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Abstract

We give an analytic proof of the fractional monodromy theorem for the 1:−2 oscillator system with S1

symmetry formulated by N.N. Nekhoroshev, D.A. Sadovskií, and B.I. Zhilinskií in C. R. Acad. Sci. Paris,
Ser. I 335 (2002) 985–988. Our proof is based on an analytic description of the Hamiltonian flow on the
fibers of the integral map of this system.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Recently, Nekhoroshev et al. [9] introduced the concept of fractional (or generalized) mon-
odromy using an explicit integrable perturbation of a 1:−2 resonant oscillator. Fractional mon-
odromy is a substantial generalization of the usual (integer) monodromy of integrable Hamil-
tonian systems, discovered by Duistermaat [5] in the 1980s, as the simplest topological obstruc-
tion to the existence of global action-angle variables. In this paper we give an analytic proof of
the existence of fractional monodromy for an integrable oscillator in 1:−2 resonance using a suit-
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able continuous basis of homology classes. In contrast to [9,10] our argument relies heavily on
the dynamics of our system, because the homology classes we use are constructed from integral
curves of certain vector fields related to the Hamiltonian vector fields of our integrable system.
Our proof uncovers a subtle relation between the geometry of the singular fibration given by the
level sets of the integrals of the resonant oscillator and the dynamics of its associated Hamiltonian
vector fields. Because we regard this paper as a dynamical complement to [9,10], we refrain from
discussing general geometric aspects, which the reader can find in [10]. For more introduction to
the subject and its relevance to applications see [6].

1.1. Definition of integer monodromy

We summarize the standard approach to monodromy by Duistermaat and Cushman [4,5] and
others. Consider a two degree of freedom Hamiltonian system on phase space R4 with coor-
dinates ξ = (x,px, y,py) and standard symplectic form ω = dx ∧ dpx + dy ∧ dpy . Assume
that the system is integrable, that is, there are two integrals F1, F2 whose Poisson bracket van-
ishes. We study the topology of the integrable fibration F whose leaves are defined by the fibers
F−1(f ) = F−1(f1, f2) = F−1

1 (f1) ∩ F−1
2 (f2) of the integral map

F : R4 → R2 : ξ �→ (
F1(ξ),F2(ξ)

)
. (1)

We assume that every fiber of F is connected and compact. Let R ⊆ R2 be the image of F

and Rreg ⊂ R be the set of regular values in the image of F . If f ∈ Rreg, we say that the
fiber F−1(f ) is regular. A regular fiber of F is a nonempty smooth 2-dimensional manifold,
which is a 2-torus using the Liouville–Arnold theorem [1–3,8]. In addition, in a sufficiently
small open neighborhood U ⊂ Rreg of f ∈ Rreg the map F |F−1(U) :F−1(U) → U is a trivial
torus bundle, that is, F−1(U) = U × T2, see [3, Appendix D]. A question remains whether
F |F−1(Rreg) :F−1(Rreg) → Rreg is globally a trivial 2-torus bundle.

Nontrivial topology in the integrable fibration F can arise from the presence of a singular fiber
F−1(c), where the point c ∈R is an isolated critical value of the integral map F . In other words
the rank of DF(ξ) is less than 2 for some ξ ∈ F−1(c) and there exists an open disk D ⊂ R
such that c ∈ D and D \ {c} ⊆ Rreg. To characterize the topology of F near c, we choose a
closed path Γ in D \ {c} as shown in Fig. 1. We determine the monodromy of the torus bundle
F |F−1(Γ ) :F−1(Γ ) → Γ using standard methods from the theory of fiber bundles.

The classifying map χ of the bundle F |F−1(Γ ) :F−1(Γ ) → Γ induces a map

χ∗ : H1
(
T2

f0
,Z

) → H1
(
T2

f0
,Z

)
on the first homology group H1(T2

f0
,Z) of T2

f0
= F−1(f0) where f0 ∈ Γ . Therefore, instead of

looking at the smooth bundle F−1(Γ ) → Γ of 2-tori over the loop Γ , we may look at the smooth
bundle

∐
f ∈Γ H1(T2

f ,Z) → Γ of rank 2 lattices H1(T2
f ,Z) over Γ . The map χ∗ is called the

monodromy map of the bundle F−1(Γ ) → Γ ; it does not depend on the particular choice of Γ ,
but only on the homotopy class of Γ ⊂ Rreg within the space of closed curves in Rreg. We obtain
a homomorphism from the fundamental group π1(Rreg) of Rreg to the group of automorphisms
of H1(T2

f0
,Z), which is called the monodromy map on H1(T2

f0
,Z).

Choosing a basis for H1(T2
f0

,Z), the monodromy map is a 2 × 2 matrix M ∈ SL(2,Z), which
is called the monodromy matrix along Γ . If M is not the identity, then the bundle F−1(Γ ) → Γ
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Fig. 1. In the case of standard monodromy the closed path Γ encircles an isolated critical value c of the integral map F .
All points on Γ are regular values of F and therefore lift to regular tori T2.

of 2-tori over Γ is nontrivial and hence the whole foliation F is also nontrivial. In order to
compute the monodromy matrix M of the torus bundle F−1(Γ ) → Γ , we choose a basis of
H1(T2

f0
,Z) and then transport this basis continuously around Γ until we reach again f0. In this

way we obtain a new basis of H1(T2
f0

,Z). The monodromy matrix M is the matrix that gives the
transformation between these two bases.

Remark 1. This approach, using a continuation of a basis of the first homology group H1, is
equivalent to continuing a basis of the fundamental group π1 of the 2-tori along Γ or a basis
of the period lattice PL. The period lattice approach was introduced by Duistermaat [5] and is
based on the fact that the period lattice bundle over Γ is isomorphic to the H1 bundle over Γ .

1.2. Definition of fractional monodromy: the 1:−2 oscillator

In the case of generalized monodromy the bundle formed from fibers of the integral map F

over Γ is not a T2 bundle, because for a finite number of points c ∈ Γ , F−1(c) is ‘weakly’ sin-
gular. In particular, this means that we do not have a smooth torus bundle over Γ . To characterize
this singular bundle we pick a regular value f0 ∈ Γ of F , consider homology classes in a rank
2 sublattice H1(T2

f0
) of H1(T2

f0
,Z), continue these classes along Γ , and obtain the monodromy

map μΓ which is an automorphism of H1(T2
f0

). Note that H1(T2
f0

) and H1(T2
f0

,Z) have the

same rank. This means that the singularity of F−1(c) is weak enough for a sufficiently large sub-
set of homology classes in H1(T2

f0
,Z) to be continued. See [10] for a more rigorous and general

discussion.
A concrete example of an integral map (1) which exhibits generalized monodromy was in-

troduced in [9,10] following an intuitive idea of Zhilinskií2 [11,12]. Consider the integral map

F1(ξ) = J (ξ) = 1

2

(
x2 + p2

x

) − (
y2 + p2

y

)
, (2a)

F2(ξ) = H(ξ) = √
2
((

x2 − p2
x

)
py + 2xypx

) + 2ε
(
x2 + p2

x

)(
y2 + p2

y

)
, (2b)

2 Private communication with (RC), University of Warwick, April 2002.
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Fig. 2. The image of EM (2) near the singular value (0,0). Regular values are shaded grey, critical values are shown by
bold curves. The closed path Γ encircles (0,0) and intersects the critical line segment C (3) of weak critical values once
and there transversely.

which is a modification of the one used in [9]. The reason of this modification is explained in
Appendix D. There we show that the integral map (2) and the original integral map in [9] define
the same foliation of R4. See also Remark 2 below.

The function J (2a) is the Hamiltonian of a linear oscillator whose frequencies are in
1:−2 resonance. J generates a flow which is periodic on R4 \ {0} with period 2π except on
{x = px = 0} \ {0} where the period is π . J is the momentum of the S1 Lie symmetry induced
by this flow. The energy H (2b) is a constant of motion of this oscillator. The last term in (2b)
ensures that the fibers of F are compact, the parameter ε > 0 being a convenient scaling fac-
tor. We call the integral map F , the energy-momentum map EM(ξ) = (J (ξ),H(ξ)). (Note that
in the traditional notation used here, the value of momentum precedes that of energy so that
momentum-energy map would be a more precise name.)

The set of critical values of F = EM near the singular value at the origin (0,0) is shown in
Fig. 2. In particular we are interested in the open line segment

C =
{
c = (j,0) ∈ R2: 0 < −j <

1

2ε2

}
(3)

of weakly singular values c. The weakly singular fibers EM−1(c) are two-dimensional compact
semi-algebraic sets whose singular set is the critical circle S1

c = EM−1(c) ∩ {x = px = 0}.

Remark 2. It can be seen that H in (2) is defined so that dh/dj = 0 on EM−1(c) for c ∈ C. This
fulfills the necessary condition for the orbits of the flow of XH on EM−1(c) \S1

c to approach the
singular circle S1

c transversely (i.e., without spiraling infinitely along it) and the one sided limit
of the rotation angle for the flow of XH can be defined as f moves on Γ toward c = Γ ∩ C. Our
work relies on this property of (2).

Following [10] we can show that for each c ∈ C the fiber EM−1(c) is a curled torus consisting
of the π -periodic orbit S1

c together with its stable and unstable manifolds. The origin (0,0) lifts
to a different singular fiber called a curled pinched torus which is topologically equivalent to an
once pinched 2-torus. In Appendix B we parameterize the set of critical values of EM and in
Appendix C we describe the topology of the singular fibers of EM and explain how and why
EM−1(c) is ‘curled.’
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Consider now the closed path Γ discussed in the beginning of this section. Γ encircles (0,0)

and transversely intersects C once at c �= (0,0) but otherwise lies in the set of regular values Rreg

of F = EM (see Fig. 2). Since EM−1(c) is not a regular 2-torus we cannot define the usual
monodromy along Γ . Nevertheless, we can define generalized monodromy. The main idea of
[9,10] is to find an index-2 sublattice H1(T2

f0
) of H1(T2

f0
,Z), for which the monodromy map

μΓ is defined. In particular we have

Theorem 1. (Cf. [9,10].) In a properly chosen basis of H1(T2
f0

) the generalized monodromy map

μΓ has matrix
( 1 −1

0 1

)
.

Remark 3. Extended formally to the whole H1(T2
f0

,Z), μΓ has a matrix M with rational en-
tries, that is, M ∈ SL(2,Q). Hence the name fractional monodromy is used as an alternative for
generalized monodromy.

The authors of [9,10] formulate a similar theorem. Their proof, suggested in [9] and detailed
in [10], is geometric. There the authors construct a cycle basis of the fundamental group π1 of
T2

f for f ∈ Γ \ {c}, where c ∈ C. One cycle is given by a closed integral curve of XJ on T2
f . The

other is defined by the intersection of a fixed 3-dimensional Poincaré section σ to the flow of XH

on the h-level set of H . For a finite set of f ∈ Γ \ {c}, the intersection σ ∩ T2
f has singularities.

To circumvent this difficulty, the authors use a homotopy.
In this work we give an analytic proof of Theorem 1 using appropriate periodic vector fields

and constructing closed non-null-homotopic paths on the tori as integral curves of these vector
fields. In this way we connect the dynamics of XH and XJ to the geometry of the fibration.
These closed paths are concrete cycles which represent elements of the sublattice H1(T2

f0
) of

H1(T2
f0

,Z). We refer to these closed paths as the homology class representatives.
In Section 2, we discuss the concept of the rotation angle and first return time used in the

construction of our periodic vector fields. We study the properties of the rotation angle and the
first return time analytically. We define a modified system for which the first return time is finite
even on F−1(c), c ∈ C. In Section 3, we consider the behavior of concrete representatives of
the first homology group of T2

f for f ∈ Γ \ (Γ ∩ C). We continue these classes along Γ and
compute their variation when we have made a complete tour of Γ . This proves Theorem 1.
Proofs of technical facts are given in the appendices.

2. Dynamical construction of cycle bases

2.1. Local action-angle variables

We recall the construction of local action-angle variables that is the cornerstone of both the
period lattice approach in [3–5] and our homology group approach. There local actions are used
to define cycle bases on regular tori T2

f . More details and complete proofs can be found in [3].
Suppose that f = (j, h) ∈ Rreg is a regular value in the image of EM. We look at the vec-

tor fields XH and XJ on the invariant manifold EM−1(f ), which is a smooth 2-dimensional
torus T2

f . The flow ϕt
J of XJ , given by

ϕt
J : S1 × R4 → R4 : (t, ξ) �→ R(t)ξ = diag(Rt ,R−2t )ξ, (4)

where ξ = (x,px, y,py) and Rt = ( cos t sin t
− sin t cos t

)
, is periodic of period 2π except on {x = px = 0}\

{0}, where its period is π . The point 0 ∈ R4 is an equilibrium of XJ . On the other hand, the flow
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Fig. 3. The flow of the two vector fields XH and XJ on the regular 2-torus T2
j,h

; the flow of XJ is periodic while that of
XH is not.

ϕH of XH |T2
f is not periodic. Let γ be the periodic orbit on T2

f traced out by an integral curve (4)
of XJ starting at ξ ′ (see Fig. 3). Since XH and XJ are linearly independent on T2

f , the integral
curve t �→ ϕt

H (ξ ′) of XH |T2
f starting at ξ ′ intersects γ transversely at ξ ′′ for the first positive

time when t = T (f ). Because of transversality, locally T (f ) is smooth function of f ∈Rreg.
The twist of the flow of XH on T2

f is given by Θ(f ) = θ(ξ ′′)−θ(ξ ′), where θ is an angle con-
jugate to the momentum J , see Section 2.2. Locally Θ is a smooth function of f ∈ Rreg which
is defined up to addition of integer multiples of 2π . However, since Rreg is simply connected,
Θ can be defined uniquely as a smooth function on the whole Rreg.

Definition 1. The functions Θ(f ) and T (f ) are called the rotation angle and the first return time
of the vector field XH with respect to XJ on T2

f , respectively.

Now define the vector fields

XI1 : R4 → R4 : ξ �→ XI1(ξ) = 2πXJ (ξ) (5a)

and

XI2 :EM−1(Rreg) → R4 : ξ �→ XI2(ξ) = −Θ
(
EM(ξ)

)
XJ (ξ) + T

(
EM(ξ)

)
XH (ξ) (5b)

and consider their flows ϕXI1
and ϕXI2

on T2
f . Since [XH ,XJ ] = 0, the flow of XI2 on T2

f is

ϕt

XI2 |T2
f

= ϕ
T (f ) t

XH |T2
f

◦ ϕ
−Θ(f ) t

XJ |T2
f

.

Lemma 1. The flows ϕt

XI1 |T2
f

and ϕt

XI2 |T2
f

are periodic of (minimal) period 1.

Proof. By construction (see Fig. 3),

ϕ1
XI2 |T2

f

(ξ ′) = ϕ
−Θ(f )

XJ |T2
f

◦ ϕ
T (f )

XH |T2
f

(ξ ′) = ϕ
−Θ(f )

XJ |T2
f

(ξ ′′) = ξ ′.

Since ϕXH
◦ ϕXJ

= ϕXJ
◦ ϕXH

, we obtain

ϕ1
X

(
ϕs

X (ξ ′)
) = ϕs

X (ξ ′)

I2 J J
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for every s ∈ [0,1]. Therefore ϕ1
XI2

is the identity map on γ , which is a Poincaré cross section

for the flow of XH on T2
f . Since γ is the image of an arbitrary integral curve of XJ on T2

f , it
follows that the flow of XI2 |T2

f is periodic of period 1. �
Remark 4. According to Lemma 1 the vector fields XIi

, i = 1,2, are the Hamiltonian vector
fields of local actions Ii , i = 1,2.

2.2. Computation of the rotation angle and the first return time

We calculate the time T (f ) of first return and the rotation angle Θ(f ) of the flow of XH on
the regular 2-torus T2

f leaf of the integrable fibration defined by EM (2). These computations
are greatly simplified if we first reduce the S1 symmetry of our system which is generated by the
flow ϕt

J of XJ . We use here some basic facts about reduction of our particular S1 action on R4.
This S1 action has four basic quadratic polynomial invariants J and (π1,π2,π3). Their explicit
definition along with further details is given in Appendix A.

For j in the image of the momentum map J , the reduced phase space Pj is the semi-algebraic
variety defined by

π2
2 + π2

3 = (π1 + j)2(π1 − j) and π1 � |j |. (6)

The reduced Hamiltonian on Pj is

Hj = π3 + ε
(
π2

1 − j2). (7)

The reduced dynamics is described by π̇k = {πk,Hj } for k = 1,2,3. In particular,

π̇1 = 4π2. (8)

When f = (j, h) is a regular value of EM, the orbit of XHj
on Pj coincides with

H−1
j (h) ∩ Pj , which is diffeomorphic to a circle, see Appendix C. We denote by π−

1 and π+
1 the

minimum and maximum values, respectively, attained by π1 along such an orbit. A motion of the
reduced vector field traces out the circle H−1

j (h) ∩ Pj and thus is periodic with period T (j,h).
To find the first return time and the rotation angle we observe that

Lemma 2. The period of the reduced motion of XHj
on Pj for energy Hj = h is equal to the first

return time of XH on T2
j,h.

Proof. The first return time on T2
j,h is the time after which the trajectory of XH returns to the

same S1 orbit of ϕXJ
. The lemma follows because different points in the reduced space lift to

different ϕXJ
orbits. �

We now compute the period T (j,h). We have

T (j,h) =
T (j,h)∫

0

dt = 2

π+
1∫

π−

dπ1

π̇1
= 1

2

π+
1∫

π−

dπ1

π2
, (9)
1 1
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where the last equality follows from (8). From (6) and (7) we have

π2
2 = Sj,h(π1) = (π1 − j)(π1 + j)2 − (

h − ε
(
π2

1 − j2))2
. (10)

Hence (9) becomes

T (j,h) = 1

2

π+
1∫

π−
1

dπ1√
Sj,h(π1)

. (11)

Note that π±
1 are real roots of Sj,h (10) that are greater than or equal to |j |. As (j, h) approaches

a point c = (j∗,0) on the critical line segment C (3), the period T (j,h) goes to infinity, because
EM−1(c) is the union of the stable and unstable manifolds of a hyperbolic periodic orbit of the
smooth vector field XH . Moreover, for (j, h) near C, the polynomial Sj,h has four real roots, two
of which coincide on C. This causes the integral (11) to blow up. A proof of this fact is given in
Appendix E.3.

Next we determine the rotation angle of the flow of XH on T2
j,h. Let θ = tan−1(x/px). The

(multivalued) function θ is canonically conjugate to J , because {θ, J } = LXJ
θ = 1. The time

derivative of θ along an integral curve of XH is single valued and is given by

θ̇ = LXH
θ = xṗx − pxẋ

x2 + p2
x

. (12)

Explicit expressions for ẋ and ṗx come from Hamilton’s equations for the integral curves of XH .
The function θ̇ is φJ -invariant, since

{J, θ̇} = {
J, {θ,H }} = {{J, θ},H} + {

θ, {J,H }} = {−1,H } = 0.

Therefore we can express θ̇ in terms of the invariants J , π1, π2 and π3. A short computation
gives

θ̇ = 2
h

j + π1
. (13)

Then the rotation angle of the flow of XH on T2
j,h = EM−1(j, h) is

Θ(j,h) =
Θ(j,h)∫

0

dθ =
T (j,h)∫

0

θ̇dt = 4h

π+
1∫

π−
1

1

j + π1

dπ1

π̇1

= h

π+
1∫

π−
1

1

j + π1

dπ1√
Sj,h(π1)

. (14)

Contrary to T (j,h) and because of the specific choice of H (2b), the rotation angle Θ(j,h) (14)
has a finite limit as h → 0, see Appendix D. More precisely, we assert
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Fig. 4. Rotation number Θ(j,h) near (0,0). The discontinuity of Θ(j,h) begins at (0,0) and continues along the critical
line segment C.

Lemma 3. For j ∈ (− 1
2ε−2,0) we have

lim
h→0+ Θ(j,h) = π

2
+ sin−1(ε(2|j |)1/2)

(15a)

and

lim
h→0− Θ(j,h) = −π

2
+ sin−1(ε(2|j |)1/2)

. (15b)

The proof is given in Appendix E.5. In particular, this means that there is a jump of π of the
rotation number at C, see Fig. 4.

2.3. Time rescaled dynamics

In Section 2.1 we defined the vector field XI2 which has periodic flow on T2
f , f ∈ Rreg. This

vector field cannot be defined on the curled tori because limh→0 T (j,h) = ∞ for j < 0, see
Appendix E.3. However, on R4 \ {x = px = 0} we can define the vector field

X(ξ) = 1

p2
x + x2

XH (ξ), (16)

which is a time rescaling of XH .

Lemma 4. X is a smooth incomplete vector field on R4 \ {x = px = 0}, which commutes with
XJ and leaves the set EM−1(f ) \ {x = px = 0}, f ∈R invariant.

Proof. The vector field X is not complete because an integral curve starting at a point in
EM−1(j,0) with j < 0 reaches a point in {x = px = 0} in finite time, see Appendix F. Since
g : R4 \ {x = px = 0} → R : (x,px, y,py) → (p2

x + x2)−1 is invariant under the flow of XJ , the
vector fields X and XJ commute where they are both defined. The last assertion in the lemma
follows because for any smooth function G : R4 → R we have

LXG = LgXH
G = g(LXH

G) = g{G,H }.
In particular, LXH = LXJ = 0. �
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We need to define the first return time τ(j,h) and the rotation angle Θ̂(j,h) of the vector
field X with respect to XJ . For (j, h) ∈Rreg this is straightforward.

Consider now a weak singular value c ∈ C in (3), that is, c = (j,0) with − 1
2ε−2 < j < 0

and ξ ∈ EM−1(c) \ {x = px = 0} a regular point of the curled torus. If τ+(ξ) and τ−(ξ) are
the positive and negative times needed by the integral curve of X starting at ξ to reach {x =
px = 0}, then we can define the first return time τ(ξ) of X with respect to XJ to be τ(ξ) =
τ+(ξ) + |τ−(ξ)|. Since τ(ξ) is the same for all regular points ξ ∈ EM−1(c), we may define
τ(j,0) = τ(ξ), where (j,0) = EM(ξ). In Appendix F we show that limh→0 τ(j,h) = τ(j,0)

for any (j,0) ∈ C. Moreover, in Appendix E.4 we prove

Lemma 5. The first time τ :R → R of return of the vector field X (16) with respect to XJ is a
smooth function on Rreg and is continuous on C.

We note that the rotation angle Θ̂(j,h) of the vector field X with respect to XJ equals the
rotation angle Θ(j,h) (14) of XH , because

Θ̂(j,h) =
τ(j,h)∫
0

dθ

ds
ds =

T (j,h)∫
0

dθ

ds

ds

dt
dt =

T (j,h)∫
0

dθ

dt
dt = Θ(j,h).

Hence below we will drop the hat over Θ .
Similar to XI1 and XI2 in Eq. (5b) we define the modified (or time-rescaled) vector fields

X1(ξ) = 2πXJ (ξ) (17)

and

X2(ξ) = −Θ
(
EM(ξ)

)
XJ (ξ) + τ

(
EM(ξ)

)
X(ξ), (18)

whose basic properties are given by

Lemma 6. The modified vector fields X1 (17) and X2 (18) are smooth. Their restrictions to any
torus T2

f with f ∈ Rreg are linearly independent, have periodic flows of period 1, and commute.

2.4. Choice of homology basis on regular fibers

Recall that the flow of XJ is periodic with period 2π on R4 \ {x = px = 0}. Let [β1] be the
homology class of the closed integral curve

β1 : [0,1] → T2
f : t �→ ϕt

X1
(ξ)

of the vector field X1 starting at ξ ∈ T2
f . Note that [β1] does not depend on ξ . A second indepen-

dent homology class [β2] on T2
f can be constructed from the closed integral curve

β2 : [0,1] → T2
f : t �→ ϕt

X2
(ξ)

of the vector field X2 starting at ξ . Again [β2] does not depend on the choice of ξ . We use
{[β1], [β2]} as basis for H1(T2 ,Z), when f ∈Rreg.
f
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Fig. 5. The closed path Γ in the base of the 1:−2 fibration.

3. Proof of fractional monodromy

In this section we prove Theorem 1. Consider the smooth closed path

Γ : [0,1] →R :u �→ Γ (u) = (
j (u),h(u)

)
, (19)

and f0 = Γ (0) = Γ (1) /∈ C. The curve Γ is positively oriented and encircles the origin 0 = (0,0)

once. It intersects the critical line segment C transversely once at f∗ = Γ (u∗), where u∗ ∈ (0,1),
but otherwise lies in Rreg, see Fig. 5.

Let u± be close to u∗ so that [u−, u+] ⊆ [0,1]. Note that Lemmas 10–15, given later in
this section, are formulated for every u ∈ [0,1]. We will focus here on the neighborhood of u∗ ∈
[u−, u+] and then later consider necessary extensions to [0,1]. We first determine the behavior in
EM−1(Γ ) of certain oriented closed curves γi(u) with i = 1,2, which lie in Λu = EM−1(Γ (u))

and which depend continuously on u. Their homology classes [γi(u)] will be independent and
therefore will form a basis of a sublattice of H1(Λu,Z) for u ∈ [u−, u+] \ {u∗}.

Since J is a globally defined action,

γ1(u) = β1 : [0,1] → Λu : t �→ ϕt
X1

(ξ) (20)

is a natural choice of one of the curves. Using the properties of the integral curves of the vector
field X1 (17), in Lemma 9 we show that the homology class [γ1(u)] of γ1(u) does not depend on
either ξ or u ∈ [u−, u+].

The construction of γ2(u) is at the heart of our proof of Theorem 1. It is more involved than
that of γ1(u). Because the rotation angle Θ of the vector field X (16) has a jump of −π as u

increases through u∗, see Lemma 3 and Fig. 4, the function

ϑ : [u−, u+] → R :u �→
⎧⎨⎩

Θ(Γ (u)) − π, u ∈ [u−, u∗),
limu→u+∗ Θ(Γ (u)), u = u∗,
Θ(Γ (u)), u ∈ (u∗, u+]

(21)

is continuous at u∗. The vector field

Zu(ξ) = −ϑ(u)XJ (ξ) + τ
(
Γ (u)

)
X(ξ) (22)
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on Λu is well defined for all u ∈ [u−, u+], because X(ξ) = XJ (ξ) when ξ is a critical point
of EM, and depends continuously on u, because ϑ and τ are continuous, see Section 2.3 and
Lemma 5. Now consider the family of initial points

ξ±(u) = (
x±(u),px(u), y(u),py(u)

) ∈ Λu, (23a)

where

x±(u) = ±
√

π+
1 (u) + j (u), px(u) = 0, (23b)

y(u) = 0, py(u) = h(u) − ε(π+
1 (u)

2 − j (u)2)√
2(π+

1 (u) + j (u))
, (23c)

and π+
1 (u) = max

H−1
j (u)

(h(u))
π1, see Section 2.2. The properties of ξ±(u) are detailed in

Lemma 11. We will use ξ±(u) to construct γ2(u) as the union of the integral curves

γ a
2 (u) :

[
−1

2
,

1

2

]
→ Λu : t �→ ϕt

Zu

(
ξ+(u)

)
(24a)

and

γ b
2 (u) :

[
−1

2
,

1

2

]
→ Λu : t �→ ϕt

Zu

(
ξ−(u)

)
. (24b)

Lemmas 12 and 13 describe the geometric behavior of the family u �→ γ2(u) illustrated in
Fig. 6. Specifically, in Lemma 12 we show that for u ∈ [u−, u∗] we have

γ a
2 (u)

(
1

2

)
= γ b

2 (u)

(
−1

2

)
= χ+(u) and γ a

2 (u)

(
−1

2

)
= γ b

2 (u)

(
1

2

)
= χ−(u);

while for u ∈ (u∗, u+] we have

γ a
2 (u)

(
−1

2

)
= γ a

2 (u)

(
1

2

)
= χ+(u) and γ b

2 (u)

(
−1

2

)
= γ b

2 (u)

(
1

2

)
= χ−(u).

Moreover, χ+(u∗) = χ−(u∗) = χ∗, while χ−(u) �= χ+(u), when u ∈ [u−, u∗). In Lemma 13 we
show that the curve γ2(u) is continuous for all u ∈ [u−, u+]. Furthermore, in Lemma 14 we
verify that the family u �→ γ2(u) is continuous on [0,1] and therefore on [u−, u+].

Once the appropriate family u �→ (γ1(u), γ2(u)) of the oriented continuous closed curves in
Λu has been constructed, we express the homology classes [γ1(u)] and [γ2(u)] for u �= u∗ in
terms of the basis {[β1(u)], [β2(u)]} of H1(T2

(j,h)
,Z) chosen in Section 2.4. Clearly, [γ1(u)] =

[β1(u)]. In Lemma 15 a computation shows that

[
γ2(u)

] =
{ [β1(u)] + 2 [β2(u)], u ∈ [u−, u∗),

2[β2(u)], u ∈ (u∗, u+]. (25)

(Of course, for u ∈ (u∗, u+] this follows directly from the construction of γ2(u) illustrated in
Fig. 6, bottom.) From Lemma 15 we conclude that for every regular u ∈ [u−, u+] \ {u∗}, the
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Fig. 6. Schematic representation of the paths γ a
2 (u) and γ b

2 (u) on the fiber Λu = EM−1(Γ (u)) which join together

when u = u∗ (middle) so that the deformation of the composite path γ2(u) = γ a
2 (u) ∪ γ b

2 (u) is continuous at u∗.

homology classes [γ1(u)] and [γ2(u)] generate the index-2 subgroup H1(T2
Γ (u)) of H1(T2

Γ (u)).
Now we can prove

Lemma 7. For u ∈ [u−, u+] the only homology classes in H1(T2
Γ (u),Z) that vary continuously as

u crosses u∗ are those which lie in the rank 2 sublattice H1(T2
Γ (u),Z) of H1(T2

Γ (u),Z) spanned
by [γ1(u)] and [γ2(u)] with u �= u∗.

Proof. We have already shown that [γ1(u)] and [γ2(u)] are linearly independent and continuous,
and that they span H1(T2

Γ (u),Z). From (25) we can see that all homology classes of H1(T2
Γ (u),Z)

not contained H1(T2
Γ (u),Z) lie in the sublattice spanned by {[β2(u)]}. Reading Fig. 6 from bot-

tom to top, we see that the curve γ a
2 (u), which is homologous to the closed loop β2(u) for

u ∈ (u∗, u+], does not vary continuously as u decreases through u∗, because for u ∈ [u−, u∗) the
curve γ a

2 (u) is a segment with distinct end points χ± and thus is not a cycle because it is not
a closed loop. Therefore, the homology class [β2(u)] (and thus any class not in H1) cannot be
continued across u∗. �

Let Γ be the positively oriented closed curve described at the beginning of this section. In
order to compute the generalized monodromy map μΓ : H1(T2

f0
) → H1(T2

f0
) along Γ starting

at f0, we need to extend our construction of [γ2(u)] from [u−, u+] to [0,1]. We make some
observations. First, the function ϑ (21) extends to the continuous function

ϑ : [0,1] → R :u �→
⎧⎨⎩

Θ(Γ (u)) − π, u ∈ [0, u∗),
limu→u+∗ Θ(Γ (u)), u = u∗, (21*)
Θ(Γ (u)), u ∈ (u∗,1].
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Note that ϑ(0) = ϑ(1) + π . Second, since the vector field Zu (22) is defined on EM−1(Γ (u))

and is smooth for each u ∈ [0,1], the family u �→ Zu is continuous on [0,1]. Note that Z1 �= Z0

are two different vector fields on the torus T2
f0

. Second, the curve γ2(u), defined before Fig. 6, is
continuous for all u ∈ [0,1]. Of course, since X1 does not depend on u, the curve γ1(u) is also
continuous for all u ∈ [0,1]. In addition, these families have the properties given in Lemmas 12
and 13. Fourth, in Lemma 14 we show that the families u �→ γ1(u) and u �→ γ2(u) are continuous
on [0,1]. For γ2(u) we use the continuity of the mapping u �→ ξ±(u) (23) on [0,1]. Note that
ξ±(0) = ξ±(1).

Remark 5. Even though Zu, ϑ , and u �→ γ2(u) are continuous in u on the whole closed interval
[0,1], and in particular at points u = 0 and u = 1, considered as being defined on Γ ([0,1]) they
are discontinuous at f0. In particular, ϑ has a jump of −π at Γ (1), since ϑ(1) = ϑ(0) − π .
To circumvent possible confusion, we can use a semi-open interval [0,1) and take the limit as
u → 1− in order to get statements about the point u = 1. To do this we use

lim
u→1− Zu(ξ) = −(

Θ
(
Γ (0)

) − π
)
XJ (ξ) + τ

(
Γ (0)

)
X(ξ)

which is a smooth vector field on T2
f0

. Only then can we conclude that γ2(1) = limu→1− γ2(u)

exists and is a continuous closed curve on T2
f0

.

Now we are in a position to compute the monodromy matrix which corresponds to the gener-
alized monodromy map μΓ . We have already seen at the beginning of this section that [γ1(u)]
does not depend on the parameter u for u ∈ [u−, u+]. By the same argument, this holds for all
u ∈ [0,1]. Therefore [γ1(1)] = [γ1(0)].

Using Lemma 15 we see that H1(Λu) is an index-2 subgroup of H1(Λu,Z) for all u ∈ [0,1] \
{u∗}.

To compare H1(EM−1(Γ (0))) with H1(EM−1(Γ (1))) note that the cycle basis {[β1], [β2]}
on T2

f0
= EM−1(Γ (0)) = EM−1(Γ (1)), chosen as in Section 2.4, is obviously independent on

the parameter u. In other words{[
β1(0)

]
,
[
β2(0)

]} = {[
β1(1)

]
,
[
β2(1)

]} = {[β1], [β2]
}
f0

.

So using Lemma 15 we obtain [γ2(0)] = [β1(0)] + 2[β2(0)] and [γ2(1)] = 2[β2(1)] = 2[β2(0)].
Therefore, with respect to the basis {[β1(0)],2[β2(0)]} of H1(T2

Γ (0)
) the generalized mon-

odromy mapping μΓ is the linear mapping that sends [γ1(0)] = (1,0)T and [γ2(0)] = (1,1)T

into [γ1(1)] = (1,0)T and [γ2(1)] = (0,1)T , respectively. Thus we have proved

Lemma 8. The matrix of the generalized monodromy map μΓ :H1(T2
Γ (0)) → H1(T2

Γ (0)) with
respect to the basis {[β1(0)],2[β2(0)]} is

( 1 −1
0 1

)
.3

We now prove the lemmas referred to in the preceding argument. We begin with

Lemma 9. For any u ∈ [0,1] and ξ ∈ Λu = EM−1(Γ (u)), the curve γ1(u) defined in (20) as an
integral curve of the vector field X1 starting in ξ , is a smooth closed curve on Λu. The mapping

3 Note that our convention for defining the monodromy matrix differs from that in [9,10] by transposition.
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u �→ γ1(u) is continuous on [0,1]. The homology class [γ1(u)] of γ1(u) does not depend on
either ξ or u.

Proof. Because J is a globally defined action (momentum), all integral curves γ1(u) = β1 of
the vector field X1 in (17) on all fibers Λu are closed smooth curves. For all regular tori, and in
particular for Λu with u �= u∗ see Lemma 6; for the curled torus Λu∗ this can be verified by a
computation.

When ξ /∈ {x = px = 0}, integral curves of X1 have period 1. Otherwise, the integral curve of
X1 lies on the critical circle S1

Γ (u∗) = Λu∗ ∩ {x = px = 0} and closes after period 1/2. However,
the curve γ1(u∗) with ξ ∈ {x = px = 0} traces out S1

Γ (u∗) twice and is homologous to any integral
curve of X1 with starting point ξ on Λu∗ \ S1

Γ (u∗). This assures that γ1(u) is both continuous at
u∗ and independent of ξ .

By choosing a continuous family u �→ ξ(u) ∈ Λu, which is always possible, we obtain a
continuous family u �→ γ1(u). Since the homology class [γ1(u)] does not depend on ξ , any
such family results in the same continuous family [γ1(u)] of homology classes. Moreover, since
the vector field X1 does not depend on the parameter u, the curve γ1(u) is homologous to any
period-1 integral curve of X1 on Λu and therefore, [γ1(u)] does not change with u. �
Lemma 10. The flow of Zu is periodic for all u ∈ [0, u∗) ∪ (u∗,1]. For u ∈ [0, u∗) its minimal
period is 2; while for u ∈ (u∗,1] its minimal period is 1.

Proof. It is easy to see from the definition of ϑ (21) that

Zu|T2
Γ (u) =

{
πXJ |T2

Γ (u) + X2|T2
Γ (u), u ∈ [0, u∗),

X2|T2
Γ (u), u ∈ (u∗,1]. (26)

This means that with ξ ∈ T2
Γ (u) we have

ϕt
Zu(ξ) = ϕπt

XJ
◦ ϕt

X2
(ξ), (27a)

for u ∈ [0, u∗); while for u ∈ (u∗,1] we have

ϕt
Zu(ξ) = ϕt

X2
(ξ). (27b)

When u ∈ (u∗,1], then Zu(ξ) = X2(ξ). By construction of the modified first return time and
the modified rotation angle with respect to XJ of the vector field, we see that the flow of Zu on
T2

Γ (u) has minimal period 1. (In the spirit of Remark 5, consider u ∈ (u∗,1) and show that the
lemma holds for u = 1 by taking the limit as u → 1−.)

When u ∈ [0, u∗), then Zu = πXJ + X2 on T2
Γ (u). Recall that ϕ1

X2
(ξ) = ξ for all ξ ∈ T2

Γ (u).
Moreover the integral curve of X2 beginning at ξ intersects the integral curve of XJ beginning at
ξ at times t = n ∈ Z. Since XJ moves points only along the integral curve of XJ going through
ξ we can have ϕπt

XJ
◦ ϕt

X2
(ξ) = ξ only when t = n ∈ Z. Consequently, ϕπn

XJ
(ξ) = ξ only when n

is an even integer. Therefore for u ∈ [0, u∗) the minimal period of Zu|T2
Γ (u) is 2. �

Remark 6. In general, the flow of Zu is not periodic outside of T2
Γ (u), where u ∈ [0, u∗)∪(u∗,1].

Therefore Zu can only serve to define a cycle representative on T2 .
Γ (u)
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Next we show

Lemma 11. For all u ∈ [0,1], the family of initial points ξ± defined in (23) is a smooth closed
curve in R4 and ξ±(u) ∈ EM−1(Γ (u)) for all u ∈ [0,1].

Recall from Section 2.2 that π+
1 (u) is the maximum value that π1 attains on the level set

H−1
j (u)(h(u)), that is, the largest positive root of SΓ (u)(π1) (10). The choice of ± sign for x(u)

determines one of the two families ξ±(u). Note that ϕπ
XJ

(ξ±(u)) = ϕ−π
XJ

(ξ±(u)) = ξ∓(u).

Proof. Smoothness follows directly from the fact that π+
1 is a smooth function of h and j ,

which in turn are smooth functions of u. Finally py is well defined since π+
1 + j > 0. The fact

that ξ±(u) ∈ EM−1(Γ (u)) can be verified by a direct computation. �
Recall that γ2(u) is a union of γ a

2 (u) and γ b
2 (u), which are integral curves of Zu, see (24a)

and (24b).

Lemma 12. For u ∈ [0, u∗] the t = ±1/2 end of γ a
2 (u) joins the t = ∓1/2 end of γ b

2 (u); while
for u ∈ (u∗,1] both γ a

2 (u) and γ b
2 (u) are closed curves.

Proof. For u ∈ [0, u∗) both γ a
2 (u) and γ b

2 (u) are not closed curves, because the flow of Zu|T2
Γ (u)

is 2-periodic. Moreover, the end of γ a
2 (u) coincides with the start of γ b

2 (u) and vice versa (see
Fig. 6a). This follows from the fact that

ϕ1
Zu

(
ξ+(u)

) = ϕπ
XJ

(
ϕ1

X2

(
ξ+(u)

)) = ϕπ
XJ

(
ξ+(u)

) = ξ−(u).

Consequently, ϕ
1/2
Zu (ξ+(u)) = ϕ

−1/2
Zu (ξ−(u)).

For u ∈ (u∗,1] the paths γ a
2 (u) and γ b

2 (u) are closed (see Fig. 6c), because the flow of Zu is
1-periodic. �

Therefore for u ∈ [0, u∗) the path γ2(u) is a single closed path formed by joining the end
point of γ a

2 (u) with the starting point of γ b
2 (u) followed by joining the end point of γ b

2 (u) with
the starting point of γ a

2 (u). For u = u∗ the path γ2(u∗) is the union of two closed paths with
one point χ∗ = γ a

2 (±1/2) = γ b
2 (±1/2) in common. Thus γ2(u∗) is the figure-8 path shown in

Fig. 6b.
We now prove

Lemma 13. The curves u �→ γ a
2 (u) and u �→ γ b

2 (u) are smooth when u ∈ [0,1] \ {u∗} and are
continuous at u = u∗.

Proof. Recall that ξ+(u) and ξ−(u) (23) with u ∈ [0,1] are smooth curves. For concreteness con-
sider the curve γ a

2 (u) which is the integral curve of Zu with starting point ξ+(u) ∈ EM−1(Γ (u)).
The result then follows using the smoothness of ξ+(u) and the fact that the vector field Zu de-
pends smoothly on u when u �= u∗ and continuously at u = u∗. Moreover, for u ∈ [0,1] \ {u∗},
the flow of Zu on EM−1(Γ (u)) ∩ EM−1(Rreg) is defined for time [−1/2,1/2]. �

Using Lemma 13 we obtain
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Lemma 14. The mapping u �→ γ2(u) is continuous when u ∈ [0,1].

Proof. By definition of γ2(u)

lim
u→u±∗

γ2(u) = lim
u→u±∗

(
γ a

2 (u) ∪ γ b
2 (u)

) = lim
u→u±∗

γ a
2 (u) ∪ lim

u→u±∗
γ b

2 (u).

Using

lim
u→u+∗

γ k
2 (u) = lim

u→u−∗
γ k

2 (u) = γ k
2 (u∗), k = a, b,

which follows from Lemma 13, we obtain

lim
u→u+∗

γ2(u) = lim
u→u−∗

γ2(u) = γ2(u∗) = γ a
2 (u∗) ∪ γ b

2 (u∗) �

It is now straightforward to compute the variation of the homology classes [γ1(u)] and [γ2(u)]
along the oriented smooth closed path Γ .

Since [γ1(u)] does not vary along Γ , it follows that [γ1(0)] = [γ1(1)].
For every u ∈ [0, u∗) ∪ (u∗,1) we express the homology class [γ2(u)] in terms of the basis of

H1(T2
Γ (u)

,Z) given by the homology classes [β1(u)] and [β2(u)].

Lemma 15. For u ∈ [0, u∗), we have [γ2(u)] = [β1(u)] + 2[β2(u)]; while for u ∈ (u∗,1], we
have [γ2(u)] = 2[β2(u)]. Moreover, u ∈ [0, u∗) ∪ (u∗,1], [γ1(u)] and [γ2(u)] generate the
index-2 subgroup H1(T2

Γ (u)).

Proof. For u ∈ [0, u∗) recall that

γ2(u) : [0,2] → EM−1(Γ (u)
)

: t �→ ϕt
Zu

(
ξ+(u)

) = ϕπt
XJ

◦ ϕt
X2

(
ξ+(u)

)
.

Therefore

[
γ2(u)

] = [[0,2] → EM−1(Γ (u)
)

: t �→ ϕπt
XJ

(ξ+)
]

+ [[0,2] → EM−1(Γ (u)
)

: t �→ ϕt
X2

(ξ+)
]

= [
β1(u)

] + 2
[
β2(u)

]
.

The statement for u ∈ (u∗,1) follows directly from the definition of β2(u). Taking the limit as
u → 1− gives the result for u = 1.

The homology classes [γ1(u)] = [β1(u)] and [γ2(u)] = [β1(u)] + 2[β2(u)] generate a sub-
group of H1(T2

Γ (u)
,Z) that we denote H1(T2

Γ (u)
). Since H1(T2

Γ (u)
) is also generated by [β1(u)]

and 2[β2(u)], it follows that H1(T2
Γ (u)) is an index-2 subgroup of H1(T2

Γ (u),Z). �
This completes the proof of Theorem 1.
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4. Discussion

One might get the impression from [9] and [10] and more recently [12] that fractional mon-
odromy is limited to integrable m1: −m2 resonant oscillators, where mi ∈ Z�0, especially to the
1:−2 case. However, a careful look at the proof in these papers suggests that there should be a
more general formulation in line with the proof of the existence of ordinary monodromy given
in [4], where no Hamiltonian structure was needed. Obviously any extension beyond concrete
examples should give the true category for the structural stability of fractional monodromy.

A possible geometric framework for a general approach to fractional monodromy can be
found in [10]. There in Sections 3 and 4 it is shown that the fractional monodromy of the
integrable foliation of a concrete integrable 1:−2 resonant oscillator persists if suitable com-
pactifying terms are used to ensure that the integral mapping F is proper with connected fibers.
In Section 2 the notion of a weak singularity of F−1(c), c ∈ C, is defined. This is done by placing
F−1(c) in a family of regular fibers of F , defining the transport of chains in this family across
F−1(c), classifying the chains which are passable, and finally relating the collection of passable
chains to a subgroup of the fundamental group of a regular fiber near F−1(c). For a weakly sin-
gular fiber this subgroup has the same rank as the abelianization of the whole group. Giving a
topological formulation of a monodromy theorem for generalized monodromy remains a prob-
lem for future research. As in the usual monodromy theorem [5], it is desirable to give an explicit
relation between the topology of a weakly singular fiber F−1(Γ (u∗)) of the singular fibration
F−1(Γ ) → Γ over u∗ ∈ C ∩ Γ and the generalized monodromy matrix.

For a meaningful generalization of our proof of the existence of fractional monodromy we
need more. Our proof relies on a subtle analytic property of the vector fields and the correspond-
ing integral map F defined in (2) that results in the possibility to have well defined limits of
the rotation angle Θ (see Lemma 3) at the curve C of weakly singular critical values of F if we
use the modified first integrals (J,H) which define the integral map EM. In other words, the
singularity of the curled torus Λ∗ = EM−1(c) with c ∈ C is so weak, that we can still take a pair
of normal vector fields in order to construct cycles on Λ∗. This property raises several questions.
Is it necessary for the existence of fractional monodromy in general? In other words, if the set
of passable cycles is big enough to form a finite index subgroup of the fundamental group of
T2

f = F−1(f ) for some regular value f ∈ Γ , then can we always choose integrals defining the
same fibration as F so that the rotation angle has finite limits on C? This question has to be
answered before our technique for proving the existence of fractional monodromy can be gener-
alized. In particular it is interesting to analyze further the relation of the choice of (J,H) and the
condition dh

dj
|C = 0 mentioned in Remark 2. Our system (2) represents a class of systems which

satisfy such condition. It is possible to show that under certain fairly general assumptions, this
condition is both necessary and sufficient for the existence of the limits of Θ on C. It remains to
relate these assumptions to the definition of the fractional monodromy in [10].

Our paper is essentially the initial step in the general program outlined above. It provides an
analytical technology to construct a generalized monodromy map across weak singularities of
certain integrable fibrations and to define a monodromy subgroup H1 of H1(T2

f ). As in the case
of usual monodromy we can study generalized monodromy using a subgroup of the fundamental
group π1(T2

f ), the subgroup H1 of H1(T2
f ), or a sublattice pl of the period lattice PL. The first

approach was used in [10]. We used H1. Below we comment on the period lattice approach.
On a regular torus T2

f the period lattice PL(T2
f ) is the lattice of points (T1, T2) ∈ R2 such that

ϕ
T1 ϕ

T2 (ξ) = ξ, for all ξ ∈ T2
f .
XJ XH
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From the construction of the second action XI2 (5b), it follows that on T2
f the period lattice

PL(T2
f ) is spanned by the vectors (2π,0) and (−Θ(f ),T (f )). Because T (f ) → ∞ as f → C,

this PL is not defined on curled tori. After rescaling time, the modified period lattice PL(T2
f ) is

defined as the lattice of points (T1, T2) ∈ R2 such that

ϕ
T1
XJ

ϕ
T2
X (ξ) = ξ, for all ξ ∈ T2

f .

This lattice is spanned by (2π,0) and (−Θ̂(f ), τ (f )). Using the rotation number ϑ (21*), we
can introduce the continuous period lattice PL(u) spanned by (2π,0) and (−ϑ(u), τ (u)). This
period lattice is continuous at u∗ but PL(0) �= PL(1). The lattice PL(u) has a sublattice pl(u)

spanned by (2π,0) and (−2ϑ(u),2τ(u)), which is continuous at u∗ and for which pl(0) = pl(1).
The sublattice pl(u), u �= u∗ corresponds to the index-2 subgroup H1(T2

Γ (u)).
We note that the method we used to compute generalized monodromy does not need a con-

tinuous deformation of u �→ H1(u) along Γ and in particular across the weakly singular critical
value Γ (u∗). Instead, similar to [9,10], we continue individual elements of H1(0) (homology
classes) and ‘reassemble’ them into H1(1) at the end point Γ (1) = Γ (0). In the general situa-
tion, it is a legitimate question to ask how H1 can be continued along Γ . In particular, what is
the relation of the homology group H1(EM−1(Γ (u∗)),Z) of the weakly singular curled torus at
h = 0 to the two limits of H1 of a regular torus as h → 0+ and h → 0− and how they correspond
to the limits of pl? Equivalently, we may ask which subgroups of the nonabelian fundamental
group of EM−1(Γ (u∗)) are involved in this continuation. Recently, these questions have been
addressed in [7]. The analytic methods of our paper can be used to give an explicit description of
the groups involved.

Following a suggestion of the referee, the bundle of the homology subgroups over Γ and the
connection on this bundle can be realized as follows. For f ∈ R sufficiently close to the given
point c ∈ C, that is, for f = Γ (u) and u ∈ [u−, u+] \ {u∗} in Section 3, our construction of cycles
γ gives a continuous surjective mapping φ = φf from T2

f onto Λ∗, which is a diffeomorphism
on the complement of the singular circle in Λ∗ and is a smooth two-fold covering over the circle.
This mapping induces a homomorphism of PL(T2

f ) onto PL(Λ∗) and a corresponding homo-
morphism μf of H1(T2

f ,Z) to H1(Λ∗,Z). Note that the map μf does not depend on the choice
of the vector fields (X1,X2). One can conjecture that μf is injective. Consider the intersection

μΓ (u−)

(
H1

(
T2

Γ (u−),Z
)) ∩ μΓ (u+)

(
H1

(
T2

Γ (u+),Z
)) ∩H1(Λ∗,Z) = H∗

1.

Using the results in Section 3, we see that the preimages

H−
1 = μ−1

Γ (u−)

(
H∗

1

)
and H+

1 = μ−1
Γ (u+)

(
H∗

1

)
should be index-2 subgroups of Z2 lattices H1(T2

Γ (u−),Z) and H1(T2
Γ (u+),Z), respectively. Pro-

viding that these latter statements are valid, we obtain the isomorphism

μ−1
Γ (u+)

◦ μΓ (u−) :H−
1 �→H+

1 ,

which can be used to define a continuous connection at c = Γ (u∗) but only for ‘passable’ index-
2 subgroups of H1. Connecting H−

1 and H+
1 back to the original sublattice H(0)

1 = H1(T2
Γ (0),Z)

and forward to the final sublattice H(1) = H1(T2 ,Z), both of which lie over the point
1 Γ (1)
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Γ (0) = Γ (1), is trivial since the H1 bundles over [0, u−] and [u+,1] are trivial. Then we can
define monodromy in the usual sense of Duistermaat (see Section 1.1) for the bundle of index-2
subgroups H1 over Γ .
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Appendix A. Reduction of the S1 symmetry

Since the S1 action (4) of the flow ϕJ of XJ is not free, we need singular reduction
[3, Appendix B] to remove the S1 symmetry (4) from the Hamiltonian system (H,R4,ω). We
use invariant theory, cf. Chapter I.5 of [3]. In the lemmas below we summarize the information
about the reduced system we require in this paper.

Lemma 16. The algebra of ϕJ -invariant polynomials is generated by

J (ξ) = 1

2

(
x2 + p2

x

) − (
y2 + p2

y

)
, (A.1a)

π1(ξ) = 1

2

(
x2 + p2

x

) + (
y2 + p2

y

)
, (A.1b)

π2(ξ) = √
2
((

x2 − p2
x

)
y − 2xpxpy

)
, (A.1c)

π3(ξ) = √
2
((

x2 − p2
x

)
py + 2xypx

)
(A.1d)

subject to the relations

Φ = −2
(
π2

2 + π2
3 − (π1 − J )(π1 + J )2) = 0, and π1 � |J |. (A.2)

Lemma 17. The reduced phase space Pj is defined by

π2
2 + π2

3 = (π1 − j)(π1 + j)2, π1 � |j |, (A.3)

as two-dimensional semi-algebraic variety embedded in the ambient space R3 with coordinates
(π1,π2,π3), see Fig. A.1. The space Pj has the following topology: when j > 0, Pj is diffeo-
morphic to R2; when j � 0, it is homeomorphic, but not diffeomorphic, to R2, having a cusplike
singularity at (π1 = |j |,π2 = π3 = 0), when j = 0, and a conical singularity when j < 0.

Fig. A.1. Projections Vj of reduced phase spaces Pj on the (π1,π3) plane along the π2 axis. Every point in the boundary
∂Vj (solid line) lifts to one point in Pj with π2 = 0; points in the shaded area correspond to two points in Pj .
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Proof. Equation (A.2) defines the reduced phase space Pj as a surface in the ambient space R3

with coordinates π = (π1,π2,π3). From (A.3) we see that Pj is a surface of revolution about the
axis π1. Therefore, it is sufficient to study a projection of Pj in a plane containing this axis, see
Fig. A.1. The projection map

R3 → R2 : (π1,π2,π3) �→ (π1,π3)

is most convenient, because it reduces the extra Z2 symmetry of the Hamiltonian Hj in (A.4).
The image of Pj under this map is called the fully reduced space Vj = Pj/Z2. Points in the
boundary ∂Vj = Pj ∩ {π3 = 0} lift to one point in Pj , other points of Vj lift to two points. We
obtain the form of Pj near the lowest point (|j |,0,0) by looking at the form of the boundary ∂Vj

at the point (|j |,0). The other assertions are straightforward to prove. �
Since H in (2b) is invariant under the flow ϕJ , it induces on Pj a smooth function

Hj :Pj ⊆ R3 �→ R :π = (π1,π2,π3) �→ Hj(π) = π3 + ε
(
π2

1 − j2), (A.4)

called the reduced Hamiltonian.

Lemma 18. The space of smooth functions on Pj , given by restricting smooth functions on R3

to Pj , forms a Poisson algebra with Poisson bracket

{π1,π2} = ∂Φ

∂π3
= −4π3,

{π2,π3} = ∂Φ

∂π1
= 2(π1 + j)(3π1 − j),

{π3,π1} = ∂Φ

∂π2
= −4π2.

Proof. Compute the Poisson bracket of πi and πj as functions on R4, express the result in terms
of π1,π2,π3, j using (A.1). (This is always possible since {πi,πj } is ϕJ invariant.) Finally
restrict the result to Pj . Note that Φ in (A.2) is a Casimir in this Poisson algebra. �
The reduced Hamiltonian system (Hj ,Pj , { , }) has one degree of freedom. The equations of
motion on Pj for the reduced Hamiltonian Hj (A.4) are

π̇1 = {π1,Hj } = 4π2, (A.5a)

π̇2 = {π2,Hj } = 2(π1 + j)(3π1 − j) + 8ε π1π3, (A.5b)

π̇3 = {π3,Hj } = −8ε π1π2. (A.5c)

Appendix B. The discriminant locus of the integral map

Here we describe the discriminant locus Δ of F (2), that is, the whole set of critical values of
F which lie in the range of the energy momentum mapping EM, see Fig. B.1.



262 K. Efstathiou et al. / Advances in Mathematics 209 (2007) 241–273
Fig. B.1. The discriminant locus Δ of EM. The range of EM is shaded.

Lemma 19. Δ is the union of the image of two curves C1 and C2, parameterized by

C1 : [0,∞) → R2 : s �→ (
j (s), h(s)

) = (−s,0) (B.1)

and

C2 :
[

1

2ε2
,∞

)
→ R2 : s �→ (

j (s), h(s)
) =

(
3s − 8ε2s2 + 4εs

√
2s(2ε2s − 1),

− 8s2ε
(
2sε2 − 1

)(
8sε2 − 3

) + 4
√

2
(
s
(
2sε2 − 1

))3/2(8sε2 − 1
))

(B.2)

which join at the point P = (−1/(2ε2),0) in a C1 but not C2 fashion. The image of the curve
C1|(0,1/(2ε2)) is called the critical line segment C.

Proof. The discriminant locus Δ is the set of points (j, h) ∈ EM(R4) which are critical values
of EM (2). Writing the Hamiltonian H in terms of invariants of the flow of XJ gives

h = π3 + ε
(
π2

1 − j2).
Eliminating π3 from π2

2 + π2
3 = (π1 − j)(π1 + j)2, compare with (A.3), and using the above

equation, we obtain

π2
2 + p(π1) = 0 (B.3)

where

p(π1) = (
h − ε

(
π2

1 − j2))2 − (
π2

1 − j2)(π1 + j), π1 � |j |. (B.4)

(j, h) ∈ Δ if and only if the polynomial π2
2 + p(π1) has a multiple root, that is, π2 = 0 and p

(B.4) has a multiple root in [|j |,∞). The polynomial p has a multiple root in [|j |,∞) if and
only if we can write

p(π1) = (π1 − s)2(ε2π2
1 + uπ1 + v

)
, (B.5)
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for s ∈ [|j |,∞) and u,v ∈ R. Equating coefficients of the same power of π1 in (B.4) and (B.5)
gives

u − 2sε2 = −1,

v − 2su + s2ε2 = −2ε2j2 − 2εh − j,

s(su − 2v) = j2,

s2v = (
h + εj2)2 + j3. (B.6)

Eliminating u and v from Eqs. (B.6) gives

h2 + j3 + js2 + 2s3 + 2hj2ε + 2hs2ε + j4ε2 + 2j2s2ε2 − 3s4ε2 = 0, (B.7a)

j2 − 2js − 3s2 − 4εhs − 4j2sε2 + 4s3ε2 = 0. (B.7b)

We now show how to parameterize the solution set of (B.7). If s = 0 then j = h = 0. Suppose
s �= 0. Then from (B.7b) we get

h = − 1

4sε

(−j2 + 2js + 3s2 + 4j2sε2 − 4s3ε2). (B.8)

Using (B.8) to eliminate h from (B.7a) we find

(j + s)2((j − 3s)2 + 16(j − s)s2ε2) = 0 (B.9)

where s � |j |. We have three cases depending on the discriminant

δ = 128ε2s3(2ε2s − 1
)

of the quadratic factor in (B.9).

Case 1. When 0 < s < 1/(2ε2) we have δ < 0. In this case (B.9) has only one real linear factor.
Hence j = −s. From (B.8) we find that h = 0. This gives the critical line segment C.

Case 2. When s = 1/(2ε2), Eq. (B.9) becomes (1 + 2jε2)4 = 0 that is, j = −1/(2ε2). From
Eq. (B.8), we obtain h = 0. This gives the point P .

Case 3. When s > 1/(2ε2), we have δ > 0. In this case (B.9) has three real linear factors which
give rise to three real solution branches; namely

j = −s,

h = 0 (B.10)

or

j = s
(
3 − 8ε2s + 4ε

√
2s(2ε2s − 1)

)
,

h = −8s2ε
(
2sε2 − 1

)(
8sε2 − 3

) + 4
√

2
(
s
(
2sε2 − 1

))3/2(8sε2 − 1
)

(B.11)
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or

j = s
(
3 − 8ε2s − 4ε

√
2s(2ε2s − 1)

)
, (B.12a)

h = −8s2ε
(
2sε2 − 1

)(
8sε2 − 3

) − 4
√

2
(
s
(
2sε2 − 1

))3/2(8sε2 − 1
)
. (B.12b)

From (B.12a) and the fact that s > 1/(2ε2) we see that s < |j | which contradicts the demand that
s is a double root of p (B.4) in [|j |,∞). Therefore this case must be excluded. This proves the
lemma. �
Appendix C. Fibers of the integral map

To characterize the solutions of the equations of motion (A.5) qualitatively, we determine
the topology of the level set of Hj on Pj . Let R ⊆ R2 be the image of the energy-momentum
map EM, Rreg ⊆ R be the set of regular values of EM, and Rmin ⊂ R be the set of absolute
minimum values of Hj for each j .

Lemma 20. Suppose that (j, h) ∈R. The h-level set of the reduced Hamiltonian Hj (A.4) on Pj

has one of the following three topological types:

smooth singular point
circle circle

When (j, h) ∈ Rreg, then H−1
j (h) is a smooth circle; when (j, h) ∈ ∂R = C2 ∪ C1 \ C (B.2)

with j �= 0, then H−1
j (h) is a point; when j ∈ (− 1

2ε−2,0), that is, (0, j) lies on the critical line

segment C, then the level set H−1
j (0) is homeomorphic (but not diffeomorphic) to a circle, having

a cusplike singularity at π = (|j |,0,0).

The proof of the lemma can be given by studying analytically the intersections H−1
j (h) with

Vj and subsequently lifting these intersections to Pj . The case when this intersection is a point
has been already studied in Appendix B. In Fig. C.1 it corresponds to the level sets marked a.
Furthermore, this kind of intersection can be either a regular point, such as top and bottom left
cases in Fig. C.1, or the singular point, bottom right. As shown in Appendix B the latter occurs
only when − 1

2ε−2 < j < 0 and the level set corresponds to the absolute minimum value of h.

If the intersection H−1
j (h)∩Vj is a line segment then its minimum and maximum π1 value are

denoted as π−
1 and π+

1 , respectively, defined in Section 2.2 as the two real roots of Sj,h(π1) (10)
that are greater than or equal to |j |. In the special case of interest in our work, an expansion in h

for h close to 0 for these roots is given in Appendix E.2. Notice that π+
1 is given asymptotically

for all j but for π−
1 we can not do this.

From the analytic expression of the lifting map Vj → Pj we can easily obtain that when π±
1

are regular points the intersection lifts to a smooth circle. For as if π−
1 is a singular point of Vj

and − 1ε−2 < j � 0 the intersection lifts to a singular circle.
2
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Fig. C.1. Projections of the intersections Pj ∩ {Hj = h} on the plane {π2 = 0}. The phase space Pj is shown as in
Fig. A.1; the level sets {Hj = h} are shown by bold solid curves.

Lemma 21. The EM map has four types of fibers EM−1(f ).

(1) A regular torus if f ∈ Rreg.
(2) A curled torus if f ∈ C.
(3) A pinched curled torus if f = (0,0).
(4) A periodic orbit of period 2π or π if f ∈ ∂R.

Proof. By the Arnol’d–Liouville theorem the regular points of EM lift to regular 2-tori. Their
projections on Pj are smooth circles. The point level sets of Hj on Pj lift to relative equilibria,
which are S1 orbits. If the point Q is a singular point of Pj , then it lifts to a periodic orbit
of period π (this happens when j � − 1

2ε−2). Otherwise the point lifts to a periodic orbit of
period 2π .

Fig. C.2. Possible reconstruction of the curled torus embedded in R3 (right) as a ‘petal’ (leftmost panel) which follows
regular 2π -periodic orbits of XJ (fine spiral line with arrows) and ‘curls’ about the singular π -periodic orbit of XJ (bold
circle), and as a figure eight (center panel) which maps to itself with a twist after period π .
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When (j, h) lies on the critical line segment C, the singular point Q reconstructs to the non-
degenerate critical manifold M, which is given by{

x = px = 0, p2
y + y2 = |j |}.

In fact M is the image of a periodic orbit γh,j of XH with primitive period π . Since the linear
Poincaré map of γj,h is ϕπ

XJ
= −id, the orbit γj,h is hyperbolic with reflection. So H−1

j (h)

reconstructs to γj,h together with its stable and unstable manifolds. The latter are twisted, but
EM−1(j, h) is orientable. In other words, for (j, h) on the critical line segment C, the (j, h)-
level set of EM is a curled 2-torus; namely, a cylinder on a figure eight whose ends are identified
after performing a half twist, see Fig. C.2. Here the image of γj,h is the curve formed from the
crossing point of the figure eight after making the identification. When j = h = 0, the curve γj,h

collapses to a point and EM−1(j, h) is a pinched curled 2-torus. �
Appendix D. Relation of EM to the integral map of [9]

The integral map F = (F1,F2) defined in [9] is

F1(ξ) = 1

2

(
x2 + p2

x

) − (
y2 + p2

y

)
, (D.1a)

F2(ξ) = √
2
((

x2 − p2
x

)
py + 2xypx

) + ε

(
1

2

(
x2 + p2

x

) + (
y2 + p2

y

))2

. (D.1b)

Notice that F1 = J and F2 = H + εJ 2.

Lemma 22. The integral maps EM (2) and F (D.1) define the same fibration F . Moreover, the
image of EM is diffeomorphic to the image of F .

Proof. The map

Ψ : R2 → R2 : (f1, f2) �→ (
f1, f2 − εf 2

1

) = (j, h)

is a diffeomorphism, because DΨ (f1, f2) = ( −2εf1 1
1 0

)
is invertible and the map (j, h) �→

(f1, f2) = (j, h + εj2) is Ψ −1. Since EM−1(Ψ (f1, f2)) = F−1(f1, f2), the level sets of EM
define the same integrable fibration as the level sets of F . �

The reason we have chosen EM (2) instead of F (D.1) is that the rotation number of XF2 with
respect to XF1 = XJ becomes infinite as we approach the critical line segment. In particular let
Φ(f1, f2) be the rotation number on the torus F−1(f1, f2) = EM−1(Ψ (f1, f2)). Then a simple
calculation along the lines of that given in Section 2.2 shows that

Φ(f1, f2) = Θ
(
Ψ −1(f1, f2)

) + 2f1T
(
Ψ −1(f1, f2)

)
. (D.2)

This means that by using H = F2 − εF 2
1 instead of F2 we have essentially removed from the

rotation number Φ the singular behavior of the first return time near the critical line segment and
we have obtained a finite rotation number Θ .
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Appendix E. Asymptotic expansions of dynamical quantities near C

In this section we find asymptotic expansions for the first return time T (j,h), the modified
first return time τ(j,h) and the rotation number Θ(j,h) near the critical line, that is, for j < 0
and h close to 0. Recall that T (j,h) (11) and Θ(j,h) (14) are integrals of the form

π+
1∫

π−
1

f (π1)
1√

Sj,h(π1)
dπ1, (E.1)

where f (π1) = 1/2 in the case of T (j,h) and h/(j + π1) in the case of Θ(j,h). Considerations
similar to those of Section 2.2 show that the modified first return time τ(j,h) is given also
by (E.1) with f (π1) = (j + π1)/2.

In order to compute these integrals we define u = π1 + j . Then (E.1) becomes

u+∫
u−

f (u − j)
1√

Qj,h(u)
du, (E.2)

where u± = π±
1 + j and Qj,h(u) = Pj,h(u − j). Explicitly we have

T (j,h) = 1

2

u+∫
u−

1√
Qj,h(u)

du, (E.3)

Θ(j,h) = h

u+∫
u−

1

u
√

Qj,h(u)
du, (E.4)

and

τ(j,h) = 1

2

u+∫
u−

u√
Qj,h(u)

du. (E.5)

Each such quantity is an elliptic integral which we compute in terms of the roots of the polyno-
mial Qj,h(u) and complete elliptic integrals of the first and third kind.

E.1. Asymptotic expansions for complete elliptic integrals

The complete elliptic integral of the first kind is

K(m) =
π/2∫

1√
1 − m sin2 t

dt = 1

2

1∫
1√

y(1 − y)(1 − my)
dy (E.6)
0 0
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and that of the third kind is

Π(n,m) =
π/2∫
0

1

1 − n sin2 t

1√
1 − m sin2 t

dt

= 1

2

1∫
0

1

(1 − ny)
√

y(1 − y)(1 − my)
dy, (E.7)

We give the following asymptotic expansions for these integrals without proof.

Lemma 23. For x > 0 close to 0 we have

K
(
1 − x + O

(
x2)) = 2 log 2 − 1

2
logx + O(x). (E.8)

Lemma 24. For x > 0 close to 0 and k2 > k1 > 0 we have

Π
(
1 − k1x + O

(
x2),1 − k2x + O

(
x2)) = −1

4
logx −

tan−1
√

k2
k1

− 1

k1

√
k2
k1

− 1

1

x
+ O(1). (E.9)

Lemma 25. For x > 0 close to 0 and n < 0 we have

Π
(
n + O(x),1 − x + O

(
x2))

= 1

2(1 − n)

(− logx + 4 log 2 + 2
√−n tan−1 √−n

) + O(x). (E.10)

E.2. The roots of Qj,h(u)

It is easy to show that near the critical line segment C, that is, for h close to 0 and − 1
2ε−2 <

j < 0, Qj,h(u) has four real roots. For h = 0 two of the roots coincide. Specifically, for h = 0
we have

Qj,h(u) = u2(u − 2j)
(
1 − ε2(u − 2j)

)
, (E.11)

with roots w
(0)
1 = 2j , w

(0)
2 = w

(0)
3 = 0 and w

(0)
4 = 2j + ε−2.

For h close to 0 we expand the roots of Qj,h(u) in a power series in h, namely,

wi = w
(0)
i + w

(1)
i h + w

(2)
i h2 + · · · , i = 1, . . . ,4, (E.12)
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where

w1 = 2j + O
(
h2), (E.13a)

w2 = − 1√−2j + 2εj
h + O

(
h2), (E.13b)

w3 = 1√−2j − 2εj
h + O

(
h2), (E.13c)

w4 = 2j + 1

ε2
+ 2ε

1 + 2ε2j
h + O

(
h2). (E.13d)

In the following sections we will refer to the roots of Qj,h(u) sorted in ascending order. Notice
that for h > 0 we have w1 < w2 < w3 < w4 while for h < 0 we have w2 > w3. Therefore for
h > 0 we define u1 = w1, u2 = w2, u3 = w3 and u4 = w4 while for h < 0 we define u1 = w1,
u2 = w3, u3 = w2 and u4 = w4. In this way we have u1 < u2 < u3 < u4 for all small h �= 0.

E.3. The first return time near C

Recall that the first return time is given by the integral

T (j,h) = 1

2

u+∫
u−

1√
Qj,h(u)

du. (E.14)

Close to the critical line segment we can express Qj,h(u) in the form

Qj,h(u) = −ε2(u − u1)(u − u2)(u − u3)(u − u4) (E.15)

where ui ∈ R are given by the series (E.13). Notice that u− = u3 and u+ = u4 and

T (j,h) = 1

2ε

u4∫
u3

1√−(u − u1)(u − u2)(u − u3)(u − u4)
du. (E.16)

In order to compute this integral (and those in the next section) we make the transformation

y = (u − u3)(u4 − u2)

(u − u2)(u4 − u3)
(E.17)

and we define

m = (u2 − u1)(u4 − u3)

(u3 − u1)(u4 − u2)
. (E.18)

Then T (j,h) becomes
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T (j,h) = 1

2ε
√

(u3 − u1)(u4 − u2)

1∫
0

1√
y(1 − y)(1 − my)

dy

= 1

ε
√

(u3 − u1)(u4 − u2)
K(m) (E.19)

where K(m) is the complete elliptic integral of the first kind. Notice that using (E.13) we obtain
that

m = 1 − 1√
2(−j)3/2(1 + 2ε2j)2

|h| + O
(
h2). (E.20)

Therefore from Lemma 23 we obtain

K(m) = −1

2
log |h| + O(1). (E.21)

We also have

1√
(u3 − u1)(u4 − u2)

= ε√−2j
√

2ε2j + 1
+ O(h). (E.22)

Combining Eqs. (E.21) and (E.22) we obtain that for h close to 0,

T (j,h) = − 1

2
√−2j

√
2ε2j + 1

log |h| + O(1). (E.23)

This shows immediately that limh→0 T (j,h) = ∞ when j < 0.

E.4. The modified first return time near C

Recall that the modified first return time is given by the integral

τ(j,h) = 1

2

u+∫
u−

u√
Qj,h(u)

du. (E.24)

We make the transformation (E.17) and obtain

τ(j,h) = 1

ε
√

(u3 − u1)(u4 − u2)

(
u2K(m) + (u3 − u2)Π(n,m)

)
(E.25)

where m is given by (E.20) and

n = u3 − u4 = 1 −
√

2ε2

√
2 2

|h| + O
(
h2). (E.26)
u2 − u4 −j(1 − 2jε )
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Combining Lemmas 23 and 24 with the asymptotic expressions (E.13) we obtain from (E.25)
that for h close to 0,

τ(j,h) = 1

ε
tan−1

(
1 + 1

2ε2j

)
+ O(h). (E.27)

E.5. The rotation angle near C

Recall that the rotation angle is given by the integral

Θ(j,h) = h

2

u+∫
u−

1

u
√

Qj,h(u)
du. (E.28)

Again we make the transformation (E.17). We obtain that

Θ(j,h) = 2h

ε
√

(u3 − u1)(u4 − u2)

(
1

u2
K(m) + u2 − u3

u2u3
Π(n,m)

)
(E.29)

where

n = u2(u3 − u4)

u3(u2 − u4)
= 1 + sgn(h)ε

√−2j

1 − sgn(h)ε
√−2j

+ O(h) < 0. (E.30)

Combining Lemmas 23 and 25 with the relations (E.13) from (E.29) we obtain that for h close
to 0 and j < 0

Θ(j,h) = −2 tan−1
(

1 + sgn(h)ε
√−2j

1 − sgn(h)ε
√−2j

)1/2

+ O(h). (E.31)

Some algebraic manipulation gives

Θ(j,h) =
{

π
2 + sin−1(ε

√−2j ) + O(h), for h > 0,

−π
2 + sin−1(ε

√−2j ) + O(h), for h < 0.
(E.32)

Appendix F. Dynamics on a curled torus

We study the flow of the vector fields X and Zu on the curled torus T∗ = EM−1(f∗) =
EM−1(Γ (u∗)).

Lemma 26. On T∗ the points ξ±(u∗) (23) have coordinates

(±(
2j + ε−2)1/2

,0,0, (
√

2 ε)−1),
where (j, h) = Γ (u∗). The integral curve t �→ (x±(t),px(t), y(t),py(t)) of X is given by
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x±(t) = ±
(

2j + 1

2ε2

(
1 + cos(4εt)

))1/2

, (F.1a)

px(t) = 0, (F.1b)

y(t) = 1

2
√

2ε
sin(4εt), (F.1c)

py(t) = 1

2
√

2ε

(
1 + cos(4εt)

)
. (F.1d)

Proof. The expressions (F.1) satisfy the equation ξ̇ (t) = X(ξ(t)). A simple calculation shows
that for t = 0 they have the correct initial condition ξ+(u∗). �

Notice that the solution (F.1) reaches the singular set {x = px = 0} for the first positive (or
negative time) when 1 + cos(4εt) = −4ε2j . We denote this time by t∗ = 1

2ε
arccos(ε

√
2|j | ).

Note that limu→u∗ τ(Γ (u∗)) = 2t∗ from (E.27). Denote τ∗ = τ(Γ (u∗)) and ϑ∗ = ϑ(u∗) =
π/2 + sin−1(ε

√−2j ).

Lemma 27. The integral curve t �→ ζ±(t) of Zu through ξ±(u∗) is given by

ζ±(t) = R(−ϑ∗t)ξ±(τ∗t) (F.2)

where R(t) = diag(Rt ,R−2t ) (4).

Proof. From (22) and [XJ ,X] = 0 we obtain that the flow ϕZu∗ |T∗ is

ϕt
Zu∗

∣∣T∗ = ϕ
−ϑ∗t
XJ

◦ ϕ
τ∗t
X . (F.3)

The lemma follows from the analytic expression of the flow ϕXJ
(4). �

Lemma 28. ϕ
±1/2
Zu∗ (ξ+(u∗)) = ϕ

±1/2
Zu∗ (ξ−(u∗)) = (0,0,0,−|j |).

Proof. From

ξ±(τ∗/2) = ξ±(t∗) = (
0,0,

√
|j |(1 + 2ε2j),−√

2εj
)

we get

R(−ϑ∗/2)ξ±(τ∗/2) = (
0,0,0,−|j |). �
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