !) of the energy-
momentum map?

As S. Smale used to say: “whatever you do, don’t lose geometry.”
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To determine the topology of fibers look at the projection of P! on the
{σ2 = 0} plane. Remember that each regular point of P! lifts to a circle
S1 and each singular point (of P0) lifts to a point.

Regular fibers. If (h, ") is a regular value of EM, then the fiber
EM−1(h, ") is a smooth 2-torus. (The Liouville–Arnol’d theorem only
shows that a connected component of EM−1(h, ") is a 2-torus). To ver-
ify this, note that figure 3.3 shows that the h-level set of the reduced
Hamiltonian H! on the reduced space P! is a circle C. Each point on
C under the reduction map π lifts to a single S1 orbit of the S1-action
(3.5). Thus the lift of the circle C is the product S1 × S1, which is the
2-torus EM−1(h, "). Regular level sets of the reduced Hamiltonian H0 on
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Fig. 3.3. h-level sets of H! on the regular reduced phase space Pl.

the singular reduced phase space P0 are also circles which lift to 2-tori
(see figure 3.4). Dynamically, there are two different types of regular
level sets: those below the critical energy h = 1 and those above. The
image under the tangent bundle projection τ : TS2 → S2 : (x, y) #→ x of
an integral curve of the spherical pendulum on EM−1(h, "), when (h, ")
is a regular value of EM, is shown in figure 3.5.

Energy levels. How do regular tori fit together? The level H−1(h) is
RP3 when h > 1 and S3 when −1 < h < 1. In more detail, using the
solid ball model of SO(3), we see that SO(3) (% RP3) is the union of
two solid 2-tori, which are in turn the union of 2-tori with core a circle.
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Fig. 3.4. Regular h-level sets of H! on the singular reduced phase space P0.
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Fig. 3.5. Integral curve of the spherical pendulum on the configuration space
S2 (view from the bottom, cf. figure 2.3) corresponding to the regular h-level
set of H!. White circles indicate maximum and minimum elevation x+

3 and
x−

3 . The insert (top right) demonstrates the rotation angle θ > π by showing
elevation x3(t) as function of longitude ϕ(t)/π. In this example % = 0.3,
h = −0.5, rotation angle θ equals 1.1327π, and the period of x3(t) is 3.3453.

This describes the foliation of H−1(h) by level sets of L when h > 1.
When −1 < h < 1, the foliation is the same as that given by the Hopf
fibration.
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Singular fibers. For critical values (h, ! != 0) of EM, which form the
boundary of the discriminant locus ∆, the h-level set of the reduced
Hamiltonian H! is a point on Pl (see figure 3.6). The reconstructed
fiber EM−1(h, !) is a periodic orbit of the Hamiltonian vector field XH

which is also an orbit of the S1-action (3.5). In other words, it is a
relative equilibrium of XH . On the singular reduced phase space P0

0.5

1.0

1.5

2.0

2.5

3.0

-1 -0.5 0 0.5 1

σ1

σ3

" = 0.8

0.5

1.0

1.5

2.0

2.5

3.0

-1 -0.5
0.5 1

-2

-1

0

1

2

σ1

σ2

σ3

" = 0.8

h = hcrit

Fig. 3.6. Singular h-level sets of H! (relative equilibria) on the regular reduced
phase space.

we have two kinds of critical slices (see figure 3.7). The level h = −1
is a point (σ1,σ2,σ3) = (−1, 0, 0) and the level h = 1 is a circle with
one singular point (σ1,σ2,σ3) = (1, 0, 0). The point σ = (−1, 0, 0) on
P0 corresponds to the stable equilibrium point (0, 0,−1, 0, 0, 0) in TS2

of the spherical pendulum, because h = −1 is an absolute minimum
energy. EM−1(−1, 0) is, of course, a point. The point σ = (1, 0, 0) in
P0 corresponds to the unstable equilibrium point (0, 0, 1, 0, 0, 0) in TS2.
Because this equilbrium point is a fixed point of the S1 action (3.5), it
lifts to a point in TS2. The rest of the points on H−1

0 (1) lift to S1 orbits.
From this it follows that EM−1(1, 0) is a once pinched 2-torus (see figure
3.6.2 on page 280). This once pinched 2-torus is a homoclinic connection
of the stable and unstable manifolds of the hyperbolic equilibrum of XH

at (0, 0, 1, 0, 0, 0) ∈ TS2.
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Fig. 3.7. Two singular h-level sets of H! on the singular reduced phase space
P0. The h = 0 level set lifts to the point (stable equilibrium), the h = 1 level
set lifts to the pinched torus EM−1(1, 0).

3.6 Monodromy

What we want to do now is to describe how the 2-torus fibers EM−1(h, !)
fit together as (h, !) runs over a parameterized subset of the set of regular
values of EM. Now suppose that this set of regular values is a small open
punctured disc D∗ = D− {(h, !)crit}, which lies in the image of EM. In
other words, the critical value (h, !)crit is isolated. Let Γ be a circle
S1 ⊆ D∗, which cannot be contracted to a point in D∗, that is, S1 goes
around the puncture (h, !)crit as shown below

Γ

!
!

!"

(1, 0)

What is the topology of the 2-torus bundle Π : EM−1(Γ) → Γ over the
circle Γ? (Recall the reconstruction of energy momentum level sets for
regular values (h, !)). Answer: The bundle Π is non-trivial . In other
words, topologically EM−1(Γ) is not a product S1 × T2.

Monodromy map. How do we describe the topology of the 2-torus
bundle Π over the circle Γ? Take the circle Γ and cut it at a point
pt = (h, !).
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!
Γ − {pt}Γ
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The resulting 2-torus bundle over the interval Γ−{pt} is trivial because
the interval is can be contracted to a point. To obtain EM−1(Γ) we glue
the two tori over the end points of Γ − {pt} together. This is tricky
business.
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h,! = R2/Z2

!monodromy map
(

1 −1
0 1

)

The map which identifies these tori is called the monodromy map. How
do we glue the end 2-tori together? Since the tori of a Liouville integrable
system are affine, such a 2-torus is R2/Z2, which is the 2-plane with
points whose coordinates both differ by an integer being identified. The
map which identifies the end tori is given by a 2 × 2 matrix M with
integer entries having determinant 1, since M preserves Z2. If M is not
conjugate by an integer 2× 2 matrix with determinant 1 to the identity
matrix, as in the figure above, then the bundle Π is nontrivial. When
this is the case we say that the integrable system has monodromy.

Consequences. You may say – so what if the system has monodromy?
Wait a minute. If the Liouville integrable Hamiltonian system with two
degrees of freedom has monodromy, it does not have globally defined
action-angle coordintes.

3.6.1 Analytical description of mondromy. Rotation angle

To compute monodromy analytically we need to use the rotation angle
Θ(h,!) of the flow of the Hamiltonian vector field XH on a smooth 2-torus
EM−1(h, !), where (h, !) is a regular value of EM. The XH and XL on
EM−1(h, !) are linearly independent. The flow ϕL

t′′ of XL is periodic
on the torus T2

(h,!). We define the rotation angle Θ(h,!) so that for any
initial condition p

ϕL
Θ(h,!)

(p) = ϕH
T (p),
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Fig. 3.8. Flow of two linearly independent vector fields on the torus T2
(h,!) and

definition of the rotation angle.

where T is the period of the flow ϕH!
t of the reduced vector field XH!

on H−1
! (h), see figure 3.8. The vector field T (h, ")XH + Θ(h,!)XL has

periodic flow on T 2
(h,!). Projecting the tangent bundle TS2 on the config-

uration space S2 we can define Θ(h,!) as the angle by which the pendulum
turns about axis x3 during the period of oscillation in x3 (height)1, see
figure 3.5.
A standard classical argument shows that

Θ(h,!) = 2
√

2"

∫ σ+
1

σ−
1

dσ1

(1 − σ2
1)

√
p(σ1)

,

where p is the polynomial (3.7) and σ±
1 are its real zeroes in [−1, 1] with

σ−
1 ≤ σ+

1 . The function Θ(h,!) is a multivalued real analytic function
on the set of regular values of EM, for more details see [5]. When we
let (h, ") run over the curve Γ, the value of Θ(h,!)/2π does not return
to its original value. Instead it decreases by 1. Hence the variation
of the lattice spanned by periodic Hamiltonian vector fields XL and
XT (h,!)H+Θ(h,!)L on EM−1(h, ") corresponding to the local actions is(

1 −1
0 1

)
.

3.6.2 Geometric monodromy theorem

We now state the geometric monodromy theorem, which allows us to
compute the monodromy using only geometry. Consider a two degree
of freedom Liouville integrable Hamiltonian system with phase space
(M,ω), which is a 4-dimensional symplectic manifold and Poisson com-

1 Rotation angle equals π in the planar pendulum limit ϕL ≡ 0. For all regular
(h, #) π < Θ(h,!) < 2π, see chapter IV.6.3 of [5].
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I−1(0, 0)

Fig. 3.9. A once pinched 2-torus.

muting integrals (F1, F2). Suppose that the integral map

I : M → R2 : p "→ (F1(p), F2(p)).

has an isolated critical value of (0, 0) and that D∗ = D − {(0, 0)} is
contained its set of regular values. Suppose that for every c in D∗ the
preimage I−1(c) is a smooth 2-torus, while I−1(0, 0) is a 2-torus which
is once pinched at the point x. In other words, x is the only singular
point of I−1(0, 0) and is a hyperbolic equilibrium point of XF1 , that is,
the linearization of XF1 at x has two nonreal complex eigenvalues with
positive real part and two nonreal complex eigenvalues with negative
real part. Moreover, the whole of I−1(0, 0) is a homoclinic connection
of the stable and unstable manifolds of x. If Γ is a smooth positively
oriented circle in D∗, then the 2-torus bundle I−1(Γ) has monodromy(

1 −1
0 1

)
.

If the singular fiber I−1(0, 0) is a k-pinched 2-torus, that is, is a
heteroclinic k-cycle, then the monodromy is

(
1 −k
0 1

)
.

C Comments on lecture IV

The concept of monodromy for two degree of freedom integrable Hamil-
tonian systems was first formulated by Duistermaat [15]. The spherical
pendulum was historically the first example of a system with monodromy
[15, 6]. It is discussed at length in chapt. IV of [5].

Reduction of the S1 symmetry in the spherical pendulum is an ex-
ample of singular reduction using invariants which was pioneered by
Cushman. In his lecture Cushman relies on the simple elegant method
of qualitative analysis (of functions defined on algebraic varieties, such
as reduced Hamiltonians H defined on singular reduced phase spaces P )
which can be called the “method of slices”. Having both P and h-level
sets of H described as surfaces in an ambient space with invariant poly-
nomial coordinates, he studies the topology of their intersections Dh
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which form a continuous one-parameter family. Critical sections Dhcrit

have special topology and are isolated in this family, the values hcrit

are critical values of the function H on P . A similar method (for func-
tions defined on orbit spaces) was independently used by Zhilinskíı (see
section 5.6.1 of [26], appendix A in [27], and [36]).

The presentation of the spherical pendulum gives a convincing illus-
tration of Cushman’s leitmotiv “no polar coordinates”, that is, of an
analysis based on polynomial invariants. The reader who is still (uh)
not converted to the faith should certainly enjoy drawing a picture of
the singular reduced phase space P0 in polar (cylindrical) coordinates.

Initially monodromy was uncovered analytically in terms of local angle-
action variables and the variation of the period lattice [5]. In this ap-
proach the monodromy matrix was calculated directly after an explicit
relation between the different local angle action variable charts was es-
tablished. The geometric monodromy theorem was formulated later in
[10]. According to this theorem and the results of [25] and [43] we can
determine whether the system has monodromy and even find the mon-
odromy matrix on the basis of the geometric reconstruction of the fibers
of the energy-momentum map EM.

All figures in this section were prepared from numerical computations.

C.1 Discrete symmetries

The spherical pendulum has a number of discrete symmetries in addition
to the S1 symmetry discussed in the lecture. To find these symmetries we
consider operations which leave invariant the unconstrained Hamiltonian
H̃ and the phase space TS2. In this way we see that our system is
invariant with respect to any reflection σv in a plane containing the e3

axis, for example,

(x1, x2, x3, y1, y2, y3) !→ (x1,−x2, x3, y1,−y2, y3).

The resulting symmetry group has two classes of conjugate elements:
one which contain rotations (S1 symmetry) and the other the reflection
σv. In the Schoenflies classification this group is called C∞v. The action
of C∞v on TS2 is symplectic. The S1-invariant polynomials σ1, . . . ,σ6

are invariant under a larger group C∞v. When the action of C∞v is
reduced, its orbit space is TS2/C∞v.

The full symmetry group of the spherical pendulum is C∞v × Z2.
The nontrivial operation of the order two group Z2 = {±1} is the anti-
symplectic symmetry (x, y) → (x,−y), which is sometimes called time
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reversal . After reduction this symmetry induces a nontrivial symmetry
on R4 defined by

Z2 × R4 → R4 : (−1, (σ1,σ2,σ3,σ6)) $→ (σ1,−σ2,σ3,−σ6).

This has two important consequences:

(i) Points on TS2 with L = " %= 0 which differ by the direction of rotation
about axis e3 are equivalent. Therefore it suffices to study only the
case " ≥ 0.

(ii) The reduced phase space P! can be “flattened” into the fully reduced
phase space P!/Z2 which is a projection of P! onto the plane with
coordinates (σ1,σ3). The use of P!/Z2 makes the geometric analysis
of the level sets of H! = 1

2 σ3 + σ1 particularly simple.

C.2 Geometric analysis on P!/Z2

Analysis of the level sets of H! on P! can be done using level sets of H!

on P!/Z2 for " ≥ 0. The h-level set of H! is an intersection of the line

σ3 = 2(h − σ1)

and the region of the coordinate plane (σ1,σ3) defined by the inequality

σ3 ≥ "2/(1 − σ2
1).

Note that on the boundary of P!/Z2 the value of σ2 is 0, while the value
of H! is

H! = 1
2 σ3 + σ1 =

"2

2(1 − σ2
1)

+ σ1.

Regular level sets of H! on P!/Z2 are closed intervals. Its critical level
sets are points (see figures in the lecture) on the boundary of P!/Z2. To
find the critical set for " > 0 we find those values of σ1 where the slope
of the boundary of P!/Z2 equals that of the h-level set, that is,

"2
d

dσ1
(1 − σ2

1)−1 = −2, σ1 < 0.

Solving the above equation for " gives

" = ±(1 − s2)/
√

s, where s = −σ1.

This yields the parametrization

(
"(s), h("(s), s)

)
=

(
±1 − s2

√
s

,
1 − s2

2 s
− s

)
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of the discriminant locus ∆ used in the lecture.

C.3 Quantum monodromy

Quantum mechanics provides a very clear interpretation of monodromy
[8] which we think is worth mentioning here. We recall that in the
quantized spherical pendulum it is the energy h and momentum ! of
the classical system which are quantized. According to the Einstein-
Brilluoin-Kramers (EBK) quantization principle, we should find regular
tori Th,! for which the actions are an integer value times an overall scale
factor 2π!.

For the spherical pendulum the action !, which corresponds to the S1

symmetry, is quantized so that

!

2π!
= 0, 1, 2, . . . .

The action corresponding to the second vector field on Th,! with periodic
flow should be computed locally in (h, !) and then quantized. The result
of such computation is shown in figure C.1, which was kindly provided
to us by Igor Kozin [23]. Note that the value of ! was “adjusted” so that
there are enough quantum states in the region near the isolated critical
value (h, !) = (1, 0).

All quantum states (EBK tori) form a two-dimensional lattice of
points in the image of the EM map (inside the discriminant locus). We
can choose many regular one-dimensional sequences of nodes starting
locally at any given node in this lattice; the distance between the neigh-
bors in such sequences is a “quantum”, and the distance between the last
state and the border of the classical locus (measured along the direction
of the sequence) is half of this quantum. In other words, we can define
local quantum numbers which correspond to local action variables.

Boris Zhilinskíı proposed to make manifest that the monodromy of
the quantum system is a defect of the lattice formed by quantum states
in the image of the EM-map. This improved the original picture of
Cushman and Duistermaat [8] so that anyone who sees one of Boris’
pictures (including Cushman and Duistermaat) immediately begins to
play around and try to “perfect” it. Therefore we call such a picture as
figure C.1 a Zhilinskíı diagram.

We begin Zhilinskíı’s diagram (figure C.1) by drawing an “elemen-
tary cell”, which is a small quadrangle defined by one choice of local
quantum numbers. We then propogate this cell along the contour Γ.
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Fig. C.1. Image of the classical and quantum EM map of the spherical pen-
dulum. Hollow circle shows the isolated critical value, black circles represent
quantum levels (= EBK tori). The family of quadrilaterals (= Zhilinskíı’s
diagram) shows how local quantum numbers (= local action variables) are
chosen along the circle Γ.

At each sufficiently small step along Γ, the choice of the new neighbor-
ing cell preserves the same choice of the quantum numbers and thus is
unambiguous. However, after making the whole circuit of Γ, the cell
does not come to itself because a global choice of quantum numbers is
impossible. The map from the original cell to the final cell is of course
the monodromy map. More precisely, the matrix which gives the trans-
formation of the cell is the inverse transpose of the classical monodromy
matrix. A rigorous mathematical formulation of quantum monodromy
was given by Vu Ngoc in [39]; relation between quantum and classical
monodromy matrices is also discussed in the appendix of [17].

If you like playing with little puzzles as much as Boris does [44], here
are a couple of provocative conjectures which can be formulated on the
basis of the Zhilinskíı diagrams similar to the one in figure C.1.

(i) The “sign conjecture” states that the monodromy matrix is
(

1 −k
0 1

)

where k is always a positive integer. Indeed, try changing the di-
rection of your contour Γ or try flipping the lattice in figure C.1
any way you can imagine (help yourself with scissors and glue, if
you like). The monodromy transformation will always be

(
1 −k
0 1

)
.

(ii) The “additivity conjecture” states that monodromies of several
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isolated critical values of the EM-map, which all lie in the interior
of the closure of a connected component of the set of regular val-
ues, can only add up. In other words, the distortion of the original
elementary cell can only increase. For example, the monodromy
matrix computed along a contour which encircles two isolated
critical values with monodromy matrices

(
1 −k′

0 1

)
and

(
1 −k′′

0 1

)
,

respectively, should be
(

1 −k′−k′′

0 1

)
.

Both of these conjectures have been recently proved by Cushman and
Vu Ngoc [12]. They should help in the study of bifurcations of pinched
tori associated to isolated critical values.

Among many examples of quantum systems with monodromy which
have been found since 1980, we can add the textbook system of two (or
more) coupled angular momenta [36]. It has also been suggested in [35]
that nonintegrable systems with most of their KAM tori remaining in-
tact can also have monodromy. This conjecture has been recently proven
in [32]. In particular, the hydrogen atom in perpendicular electric and
magnetic fields [35], an atomic realization of a particular perturbation
of the Kepler system, has monodromy. Monodromy has been recently
found in many molecular systems, notably in H+

2 [41], a molecular real-
ization of the two-center Kepler system, in floppy triatomic molecules,
such as LiCN/CNLi [17], which are distant relatives of the spherical pen-
dulum, and in Fermi resonant molecular elastic pendula, such as CO2

[13]. See [17] for a brief review.

C.4 Finding monodromy by deformation argument

Monodromy is a global topological property of an integrable fibration.
Thus regular fibers (tori) lying far away from the singularity, which is
at the origin of monodromy (such as the pinched torus), continue to fit
together in the way prescribed by the monodromy of the fibration. Fur-
thermore, in a sufficiently small neighbourhood a small local continuous
deformation, which changes qualitatively only the singularity, does not
change the monodromy of the fibration. The far away tori will fit to-
gether in the same fashion as for the undeformed fibration. This simple
deformation argument allows to find monodromy of many systems.

For example, consider a “quadratic spherical pendulum”, which is
obtained by a generic quadratic deformation Va,b = 1

2ax2
3 + bx3 of the

original linear potential V0,1 = x3 = σ1 of the spherical pendulum.
By analyzing the corresponding continuously deformed reduced system
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(an exercise which the reader is invited to do following the approach
in sec. 3.4) we find that deformed system differs qualitatively from the
original spherical pendulum only when |a| > |b|. Neglecting overall
energy scaling, we can distinguish three robust deformations V0,1, V−1,ε,
and V1,ε (here 0 < |ε| < 1), two special systems with V±1,0, and two
transitional systems with V±1,1.

As shown in fig. C.2, the EM map of the V1,ε system has two isolated
critical values at " = 0 which correspond to two pinched tori. The
continuous deformation V1,ε → V1,0 merges these tori into one doubly
pinched torus. The degenerate system V1,0 was studied in [2] where
it was shown to have monodromy

(
1 −2
0 1

)
. This analysis was extended

in [12] to V1,ε where the authors show that the V1,ε system also has
monodromy 2 for the contour Γ which encircles both critical values. This
assertion follows from a deformation argument for sufficiently small ε. A
different continuous deformation V1,ε → V0,1 merges one of the critical
values into the lower boundary of the image of EM, while the other
becomes the isolated critical value of the V0,1. It follows that monodromy
for a contour which goes around this remaining isolated critical value is
1. Replacing ε by −ε, we see that monodromy for a contour around any
of the two isolated critical values of the V1,ε system is 1.

Fig. C.2. Image of the EM map of the spherical pendulum (center) the de-
formed quadratic spherical pendulum of the V1,ε kind (left) and of the V−1,ε

kind (right, cf. [17] and [41]).

The V−1,ε case was analyzed recently in [17] as a model of triatomic
floppy molecules. The image of the EM map has two leaves A and B
(fig. C.2, right). The “main” leaf A is unbounded from above and has
a small cut C along the top edge of the curvilinear triangle B. The
second “small” leaf B is glued to A along C. The EM map is two-valued
on EM−1(B \ C). This system has nonlocal monodromy which we can
observe for a contour Γ ⊂ A which goes around C. The continuous
deformation V−1,ε → V0,1 shrinks B (and the cut C) to a point, which
becomes the isolated critical point of V0,1. In the full space, the union of
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singular fibers which form EM−1(C) shrinks to a pinch torus. Since this
deformation does not involve the regular tori in EM−1(Γ), monodromy
of the V−1,ε system along Γ is 1.

The transitional case V1,1 corresponds to the moment of the bifurca-
tion of the lower equilibrium of the system. When we move continuously
in the parameter space so that V0,1 → V1,1 → V1,ε (that is, going from
center to left in fig. C.2) the initially stable equilibrium detaches from
the two families of relative equilibria and becomes an isolated focus-focus
point whose stable and unstable manifolds connect and form a pinched
torus. It has been proven in [16] that this is a supercritical Hamiltonian
Hopf bifrucation.

The case V−1,1 corresponds to the moment of the subcritical Hamil-
tonian Hopf bifurcation of the upper equilibrium of the system [16].
When V0,1 → V−1,1 → V−1,ε (going from center to right in fig. C.2) this
initially isolated unstable equilibrium becomes stable (lower vertex of
leaf B) and new families of relative equilibria are born (the rest of the
boundary ∂B). In sec. D Cushman shows that the monodromy of the
V−1,1 system is the same as that of the original spherical pendulum V0,1.
Of course we can now anticipate this result from our deformation argu-
ment, but we invite the reader to appreciate the hard way of computing
directly the monodromy of V−1,1.

D Homework problem. Monodromy about a
degenerately pinched 2-torus

This appendix is contributed entirely by Cushman after a question by Boris
Zhilinskíı and Dmitríı Sadovskíı at the end of his lecture on the spherical
pendulum. This question turned into an interesting homework problem for
the lecturer.

D.1 Introduction

In this section we construct a two degree of freedom Liouville integrable
Hamiltonian system on the tangent bundle TS2 of the 2-sphere S2 whose
energy momentum map EM has the following properties.

(i) (0, 0) is an isolated critical value, that is, there is an open disc
D in R2 containing (0, 0) such that D∗ = D \ {(0, 0)} consists of
regular values of EM and D∗ lies in its image.

(ii) For every (h, ") ∈ D∗ the (h, ")-level set

EM−1(h, ") = {p ∈ TS2 EM(p) = (h, ")}
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is a smooth 2-dimensional torus T 2
h,!.

(iii) The singular fiber EM−1(0, 0) is an immersed 2-dimensional sub-
manifold of TS2 which is smooth except at two pinch points p±
where it has a self intersection. At p− the pinch is transverse,
that is, the tangent spaces to EM−1(0, 0) at p− are transverse;
whereas at p+ the pinch is degenerate because the tangent spaces
are not transverse.

Our calculations show that the global monodromy of the smooth 2-
torus bundle EM−1(Γ) → Γ over a smooth positively oriented circle Γ
in D∗, which has winding number 1 about (0, 0) is

(
1 −2
0 1

)
. For more

backgound on monodromy in Liouville integrable Hamiltonian systems
see [15] or [5]. Our calculations show that the local monodromy around
the degenerate pinch point p+ is

(
1 −1
0 1

)
, which is the same as the local

monodromy about the transversal pinch point p−. This result is well
known if both pinch points are transverse, see [43, 10].

To determine the local monodromy around p+, we find the variation
of the rotation angle of the flow of the Hamiltonian vector field on T 2

h,!

as (h, !) traces out the curve Γ. This uses residues and follows closely
the idea of the calculation of the local monodromy for the spherical
pendulum given in Chapt. V of [5].

D.2 A model system

Consider the following model Hamiltonian system. On TR3 with coor-
dinates (x, y) and symplectic form ω̃ =

∑3
i=1 dxi ∧ dyi let

H̃(x, y) = 1
2 〈y, y〉 + V (x3), (D.1)

be the unconstrained Hamiltonian. Here 〈 , 〉 is the Euclidean metric on
R3. Constrain the Hamiltonian system (H̃, TR3, ω̃) so that the motion
takes place on the tangent bundle

TS2 = {(x, y) ∈ TR2 | 〈x, x〉 = 1, 〈x, y〉 = 0}

of the 2-sphere S2. The model problem we consider is the constrained
system (H,TS2,ω), where H = H̃|TS2 and ω = ω̃|TS2. This system
has an S1 symmetry

S1 × TS2 → TS2 : (t, (x, y)) '→ (Rtx,Rty), (D.2)

where Rt =
(

cos t − sin t 0
sin t cos t 0
0 0 1

)
, whose momentum is

L : TS2 → TS2 : (x, y) '→ x1y2 − x2y1. (D.3)
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Since the S1 symmetry preserves the Hamiltonian H, the function L is
an integral of the Hamiltonian vector field XH . In other words, the func-
tions H and L Poisson commute, that is, {H,L} = 0. Thus (H,TS2,ω)
is Liouville integrable.

To remove the S1 symmetry we apply singular reduction [5], which
uses invariant theory. First we note that the algebra of S1-invariant
polynomials on TS2 is generated by

ρ1 = x3 ρ3 = y2
1 + y2

2 + y2
3 ρ5 = x1y1 + x2y2

ρ2 = y3 ρ4 = x2
1 + x2

2 ρ6 = x1y2 − x2y1

(D.4)

subject to the relations

ρ2
5 + ρ2

6 = ρ4(ρ3 − ρ2
2), ρ4 ≥ 0, ρ3 ≥ ρ2

2

ρ2
1 + ρ4 = 1

ρ1ρ2 + ρ5 = 0.

(D.5)

The above relations (D.5) define the space TS2/S1 of S1-orbits on TS2.
The singular reduced space P! = L−1(#)/S1 is the space of S1-orbits
on the #-level set of the momentum L and is defined by equation (D.5)
together with the relation ρ6 = #. Eliminating ρ4, ρ5, and ρ6 from
these equations, we find that P! is the semialgebraic variety in R3 (with
coordinates (ρ1, ρ2, ρ3))

ρ2
2 + #2 = ρ3(1 − ρ2

1), |ρ1| ≤ 1, ρ3 ≥ 0. (D.6)

Since the Hamiltonian is invariant under the S1 symmetry (D.2), it
induces the reduced Hamiltonian

H! : P! ⊆ R3 → R : ρ = (ρ1, ρ2, ρ3) &→ 1
2 ρ3 + V (ρ1). (D.7)

D.3 A special case

We now look at the special case of the model problem when

V (x3) = −(1 − x3)2.

Then the reduced Hamiltonian on the reduced space P! (D.6) is

H!(ρ) = 1
2 ρ3 − (1 − ρ1)2. (D.8)

Its 0-level set on P! when # = 0 is illustrated in figure D.1. After recon-
struction H−1

0 (0) becomes a 2-torus in the 0-level set of the momentum
L with a nontransverse pinch point at p+ = (0, 0, 1, 0, 0, 0). To see
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this recall that over each smooth point of H−1
0 (0) (that is, except for

ρ = (1, 0, 0)) the fiber of the S1-reduction map

π : L−1(0) ⊆ TS2 → P0 ⊆ R3 : (x, y) #→ (ρ1(x, y), ρ2(x, y), ρ3(x, y))
(D.9)

is a unique circular orbit of the S1 symmetry (D.2); whereas the fiber
over the point (1, 0, 0) is the point p+, since it is a fixed point of (D.2).
The pinch point p+ is nontransverse because the 0-level set of the re-
duced Hamiltonian H0 has second order contact with the reduced space
P0 at (1, 0, 0).

−1

ρ3

ρ3 = 2(1 − ρ1)
2

ρ11

ρ2

Fig. D.1. The 0-level set of the reduced Hamiltonian H0(ρ) = 1
2 ρ3 − (1− ρ1)

2

on the reduced space P0 : ρ2
2 = ρ3(1 − ρ2

1), |ρ1| ≤ 1, ρ3 ≥ 0.

Before we compute the local monodromy around p+ we need to show
that (0, 0) is an isolated critical value of the energy momentum mapping

EM : TS2 → R2 : (x, y) #→ ( 1
2 (y2

1 + y2
2 + y2

3) − (1 − x3)2, x1y2 − x2y1).

This is equivalent to showing that (h, #) = (0, 0) is an isolated point of
the discriminant locus ∆ of the polynomial

Q(ρ1, ρ2) = −ρ2
2 + 2(h + (1 − ρ1)2)(1 − ρ2

1) − #2.

In other words, ∆ is the set of (h, #) ∈ R2 where Q has a multiple root
in {(ρ1, ρ2) ∈ R2 | |ρ1| ≤ 1, ρ2 ≥ 0}. Thus (h, #) ∈ ∆ if and only if
ρ2 = 0 and

Ph,!(ρ1) = 2(h + (1 − ρ1)2)(1 − ρ2
1) − #2 (D.10)
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has a multiple root in [−1, 1]. A straightforward calculation shows that
∆ is parmetrized by






h = − (r − 1)2(2r + 1)
r

!2 = 2
(r − 1)3(r + 1)2

r
,

(D.11)

where r ∈ [−1, 0)∪ {1}. Hence (0, 0) (which corresponds to r = 1) is an
isolated point of ∆.

Thus we may choose a disc D in R2 containing (0, 0), which does
not intersect ∆ and lies in the image of EM. Every (h, !) ∈ D∗ is a
regular value of EM. For each (h, !) ∈ D∗, the h-level set of the reduced
Hamiltonian H! on P! is a smooth S1. Hence after reconstruction, the
(h, !)-level set of EM is a smooth 2-torus T 2

h,!.
We now turn to analyzing the rotation angle. Let R be the set of

regular values of EM which lie in its image. For every (h, !) ∈ R, the
rotation angle of the flow of the Hamiltonian vector field XH on the
2-torus T 2

h,! is

θ(h, !) = 2!
∫ x+

x−

dx

(1 − x2)
√

Ph,!(x)
, (D.12)

where x± = x±(h, !) are simple zeroes of Ph,! (D.10) in [−1, 1].
The following lemma is the key fact needed to compute the local

monodromy of the 2-torus bundle EM−1(Γ) → Γ about p+.

Lemma. Suppose that ! > 0. Then

lim
!→0+

θ(h, !) =

{
π, if h < 0

2π, if h > 0.
(D.13)

Proof. We use complex analysis.
Case 1. h < 0.

Consider the extended complex plane with cuts as indicated in fig-
ure D.2 To see that the polynomial Ph,0 has exactly two simple roots x±
in (−1, 1) when ! is small, first note that Ph,0 has four simple real roots
±1 and s± = 1±

√
−h. Since Ph,!(±1) = −!2 and Ph,0(0) = 2(h+1)−!2

is positive when |h| and ! are small, Ph,! has two simple roots x± in
(−1, 1) and two simple roots x0, x1 outside of [−1, 1].
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s−x− x1 ∞

z

r−

x0x+

r0

θ+θ−

r+

r1

−1

θ1
θ0

Fig. D.2. The extended complex plane is cut at [x−, x+] and [x0, x1].

Consider the extended complex plane with cuts as indicated in fig-
ure D.2. Write z − x± = r±ei θ± and z − x0,1 = r0,1ei θ0,1 . Then

Ph,"(z) = −2(z − x−)(z − x+)(z − x0)(z − x1).

Define √
Ph,"(z) = i

√
|Ph,"(z)| ei(θ−+θ++θ0+θ1)/2.

On the upper part of the cut [x−, x+] the sign of
√

Ph,"(z) is +, because
i e(0+π+π+π)/2 = i(−i) = 1. Now z "→

√
Ph,"(z) is a single valued

holomorphic function on the cut extended complex plane, because it is
single valued on a loop around each cut. Note that

√
Ph,"(−1) = i

√
|− !2| ei(π+π+π+π)/2 = i !.

Consider the contours in figure D.4a The contour C is homologous to
C ′ + C ′′. Hence ∫

C
ω =

∫

C′
ω +

∫

C′′
ω.

Here

ω =
1

(1 − z2)
√

Ph,"(z)

is a meromorphic 1-form on the cut extended complex plane, which has
first order poles at z = ±1 and is holomorphic elsewhere. When the
contour C ′′ shrinks to the cut [x−, x+] by Cauchy’s theorem we obtain

!

∫

C′′
ω = 2!

∫ x−

x+

dx

(1 − x2)
√

Ph,"(x)
= −2!

∫ x+

x−

dx

(1 − x2)
√

Ph,"(x)
= −θ(h, !).
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−1

C′
C

∞1s−x+x−

C′′

(a). ! #= 0, |!| small

−1

C

1 ∞s−

(b). ! = 0

Fig. D.3. Contours on the extended complex plane when h < 0.

By the residue theorem we find

!

∫

C′
ω = 2πi! Res

z=−1
ω = 2πi! lim

z→−1

z + 1
(1 − z)(1 + z)

√
Ph,!(z)

= 2πi!
1

2
√

Ph,!(−1)
= 2πi!

1
2i!

= π.

We now show that

lim
!→0+

(!
∫

C
ω) = 0.

Thinking of (h, !) ∈ R as complex variables in RC, the function (h, !) →∫
C ω is holomorphic on RC. Since the contour C does not depend of !,

lim
!→0+

∫

C
ω =

∫

C
lim

!→0+
ω =

∫

C
ω̃,

where

ω̃ =
dz

(1 − z2)
√

2(h + (1 − z)2)(1 − z2)
.

ω̃ is meromorphic in the extended complex plane as cut in figure D.3b
with poles only at z = ±1. At z = −1, the 1-form ω̃ has a second order
pole with zero residue. To see this, let u2 = 1 − z. Then

ω̃ =
−2u du

u2(2 − u2)
√

2(h + u4)u2(2 − u2)
=

(
−1
2
√

h

1
u2

+ O(1)
)

du.
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At z = s− = 1 −
√
−h the 1-form ω̃ is holomorphic, because s− is a

simple zero of Ph,0, which is not equal to ±1. Hence by the residue
theorem ∫

C
ω̃ = 2πi Res

z=−1
ω̃ = 0.

Consequently,

lim
!→0+

(#
∫

C
ω) = lim

!→0+
(#

∫

C
ω̃) = 0.

Taking the limit as # → 0+ of both sides of the equation

#

∫

C
ω = #

∫

C′
ω +

∫

C′′
ω = π − θ(h, #)

gives

lim
!→0+

θ(h, #) = π,

when h < 0. This proves case 1 of the lemma.
Case 2. h > 0.

The polynomial Ph,0 has four simple complex roots: ±1, 1 ± i
√

h. It
is positive when x ∈ (−1, 1) and negative elsewhere. When |#| is small
and positive, the polynomial Ph,! has four simple complex roots: x±,
x0, x1 with x± ∈ (−1, 1) and x1 is the complex conjugate of x0. The
extended complex plane is cut along the real axis between x− and x+

and along a semicircle lying to the right of the line Rex = 1 of radius
1
2 |x0 − x1| with center at Re x0 = 1 + O(|#|), see figure D.4

z

x1

r0

θ−

θ1

θ0

r1

r−

∞−1 x− x+

r+ x0

θ+

1

Fig. D.4. Contours on the cut extended complex plane when h > 0.
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Consider the extended complex plane with cuts as indicated in fig-
ure D.4. As in case 1 write z − x± = r±ei θ± , z − x0,1 = r0,1ei θ0,1

and

Ph,"(z) = −2(z − x−)(z − x+)(z − x0)(z − x1).

Define √
Ph,"(z) = i

√
|Ph,"(z)| ei (θ−+θ++θ0+θ1)/2.

From the fact that θ0 + θ1 = 2π when z is real and less than 1, it
follows that the sign of

√
Ph,"(z) on the upper part of the cut [x−, x+]

is + (because ie(0+π+2π)/2 = i(−i) = 1). Since the square root is single
valued along a loop about each cut, it is holomorphic on the extended
cut complex plane. Note that

√
Ph,"(−1) = i

√
|− #2| ei(π+π+2π)/2 = i #

and √
Ph,"(1) = i

√
|− #2| ei(0+0+2π)/2 = −i #.

Consider figure D.5a Then C̃ is homologous to C+C̃ ′+C̃ ′′. When the
contour C shrinks to the cut [x−, x+], by Cauchy’s theorem we obtain

#

∫

C
ω = 2#

∫ x−

x+

dx

(1 − x2)
√

Ph,"(x)
= −2#

∫ x+

x−

dx

(1 − x2)
√

Ph,"(x)
= −θ(h, #).

By the residue theorem, we have

#

∫

C̃′
ω = 2πi# Res

z=−1
ω = 2πi# lim

z→−1
(z + 1)

1
(1 − z)(1 + z)

√
Ph,"(z)

= 2πi #
1

2
√

Ph,"(−1)
= 2πi #

1
(2i#)

= π.

and

#

∫

C̃′′
ω = 2πi# Res

z=1
ω = 2πi# lim

z→1
(z − 1)

1
(1 − z)(1 + z)

√
Ph,"(z)

= 2πi#
1

−2
√

Ph,"(1)
= −2πi#

1
(−2i#)

= π.

Hence

#

∫

C̃
ω = #

∫

C
ω + #

∫

C̃′
ω + #

∫

C̃′′
ω

= −θ(h, #) + #π + #π = −θ(h, #) + 2π. (D.14)
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x− x+

C′

C

C

−1 1

D

∞
C′′

(a). ! #= 0, |!| ≤ !0, !0 small, when h > 0.

C̃

1 − i
√

h

−1 ∞1

1 + i
√

h

(b). ! = 0 when h > 0

Fig. D.5. Contours on the extended complex plane when h > 0. The contour
C̃ in figure D.5a semicircular cut from x0 to x1 ranges when |!| ≤ !0.

When ! = 0 the contour C̃ has not changed but the cut has, see fig. D.5b.
As in case 1 an argument shows that ω̃ = lim!→0+ ω is meromorphic on
the cut complex plane with a second order pole at ±1. Since

∫
C̃ ω is

a continuous function of h and ! when |!| ≤ !0 with !0 small and the
contour C̃ does not depend on !, it follows that

lim
!→0+

(!
∫

C
ω) = lim

!→0+
(!

∫

C
ω̃) = 0.

Taking the limit as ! → 0+ of both sides of equation (D.14) gives

0 = lim
!→0+

θ(h, !).

This proves case 2 of the lemma. !
From the lemma and the fact that θ(h,−!) = −θ(h, !) when ! $= 0

we conclude that the variation of θ is −2π along the positively oriented
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piecewise smooth curve γ, which is a rectangle in the (h, ") plane, con-
taining (0, 0) in the interior of the domain it bounds, with sides parallel
to the axes and the sides parallel to the " axis small, see figure D.6.

!
h

"!#

!
−π −2π

π 2π

Fig. D.6. The contour γ.

Since the variation of θ depends only on the homotopy class of the
curve γ in the set R of regular values of the energy momentum map-
ping, it is the equal to the variation along the curve Γ which lies in the
punctured disc D∗. Thus the variation in the period lattice associated
to the 2-torus bundle EM−1(Γ) → Γ is

(
0 −1
0 0

)
as Γ is traversed once in

the counterclockwise fashion. Hence the local monodromy of the bundle
EM−1(Γ) → Γ is

(
1 −1
0 1

)
.

D.4 An example of a degenerate heteroclinic cycle

A doubly pinched 2-torus bundle with a transversal pinch at p− =
(0, 0,−1, 0, 0, 0) ∈ TS2 and a degenerate pinch at p+ = (0, 0, 1, 0, 0, 0) is
realized by taking the special case of the model problem with V (x3) =
(x3 − 1)2(x3 + 1). Note that EM(p−) = EM(p+) = (0, 0) is an isolated
critical value and consider a positively oriented closed curve Γ in the
set of regular values of the EM map having winding number 1 about
(0, 0). By calculation in the preceding section the local monodromy
about p+ is

(
1 −1
0 1

)
. The local monodromy about p− is

(
1 −1
0 1

)
. The

global monodromy is the composition of the local monodromies. Hence
the monodromy of the 2-torus bundle EM−1(Γ) → Γ is

(
1 −2
0 1

)
.
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