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Abstract
We consider networks of pulse coupled linear oscillators with non-zero delay
where the coupling between the oscillators is given by the Mirollo–Strogatz
function. We prove the existence of heteroclinic cycles between unstable
attractors for a network of four oscillators and for an open set of parameter
values.
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1. Introduction

In this study, we analyse heteroclinic cycles that occur in global networks of pulse-coupled
oscillators. By definition, a heteroclinic cycle is a collection of orbits that connect sequences
of saddle equilibria in a topological circle [1]. Robust heteroclinic cycles constitute a generic
feature of certain dynamical systems with symmetry [1, 2]. They have been found to be
relevant in a number of physical phenomena that include rotating convection [3], population
dynamics [4], climate models [5] and coupled oscillator networks [6, 7].

The pulse coupled oscillator networks that we study in this work are used, among other
things, to model the synchronization in the flashing patterns of fireflies [8,9] and in biological
neuron networks [6,10–12]. The primary motivation, however, lies in several studies [13–18]
which propose that unstable attractors connected by heteroclinic cycles could be used to model
information processing in neural systems.

In the model that we study, neurons are represented by linear oscillators and their
membrane potential is related to the phase of the oscillator through a Mirollo–Strogatz
function [8]. When the membrane potential reaches a particular threshold, the neuron fires,
and the potential is reset to a lower value. As a consequence of the firing, the membrane
potential (i.e. the phase) of all the other neurons (oscillators) is increased by a constant amount
ε. In the original Mirollo–Strogatz model [8], this increase occurs simultaneously with the
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Figure 1. A schematic picture of an unstable attractor. Q is a saddle point whose stable set Ws(Q)

contains an open set S. Initial states from S collapse onto the local stable set Ws
loc(Q) and converge

to Q. Since Q is a saddle point, almost all nearby initial states move away from Q.

firing. Here, following later investigations (for example [9,12]), we assume that there is a time
delay τ between the firing of an oscillator and the time the other oscillators receive the pulse.

In networks consisting of three or more such oscillators, previous works [6, 10–12, 19]
have established the existence of unstable attractors for an open set of parameter values. In
addition, numerical studies [6, 10, 11] show that for certain values of parameters and for a
sufficiently large number of oscillators the network has heteroclinic cycles between unstable
attractors. The main aim of this paper is to prove the existence of such heteroclinic cycles. In
particular, we have the following theorem.

Theorem 1. Global networks of four pulse coupled oscillators with delay where the coupling is
given by the Mirollo–Strogatz function have heteroclinic cycles between two unstable attractors
for an open set of parameters.

A more detailed version of this statement is given in section 3 (theorem 2). In order to
prove theorem 1 we use the metric in the infinite dimensional state space, introduced in [19],
that allows us to study instability in a rigorous way.

The unstable attractors we study in this paper are saddle periodic orbits or saddle fixed
points of a suitably defined Poincaré map. This means that they have local stable and unstable
manifolds that are both non-zero dimensional. At the same time, there exists an open set of
points in the state space that converges to the attractor. The situation is sketched in figure 1.
The attractor Q is a saddle point and its stable set Ws(Q) contains an open set S(Q). Initial
states from S(Q) collapse onto the local stable set Ws

loc(Q) and converge to Q. Since Q is a
saddle point there is a neighbourhood U of Q such that all initial states in U \ Ws

loc(Q) leave
U after some time.

The unstable attractors in a system can be connected by heteroclinic cycles. Consider the
case that a system has N unstable attractors Q1, . . . , QN such that Qj lies in the interior of
the closure of the basin of Qj+1, and QN lies in the interior of the closure of the basin of Q1.
The dynamics in this case is not very interesting because any initial state in the neighbourhood
of Q1 will end up to Q2 and stay there forever. But if we add small noise to the system, then
the system can leave Q2 to reach Q3 and so on. In this way the existence of heteroclinic
connections together with some external noise can make the system move from one state to
another.

The paper is organized as follows. In section 2 we discuss the setting of the problem
by providing a description of the system and defining its state space. In section 3, we prove
analytically the existence of heteroclinic cycles between unstable attractors in a network of
four oscillators. Finally in section 4, we compare the theoretical results that we obtained with
a numerical study of the system and we present our conclusions.
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2. Definition of the dynamics

In this section we follow closely [12] and in particular [19]. We repeat only the definitions
that are necessary for this paper. For more details we refer to [12, 19].

The system studied in this paper is a delay system [20]. The state space of such systems is
an appropriate space Pn

τ of functions (see definition 1) defined on the interval (−τ, 0], where
τ > 0 is the delay of the system, and taking values in an n-dimensional manifold N . The
state space thus is infinite dimensional. In our case, points in N represent the phases of the n

coupled oscillators, which implies that N = T
n, the n-dimensional torus.

For a given φ ∈ Pn
τ and for each t ∈ (−τ, 0], φ(t) ∈ N represents the phases of the

oscillators at time t . Using the dynamics of the system, φ can be extended to a unique function
φ+ : (−τ, +∞) → N , such that φ+(t) = φ(t) for t ∈ (−τ, 0] and φ+(t) ∈ N represents the
phases of the oscillators at any time t � −τ . Then the evolution operator �t : Pn

τ → Pn
τ is

defined by �t(φ)(s) = φt(s) = φ+(t + s) for any t � 0 and s ∈ (−τ, 0]. In other words, the
evolution operator maps the initial state φ = φ0 to the state φt of the system at time t . The
latter is the restriction of φ+ in (t − τ, t] shifted back to the interval (−τ, 0].

2.1. Pulse coupled oscillator networks with delay

We now specialize the above notions of the theory of delay equations to the current setting.

Definition 1 (State space, cf [12]). The state space Pn
τ of the system of n pulse coupled

oscillators with delay τ > 0 is the space of phase history functions

φ : (−τ, 0] → T
n : s �→ φ(s) = (φ1(s), . . . , φn(s)),

which satisfy the following conditions:

(i) Each φi is upper-semicontinuous, i.e. φi(s
+) := limt→s+ φi(t) = φi(s) and φi(s

−) :=
limt→s− φi(t) � φi(s) for all s ∈ (−τ, 0].

(ii) Each φi is only discontinuous at a finite (or empty) set Si = {si,1, . . . , si,ki
} ⊂ (−τ, 0]

with ki ∈ N and si,1 > si,2 > · · · > si,ki
.

(iii) dφi(s)/ds = 1 for s �∈ Si .

The coupling between the n oscillators is defined using the pulse response function.

Definition 2 (Pulse response function, cf [12]). A pulse response function is a map

V : T × R+ → R : (θ, ε) �→ V (θ, ε), (1)

that satisfies the following conditions:

(i) V is smooth on (T \ {0}) × R+.
(ii) ∂V (θ, ε)/∂θ > 0 on (T \ {0}) × (R+ \ {0}).

(iii) ∂V (θ, ε)/∂ε > 0 on T × R+.
(iv) V (θ, 0) = 0 for all θ ∈ T.
(v) 0 < V (0, ε) < 1 for all ε ∈ (0, 1).

(vi) H , given by (4), satisfies

Hm(θ) = H1 ◦ Hm−1(θ) =
m-times︷ ︸︸ ︷

H1 ◦ . . . ◦ H1(θ). (2)
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Note that in the above definition ∂V/∂θ > 0, therefore V cannot be smooth everywhere
on T. This is reflected in condition (i) of the definition. The pulse response function depends
on the parameter ε � 0, called coupling strength. As a shorthand notation we introduce

Vm(θ) = V (θ, mε̂), for m = 1, 2, 3, . . . , (3)

where ε̂ = ε/(n − 1). Given a pulse response function V we also define

H : T × R+ → R : (θ, ε) �→ H(θ, ε) = θ + V (θ, ε) (4)

and

Hm(θ) = H(θ, mε̂), for m = 1, 2, 3, . . . . (5)

Definition 3 (Dynamics, cf [12]). A system of n pulse coupled oscillators with delay is a
quadruple D = (n, V, ε, τ ), where V is as in definition 2, ε � 0 and τ � 0. Given a
system D and an initial state φ ∈ Pn

τ , we extend φ to a function φ+ : (−τ, +∞) → T
n using

the following rules:

(i) φ+(t) = φ(t) for t ∈ (−τ, 0].
(ii) dφ+

i (t)/dt = 1 for t � 0, if φ+
j (t − τ) �= 0 (mod Z) for all j �= i.

(iii) φ+
i (t) = min{1, Hm(φ+

i (t−))} (mod Z), if there are j1, . . . , jm �= i such that
φ+

jk
(t − τ) = 0 (mod Z) for all k = 1, . . . , m.

The dynamics described in definition 3 can be interpreted in the following way. The phase
φi of each oscillator Oi , i = 1, . . . , n, increases linearly. When the phase reaches the value
1 = 0 (mod Z), then the oscillator Oi fires and all the other oscillators Oj , j �= i receive a
pulse after a time delay τ . In general, an oscillator Oj may receive m simultaneous pulses at
time t if m oscillators Oi1 , . . . , Oim have fired simultaneously at time t − τ . Then the phase
of Oj is increased to H(uj , mε̂) = Hm(uj ) where uj = φ+

j (t−), unless the pulse causes the
oscillator to fire and then the phase becomes exactly 1.

The evolution operator �t for t � 0 is then defined by

�t : Pn
τ → Pn

τ : φ �→ �t(φ) = φt = φ+|(t−τ,t] ◦ Tt , (6)

where Tt is the shift s �→ s + t and the positive semiorbit of φ ∈ Pn
τ is given by

O+(φ) = {�t(φ) : t � 0}. (7)

In [19] it was proven that the evolution operator �t is well defined.
For a given system D = (n, V, ε, τ ), the accessible state space is PD = �τ(Pn

τ ). In other
words, φ ∈ PD if there is a state ψ ∈ Pn

τ such that �τ(ψ) = φ, i.e. PD includes only those
states that are dynamically accessible. From now on, we restrict our attention to PD.

2.2. The Mirollo–Strogatz model

A pulse response function V that satisfies all the requirements of definition 2 is provided by
the Mirollo–Strogatz model [8] where the pulse response function is

VMS(θ, ε) = f −1(f (θ) + ε) − θ, (8)

and f is a function which is concave down (f ′′ < 0) and monotonically increasing (f ′ > 0).
Moreover, f (0) = 0 and f (1) = 1. A concrete example is given by

fb(θ) = 1

b
ln(1 + (eb − 1)θ). (9)

We present a sketch of the function fb for various values of b in figure 2(a). For any given
positive value of ε, the pulse response function VMS(θ, ε) for f = fb as in (9) is affine:

VMS(θ, ε) = mε + Kεθ, (10)
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Figure 2. (a) Graph of fb (9) as a function of θ for different values of b. (b) Graph of VMS (10)
as a function of θ for f = fb , b = 3 and different values of ε.

where mε = (ebε − 1)/(eb − 1) and Kε = ebε − 1. The graph of VMS (10) is depicted in
figure 2(b) for different values of ε.

In the numerical computations in this paper, we use the Mirollo–Strogatz model with
fb as in (9) with fixed b = 3. After fixing b, the parameter space of the system is
{(ε, τ ) : ε > 0, τ > 0} = R

2
+ where we recall that τ is the delay and ε is the coupling

strength.

2.3. Metric

We introduce a metric d on PD which we later use to define a neighbourhood of states.
Recall that given a phase history function φ ∈ Pn

τ , we can define the extended phase history
function φ+.

We define a lift [21] of an extended phase history function φ+ as any function
Lφ : (−τ, +∞) → R

n such that

(i) Lφ(s) (mod Z) = φ+(s) and
(ii) for any s ∈ (−τ, +∞) and for i = 1, . . . , n,

(Lφ)i(s) − (Lφ)i(s
−) = φ+

i (s) − φ+
i (s−).

It follows from these properties that if L
(1)
φ and L

(2)
φ are two lifts of the same extended phase

history function φ+ then they differ by a constant integer vector, i.e. L(1)
φ (s)−L

(2)
φ (s) = k ∈ Z

n,
for all s ∈ (−τ, ∞).

Definition 4 (Metric on PD). The metric d : PD × PD → R is given by

d(φ, ψ) = min
k∈Zn

n∑
i=1

∫ τ

−τ

|(Lφ)i(s) − (Lψ)i(s) − ki | ds, (11)

where Lφ and Lψ are arbitrary lifts of φ and ψ , respectively.

2.4. Other representations of the dynamics

It is often useful in what follows to use alternative representations of the dynamics. In this
section we introduce, following [12], the past firings and the event representation.
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2.4.1. The past firings representation. It follows from definition 3 that the evolution of an
initial state φ ∈ PD only depends on the values φi(0) and the firing sets �i(φ) that are defined
as follows:

Definition 5. Given a phase history function φ ∈ PD, the firing sets �i(φ) ⊂ (−τ, 0],
i = 1, . . . , n are the sets of solutions of the equation φi(s) = 0 for s ∈ (−τ, 0]. The
total firing set is given by

�(φ) = {(i, σ ) : i = 1, . . . , n, σ ∈ �i(φ)}

Therefore, if we are interested only in the future evolution of the system we can consider the
following equivalence relation in PD.

Definition 6. Two phase history functions φ1, φ2 in PD are equivalent, denoted by φ1 ∼ φ2, if
φ1(0) = φ2(0) and �(φ1) = �(φ2). Let PD = PD/ ∼ the quotient set of equivalence classes
and by [φ] ∈ PD denote the equivalence class of φ ∈ PD.

Points [φ] ∈ PD are completely determined by the values of the phases φi(0) and the firing
sets �(φ) (which may be empty). We denote the elements of �i(φ) by σi,1 > σi,2 > · · · > σi,ki

where ki is the cardinality of �i(φ). Note that by definition, φi(0) � σi,1, and φi(0) = 0 if
and only if σi,1 = 0.

It is possible to give an equivalent description of the dynamics described by definition 3,
using only the variables φi(0) and σi,j . For such a definition see [12]. Note also that the
following proposition 1.

Proposition 1. If φ1 ∼ φ2 then

(i) �t(φ1) ∼ �t(φ2) for t � 0 and

(ii) �t(φ1) = �t(φ2) for t � τ .

2.4.2. Poincaré map. Given a network of n oscillators with dynamics defined by the pulse
response function V , with pulse strength ε and with delay τ , we can simplify the study of the
system D = (n, V, ε, τ ) by considering intersections of the positive semiorbits O+(φ) with
the set

P = {φ ∈ PD : φn(0) = 0}. (12)

The set P is called a (Poincaré) surface of section [22,23] and it inherits the metric d, see (11).
The evolution operator �, see (6), defines a map R : P → P in the following way.

Consider any φ ∈ P, i.e. such that φn(0) = 0. Since the phases of the oscillators are always
increasing there is a minimum time t (φ) such that the phase of On becomes 0 again, i.e. such
that �t(φ)(φ)n(0) = 0. We define

R(φ) = �t(φ)(φ). (13)

The map R is called a Poincaré (return) map. Furthermore, we can define the quotient map

R∼ : P/ ∼→ P/ ∼: [φ] �→ [R(φ)],
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of the Poincaré (return) map R, where ∼ is the equivalence relation given by definition 6. By
proposition 1 the map R∼ is well defined.

2.4.3. The event representation. Given a phase history function φ, the firing sets �i(φ) =
{σi,1, . . . , σi,ki

} describe at which moments in the interval (−τ, 0] the oscillator Oi fires. Hence,
they also describe at which instants in the interval (0, τ ] the oscillators O
, for 
 �= i would
receive a pulse from Oi , making φ+


 , 
 �= i, discontinuous at σi,j +τ ∈ (0, τ ], for j = 1, . . . , ki .
Also, note that if the phase of the oscillator Oi at time 0 is φi(0) then the oscillator will fire
after time 1 − φi(0), unless it receives a pulse before it fires. Hence, the numbers σi,j and
φi(0) where i = 1, . . . , n and j = 1, . . . , ki can completely describe the future evolution of
the system.

The event representation is a symbolic description of the dynamics in which the state of
the system is represented by a sequence of events consisting of firings and pulse receptions that
would occur. Each event E in the sequence is characterized by a triplet [K(E), O(E), T (E)]
where K(E) denotes the type of the event F or mP . The event F denotes a firing event and
mP (m a natural number) stands for the simultaneous reception of m pulses. The event
K(E) is associated with oscillator O(E) ∈ {1, . . . , n}. Finally, T (E) ∈ [0, 1] denotes
how much time is left for the event to occur. For example, the event denoted by [F, 2, 0.4]
signifies that the oscillator O2 will fire after time 0.4 (and this means that its current phase is
1 − 0.4 = 0.6), while the event denoted by [P, 1, 0.3] signifies that O1 is set to receive a pulse
after time 0.3. We use the shorthand notation [F, (i1, . . . , ik), t] and [mP, (i1, . . . , ik), t]
to indicate that the oscillators Oi1 , . . . , Oik fire or receive m pulses, respectively, after
time t .

Given a particular initial state φ ∈ PD, such that its equivalence class [φ] ∈ PD is
characterized by the phases φi(0) and firing times σi,j for i = 1, . . . , n and j = 1, . . . , ki ,
consider the space A of event sequences (E1, E2, . . . , Ek) of finite (but not fixed) length and
the map

E : PD → A : [φ] → E([φ]), (14)

which maps [φ] to the event sequence E([φ]) constructed in the following way. First, consider
the set Y consisting of the following events:

(i) [F, i, 1 − φi(0)] for i = 1, . . . , n and
(ii) [P, 
, τ + σi,j ] for 
 = 1, . . . , n with 
 �= i.

Then, impose time ordering on Y (i.e. order the events so that events that occur earlier appear
first) and in the case that there are m > 1 identical events [P, i, t] collect them together
to [mP, i, t] to obtain E([φ]). It follows that E is injective and hence the inverse map
E−1 : E(PD) ⊂ A → PD is well defined.

Next, define the map

�A : E(PD) → E(PD) (15)

using the following algorithm:

(i) For Z ∈ E(PD), consider the first event E1 ∈ Z and let t = T (E1). If T1 �= 0 then set
T (E) to T (E) − t for all E ∈ Z.

(ii) Take the sequence Z0 of events E ∈ Z with T (E) = 0 and define Z+ = Z \ Z0. For each
event E ∈ Z0 do the following:
(a) If K(E) = F , then

1. append to Z+ the event [F, O(E), 1];
2. append to Z+ the events [P, 
, τ ] for all 
 ∈ {1, . . . , n} with 
 �= O(E).
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(b) If K(E) = mP , then
1. find the (unique) event E′ ∈ Z+ with K(E′) = F and O(E′) = O(E);
2. set T (E′) to max{T (E′) − V (1 − T (E′), mε̂), 0}.

(iii) Impose time ordering on Z+ and collect together identical pulse events.
(iv) Set �A(Z) = Z+.

It follows from the definition of �A that we have proposition 2.

Proposition 2.

(i) The map �A : PD → E(PD) is well defined.
(ii) [�t(φ)] = E−1(�A(Z)) where Z = E([φ]) and t is determined at the first step of the

algorithm.
(iii) Consider an initial state φ ∈ PD and the corresponding event sequence E([φ]). If we apply

�A, m times to E([φ]) and the time that elapses at the j th (j = 1, . . . , m) application is
tj with t = ∑

j tj , then it is possible to reconstruct the extended phase history function
φ+ on the interval [0, t].

The last part of proposition 2 implies that if t � τ then it is possible to obtain from the sequence
{Z, �A(Z), �2

A(Z), . . . , �m
A(Z)}, where Z = E([φ]), not only the equivalence class [�t(φ)]

but also the phase history function �t(φ) = φ+|(t−τ,t] ◦ Tt for any time t ∈ [τ, t].

3. Heteroclinic cycles

We begin by defining,

g1(τ ) = H2(H1(2τ) + τ),

g2(τ ) = H1(α + τ + β),

g3(τ ) = 1 − H2(W1 + τ),

g4(τ ) = H1(W2 + τ),

where

α = H1(H1(τ ) + τ),

β = 1 − H1(H2(2τ) + τ),

W1 = 1 + H1(τ ) − H2(H1(τ ) + τ) + τ − H1(2τ),

W2 = 1 + H1(τ ) − H2(H1(τ ) + τ).

Using the terminology introduced in section 2, we restate the main theorem of this paper
(theorem 1) as follows.

Theorem 2. Consider a system D = (n, V, ε, τ ) such that

(i) n = 4,
(ii) V is given by a Mirollo–Strogatz model (section 2.2),

(iii) g1(τ ) < 1,
(iv) g2(τ ) < 1,
(v) g3(τ ) < τ ,

(vi) g4(τ ) < 1.
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Figure 3. Graphs of the phase history functions φQ1 and φQ2 .

Then, there exist two unstable attractors φQ1 , φQ2 ∈ P (figure 3) with a heteroclinic cycle
between them and conditions (i)–(vi) define an open set in the parameter space (b, ε, τ ).

The fixed points φQ1 and φQ2 are defined in the following way.

Definition 7. φQ1 ∈ P for H2(τ + H1(τ )) < 1 is defined by

φ
Q1
i (s) =

{
τ + s, for i = 1, 2,

τ + W2 + s, for i = 3, 4,
(16a)

for s ∈ (−τ, 0), while for s = 0,

φ
Q1
i (0) =

{
H1(τ ), for i = 1, 2,

0, for i = 3, 4,
(16b)

where W2 = 1 + H1(τ ) − H2(τ + H1(τ )).

Definition 8. φQ2 ∈ P for H2(τ + H1(τ )) < 1 is defined by

φ
Q2
i (s) =

{
W2 + s, for i = 1, 2,

s, for i = 3, 4,
(17)

for s ∈ (−τ, 0], where W2 = 1 + H1(τ ) − H2(τ + H1(τ )).

The parameter region in which theorem 2 is valid for b = 3 is represented by the grey
region in figure 4. This represents an intersection of the plane b = 3 and the open parameter
region in the space (b, ε, τ ) in which theorem 2 holds.

3.1. Proof of existence of heteroclinic cycles

In this section we prove theorem 2. We show that almost all points in an open neighbourhood
of φQ1 are mapped in finitely many iterations to φQ2 . Finally, using a symmetry argument
we show that almost all points in an open neighborhood of φQ2 are mapped in finitely many
iterations to φQ1 , thus establishing the existence heteroclinic cycle between φQ1 and φQ2 .

Proposition 3. Given a system D = (n, V, ε, τ ) that satisfies the conditions of theorem 2, the
point φQ1 (16a) and (16b) is a fixed point of the Poincaré map R.
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Figure 4. The region defined by the inequalities in theorem 2 is depicted by grey. In this
figure b = 3.

Proof. φQ1 evolves in the event sequence representation as follows:

([2P, (1, 2), τ ], [P, (3, 4), τ ], [F, (1, 2), 1 − H1(τ )], [F, (3, 4), 1])

1→([2P, (1, 2), 0], [P, (3, 4), 0], [F, (1, 2), 1−τ − H1(τ )], [F, (3, 4), 1−τ ]).

Since H2(τ + H1(τ )) < 1, the evolution is

2→([F, (1, 2), 1 − H2(τ + H1(τ ))], [F, (3, 4), 1 − H1(τ )])

3→([F, (1, 2), 0], [F, (3, 4), H2(τ + H1(τ )) − H1(τ )])

4→([2P, (3, 4), τ ], [P, (1, 2), τ ], [F, (3, 4), H2(τ + H1(τ )) − H1(τ )],

[F, (1, 2), 1])

5→([2P, (3, 4), 0], [P, (1, 2), 0], [F, (3, 4), H2(τ + H1(τ )) − H1(τ ) − τ ],

[F, (1, 2), 1 − τ ])

6→([F, (3, 4), 0], [F, (1, 2), 1 − H1(τ )])

7→([2P, (1, 2), τ ], [P, (3, 4), τ ], [F, (1, 2), 1 − H1(τ )], [F, (3, 4), 1]).

Transition 6 requires H2(W2 + τ) � 1 which will be proven in proposition 16. Since we return
to the initial state, φQ1 is a fixed point of R. �

Proposition 4. Given a system D = (n, V, ε, τ ) that satisfies the conditions of theorem 2, the
point φQ2 (17) is a fixed point of the Poincaré map R.
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Proof. φQ2 evolves in the event representation as follows:

([2P, (1, 2), τ ], [P, (3, 4), τ ], [F, (1, 2), H2(τ + H1(τ )) − H1(τ )], [F, (3, 4), 1])

1→([2P, (1, 2), 0], [P, (3, 4), 0], [F, (1, 2), H2(τ + H1(τ )) − H1(τ ) − τ ],

[F, (3, 4), 1 − τ ]).

Since H2(W2 + τ) � 1,
2→([F, (1, 2), 0], [F, (3, 4), 1 − H1(τ )])

3→([2P, (3, 4), τ ], [P, (1, 2), τ ], [F, (3, 4), 1 − H1(τ )], [F, (1, 2), 1])

4→([2P, (3, 4), 0], [P, (1, 2), 0], [F, (3, 4), 1−H1(τ )−τ ], [F, (1, 2), 1 − τ ]).

Since H2(τ + H1(τ )) = H1(α) < g2(τ ) < 1 (where α = H1(H1(τ ) + τ)),
5→([F, (3, 4), 1 − H2(τ + H1(τ ))], [F, (1, 2), 1 − H1(τ )])

6→([F, (3, 4), 0], [F, (1, 2), H2(τ + H1(τ )) − H1(τ )]),

7→([2P, (1, 2), τ ], [P, (3, 4), τ ], [F, (1, 2), H2(τ + H1(τ )) − H1(τ )],

[F, (3, 4), 1]).

We note that we return to the initial state and that φQ2 is a fixed point of R. �

Lemma 5. If the assumptions stated in theorem 2 hold, then there is an open neighbourhood
U ⊆ P of φQ1 such that U/ ∼ is one-dimensional and all states [φ] ∈ (U/ ∼) \ {[φQ1 ]}
converge to φQ2 in finitely many iterations of the Poincaré map R.

Proof. According to proposition 7 there is an open neighbourhood U ⊂ P of φQ1 such that
the equivalence class [φ] of each state φ ∈ U is characterized by the event sequence

([2P, (1, 2), τ ], [P, (3, 4), τ ], [F, 1, 1 − v], [F, 2, 1 − w], [F, (3, 4), 1]), (18)

where v and w can be made to be arbitrarily close to H1(τ ) and moreover if v > w then
Aεw+ (Aε −1)v = (2Aε −1)H1(τ ), while if v < w then Aεv + (Aε −1)w = (2Aε −1)H1(τ ).
This shows that U/ ∼ is one-dimensional. Since all the oscillators are identical, the system is
invariant under the permutation 1 ↔ 2, therefore it is enough to consider only the case v > w.

We denote by [φv,w] the equivalence class that corresponds to the event sequence (18),
where now v and w take any value in [τ, 1), and by  the set of equivalence classes
{[φv,w] : v ∈ [τ, 1), w ∈ [τ, 1)}. Note that [φQ2 ] = [φW2,W2 ] ∈ . Let ̃ be the
subset of [τ, 1)2 such that if (v, w) ∈ ̃ then R([φv,w]) ∈ . Since there is a one-to-one
correspondence between equivalence classes [φv,w] and pairs (v, w) we can define a map
R : ̃ ⊆ [τ, 1)2 → [τ, 1)2 given by [φR(v,w)] = R([φv,w]). Therefore, we can follow the
evolution of an initial state [φv,w] on [τ, 1)2 with coordinates v and w as long as Rm

(v, w) ∈ ̃

for m ∈ N. In the course of the proof we show that all the equivalence classes that we consider
belong in ̃.

The next step of the proof is to divide the space [τ, 1)2 into different regions for which we
can solve the dynamics and show that the initial state with v and w close to H1(τ ) goes through
a succession of regions until it reaches the point Q2 = (W2, W2) that corresponds to [φQ2 ].

These regions are shown in figure 5. First, define the line segment 
, given by v > w,
H1(τ ) < v < H1(2τ), w > τ and Aεw + (Aε − 1)v = (2Aε − 1)H1(τ ). Define also 
1 as
the subset of 
 for which H2(v + τ) − H2(w + τ) < τ and 
2 as the subset of 
 for which
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Figure 5. The regions used in the proof of lemma 5. The line segments 
1 and 
2 are indicated by
the thick solid and dashed lines, respectively. The line segment 
1 begins at Q1 and is separated
from 
2 by the thin dashed line given by H2(v + τ) − H2(w + τ) = A2(v − w) = τ which is
parallel to the diagonal that joins Q1 and Q2. Points on 
1 are mapped to 
2, and next in B1 or
B2 = Ba

2 ∪ Bb
2 ∪ Bc

2 ∪ Bd
2 . Points in B1 are mapped to B2 and finally, points in B2 are mapped in

finite iterations to Q2.

H2(v +τ)−H2(w+τ) � τ . Then, proposition 7 states that the part of the open neighbourhood
U of φQ1 for which v > w lies in 
1.

Next, according to proposition 9 the point (v, w) ∈ 
1 is mapped in finite iterations of R

to 
2 and according to proposition 10, points in 
2 are mapped either in the region B1 defined
by the relations v > w, w � τ , v � H1(2τ), H2(v + τ) < 1 and H2(v + τ)−H2(w + τ) � τ or
in the region B2 defined by the relations v > w, v < 1 − τ , w > τ , H2(v + τ) � 1, w < W2.

Denote by Ba
2 the subset of B2 given by H1(τ + H2(w + τ)) < 1, by Bb

2 the set given by
H1(τ + H2(w + τ)) � 1 and τ + H2(w + τ) < 1, by Bc

2 the set given by τ + H2(w + τ) � 1
and H2(w + τ) � 1, and finally by Bd

2 the set given by H2(w + τ) > 1. Note that
B2 = Ba

2 ∪ Bb
2 ∪ Bc

2 ∪ Bd
2 .

Next, according to proposition 11 all points in B1 are mapped in B2. Proposition 12 states
that all points in Ba

2 are mapped in finite iterations in Bb
2 ∪ Bc

2 ∪ Bd
2 . Next, proposition 13

states that all points in Bb
2 are mapped to a single point in Bc

2. According to proposition 14
all points in Bc

2 are mapped in Bd
2 and finally, proposition 15 states that all points in Bd

2 are
mapped to [φQ2 ].

Therefore, the initial states φ ∈ U near φQ1 are mapped in a finite number of iterations of
R to [φQ2 ]. Since R([φQ2 ]) = φQ2 (from proposition 4) we conclude that φ ∈ U is mapped
in a finite number of iterations of R to φQ2 . �

Lemma 6. Under the assumptions of theorem 2 there is an open set W ⊆ P of initial states
around φQ2 such that W/ ∼ is three-dimensional and all states [φ] ∈ W/ ∼, except those in
a two-dimensional subset, converge to φQ1 in finitely many iterations of the Poincaré map R.

Proof. According to proposition 8 there is an open neighbourhood W ⊂ P of φQ2 such that
the equivalence class [φ] of each state φ ∈ W is characterized by the event sequence (making
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the assumption that v � w)

([P, (1, 2, 4), τ − u], [P, (1, 2, 3), τ ], [F, 1, 1 − W2 − v],

[F, 2, 1 − W2 − w], [F, 3, 1 − u], [F, 4, 1]) (19)

where 0 < u  1 or by

([F, 3, −u], [P, (1, 2, 3), τ ], [F, 1, 1 − v], [F, 2, 1 − w], [F, 4, 1]) (20)

where −1  u < 0. Note that in the case u = 0 the event sequences (19) and (20) are
essentially identical and the initial state is mapped in one iteration to φQ2 . Therefore, states in
the neighbourhood W can be characterized by three small parameters (u, v, w) and we show
that except states with u = 0, all other states in W are mapped in finite iterations to φQ1 .

Consider the surface of section Q = {φ ∈ PD : φ2(0) = 0} and the maps T1 : P → Q and
T2 : Q → P defined so that for φ ∈ P, T1(φ) is the first intersection of {�t(φ)} with Q and for
ψ ∈ Q, T2(ψ) is the first intersection of {�t(ψ)} with P. We consider φ ∈ W and compute
T1(φ). In particular, we consider the event sequence (19), so the evolution is

1→([P, (1, 2, 4), 0], [P, (1, 2, 3), u], [F, 1, 1 − W2 − v + u − τ ],

[F, 2, 1 − W2 − w + u − τ ], [F, 3, 1 − τ ], [F, 4, 1 + u − τ ])

2→([P, (1, 2, 3), u], [F, 1, 1 − H1(W2 + v − u + τ)],

[F, 2, 1 − H1(W2 + w − u + τ)], [F, 3, 1 − τ ], [F, 4, 1 − H1(τ − u)])

3→([P, (1, 2, 3), 0], [F, 1, 1 − H1(W2 + v − u + τ) − u],

[F, 2, 1 − H1(W2 + w − u + τ) − u], [F, 3, 1 − τ − u],

[F, 4, 1 − H1(τ − u) − u])

4→([F, 1, 0], [F, 2, 0], [F, 3, 1 − H1(τ + u)], [F, 4, 1 − H1(τ − u) − u])

where in the last transition we used the fact that H1(H1(W2 + v − u + τ) + u) � 1 and
H1(H1(W2 + w − u + τ) + u) � 1 for (u, v, w) small enough, since H2(W2 + τ) � 1. The
situation for w > v is identical up to interchanging oscillators O1 and O2. The case for the
event sequence (19) is also similar and we do not analyse it separately. Therefore, we observe
that T1(W) = U ′ where U ′ is the set of ψ ∈ Q with ψ1(0) = 0, ψ2(0) = 0, ψ3(0) = H1(τ +u),
ψ4(0) = H1(τ − u) + u, �1(ψ) = �2(ψ) = {0} and �3(ψ) = �4(ψ) = ∅ and u > 0 can be
chosen to be arbitrarily small.

Consider the map K : PD → PD defined by K(φ) = (φ3, φ4, φ1, φ2), i.e. K corresponds
to a permutation of the oscillators (note also that K−1 = K). Define also ψQ1 = K(φQ1)

and ψQ2 = K(φQ2) and note that the neighbourhood U ′ of ψQ1 is mapped by K to the
neighbourhood K(U ′) = U of φQ1 , where U is defined in the proof of lemma 5. Moreover,
following the evolution of ψQ2 one can show that T2(ψ

Q2) = φQ1 .
Since all the oscillators are identical, we have that K◦�t = �t ◦K. Moreover, if we denote

by RP the Poincaré map on P and RQ the Poincaré map on Q we have that RP = K−1 ◦RQ ◦K.
Then it follows that for ψ ∈ U ′

Rm
Q (ψ) = K−1(Rm

P (K(ψ))).

According to lemma 5 for every φ = K(ψ) ∈ U (except φQ1 ) there is m > 0 such that
Rm

P (φ) = φQ2 . Therefore,

Rm
Q (ψ) = K(φQ2) = ψQ2 .
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Therefore, for φ ∈ W we have that

T2(R
m
Q (T1(φ))) = T2(ψ

Q2) = φQ1

i.e., there is some t > 0 such that �t(φ) = φQ1 for φ ∈ W ⊂ P. This implies that there is
m′ > 0 such that Rm′

P (φ) = φQ1 for φ ∈ W . �

4. Discussion

4.1. Numerical simulations and comparisons with the theoretical results

In section 2, we established, that since the system studied in this paper is a delay system, the
state space is the set of functions Pn

τ that represent the values of the phases of the oscillators
in the time interval (−τ, 0].

Nevertheless, it is often the case (see for example [11, 12]) that in numerical simulations
of such systems, only the phases θi , for i = 1, . . . , n − 1, of the oscillators at time t = 0 are
given as initial data and then the times σi,j when the oscillators have fired in the interval (−τ, 0]
are determined through a set of rules and θn = 0, since we consider states on the surface of
section. These rules essentially determine a map G : T

n−1 → P/ ∼ and they define an n − 1
dimensional subset S = G(Tn−1) of the infinite dimensional space P/ ∼.

If θ, θ ′ ∈ T
n−1 then it appears natural to define the distance between the points

G(θ), G(θ ′) ∈ S by the ‘Euclidean’ distance between θ and θ ′. We call this metric, the
T

n−1 metric. It would be interesting to know whether studying a pulse coupled oscillator
network using the T

n−1 metric gives the same results as studying the network using the metric
d, given by (11).

For this reason, in this section we numerically study a pulse coupled four-oscillator network
with delay by giving a map G : T

3 → P/ ∼ and using the corresponding T
3 metric and we

compare these numerical results with the results obtained in section 3. In particular, we
consider a four-oscillator network with the dynamics as described in section 2.1 and coupling
given by a Mirollo–Strogatz pulse response function VMS (8) for b = 3.

Given θ = (θ1, θ2, θ3) ∈ T
3, we consider in the event representation the state given (up to

time ordering) by

G(θ) = ([P, (1, 2, 3), τ ], [F, 1, 1 − θ1], [F, 2, 1 − θ2], [F, 3, 1 − θ3], [F, 4, 1])

if θi � τ for i = 1, 2, 3. If θ1 < τ then O1 must have fired in the interval [−θ1, 0). We
make the extra assumption that in this case O1 has fired exactly at time −θ1. Therefore, we
add to G(θ) the events [P, (2, 3, 4), τ − θ1]. Similarly, if θ2 < τ we add to G(θ) the events
[P, (1, 3, 4), τ − θ2] and if θ3 < τ we add the events [P, (1, 2, 4), τ − θ3]. In each case we
time-order G(θ). This construction defines the mapping G : T

3 → P/ ∼. By definition, G

is a bijection on S = G(T3). Note that the Poincaré map R∼ does not define a map on T
3 by

G−1 ◦ R∼ ◦ G, because the image of R∼ ◦ G contains points that do not belong to S.
The fixed states [φQi ] (i = 1, 2) of the Poincaré map belong to S, therefore there exist

Q1, Q2 ∈ T
3 such that G(Qi) = [φQi ] for i = 1, 2. We study numerically which states G(θ)

converge to [φQ1 ] or [φQ2 ] for parameter values ε = 0.1 and τ = 0.2. The result is depicted in
figure 6 where the intersection of the basins of the unstable attractors with planes θ3 = const is
shown. The basin of attraction of Q1 is represented by dark grey and that of Q2 by light grey.
From figure 6 we conclude that there is an open, in T

3, ball B1 around Q1 that belongs in the
basin of Q2 (except for points on the plane θ1 = θ2). Moreover, there is an open, in T

3, ball
B2 of points around Q2 contained (except points on the plane θ3 = 0) in the basin of Q1. This
is harder to see in figure 6 but a magnification of the region near Q2 reveals that the situation
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Figure 6. Basin of attraction, projected to S, of the unstable attractors Q1 and Q2 for a network
of four oscillators with b = 3, ε = 0.1, τ = 0.2. Both fixed point attractors lie on the intersection
of the plane θ3 = 0 (bottom plane) with the plane θ1 = θ2. Initial states that converge to the
attractors Q1 and Q2 are shown in dark and light grey, respectively. Observe that initial states near
the attractor Q1 belong to the basin of Q2 and vice versa, which demonstrates that there exists a
heteroclinic cycle between Q1 and Q2.

is as just described. Therefore, from the numerical results we conclude that if we restrict our
attention to S with the T

3 metric, the fixed points Q1 and Q2 are unstable attractors since their
basins have interior points and there is a heteroclinic cycle between them. This is exactly the
result that we obtained for φQ1 and φQ2 in section 3.

It is an important question whether one can infer, in all cases, from such numerical results
using the T

n−1 metric, the existence of unstable attractors and heteroclinic cycles on the
Poincaré surface of section P with the metric d, given by (11). Note first that the T

n−1 metric
is not equivalent to d . For example, we have obtained in lemma 5 that the open neighbourhood
U of φQ1 , with respect to the metric d , is characterized by 1 dynamically significant parameter,
i.e. U/ ∼ is one dimensional. On the other hand, the open neighbourhood of Q1 ∈ T

3 with
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Figure 7. Heteroclinic connections for five oscillators: the phases φi(t) of the oscillators are shown
against the time t at which the nth oscillator fires. Random noise is generated every 40 time units.
The reconfiguration of the oscillators after the noise corresponds to switching between unstable
attractors. The parameter values are b = 3, ε = 0.3 and τ = 0.1.

respect to the T
3 metric is three-dimensional and moreover G−1(U/ ∼) is a one-dimensional

closed subset of T
3. In order to show that from the numerical results on the existence of unstable

attractors and heteroclinic cycles we can infer similar results for P, it would be enough to show
that all open sets in T

n−1 correspond to open sets in P. Whether this is true remains an open
question.

4.2. Conclusions

In this paper we proved the existence of heteroclinic cycles between unstable attractors in a
global network consisting of four oscillators. Such heteroclinic cycles occur for an open set
of parameter values in the class of systems that we considered. For this purpose we used the
mathematical framework introduced in [12] and extended in [19], which permits us to study
analytically the evolution of the system and define the neighbourhood of a state in the (infinite
dimensional) state space.

A natural question is whether similar cycles occur in networks with more than four
oscillators. In figure 7 we illustrate the presence of heteroclinic cycles for a five oscillator
network. Moreover, numerical simulations in [10] suggest that such cycles exist for networks
with n = 100 oscillators. Another question is how the existence of heteroclinic cycles is
affected if we consider instead of the Mirollo–Strogatz model other pulse response functions.

The importance of heteroclinic connections such as those considered in this work, is
that they provide flexibility to the system because it is possible to switch between unstable
attractors. Furthermore, they can also be used to perform computational tasks, such as design
of a multibase counter [7] and sequence learning [24]. We are not aware of any work that
answers the question whether heteroclinic connections persist for non-global networks or for
non-identically coupled networks. It would be worthwhile to further explore the dynamics of
pulse coupled oscillators and the existence of heteroclinic cycles between unstable attractors for
varied non-global networks, namely, regular, random [25], small-world [26] and fractal [27,28]
networks.
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Appendix A. Propositions used in the proofs of lemmas 5 and 6

Proposition 7. There is ρ1 > 0 and C2 > 0 such that if d(φQ1 , φ) = ε < ρ for some φ ∈ P
then there is some x with 0 < x < C2ε such that either

(i) φ1(0) = H1(τ + x), φ2(0) = H1(τ − x) + x, φ3(0) = φ4(0) = 0 or
(ii) φ1(0) = H1(τ − x) + x, φ2(0) = H1(τ + x), φ3(0) = φ4(0) = 0 or

(iii) φ1(0) = H1(τ ), φ2(0) = H1(τ ), φ3(0) = φ4(0) = 0.

In all cases, �i(φ) = ∅ for i = 1, 2 and �3(φ) = �4(φ) = {0}.

Proof. In this proof we use results from [19]. Since the phases φ
Q1
i , i = 1, . . . , 4 do not

have any discontinuities in the intervals (−τ, 0) and (0, τ ) there is ρ1 > 0 and constants
C1, C2 > 0 such that if d(φ, φQ1) = ε < ρ1 then |φj (s) − φ

Q1
j (s)| < C1ε for j = 1, . . . , 4

and for s ∈ (−τ + C2ε, −C2ε) ∪ (C2ε, τ − C2ε). This also implies that no oscillator fires
in the interval (−τ + C2ε, −C2ε), because then the phase of the other oscillators would
have a discontinuity in the interval (C2ε, τ − C2ε). Given that the size of discontinuity
has to be larger than V1(0) > 0 we conclude that by making ρ1 (and consequently ε) small
enough, the condition |φj (s) − φ

Q1
j (s)| < C1ε would not hold, and therefore we have a

contradiction.
Moreover, for similar reasons and because φ4(0) = 0 we conclude that φ4(s) = s for

all s ∈ [0, τ − C2ε). This in turn implies that the oscillators O1, O2 and O3 do not fire
in (−τ, −C2ε).

We have established that at time −C2ε, the phase φ1(−C2ε) of the oscillator O1 is O(ε)

close to τ , while φ1(C2ε) is O(ε) close to H1(τ ). From this we deduce that O1 must receive
exactly one pulse in the interval (−C2ε, C2ε). The same is also true for O2. On the other
hand, φ3(−C2ε) is O(ε) close to τ + W2 and φ3(C2ε) is O(ε) close to 0. This means that
the oscillator O3 must receive enough pulses to fire in the interval (−C2ε, C2ε). Given that
H1(W2 + τ) < 1 and that H2(W2 + τ) > 1 and also that ε can be chosen arbitrarily small
we conclude that O3 must receive exactly two pulses in the interval (−C2ε, C2ε). Similar
arguments show that O4 must also receive exactly two pulses in the interval (−C2ε, 0].

The only possibility for this combination of pulses to happen is if the oscillators O1 and
O2 fire at moments t1 = −τ − x and t2 = −τ such that x < C2ε. We should consider the
cases that O1 fires at t1 and O2 at t2, that O2 fires at t1 and O1 at t2, or finally that O2 and O1

fire simultaneously at t1 = t2 = 0.
Consider first the case that O1 fires at t1 = −τ − x and that O2 fires at t2 = −τ . Then,

at time −x the oscillators O2, O3 and O4 receive a pulse from O1 and at time 0 the oscillators
O1, O3 and O4 receive a pulse from O2. Since, O3 and O4 receive the second pulse at time
0, we have φ3(0) = φ4(0) = 0. Moreover, when O2 receives the pulse from O1 its phase is
φ2(−x−) = τ − x, so φ2(0) = H1(τ − x) + x. Finally, when O1 receives the pulse from O2

its phase is φ1(0−) = τ + x so its phase becomes φ1(0) = H1(τ + x).
In the case that O2 fires before O1 we can use similar arguments to show that φ1(0) =

H1(τ − x) + x and φ2(0) = H1(τ + x). Finally, if O1 and O2 fire simultaneously at −τ , then
φ1(0) = φ2(0) = H1(τ ). �
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Proposition 8. There is ρ1 > 0 and C1 > 0 such that if d(φQ2 , φ) = ε < ρ for some φ ∈ P
then |φi(0) − W2| < C1ε and �i(φ) = ∅ for i = 1, 2, φ4(0) = 0 with �4(φ) = {0} and either

(i) 0 � φ3(0) < C2ε and �3(φ) = {−φ3(0)}, or
(ii) −C2ε < φ3(0) < 0 and �3(φ) = ∅.

Proof. Since the phases φ
Q2
i , i = 1, . . . , 4 do not have any discontinuities in the intervals

(−τ, τ ) there is ρ1 > 0 and constants C1, C2 > 0 such that if d(φ, φQ2) = ε < ρ1 then
|φj (s) − φ

Q2
j (s)| < C1ε for j = 1, . . . , 4 and for s ∈ (−τ + C2ε, τ − C2ε). This also implies

that no oscillator receives a pulse in the interval (−τ + C2ε, τ − C2ε) which means that no
oscillator fires in the interval [−τ, −C2ε). For the oscillators O1 and O2 we can conclude that
they do not fire also in [−C2ε, 0] since their phases are O(ε) close to φ1(0) = φ2(0) = W2 in
this time interval. Therefore, |φj (0) − W2| < C1ε for j = 1, 2 and �j(φ) = ∅. Moreover,
φ4(0) = 0 since φ ∈ P and therefore �4(φ) = {0}. Finally, for the oscillator O3 we have that
φ3(0) is O(ε) close to 0 (mod 1), and therefore either it fires at time u with −C2ε < u � 0
and φ3(0) = −u > 0, �3(φ) = {u} or it fires at time u with C2ε > u > 0 and φ3(0) = 1 − u,
�3(φ) = ∅. �

Proposition 9. If φ ∈ 
1 then R(φ) ∈ 
 and there is a finite number m of iterations such that
Rm(φ) ∈ 
2.

Proof. The initial event sequence in 
1 with H2(v + τ) − H2(w + τ) < τ evolves as

([2P, (1, 2), τ ], [P, (3, 4), τ ], [F, 1, 1 − v], [F, 2, 1 − w], [F, (3, 4), 1])
1→([2P, (1, 2), 0], [P, (3, 4), 0], [F, 1, 1 − v − τ ], [F, 2, 1 − w − τ ],

[F, (3, 4), 1 − τ ])
2→([F, 1, 1 − H2(v + τ)], [F, 2, 1 − H2(w + τ)], [F, (3, 4), 1 − H1(τ )])
3→([F, 1, 0], [F, 2, H2(v + τ) − H2(w + τ)], [F, (3, 4), H2(v + τ) − H1(τ )]).

Let ν = H2(v + τ) − H2(w + τ). Since ν < τ < H2(w + τ) − H1(τ ) < H2(v + τ) − H1(τ )

(which follows from equation (B.2) in proposition 16), the evolution continues as
4→([F, 2, ν], [P, (2, 3, 4), τ ], [F, (3, 4), H2(v + τ) − H1(τ )], [F, 1, 1])
5→([F, 2, 0], [P, (2, 3, 4), τ − ν], [F, (3, 4), H2(v + τ) − H1(τ ) − ν],

[F, 1, 1 − ν])
6→([P, (2, 3, 4), τ − ν], [P, (1, 3, 4), τ ], [F, (3, 4), H2(v + τ) − H1(τ ) − ν],

[F, 1, 1 − ν], [F, 2, 1])
7→([P, (2, 3, 4), 0], [P, (1, 3, 4), ν], [F, (3, 4), H2(v + τ) − H1(τ ) − τ ],

[F, 1, 1 − τ ], [F, 2, 1 − τ + ν]).

Since H1(1−H2(v+τ)+H1(τ )+τ)) < H1(W2+τ) < 1 and ν < 1−H1(1−H2(v+τ)+H1(τ )+τ)

(equation (B.3) in proposition 16), we get
8→([P, (1, 3, 4), ν], [F, (3, 4), 1 − H1(1 − H2(v + τ) + H1(τ ) + τ)],

[F, 1, 1 − τ ], [F, 2, 1 − H1(τ − ν)])
9→([P, (1, 3, 4), 0], [F, (3, 4), 1 − H1(1 − H2(v + τ) + H1(τ ) + τ) − ν],

[F, 1, 1 − τ − ν], [F, 2, 1 − H1(τ − ν) − ν]).
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For ν < τ , one can show that H1(H1(1 − H2(v + τ) + H1(τ ) + τ) + ν) � 1 (equation (B.4) in
proposition 16). Therefore,

10→([F, (3, 4), 0], [F, 1, 1 − H1(τ + ν)], [F, 2, 1 − H1(τ − ν) − ν])

11→([2P, (1, 2), τ ], [P, (3, 4), τ ], [F, 1, 1 − H1(τ + ν)],

[F, 2, 1 − H1(τ − ν) − ν], [F, (3, 4), 1]).

Let v′′ = H1(τ + ν) and w′′ = H1(τ − ν)+ ν be the phases of the oscillators O1 and O2. Then,
since 0 < ν < τ we have that H1(τ ) < v′′ < H1(2τ) and w′′ = H1(τ ) + (1 − Aε)ν. Since
Aε > 1 we obtain that w′′ > H1(τ ) + (1 − Aε)τ = mε + τ > τ . Furthermore,

Aεw
′′ + (Aε − 1)v′′ = Aε(H1(τ ) + (1 − Aε)ν) + (Aε − 1)(H1(τ ) + Aεν)

= (2Aε − 1)H1(τ ).

Finally,

ν ′′ = H2(v
′′ + τ) − H2(w

′′ + τ) = A2
ε(v

′′ − w′′)

= A2
ε(H1(τ ) + Aεν − H1(τ ) + (Aε − 1)ν) = A2

ε(2Aε − 1)ν.

This implies that in finite iterations the initial state is mapped to a state characterized by v′, w′

such that H2(v
′ + τ) − H2(w

′ + τ) � τ . �

Proposition 10. If φ ∈ 
2 then R(φ) ∈ B1 ∪ B2.

Proof. Observe that for v < H1(2τ), we have that H2(v + τ) < g1(τ ) < 1. Let

µ = H1(1 + τ + H2(w + τ) − H2(v + τ))

and

κ = H1(1 + τ + H1(τ ) − H2(v + τ))

and note that

µ − κ = H1(H2(w + τ) − H1(τ )) = H2(H1(w + τ) − τ).

We skip the first three transitions in the evolution of [φv,w] which are the same as in
proposition 9. Then we have

4→([P, (2, 3, 4), τ ], [F, 2, H2(v + τ) − H2(w + τ)],

[F, (3, 4), H2(v + τ) − H1(τ )], [F, 1, 1])

5→([P, (2, 3, 4), 0], [F, 2, H2(v + τ) − H2(w + τ) − τ ],

[F, (3, 4), H2(v + τ) − H1(τ ) − τ ], [F, 1, 1 − τ ]).

We distinguish now two cases based on the value of µ. First, for µ < 1, the evolution is

6→([F, 2, 1 − µ], [F, (3, 4), 1 − κ], [F, 1, 1 − τ ])

7→([F, 2, 0], [F, (3, 4), µ − κ], [F, 1, µ − τ ]).
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Since µ − κ > τ (equation (B.5) in proposition 16)

8→([P, (1, 3, 4), τ ], [F, (3, 4), µ − κ], [F, 1, µ − τ ], [F, 2, 1])

9→([P, (1, 3, 4), 0], [F, (3, 4), µ − κ − τ ], [F, 1, µ − 2τ ], [F, 2, 1 − τ ])

10→([F, (3, 4), 1 − H1(1 + κ + τ − µ)], [F, 1, 1 − H1(2τ + 1 − µ)],

[F, 2, 1 − τ ])

11→([F, (3, 4), 0], [F, 1, H1(1 + κ + τ − µ) − H1(2τ + 1 − µ)],

[F, 2, H1(1 + κ + τ − µ) − τ ])

12→([2P, (1, 2), τ ], [P, (3, 4), τ ], [F, 1, H1(1 + κ + τ − µ)−H1(2τ + 1−µ)],

[F, 2, H1(1 + κ + τ − µ) − τ ], [F, (3, 4), 0]).

Therefore,

v′ = 1 − H1(1 + κ + τ − µ) + H1(2τ + 1 − µ) > H1(2τ + 1 − µ) > H1(2τ)

and

w′ = 1 + τ − H1(1 + κ + τ − µ) > τ.

For the case µ � 1, we have

6→([F, 2, 0], [F, (3, 4), 1 − κ], [F, 1, 1 − τ ]).

Since 1−κ > τ when v > v∗ = H1(τ )+ (τ/Aε(2Aε − 1)) (equation (B.6) in proposition 16),
we obtain

7→([P, (1, 3, 4), τ ], [F, (3, 4), 1 − κ], [F, 1, 1 − τ ], [F, 2, 1])

8→([P, (1, 3, 4), 0], [F, (3, 4), 1 − κ − τ ], [F, 1, 1 − 2τ ], [F, 2, 1 − τ ])

9→([F, (3, 4), 1 − H1(κ + τ)], [F, 1, 1 − H1(2τ)], [F, 2, 1 − τ ])

10→([F, (3, 4), 0], [F, 1, H1(κ + τ) − H1(2τ)], [F, 2, H1(κ + τ) − τ ])

where we made the assumption that H1(κ + τ) < 1 and from which we conclude that

v′ = 1 + H1(2τ) − H1(κ + τ) � H1(2τ)

and

w′ = 1 + τ − H1(κ + τ) � τ.

Finally, it is possible for H1(κ + τ) � 1 to have the evolution

9→([F, (3, 4), 0], [F, 1, 1 − H1(2τ)], [F, 2, 1 − τ ])

which gives that v′ = H1(2τ) and w′ = τ . �

Proposition 11. States in B1 are mapped in finite iterations of R into B2.
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Proof. As before, we let µ = H1(1 + τ + H2(w + τ) − H2(v + τ)) and κ = H1(1 + τ +
H1(τ )−H2(v + τ)) and the evolution of [φv,w] is the same as in the previous proposition until
transition 5. Transition 6 depends on the value of µ. For the case, µ � 1,

6→([F, 2, 0], [F, (3, 4), 1 − κ], [F, 1, 1 − τ ])

7→([P, (1, 3, 4), τ ], [F, (3, 4), 1 − κ], [F, 1, 1 − τ ], [F, 2, 1])

8→([P, (1, 3, 4), 0], [F, (3, 4), 1 − κ − τ ], [F, 1, 1 − 2τ ], [F, 2, 1 − τ ]).

Since H1(κ + τ) < g2(τ ) < 1 for v � H1(2τ)

9→([F, (3, 4), 1 − H1(κ + τ)], [F, 1, 1 − H1(2τ)], [F, 2, 1 − τ ])

10→([F, (3, 4), 0], [F, 1, H1(κ + τ) − H1(2τ)], [F, 2, H1(κ + τ) − τ ]).

Let R(v) = 1 + H1(2τ) − H1(κ + τ) = 1 + H1(τ ) − H1(κ). The function,

�(v) = R(v) − v = V2(v + τ) − V1(1 + τ + H1(τ ) − H2(v + τ))

is an increasing function of v. Also, from step 9, one can conclude that �(H1(2τ)) > 0.
On the other hand if µ < 1 then,

6→([F, 2, 1 − µ], [F, (3, 4), 1 − κ], [F, 1, 1 − τ ])

7→([F, 2, 0], [F, (3, 4), µ − κ], [F, 1, µ − τ ])

8→([P, (1, 3, 4), τ ], [F, (3, 4), µ − κ], [F, 1, µ − τ ], [F, 2, 1])

9→([P, (1, 3, 4), 0], [F, (3, 4), µ − κ − τ ], [F, 1, µ − 2τ ], [F, 2, 1 − τ ]).

Since H1(1+κ+τ−µ) < g2(τ ) < 1 for v � H1(2τ); w > τ , (equation (B.7) in proposition 16)

10→([F, (3, 4), 1 − H1(1 + κ + τ − µ)], [F, 1, 1 − H1(1 + 2τ − µ)],

[F, 2, 1 − τ ])

11→([F, (3, 4), 0], [F, 1, H1(1 + κ + τ − µ) − H1(1 + 2τ − µ)],

[F, 2, H1(1 + κ + τ − µ) − τ ]).

Also in this case, we have R(v) = 1+H1(1+2τ −µ)−H1(1+κ +τ −µ) = 1+H1(τ )−H1(κ)

and the function

�(v) = R(v) − v = V2(v + τ) − V1(1 + τ + H1(τ ) − H2(v + τ))

which is an increasing function of v with �(H1(2τ)) > 0.
Note that, under the assumptions of this lemma, with every application of the Poincaré map

R, the sequences R(φv,w)1(0), R2(φv,w)1(0), R3(φv,w)1(0), · · · are an increasing sequence.
Therefore, after some finite iterations m we must have Rm(φ

v′,w′
1 (0)) = v′ such that

v′ > H1(2τ); w′ > τ with H2(v
′ + τ) � 1. �

Proposition 12. Initial states in Ba
2 are mapped in finite iterations of R in Bb

2 ∪ Bc
2 ∪ Bd

2 .
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Proof. Let η = 1 − H1(H2(w + τ) + τ). The evolution in this case is given by
2→([F, 1, 0], [F, 2, 1 − H2(w + τ)], [F, (3, 4), 1 − H1(τ )])

3→([P, (2, 3, 4), τ ], [F, 2, 1 − H2(w + τ)], [F, (3, 4), 1 − H1(τ )], [F, 1, 1])

4→([P, (2, 3, 4), 0], [F, 2, 1 − H2(w + τ) − τ ], [F, (3, 4), 1 − H1(τ ) − τ ],

[F, 1, 1 − τ ])

5→([F, 2, η], [F, (3, 4), 1 − α], [F, 1, 1 − τ ])

6→([F, 2, 0], [F, (3, 4), 1 − α − η], [F, 1, 1 − τ − η])

7→([P, (1, 3, 4), τ ], [F, (3, 4), 1 − α − η], [F, 1, 1 − τ − η], [F, 2, 1])

8→([P, (1, 3, 4), 0], [F, (3, 4), 1 − α − η − τ ], [F, 1, 1 − 2τ − η],

[F, 2, 1 − τ ]).

Since H1(α + η + τ) < g2(τ ) < 1, (equation (B.8) in proposition 16)
9→([F, (3, 4), 1 − H1(α + η + τ)], [F, 1, 1 − H1(2τ + η)], [F, 2, 1 − τ ])

10→([F, (3, 4), 0], [F, 1, H1(α) − H1(τ )], [F, 2, H1(α + η + τ) − τ ]).

Define R(w) = 1 + τ − H1(α + η + τ). The function,

�(w) = R(w) − w = (A4
ε − 1)w + (Aε − 1)2(A2

ε + Aε + 1)τ + (A3
ε − 1)v1 − Aε + 1,

is an increasing function of w. Moreover, �(τ) = 1 − g2(τ ) > 0. This means that
beginning with a state [φv,w] ∈ Ba

2 the w-coordinate of successive iterations increases at
an increasing rate, therefore, there is a finite number of iterations m such that Rm([φv,w])
gets outside Ba

2 . Furthermore, since R(w) < W2 and v > w we conclude that
Rm([φv,w]) ∈ Bb

2 ∪ Bc
2 ∪ Bd

2 . �

Proposition 13. Initial states in Bb
2 are mapped in one iteration of R to a single state in Bc

2.

Proof. The evolution is given by
2→([F, 1, 0], [F, 2, 1 − H2(w + τ)], [F, (3, 4), 1 − H1(τ )])

3→([P, (2, 3, 4), τ ], [F, 2, 1 − H2(w + τ)], [F, (3, 4), 1 − H1(τ )], [F, 1, 1])

4→([P, (2, 3, 4), 0], [F, 2, 1 − H2(w + τ) − τ ], [F, (3, 4), 1 − H1(τ ) − τ ],

[F, 1, 1 − τ ])

5→([F, 2, 0], [F, (3, 4), 1 − α], [F, 1, 1 − τ ])

6→([P, (1, 3, 4), τ ], [F, (3, 4), 1 − α], [F, 1, 1 − τ ], [F, 2, 1])

7→([P, (1, 3, 4), 0], [F, (3, 4), 1 − α − τ ], [F, 1, 1 − 2τ ], [F, 2, 1 − τ ]).

Since H1(α + τ) < g2(τ ) < 1,
8→([F, (3, 4), 1 − H1(α + τ)], [F, 1, 1 − H1(2τ)], [F, 2, 1 − τ ])

9→([F, (3, 4), 0], [F, 1, H1(α) − H1(τ )], [F, 2, H1(α + τ) − τ ]).
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Therefore, the new phases are v′ = 1 + H1(τ ) − H1(α) = W2 and w′ = 1 + τ − H1(τ +
α) = W1 (defined in theorem 2). Recall that g3(τ ) = 1 − H2(W1 + τ) < τ , therefore
[φW2,W1 ] ∈ Bc

2. �

Proposition 14. Initial states in Bc
2 are mapped in finite iterations of R in Bd

2 .

Proof. Let ξ = 1 − H2(w + τ) < τ . The evolution is given by

([2P, (1, 2), τ ], [P, (3, 4), τ ], [F, 1, 1 − v], [F, 2, 1 − w], [F, (3, 4), 1])

1→([2P, (1, 2), 0], [P, (3, 4), 0], [F, 1, 1 − v − τ ], [F, 2, 1 − w − τ ],

[F, (3, 4), 1 − τ ])

2→([F, 1, 0], [F, 2, 1 − H2(w + τ)], [F, (3, 4), 1 − H1(τ )])

3→([F, 2, ξ ], [P, (2, 3, 4), τ ], [F, (3, 4), 1 − H1(τ )], [F, 1, 1])

4→([F, 2, 0], [P, (2, 3, 4), τ − ξ ], [F, (3, 4), 1 − H1(τ ) − ξ ], [F, 1, 1 − ξ ])

5→([P, (2, 3, 4), τ − ξ ], [P, (1, 3, 4), τ ], [F, (3, 4), 1 − H1(τ ) − ξ ],

[F, 1, 1 − ξ ], [F, 2, 1])

6→([P, (2, 3, 4), 0], [P, (1, 3, 4), ξ ], [F, (3, 4), 1 − H1(τ ) − τ ],

[F, 1, 1 − τ ], [F, 2, 1 − τ + ξ ])

7→([P, (1, 3, 4), ξ ], [F, (3, 4), 1 − α], [F, 1, 1 − τ ], [F, 2, 1 − H1(τ − ξ)])

8→([P, (1, 3, 4), 0], [F, (3, 4), 1 − α − ξ ], [F, 1, 1 − τ − ξ ],

[F, 2, 1 − H1(τ − ξ) − ξ ])

where α = H1(H1(τ ) + τ). In transition 5 we used the fact that 1 − H1(τ ) − ξ > τ . Since
H1(α + ξ) < H1(α + τ) < g2(τ ) < 1,

9→([F, (3, 4), 1 − H1(α + ξ)], [F, 1, 1 − H1(τ + ξ)],

[F, 2, 1 − H1(τ − ξ) − ξ ])

10→([F, (3, 4), 0], [F, 1, H1(α)−H1(τ )], [F, 2, H1(α + ξ) − H1(τ − ξ) − ξ ]).

Therefore the value of v in one iteration becomes

v′ = 1 + H1(τ ) − H2(H1(τ ) + τ) = W2

while the value of w becomes

w′ = 1 + ξ + H1(τ − ξ) − H1(α + ξ)

= 1 + H1(τ ) − H1(α) + (1 − 2Aε)ξ = W2 + (1 − 2Aε)ξ.
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The function

�(w) = R(w) − w = W2 + (Aε − 1)(1 + Aε + 2A2
ε)w + (2Aε − 1)(v1 + Aεv1 + A2

ετ − 1),

is an increasing function of w. Moreover, if we denote by w∗ the solution of τ +H2(w∗ +τ) = 1
we obtain that

�(w∗) = 1 + H1(τ ) − H2(H1(τ ) + τ) + (1 − 2Aε)τ − w∗

= −A2
ε − 1

A2
ε

((1 + Aε + A2
ε)v1 + A2

ε(1 + Aε)τ − 1)

= −A2
ε − 1

A2
ε

(g1(τ ) − A3
ετ − 1) > 0,

which implies that �(w) > 0 for all w � w∗. This means that beginning with a state
[φv,w] ∈ Bc

2 the w-coordinate of successive iterations increases at an increasing rate; therefore,
there is a finite number of iterations m such that Rm([φv,w]) ∈ Bd

2 . �

Proposition 15. R(Bd
2 ) = φQ2 .

Proof. When (v, w) ∈ Bd
2 the evolution of [φv,w] is given by

1→([2P, (1, 2), 0], [P, (3, 4), 0], [F, 1, 1 − v − τ ], [F, 2, 1 − w − τ ],

[F, (3, 4), 1 − τ ])

2→([F, (1, 2), 0], [F, (3, 4), 1 − H1(τ )])

because H2(v + τ) � 1 and H2(w + τ) � 1. Comparing the last event sequence with the event
sequence after transition 2 in proposition 4 we observe that they are identical. This means that
the semiorbit again intersects the Poincaré section P at φQ2 . �

Appendix B. Some useful inequalities

Proposition 16. Given a system D = (n, V, ε, τ ) that satisfies the conditions of theorem 2 the
following inequalities hold:

H2(W2 + τ) � 1 (B.1)

τ < H2(w + τ) − H1(τ ) < H2(v + τ) − H1(τ ), for τ < w < v (B.2)

ν < 1 − H1(1 − H2(v + τ) + H1(τ ) + τ), for v > H1(τ ) and w > τ (B.3)

H1(H1(1 − H2(v + τ) + H1(τ ) + τ) + ν) � 1

for v > H1(τ ), w > τ and Aεw = (1 − Aε)v − (1 − 2Aε)H1(τ ) (B.4)

µ − κ > τ for w > τ (B.5)

1 − κ > τ for v > H1(τ ) +
τ

Aε(2Aε − 1)
(B.6)

H1(α + 1 − µ + τ) < g2(τ ) for w > τ (B.7)

H1(α + η + τ) < g2(τ ) for w > τ. (B.8)
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Proof. Recall that H1(θ) = mε + Aεθ and Hj(θ) = Hj−1(H1(θ)) where Aε > 1 and mε > 0.

(B.1) To prove H2(W2 + τ) > 1, it suffices to show that 1 − H2(W2 + τ) < 0. We have
1 − H2(W2 + τ) = (−1 + A2

ε)(−1 + (1 + Aε + A2
ε)mε + A2

ε(1 + Aε)τ). Since Aε > 1,
by rearranging terms we need to prove, mε + Aεmε + A2

εmε + A2
ετ + A3

ετ − 1 < 0. This
inequality follows by noting that g1(τ )−1 = mε +Aεmε +A2

εmε +A2
ετ +2A3

ετ −1 < 0.
(B.2) Since w < v, it follows that H2(w + τ) < H2(v + τ) and hence H2(w + τ) − H1(τ ) <

H2(v + τ) − H1(τ ). Since, H2(w + τ) − H1(τ ) = H2(w + τ) − H1(0 + τ) and w > τ

we obtain that τ < H2(w + τ) − H1(τ ).
(B.3) We show that H2(v + τ)−H2(w + τ) + H1(1 −H2(v + τ) + H1(τ ) + τ) < 1. Expanding

the left-hand side, with w = ((1 − Aε)v − (1 − 2Aε)H1(τ ))/Aε, we have,

Aε − Aεv + 2A2
εv − A3

εv + mε + Aεmε − 3A2
εmε + Aετ + 2A2

ετ − 3A3
ετ.

Since −Aε + 2A2
ε − A3

ε < 0, the above expression is a decreasing function of v.
Substituting v = H1(τ ), which is the lower bound on v, then

Aε + mε − A2
εmε − A3

εmε + Aετ + A2
ετ − A3

ετ − A4
ετ = g4(τ ) < 1.

(B.4) The expression H1(H1(1−H2(v+τ)+H1(τ )+τ)+H2(v+τ)−H2(w+τ)) when expanded
by substitutingw = ((1−Aε)v−(1−2Aε)H1(τ ))/Aε andv = H1(τ )+(τ/Aε(2Aε − 1))

yields Aε +2A2
ε +mε−2A2

εmε−3A3
εmε−2A4

εmε +Aετ −3A4
ετ −2A5

ετ . Since g1(τ ) < 1,
we have

mε + Aεmε + A2
εmε + A2

ετ + 2A3
ετ < 1

and therefore,

mε < (1 − (A2
ε + 2A3

ε)τ )/(1 + Aε + A2
ε).

And for mε < (1 − (A2
ε + 2A3

ε)τ )/(1 + Aε + A2
ε), we have,

Aε + 2A2
ε + mε − 2A2

εmε − 3A3
εmε − 2A4

εmε + Aετ − 3A4
ετ − 2A5

ετ > 1.

(B.5) It follows by noting that µ − κ = A2
ε(H1(w + τ) − τ) > τ for w > τ .

(B.6) κ + τ = Aε − A3
εv + mε − A2

εmε + τ + Aετ + A2
ετ − A3

ετ is a decreasing function
of v. For v = H1(τ ) + (τ/Aε(2Aε − 1)), which is the lower bound for v, we have
κ+τ = Aε+mε−A2

εmε−A3
εmε+τ +Aετ +A2

ετ−A3
ετ−A4

ετ−(A2
ετ/(−1 + 2Aε)). Since

for Aε > 1, 1−A2
ε/(−1+2Aε) < 0, we have Aε +mε −A2

εmε −A3
εmε +τ +Aετ +A2

ετ −
A3

ετ −A4
ετ −(A2

ετ/(−1 + 2Aε)) < Aε +mε −A2
εmε −A3

εmε +Aετ +A2
ετ −A3

ετ −A4
ετ =

g4(τ ) < 1.
(B.7) It follows from noting that H1(α + 1 − µ + τ) − g2(τ ) = A4

ετ − A4
εw < 0 for w > τ .

(B.8) It follows from noting that H1(α + η + τ) − g2(τ ) = A4
ετ − A4

εw < 0 for w > τ . �
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