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We consider perturbations of the hydrogen atom by sufficiently small homogeneous static
electric andmagnetic fields of all possiblemutual orientations. Normalizingwith regard to the
Keplerian symmetry, we uncover resonances and conjecture that the parameter space of this
family of dynamical systems is stratified into zones centred on the resonances. The 1 : 1
resonance corresponds to the orthogonal field limit, studied earlier by Cushman & Sadovskiı́
(Cushman&Sadovskiı́ 2000Physica142, 166–196).Wedescribe the structure of the 1 : 1 zone,
where the systemmay have monodromy of different kinds, and consider briefly the 1 : 2 zone.
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1. Introduction

Perturbations of the hydrogen atom by external electric and magnetic fields
constitute one of the most fundamental families of atomic physics systems. In the
limit of the infinite proton mass and with spin and relativistic corrections neglected,
this family becomes a quantum realization of a specific class of perturbations of the
Kepler system with Hamiltonian (in atomic units)
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where (Q,P) are standard canonical coordinates on the phase spaceR6 and 3-vectors
FZ(Fb, Fe, 0) and GZ(G, 0, 0) represent the electric and the magnetic field,
respectively.We remain at sufficiently large negative physical energyE and consider
bounded motion near the origin. For sufficiently small fields, we can use the well-
known dynamical Keplerian symmetry SO(4) of the unperturbed system and
consider the angular momentum L and the eccentricity vector K as approximate
integrals of motion. The Hamiltonian (1.1) can be first regularized and then
normalizedwith respect to the action of this symmetry,which is definedby the flowof
the regularized unperturbed system. Using such transformation, we can replace the
original non-integrable system with three degrees of freedom described by the
Hamiltonian in equation (1.1) by an integrable approximation.More specifically, we
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K. Efstathiou et al.1772
obtain a three-parameter family of integrable dynamical models with parameters
(Fb, Fe, G). By analysing and characterizing the qualitatively different member
systems in this family,we canclassify the real non-integrable dynamical systemswith
Hamiltonian (1.1).

The result of the reduction is a two degrees of freedom Hamiltonian system
described by the Hamiltonian

Hn Z 2nCnðH1 C/Þ; ð1:2Þ
where n is the value of the Keplerian integral of motion N; in the quantum
system, n corresponds to the principal quantum number, and Hn describes the
internal structure of n-shells. Furthermore, the flow of H1 is linear and is
characterized by two frequencies uC and uK that depend on the external
parameters (Fb, Fe, G) of the system.

It follows thatwe can obtain an integrable approximation by normalizing a second
time.The specifics of systemswithHamiltonian (1.1) were exploited byPauli (1926),
cf. (Van der Waerden 1968; Valent 2003). Note that instead of normalizing with
respect to the flowof the vector field of theHamiltonian functionH1,we can choose an
S
1 flow given by the vector field of amomentum mwhich Poisson commutes withH1,

and which is chosen typically so that umzH1 with uZu(G, Fe, Fb)O0 a constant.
The rational frequenciesukG ofmwhere kG2ZO0 approximate the frequenciesuG of
H1; the small difference H1Kum is called linear detuning term. See §§3 and 4 for
concrete choices of u and m, respectively. Thus any perturbation of the hydrogen
atom by sufficiently small static external fields possesses a resonant integrable
approximation with first integrals N (Keplerian action), m (momentum) and H
(second reduced energy) with respective values nR0,m and h. We can now attempt
to characterize the entire family of perturbations of thehydrogen atomby sufficiently
small static external fields on the basis of the qualitative description of the family of
such approximations for each resonance kC : kK.
2. Qualitative classification based on integrable approximation

Classification of the resonant integrable approximations of systems with
Hamiltonian (1.1) follows from the qualitative analysis of the integrable
fibrations defined on R

6 by ðN ;m;HÞ. The main tool in this analysis is the
energy–momentum map (or the integrable map)

EM : R6/R
3 : ðq; pÞ1ðNðq; pÞ;mðq; pÞ;HðLðq; pÞ;Kðq; pÞÞÞZ ðn;m; hÞ; ð2:1Þ

where both N and m are momenta (since each of them defines an S
1 action), and H

plays the role of energy. For each system, we begin by studying the geometry of
individual inverse images EMK1(n, m, h) and fibres1 Ln,m,h. In particular, we find
critical points (q, p) at which the rank of v(N, m, H)/v(q, p) is non-maximal
and critical fibres which contain such points. Regular fibres of our systems are
3-toriT3; critical fibres can be smooth lower dimensional toriT2 orS1, a single point,
or singular fibres of dimension three, such as singly or doubly pinched torus, curled
torus, bitorus, etc. These singular fibres can be represented as direct products of the
S
1 cycle defined by the Keplerian symmetry action and certain two-dimensional

singular fibres, which are depicted, for example, inCushman&Bates (1997, ch. IV.3,
fig. 3.5), Nekhoroshev et al. (2006, appendix A), Cushman & Sadovskiı́ (1999),
1We call fibre a connected component Ln,m,h of the inverse image (or preimage) EMK1(n, m, h).
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Figure 1. Example of overlapping lower cells in the two-dimensional-image of an energy–
momentum map EM (bottom left) and its two-sheet cell unfolding surface (top left). Points a, b0,
b00, and c lift each to a connected component (right); b0 and b 00 correspond to the same EM value b.
Double line marks branching boundary; bold solid line marks a path connecting a, c and b.

1773Hydrogen atom in electric and magnetic fields
Efstathiou (2004) and Efstathiou et al. (2007). In particular, a pinched 2-torus is
obtained froma regular 2-torus by contracting one of its basic cycles to a point, which
becomes a focus–focus equilibrium; a doubly pinched torus is a similar fibre with two
pinch points. A bitorus is formed by two 2-tori glued together along a common basic
cycle2 which is a hyperbolic relative equilibrium, see fibre c in figure 1.

In the cases that we discuss below the range of the map in equation (2.1) is a
simply connected domain �REM in R

3. It is the closure of the set REM of all regular
EM values, which can consist of several disjoint open subdomains. If within �REM,
we distinguish strata of EM values with qualitatively different inverse images,
and in particular, if we distinguish critical and regular EM values, such �REM
becomes a bifurcation diagram BD (Bolsinov & Fomenko 2004), which we can
use to describe deformations (and in particular—bifurcations) of regular fibres
under the variation of dynamical parameters (n, m, h). For example, in figure 1,
we follow the deformation of a regular fibre La into two fibres Lb0 and Lb00 along
the path (acb); the singular fibre Lc is a bitorus.

Description of the BD geometry involves the concepts of lower cell, unfolded
lower cell and cell unfolding surface, which are important in situations where
preimages EMK1(n, m, h) consist of several fibres (Sadovskiı́ & Zhilinskiı́ 2007).
Lower and upper cells, and the cell structure of the phase space are introduced by
Nekhoroshev et al. (2006). Upper cells are the closures of connected sets in the
phase space (in our case R6) of regular fibres of the integrable map. They overlap
only on their boundaries called walls. Lower cells are images of upper cells under
the EM map. They can overlap and self-overlap in �REM, while in the unfolding
surface �SEM, unfolded lower cells self-overlap and overlap each other only on
their boundaries, which consist of critical EM values. The open set of regular
EM values in the interior of an unfolded lower cell is connected but not
necessarily simply connected. The surface �SEM can be constructed as a branch
covering of �REM, whose smooth sheets may be glued together along certain cell
boundaries called branching walls. Several examples are shown in figures 1 and 2.

The studyof individual unfoldedbifurcationdiagramsBD is naturally expanded to
the description of parametric families of such BD’s. In this context, we prefer calling

2When the momentum m defines a global S1 action which can be used to define a ‘fixed’ cycle g0 on
all fibres, bitori can be further classified with regard to g0. We do not use such detailed
classification in this paper.
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Figure 2. (a) A simple BD of a system with monodromy; cell unfolding surfaces with (b) two
overlapping lower cells of a system with non-local monodromy, and with (c) a single self-
overlapping cell of a system with bidromy. Point c in the leftmost image is an isolated critical value
which lifts to a pinched torus; other points and paths are similar to those in figure 1.
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the latter stratified EM ranges or unfolding surfaces �SEM in order to avoid confusing
expressions, such as ‘bifurcation of unfolded bifurcation diagram’. We describe a
family of stratified EM ranges BD by specifying deformations and qualitative
changes of BD under the variation of the external physical parametersG, Fb and Fe.

Definition 2.1. Any two stratified EM ranges BDZ �SEM are called equivalent
(or isomorphic) if they can be related (in an ambient space of the unfolding) by a
smooth deformation.

Using this equivalence and the definition below, we can characterize the whole
family of perturbed systems with Hamiltonian (1.1).

Definition 2.2. Perturbed Kepler systems with Hamiltonian (1.1) which can be
approximated by integrable systems with integrable maps (2.1) and stratified
EM ranges BDZ �SEM are considered to be qualitatively equivalent if their BD
are isomorphic.

Remark 2.1. Our definition 2.2 is quite restrictive. It applies only to systems
which have a valid global integrable approximation with first integrals ðN ;m;HÞ
in equation (2.1) and whose global normal form H approximates all fibres. Such
definition is appropriate for our specific perturbed systems which in addition to N
have the second ‘built in’ approximate first integral H1 (or m) with a linear flow
(see §1). In a more general situation, we can typically construct local normal
forms which describe subsets of regular tori near stable equilibria or short
periodic orbits. Such a description may not cover the whole phase space, but may
still result in a weaker ‘local’ equivalence.

We should precise which integrable approximations are acceptable in definition
2.2. In order for the classification based on definition 2.2 to bemeaningful and useful,
we should assume (or better—prove) that from the BD type of any system, we can
both characterize its singular fibres and tell how its regular fibres (tori) fit together.
More specifically, for a given unfolded lower cell and a given regular value (n,m, h) in
it, we should be able to tell whether local action-angle variables defined in a
neighbourhood of fibre T

3
n;m;h can be extended (as smooth and single-valued real

functions onR6) to the entirepreimageof the regular interiorR of the cell, i.e.whether
they can be made global and whether the torus bundle over R is trivial. If that is
impossible, we should be able to cover EMK1(R) by an atlas of several local action-
angle charts and to characterize the non-triviality of the bundle.

These properties of regular toric bundles over the regular interiors R of unfolded
lower cells (and overREM in general) are of primary importance to the original non-
integrable system and therefore—to our study.While certain singular fibres that we
Proc. R. Soc. A (2007)
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encounter in the integrable approximationmay not be present in the original system,
we conjecture that these properties persist as long as our normalizationmakes sense,
i.e. as long as the original system retains a sufficiently large set of KAM tori which is
interpolated correctly by the families of tori of the normalized system.

Monodromy is the simplest obstruction to global action-angle variables
(Duistermaat 1980; Cushman & Bates 1997) which occurs in many fundamental
physical systems. In many cases, we can determine directly from BD whether such
an obstruction is present.3 Furthermore, Rink (2004), Broer et al. (2007) prove that
monodromy persists in the original nonintegrable system.Contemporary literature
on monodromy and its appearances in physical systems is quite comprehensive.
Hence, we provide only a verybrief account here.Monodromy is amapping from the
fundamental group p1 of REM to the group of automorphisms of the first homology
group H1(T

k) of regular fibres which is isomorphic to the regular lattice Zk (in our
case kZ3). It can be computed by choosing a closed directed path G3REM (as, for
example, in figure 2a) and studying the connection on the torus bundle over G
induced by the local action-angle variables. The result depends only on the
homotopy class of G and is expressed using a matrix in SL(k, Z) which depends,
naturally, on the basis choice in H1ðTk

aÞ for some a2G.
To follow the rest of this note, it is useful to recall that as a topological

property, monodromy persists under continuous deformations of the system.
This aspect and the related sign and addition theorems are exploited in the
analysis in §4b. In §4c, we give the first physical examples of generalized or
fractional monodromy (Nekhoroshev et al. 2002, 2006; Efstathiou et al. 2007) as
well as bidromy (Sadovskiı́ & Zhilinskiı́ 2007) which remained abstract concepts
until now. Fractional monodromy generalizes monodromy to a wider class of
paths G that intersect lines of particular ‘weakly’ critical values c. Over each c,
the singular fibre Lc (factored in our case by the Keplerian S

1 action) has the
topology of a twisted cylinder over figure eight and is called a curled torus. The
transformation of the regular tori in the neighbourhood of Lc that occurs as we
follow G is shown in figure 3. Bidromy goes beyond the analysis of p1(REM) by
associating automorphisms of H1(T

k) with certain bipaths in the stratified EM
range, such as the one in figure 2c. Finally, since we deal with a quantum system,
we imply constantly the correspondence (Cushman & Duistermaat 1988;
Sadovskiı́ & Zhilinskiı́ 1999; Vū Ng c 1999) of classical Hamiltonian monodromy
to defects (Zhilinskiı́ 2005; Nekhoroshev et al. 2006) of the lattice formed by the
joint spectrum of quantum operators ðN̂ ; m̂; ĤÞ, a phenomenon also known as
quantum monodromy. In fact, a computation of such spectrum by Schleif & Delos
(in press) was the principal source of motivation for this work.
3. Resonance zones in the parameter space

The parameter space CFG of the Hamiltonian in equation (1.1) is the set of
relative configurations of 3-vectors F and G of respective lengths F and G
that are not equivalent under rotations in SO(3). From hF, Gi2%G2F2, we
3 In two degrees of freedom, by the geometric monodromy theorem of Zung (1997), Vū Ng c
(2000) and Cushman & Duistermaat (2001), a system has monodromy if it has an isolated critical
EM value c surrounded by regular EM values (figure 2a), and the preimage EMK1(c) of c is a
pinched torus.

Proc. R. Soc. A (2007)
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Figure 3. (a) BD of a system with fractional monodromy (cf. figure 2a) with a line of weakly critical
EM values c (dashes) that lift to curled tori Lc. Fractional monodromy corresponds to the closed
directed path (solid bold line) which goes around the strongly critical value (open circle) and
crosses the critical line at c. (b–d ) The deformation of the regular fibres La 0 and La 00 and of the
cycles on them as we go from a0 to a00 (adapted from Nekhoroshev et al. (2006)).
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find that CFG can be immersed in the positive quadrant of R3 with coordinates
F2, G2 and hF, Gi as a filled cone shown in figure 4. Strata of CFG represent
systems with different symmetries: the origin 0 corresponds to the unperturbed
system, the open semiaxes F 2O0 and G 2O0 of the boundary vCFG\0
represent respective single-field Stark and Zeeman perturbations, other points
of vCFG\0 represent parallel fields, while points in the open quarterplane
{hF, GiZ0, F 2O0, G2O0} correspond to orthogonal fields, and the remaining
interior points forma generic stratum.We further note that the parallel stratum is a
disjoint union of two open sets representing parallel and antiparallel configurations
and that the generic stratum is also split in twohalveswith hF,GiO0 and hF,Gi!0.
It can be shown that systems that differ only in the sign of hF, Gi have different
energies but are otherwise qualitatively the same. So we can assume hF,GiR0.

The parameter space CFG is further stratified into sets representing different
kC : kK resonant integrable approximations outlined in §1. Reducing the
Keplerian symmetry, we obtain a reduced Hamiltonian HnZH0CnH1CnH2Cffl
as function of six Keplerian invariants, the components of L and K,
which generate the Poisson algebra so(4) and which are bound by the relations
hK, LiZ0 and K 2CL2Zn2. Note that N is the Casimir of the above algebra,
and that the unperturbed Hamiltonian corresponds to H0Z2n. The relations
between K and L imply that the reduced phase space is S2!S

2. The Keplerian
normal form Hn contains an overall factor n, which, as can be shown,
reflects the presence in the Hamiltonian (1.1) of a sole singular term jQjK1.
After rescaling by n, the lowest nontrivial order (i.e. the first average of the first
order perturbation)

H1 Z gL1K fbK1K feK2; ð3:1Þ

in Hn/n is linear in (K, L) and has, therefore, a linear Hamiltonian flow. Here

g ZG
2

U

� �2
; f Z 3F

2

U

� �3
; ðfe; fbÞZ 3ðFe;FbÞ

2

U

� �3
; ð3:2Þ

withUZ
ffiffiffiffiffiffiffiffiffiffi
K8E

p
, are scaled field amplitudes. Note also that the combined amplitude

sZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2C f 2b C f 2e

q
Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2C f 2

q
; ð3:3Þ
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Figure 4. (a) Electric and magnetic fields F and G, (b) the set CFG of all their distinct
configurations, (c) and its constant s section of CFG.
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plays the role of a universal parameter which should be kept small in order for all our
normalizations to work.4

Using scaled fields (g, fb, fe), we can construct a parameter space Cfg similar to
CFG. Furthermore, it is natural to fix the combined amplitude s in equation (3.3),
and to consider a constant sO0 section of Cfg. Such a section is a disc (figure 4c)
which we can represent using dimensionless coordinates

a2 Z
g 2

s 2
and d Z

gfb
s2

; such that d 2%ð1Ka2Þa2; ð3:4Þ
as shown in figure 5a. Exceptional points Z (for Zeeman limit with aZ1) and S
(for Stark limit with aZ0) divide its boundary into parallel and antiparallel
strata; orthogonal fields are represented by the interval (SZ), while the rest is the
generic stratum.

We now analyse the linear system with Hamiltonian (3.1) for fixed sO0 and all
admissible values of a and d. Rewritten in terms of the components of 3-vectors

X Z
1

2
diagðRaK

; 1ÞðLCKÞ and Y Z
1

2
diagðRaC

; 1ÞðLKKÞ;
where cos aGZ(gGfb)/uG and sin aGZGfe/uG with

uGZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgGfbÞ2C f 2e

q
Z s

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1G2d

p
;

andRa is the standard2!2matrix of counterclockwise rotation in a planebyanglea,

Ra Z
cos a Ksin a

sin a cos a

 !
;

this Hamiltonian is5
H1 ZuKX1 CuCY1: ð3:5Þ

Note thatX2ZY 2Z(1/4)n2 and thatS2!S
2 canbe regardedas theproduct of the

‘X-sphere’S2
X and the ‘Y-sphere’S2

Y . Furthermore, components ofX andYdefine a
standard Poisson algebra so(3)!so(3) on this S

2!S
2, so that the flow of

Hamiltonian (3.5) defines an S
1 action which is a simultaneous rotation of S2

X and
S
2
Y about axes X1 and Y1 by angles uKt and uCt, respectively.
4The use of such universal scalings goes back to Sadovskiı́ & Zhilinskiı́ (1998); Cushman &
Sadovskiı́ (2000).
5Alternatively, H1 can be represented in rotated Kustaanheimo–Stiefel coordinates (Cushman &
Sadovskiı́ 2000; Efstathiou et al. 2004) as a harmonic 4-oscillator Hamiltonian with frequencies
GuK and GuC.
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Figure 5. (a) Systems with kK : kC resonances in the constant s section of the set of all possible
perturbations of the hydrogen atom by static electric and magnetic fields F and G. (b)
Manifestation of kK : kC resonances in the n-shell energy level structure of the parallel field system
between the Zeeman limit and collapse (adapted from Sadovskiı́ et al. (1996) with modifications).
Fine and bold solid lines show energies of quantum levels and of four Keplerian RE, respectively.
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Definition 3.1. The perturbed hydrogen atom system with Hamiltonian (1.1)
is in kK : kC resonance of order kZkKCkC when

kKuCZ kCuK; with kG2ZO0 and gcdðkC; kKÞZ 1: ð3:6aÞ
So for a kK : kC resonant perturbation we have

uK

kK
Z

uC

kC
ZuZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðg2 C f 2Þ
k2KCk2C

s
Z

s
ffiffiffi
2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2KCk2C

p Z
s

k
; ð3:6bÞ

which is satisfied when

d Z dkK: kC Z
1

2

k2CKk 2
K

k2CCk2K
: ð3:6cÞ

In the constant s section of the parameter space Cfg (figure 5a), solutions to
equation (3.6c) are represented by parallel segments. The 1 : 1 solutions form the
orthogonal fields stratum (SZ); segments with kK/kC converge to (SZ ), while
segments with kK[kC or kC[kK accumulate near one of the two collapse
points with fZjfbjZg (Sadovskiı́ et al. 1996), which correspond to special parallel
and antiparallel configurations where one of the frequencies uG vanishes and we
have semisimple resonances 0 : 1 or 1 : 0.

At first sight, since each resonance defines on the phase spaceS2!S
2 a specificS1

symmetry action, every kK : kC resonant system has to be considered separately
using the normalizedHamiltonianHwhich includes specific kK : kC resonant terms6

q1 ZRe q; q2 Z Im q; with qZ 4ðX2 C iX3ÞkCðY2KiY3ÞkK:

6 It can be shown that H is a polynomial in n, X1, Y1, and q1, while q2 enters only in the Euler–Poisson
equations ofmotion; for the resonanceof order k, q1 andq2 are of total degree k in componentsofXandY.
Notice that q is chosen so that q1 and q2 for kGZ1 agreewithp2 and p3 of Cushman& Sadovskiı́ (2000).
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Ontheotherhand, since characteristics, such asmonodromy, used indefinition2.2
are topological in nature, they are continuous under sufficiently small deformations.
As a consequence, we should be able to classify within the same family any exact
kK : kC resonant system and systems with linear frequencies

uGZ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1G2ðdkK:kC CdÞ

q
zs kGk

K1GkkK1
G dCOðd2Þ

� �
; ð3:7aÞ

for kGs0, jdj!(1/2) and jdj/1 i.e. outside the collapse regions, and

ðuH;uGÞzs
ffiffiffi
2

p
d; 1K

1

2
d2COðd4Þ

� �
for d ZG

1

2
and 0%d/1; ð3:7bÞ

in the collapse regions where one of uG nearly vanishes and the respective kG is
zero. Approximating uG by ukG with reasonably small kKCkC, we rewrite
equation (3.5) as

H1 ZumCeðd; kK; kCÞn; e/u; ð3:8aÞ
where e depends on the detuning d and the choice of the resonance, and

mZ kKX1CkCY1 and nZ kKX1K kCY1; ð3:8bÞ
are the momentum of the kK : kC resonance and its complementary momentum.
The periodic flow 4m of the Hamiltonian vector field Xm defines the S

1 symmetry of
the exact kK : kC resonance.

Definition 3.2. Perturbed systemswithHamiltonian (1.1) and frequencies (3.7a)
and (3.7b) are called detuned kK : kC systems if the set of their regular tori can be
interpolated using the regularT3 bundle of the integrable systemwith first integrals
(N, m, H), where the momentum m is defined in equation (3.8b) and the second
reduced Hamiltonian H is obtained after normalizing Hn with respect to the S

1

symmetry of the exact kK : kC resonance.

Definition 3.3. The set of all detuned kK : kC systems is called kK : kC zone.
Naturally, systems within each zone can be classified on the basis of definition

2.2. Several further important aspects should be pointed out right away.

Conjecture 3.1. For any kK : kC and sufficiently small total perturbation s in
an open interval S of RO0, the kK : kC resonance zone contains an open domain
of R3. Specifically, for any kK : kC and s2S, we can find a small interval DsH0,
such that any system with frequencies (3.7a) and (3.7b) and ds0 in Ds can be
described as a detuned kK : kC system.

We can see from equations (3.7a) and (3.7b) and figure 5a, that for fixed sO0,
zones correspond to horizontal stripes centred on the kK : kC resonance lines so

that jdKdkK : kCj%dmax. Their width can be defined as 2jdmaxj when kCCkKO1

or dmax for collapse zones. Clearly, if dmax is finite, zones cover inadvertently
many resonances of order higher than that of the zone resonance. (For example,
the 1 : 1 zone would include all resonances of sufficiently large order and
jkK–kCj/kKCkC.)

Conjecture 3.2. At any given small sO0 and Keplerian action nO0, resonances
of sufficiently high order are not important for the qualitative classification of
systems with Hamiltonian (1.1) in the sense of definition 2.2.

In practice, our qualitative classification uses the normal form H truncated at
some degree k in components of X and Y, and any resonances of orders higher
Proc. R. Soc. A (2007)
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than k are neglected automatically since their specific resonance terms q1,2 do not
appear in H.

Conjecture 3.3. With growing nsO0, an increasing number of higher order
resonances becomes important, while the widths of the zones become smaller.

Note that the analysis of the orthogonal fields system (Cushman & Sadovskiı́
1999, 2000), one of the first fundamental physical systems where monodromy was
uncovered, relied on the assumption, which was later proven as a theorem by
Rink (2004) and Broer et al. (2007), that monodromy could be generalized to
KAM systems via an integrable approximation obtained by normalization. This
theorem is necessary to study monodromy in practically all real physical systems,
and in our context—in all exactly resonant kK : kC systems. Our conjectures
here introduce yet another assumption and we believe that they can be proven
using techniques similar to those of Rink (2004) and Broer et al. (2007).

To conclude and to encourage further physical andmathematical studies of zones,
we like to draw attention to their very clear quantummanifestation, which has been
de facto produced by Sadovskiı́ et al. (1996), but has not been analysed neither there
nor—to our knowledge—later. In our figure 5c, we reproduce the correlationdiagram
of Sadovskiı́ et al. (1996), which represents n-shell energy levels of parallel fields
systems with different ratios of 3nF/G. Since nz2/U, this ratio is equivalent to our
f/g and in the fixed-s subspace of Cfg (the discs in figures 4 and 5) the 3nF/G span of
figure 5c, corresponds to the segment of the parallel stratum between the Zeeman
limit Z and the[[ collapse point gZfbZf. As we depart from Z (wherem-multiplets
exhibit a visible second order Zeeman splitting), we can see that quantum energies
diverge linearly with f/g and reassemble periodically and in different ways into
multiplets of nearly degenerated levels. The kK : kC resonant values of f/g, which are
given by equation (3.6a) and are indicated in figure 5c, by vertical dashed lines for
several low order resonances, coincide perfectly with these structures. Furthermore,
multiplet degeneracies also confirm these resonances. In each case, we also have an
interval of f/g values i.e. a zone, within which the particular degeneracy of energy
levels is well pronounced. The endpoints of these zones correspond approximately to
the f/g values at which outer energy levels of neighbouringmultiplets meet. It can be
seen that zone widths decrease with increasing kKCkC.
4. Classification of perturbations of the hydrogen atom

We now possess a general framework to classify all possible perturbations of the
hydrogen atom by small static external fields. Here, we give a number of concrete
examples. In each case, we normalize the first reduced Hamiltonian Hn: S

2!S
2/R

for the second time and then analyse the resulting integrable system with reduced
energyH. (Recall that Hn is a function of (X,Y ) with principal order in equation
(3.5) composed of momenta X1 and Y1 which define S

1 rotations of respective
individual spheres in S

2!S
2.) Stratified EM images of our systems have a number

of common features. First, note the images of four S1 relative equilibria (RE) or
nonlinear normal modes of the Keplerian symmetry, also known as Kepler ellipses,
which correspond to equilibria of Hn (Sadovskiı́ & Zhilinskiı́ 1998). Keplerian RE
with maximal jmj at given n are stable; other Keplerian RE can become complex
unstable and in that case their preimage includes their stable and unstable
Proc. R. Soc. A (2007)
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manifolds which form some kind of a pinched torus. Typical points on the external
boundaries of the individual lower cells in the unfolding surfaces �SEM represent T2

RE of the combined action of S1 symmetries associated with momenta N and m;
points on the branching walls represent bitori. Regular values lift to regular T3 or
to two T

3 for overlapping cells.
(a ) Non-resonant perturbations

We consider first what happens when resonances are not important. This is
generally possible for low ns and away from the 1 : 1 and collapse zones which are
always present. When uC and uK are incommensurate, we can normalize Hn with
respect to both S

1 symmetries of the Hamiltonian in equation (3.5). The resulting
H Poisson commutes with both X1 and Y1 and is a polynomial in (X1, Y1). Its
domain of definition is the closure �Dn of the open square Dnd{(x1, y1): jx1j!n/2,
jy1j!n/2}. TheHamiltonian functions (X1,Y1) define amomentummap ofS2!S

2

onto �Dn and serve as global actions: any point in Dn represents a regular torus
T
3
n;x 1;y1 whose basis cycles are defined by (N, X1, Y1). The functions (m, H) define

the specific energy–momentum map EMkK : kC
with values (m, h) which gives an

immersion jkK:kC : �Dn/R
2. Recalling §2, we realize that �Dn is an unfolded lower

cell. In the simplest case illustrated in figure 6a, j is a diffeomorphism; in other
situations, the surface H(X1, Y1) can typically fold so that its projection on the
(m, h) plane is not injective and we have open domains in the range of EMkK : kC
where each point lifts to several points in Dn. Part of the boundary of these
domains consists of caustics, or curves whose points represent regular fibres with
extremal energy. Caustics may signal that the resonance is pertinent.

Proposition 4.1. Caustics in the image of the kK : kC energy momentum map
are structurally unstable.

In fact, for any even very small es0, adding a kK : kC resonance term eq1 to H
destroys a caustic typically so that the latter is replaced by a boundary
representing periodic orbits S

1 and a branching line near that boundary
representing bitori. This happens because any two regular fibres with the same
EM image have the same energy and as we approach a caustic, they become very
close in the phase space, thus opening the door for any however small resonance
to destroy them. Under such resonance, regular T

2 preimages of caustic points
disappear leaving a pair of periodic orbits, or nonlinear modes. The EM image of
the stable mode remains at the boundary, while that of the unstable mode moves
inside; the stable and unstable manifolds of the unstable mode form a bitorus.
(b ) Structure of the 1 : 1 zone

The 1 : 1 resonance can never be ignored and its zone is quite large because the
1 : 1 resonance term q1 appears in order H2 of the second normal form which
comes immediately after the linear part H1. In this note, we remain—for
simplicity—at the level of H2.

Definition 4.1. Exactly resonant and detuned kK : kC systems that remain
qualitatively unchanged in the sense of definition 2.2 under sufficiently small
variations of field parameters sO0, a and d within the kK : kC zone are called
structurally stable.
Proc. R. Soc. A (2007)
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Figure 6. Example BD of non-resonant perturbations: (a) simple regular BD, (b,c) and self-
overlapping BD with a caustic.
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Definition 4.2. Equivalent (in the sense of definition 2.2) systems form a
dynamical stratum within their zone.

In the parameter space Cfg, dynamical strata can be represented similarly to the
symmetry group action strata in figure 4b. We describe all dynamical strata of
structurally stable systems in the 1 : 1 zone which can be characterized usingH2. To
find these strata, we study systems with different parameters (a,d ) within the zone
using the standard techniques in (Cushman & Bates 1997; Cushman & Sadovskiı́
2000;Efstathiou et al. 2004), notably considering the topology of the families of energy
levels of the reduced Hamiltonian. Note that the classes of integrable Hamiltonian
systems, which we discuss in this section, are quite typical. Thus all of them were
described earlier on the example of the quadratic spherical pendulum (Efstathiou
2004, ch. 4.2 and fig. 4.2) andWaalkens et al. (2004) discussed similar systems.

The dynamical stratification of the 1 : 1 zone remains unchanged within a large
interval of small sO0 because q1 is part ofH2. Hence, we can work with constant-s
slices of Cfg, such as the one in figure 4c, where the 1 : 1 zone can be represented as a
stripe centred on theSZ line {dZ0, a2[0, 1]} (figure 7a).Within this stripe, various
Proc. R. Soc. A (2007)



Figure 7. Structure of the 1 : 1 zone. (a) Different dynamical strata of the zone. (b) The genealogy
graph whose vertices represent the strata. Vertical edges of the graph represent bifurcations with
broken symmetry of order 2, other edges correspond to Hamiltonian Hopf bifurcations. Two bold
paths in (a) define BD families of detuned 1 : 1 systems; small ticks on the paths mark individual
BD in figure 8.

1783Hydrogen atom in electric and magnetic fields
strata correspond to points, open segments, or open 2-domains.The latter represent
structurally stable systemsA0,A1,B1 andA1,1 (figures 7b and 8) and are of primary
interest to us. We describe also open segments A2 and B0 of SZ which represent
typical systems within the class of systems with an extra Z2 symmetry. Note that
figure 7b, shows only half of the 1 : 1 zonewith dR0 because all strata are symmetric
with respect to the SZ axis. However, since each of the strataB0,B1 andA1 has two
disjoint parts, one near S and another near Z, we distinguish such parts by prime
and double prime, respectively.

The H2 description of the dynamical stratification of the 1 : 1 zone can be
summarized in the form of the genealogy graph in figure 7b. Vertices of this
graph represent (connected parts of ) dynamical strata and edges correspond to
typical paths along which structurally stable systems can be deformed from
systems of one class into systems of another class. In a constant s section of
Cfg, adjacent vertices correspond to open connected domains which share a common
boundarys. A typical pathgwhich joins these domains, intersectss transversely in a
single generic boundary point c of s which corresponds to a bifurcation. Any small
deformation of g does not change the family of systems it defines.

The H2 approximation is in some cases insufficient to remove the degeneracy
of bifurcations represented by the edges of the H2 graph in figure 7b. Specifically,
A0A1, A1A1,1 and A1B1 represent Hamiltonian Hopf bifurcations (Van der Meer
1985; Duistermaat 1998; Hanßmann & Van der Meer 2005) which can be fully
characterized only after going to order H3, while the analysis of A2B0 given by
Efstathiou et al. (2004) requires H4. For some of these bifurcations, the small
neighbourhood of the boundary between the H2 strata may be further stratified.
We do not resolve such possible fine structures here.

(i) Exactly 1 : 1 resonant systems

Exactly 1 : 1 resonant systems i.e. perturbations by strictly orthogonal fields, have
a special discrete symmetry Z2 of order 2, which is a composition of rotation by p
Proc. R. Soc. A (2007)



0

0.002

0.005

0.014

0.02

0.04

path A2A11A″1A0 with fixed a2 = 0.45

path B″0 B″1 A″1 A0 for parallel fields near Z

A1,1
A0

A1,1

A2
A1 0

0.005

0.01

0.02

0.03

0.04

0.05

0.1

0.13

A1

A1 A0

A1

B1

B1

B0

Figure 8. Changes (of the constant n section) of the stratified EM images of the detuned 1 : 1 systems
with nsZ0.1 along the paths in figure 7. Value of the detuning parameter d is displayed in the right
bottom corner of each EM image plot. Filled circles mark Keplerian RE, solid and double lines show
sets of T2 RE and bitori, regular values are shaded gray, overlapping cells have a darker shade .

K. Efstathiou et al.1784
about axisF and reflection in the plane spanned by the vectorsF andG, see figure 4
and discussion by Sadovskiı́ & Zhilinskiı́ (1998), Cushman&Sadovskiı́ (2000). These
systems belong to a separate one-dimensional stratum SZ of the symmetry group
action in the middle of the 1 : 1 zone, the specific feature of the 1 : 1 zone. The H2

description of the dynamical stratification of SZwas given by Cushman& Sadovskiı́
(1999, 2000); finer details were analysed by Efstathiou et al. (2004). There are two
principal dynamical strata A2 and B0; A2 systems are represented by points with
a22ð

ffiffiffiffiffiffiffiffi
3=2

p
K1;

ffiffiffiffiffiffiffiffi
1=2

p
Þ, while B0 systems correspond to points on both sides of this

central interval (figure 7). The Z point is singled out by symmetry, but not
dynamically (at least at theH2 level) because theZeeman limit systemwithFZ0 is of
type B0. On the contrary, the S point is isolated in both senses.

The A2 systems have monodromy. It is caused by the presence of an isolated
singular fibre called doubly pinched torus (Cushman & Sadovskiı́ 1999, 2000)
whose image is given by the isolated critical EM value in figure 8 (for dZ0).
Up to conjugation in SL(3, Z), the matrix of this monodromy7 is

diag 1;
1 0

2 1

 ! !
:

The stratified EM image of a B0 system is also shown in figure 8. Its unfolding
surface SEM has three lower cells and is equivalent to the one shown in figure 1,
top left. In both figures, the overlapping images of two lower cells are shaded
dark. Regular values in the overlap region (such as b in figure 1) lift to two regular
tori (b0 and b00). Corresponding doublet quantum states in the spectrum of the
quadratic Zeeman effect were discovered by Herrick (1982) and were related
shortly after to classical dynamics by Solov’ev (1982, 1983). The latter work can
be considered a predecessor of all studies based on H2.

7 For any path G (cf. figure 9) the cycle associated with the Keplerian S

1 symmetry transforms
trivially, and the cycle basis in H 1(T

3
n;m;h) can always be chosen so that the full 3!3 monodromy

matrix has block-diagonal form diag(1, M) and the sign of the offdiagonal element of M is positive.
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The Stark limit system (point S, aZ0) is exceptional: it has no resonance term
q1 and its BD has a caustic. Other exceptional 1 : 1 systems correspond to Z2

equivariant Hamiltonian Hopf bifurcations, which mark the transition between
B 0
0 and A2 (on the S side) and B 00

0 and A2 (on the Z side). According to Efstathiou
et al. (2004) and Efstathiou (2004), these transitions involve additional
bifurcations. So on both sides, B0 and A2 are separated by tiny one-dimensional
dynamical strata of ‘transitional’ systems which lie near the respective critical
values

ffiffiffiffiffiffiffiffi
3=2

p
K1 and

ffiffiffiffiffiffiffiffi
1=2

p
of a2. Efstathiou et al. (2004) show BD’s of such

systems in the bottom right of their figures 6 and 7.
(ii) Detuned 1 : 1 resonant systems

To learn about all possible detuned 1 : 1 systems, we traverse the 1 : 1 zone along
the two paths which start inA2 andB0 as shown in figure 7a. Figure 8 shows the two
resultingBD families. Note that the second path is chosen to start atZ and to stay on
the parallel fields stratum8. This is justified because systems in the resulting family
are dynamically equivalent (in the sense of definition 2.2) to neighbouring detuned
systems in the interior of the 1 : 1 zone. SkewingF andG, we break the additional Z2

symmetry andmove off the (SZ ) stratum. As an immediate consequence, theA2 and
B0 systems bifurcate intoA1,1 and B1, respectively. In figure 7a,A1,1 is shaded dark,
andB1 consists of twowedge-like white regionsB

0
1 andB

00
1 near S andZ, respectively.

We describe briefly the bifurcations A2/A1,1 and B0/B1.
In the case of A2, the isolated critical fibre separates into two singly pinched

tori with different energies, while the corresponding isolated critical value o
separates into two such values o 0 and o 00 as illustrated in figure 9. We can see that
the fundamental group p1 of the constant-n section of the set REM(A1,1) of the
regular EM values of the detuned A1,1 system has two nontrivial generators G0

and G 00, which encircle o 0 and o00, respectively, while p1 of REM(A2) has only one
nontrivial generator G which encircles o. Note that G 0CG 00ZG encircles o0 and o 00

together. Since monodromy persists under small deformations, the images of
G3REM(A1,1) and G3REM(A2) under the respective monodromy mappings are
the same. On the other hand, monodromy maps both G 0 and G00 to the

diag 1;
1 0

1 1

 ! !

class, thus illustrating the ‘sign’ of Hamiltonian monodromy (Cushman &
Vū Ng c 2002).

In the case of B0, the surface �SEMðB1Þ with three cells (figure 1, top left)
changes into �SEMðB0Þ with two cells (figure 2b) after the branching line detaches
from the boundary and becomes a string of critical values inside the regular
interior of an unfolded lower cell. The latter cell has non-local monodromy

diag 1;
1 0

1 1

 ! !
:

Note that both endpoints of the branching line of �SEMðB1Þ lift to singular (non-
smooth) tori.

8One reason for this choice is that many atomic physicists are very familiar with the studies of
perturbations by parallel fields with G[F which followed the work by Solov’ev (1982, 1983).
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Transition to A1,1 and B1 occurs at arbitrarily small detuning ds0. Further
‘metamorphoses’ of detuned 1 : 1 systems can be analysed quantitatively by
computing the second normal form H and following the approach by Cushman &
Sadovskiı́ (1999, 2000) and Efstathiou et al. (2004). A fair idea of what goes on
can be obtained by adding a small linear detuning term dn to

H1:1
2 Z

1

8
sð1K2a2K2a4Þn2K 1

4
sa2q1;

computed by Cushman & Sadovskiı́ (1999, 2000) for the exact 1 : 1 resonance.
As we move along either of the paths in figure 7a, and increase the detuning, our

systems undergo several qualitative changes until they become a plain A0 system.
Each change involves aHamiltonianHopf bifurcationof one of theKeplerianREwith
zero momentum m. The BD of the A0 systems is a ‘rectangle’ whose four vertices
represent Keplerian RE and whose interior is regular and simply connected. Such
systems have global actions and in some sense, reachingA0marks the outskirts of the
zone where the resonance becomes unimportant (see §4a and figure 6a).

We can see in figure 8 that before reaching A0, systems A1,1 and B1 turn first
into a system with one singly pinched torus represented by a single isolated
critical value in the EM image. We call such systems A1; their stratum consists
of two parts A0

1 and A00
1 shown by light grey shade in figure 7. We can further note

from this figure that A1,1 can become either A0
1 or A

00
1 while B 0

1 and B 00
1 turn into

A0
1 and A00

1 , respectively. In the case of A1,1 (figure 8), one of its two unstable
Keplerian RE becomes stable and the respective isolated critical value joins the
boundary. The B1 system turns into A1 after a subcritical bifurcation, which
occurs when the smaller triangular lower cell shrinks to a point and becomes an
isolated critical value. At the last stage, the remaining isolated critical value of
A1 joins the boundary and A1 becomes A0.

(c ) Systems with higher resonances

Unlike in the 1 : 1 systems, where the resonance term q1 is part of the principal
(quadratic) order H2 of the second normalized Hamiltonian, in systems with
higher resonances, q1 is relegated to order HkKCkC which is, typically, factor
ðnsÞkKCkCK2 smaller than H2. This means that the study of higher resonances is,
essentially, a three-parameter problem, where different values of ns should be
considered along with those of a and d. With growing ns, the contribution due to
the q1 term increases. This explains why higher resonances may become
Proc. R. Soc. A (2007)
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important only at sufficiently large ns. This also suggests that systems with
higher resonances can be studied as blowups of caustics in the image of the EM
maps (see §4a) which are obtained after truncating H at orders below kKCkC.

Another important difference from the 1 : 1 systems is the geometry of the
reduced phase spaces Pm, or the spaces of orbits of the kK : kC resonant S

1

action. When kKCkCO2, these spaces have cusp singularities which make the
analysis of intersections Pmh{HZh}, the main tool in the construction of
stratified EM images (Cushman & Sadovskiı́ 2000; Efstathiou et al. 2004), highly
nonlinear. As a consequence, any complete description of higher resonance zones,
and in particular of the 1 : 2 zone, the largest and the most important of them,
becomes significantly more involved and deserves a separate study.

In this note, we like to describe briefly two important typical representatives of
exactly 1 : 2 resonant systems. These systems have two parameters, the field ratio a
with a22[1/10, 9/10] and the perturbation scale ns, which should be sufficiently
smaller than 1. Our computations show that the coefficient in front of q1 in H3 is
positive for alla2 except forparallel fields,whena2 is 1/10or9/10and the coefficient is
zero. Incomparison to the1 : 1 case, the1 : 2 systemsare interestingdue to the typical
presenceof specific ‘weakly singular’ fibres called curled tori (Nekhoroshev etal. 2002,
2006; Efstathiou et al. 2007). Their images under the EM map with fixed n form
typically strings s of critical values which Nekhoroshev et al. (2006) call ‘passable’
walls. Considering regular fibres T

3
a over a path GHasc, which crosses such s

(transversely) at c, we can continue certain full index-2 subgroups of first homology
groups of T3

a across the weak singularity EMK1(c).
One type of 1 : 2 systems exists for relatively large and small values of a2 in

(1/10, 9/10), when the quadratic part H2 defines a well pronounced folded surface
H(m, n) illustrated in figure 6b. In the presence of q1, the caustic in the energy–
momentum projection of this surface blows up as shown in figure 10a. We have a
branching wall (double line) and a regular boundary (solid fine line) connected by
two passable walls (dashed bold line). Neglecting, for the moment, the passable
walls, this BD represents one self-overlapping unfolded lower cell of the type
shown in figure 2c. Hence, we have a system with bidromy (Sadovskiı́ & Zhilinskiı́
2007). The presence of passable walls signifies that we can only continue certain
index-2 subgroups when we study this fractional bidromy.

When we fix ns and sweep the interval of the remaining parameter a2 starting
at its maximum value (i.e. on the Zeeman side), we observe a distant similarity
in the deformation of fixed-ns BD’s of exactly resonant 1 : 2 and 1 : 1 systems. In
both cases, the energies of the two Keplerian RE with minimal absolute value
(n/2)jkKKkCj of momentum m pass from the minimum to the maximum energy
h at given ns. For intermediate values of a2, when the BD ‘inverts’ itself, we
should expect complications.

In the 1 : 1 zone, these complications result in A2 systems. In the 1 : 2 zone,
different and somewhat more ‘rare’ systems are likely to exist for a2 near 0.43.
According to our computations, the surface H2(m, n; a2) nearly flattens at these
values of a2 and H3 becomes important even for moderate ns. The BD of such
systems can be obtained after blowing up the caustic of the projected cubic
surface in figure 6c, and is shown in figure 10b. Its unfolding surface has three
sheets: a large main sheet to which two small triangular sheets called ‘kites’ or
‘pockets’, are glued along short branching lines. Each kite is a blow up of an ideal
single point ending of the respective string of weakly critical values (bold dashes)
Proc. R. Soc. A (2007)
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Figure 10. Stratified EM images of the 1 : 2 systems with (a) fractional bidromy and (b) fractional
monodromy. Bold dashes mark images of curled tori, other values are shown as in figure 8; energy
scales are adjusted.
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‘attached’ to it. Such ideal endings were studied by Nekhoroshev et al. (2002,
2006) and Efstathiou et al. (2007), who introduced fractional monodromy with
matrices in the class

1 0

K
1

2
1

0
BB@

1
CCA;

for a path G which crosses the string once and encircles its endpoint. Kites are
generic realizations of the same situation. By the usual deformation argument,
monodromy for a pathG, which lies in themain sheet, encircles one of the branching
lines, and crosses the attached string of weakly critical values once, should be

diag 1;

1 0

1

2
1

0
BB@

1
CCA

0
BB@

1
CCA:

5. Conclusion

In the 80 years, since Pauli’s first attempt at classifying perturbations of the
hydrogen atom by small and moderate static electric and magnetic fields (Pauli
1926; Van der Waerden 1968; Valent 2003), the progress in this area consisted of
qualitative studies of particular members of this three-parameter family of
systems, notably the discovery of vibrational and rotational dynamics in the
Zeeman system (Herrick 1982; Solov’ev 1982), of the collapse (or ‘crossover’)
limit (Sadovskiı́ et al. 1996), and of monodromy in the orthogonal configuration
(Cushman & Sadovskiı́ 1999, 2000).

The implicit significance of the latter work was in showing essentially the way to
the analysis of other perturbations. Unfortunately, this aspect remained under-
developedbyCushman&Sadovskiı́ (1999, 2000), Efstathiou et al. (2004) andhas not
been appreciated duly. Without any appropriate framework and correct method-
ology, physicists were confined to very incomplete studies (Flöthmann et al. 1994;
von Milczewski & Uzer 1997; Main et al. 1998; Berglund & Uzer 2001; Gekle et al.
2006). So one of our main goals here was to spell out the general approach to the
Proc. R. Soc. A (2007)



1789Hydrogen atom in electric and magnetic fields
classification of systems with Hamiltonian (1.1), based on the two-step normal-
ization, the equivalence relation in definition 2.2, the appropriate choice of
parameters, and the zone structure of the parameter space. Details on the techniques
used in the analysis of resulting concrete integrable approximations within each zone
can be found elsewhere (Sadovskiı́ et al. 1996; Cushman & Bates 1997; Cushman &
Sadovskiı́ 1999, 2000; Michel & Zhilinskiı́ 2001; Efstathiou 2004; Efstathiou et al.
2004, 2007; Nekhoroshev et al. 2006).

Weended thenotebyannouncinganumberof concrete results, notably a complete
classification of 1 : 1 systems, and possible types of 1 : 2 systems, including the one
with fractional monodromy. Hence pending a confirmation by quantum calculations
andnumerical simulations, hydrogen atom in fieldswill—likewith the usual ‘integer’
monodromy in the earlier study byCushman& Sadovskiı́ (1999, 2000)—become the
first known fundamental physical systemwith fractionalmonodromy. A full account
of these studies will be published in a series of forthcoming papers.

We thank Professor John B. Delos and his post-graduate student Chris Schleif for drawing our
attention to this system, and for sharing their preliminary results (Schleif & Delos in press).
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Vū Ng c, S. 1999 Quantum monodromy in integrable systems. Commun. Math. Phys 203, 465–479.

(doi:10.1007/s002200050621)
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