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Abstract
We consider arbitrarily large networks of pulse-coupled oscillators with non-
zero delay where the coupling is given by the Mirollo–Strogatz function. We
prove that such systems have unstable attractors (saddle periodic orbits whose
stable set has non-empty interior) in an open parameter region for three or more
oscillators. The evolution operator of the system can be discontinuous and we
propose an improved model with continuous evolution operator.
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1. Introduction

In this paper we study unstable attractors that appear in global networks of pulse-coupled
linear oscillators with non-zero delay. Such networks are used for modelling, for example, the
activity in biological neuron networks [1–4] or the synchronization processes in the flashing
of fireflies [5, 6].

In order to give an example and motivate the terminology to be used later, we briefly
describe the relation between the system we study and neuron networks. In a network, each
neuron has a membrane potential which increases with time. When the potential reaches
a particular threshold, the neuron fires, and the potential is reset to a lower value. As a
consequence of firing, a pulse is sent to several other neurons. The pulse relays a positive or
negative charge to the neurons and this transfer of charge defines the coupling in the system.
This type of interaction, in which neurons communicate by firing sudden pulses, is called
episodic or pulse-coupled [7, 8].
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In the model we study, neurons are represented by linear oscillators which are connected
in a global network, i.e. each neuron interacts with all the other neurons in the network. The
membrane potential of the neuron is related to the phase of the oscillator through the Mirollo–
Strogatz function [5]. When a neuron fires, the membrane potential of all the other oscillators
is increased by a constant amount ε. In the original Mirollo–Strogatz model [5], this increase
happens simultaneously with the firing. Here, following later work (for example [4, 6]),
we make the more realistic assumption that there is a time delay τ between the moment an
oscillator fires and the moment the other oscillators receive the resulting pulse and increase
their membrane potentials.

For this type of global pulse-coupled network with delay it has been observed numerically
[1–3] that for certain values of the parameters and for a large enough number of oscillators the
network has unstable attractors that coexist with stable attractors. Moreover, in [4] the authors
prove the existence of an unstable attractor in a network of four oscillators, for an open set of
the parameters of the system. The unstable attractor in [4] corresponds to the synchronization
of the four oscillators in two clusters with two oscillators in each cluster.

The main result of this paper is a proof of the following statement.

Theorem 1. There is a class of pulse-coupled oscillator networks with delay such that if the
network has n � 3 oscillators then there is an open non-empty parameter region in which the
system has a linearly unstable attractor.

A more detailed version of theorem 1 is given in section 3 (theorem 2). The main
improvement with respect to previous works is that we establish the existence of unstable
attractors for an arbitrary number of oscillators n � 3. In order to prove theorem 1 we
introduce a metric in the phase space that allows us to study questions such as instability in a
rigorous way. Also, our methods permit us to predict analytically the parameter regions for
which these unstable attractors exist. Furthermore, we observe that the evolution operator of
the system can be discontinuous. We discuss the implications of this fact for the dynamics
and propose ways to alleviate the situation. As far as we know, discontinuity of the evolution
operator has escaped identification in previous studies of the model and it raises questions as
to what extent the particular model is appropriate for describing physical systems.

The unstable attractors studied in this paper are saddle periodic orbits, or fixed points
of a suitably defined Poincaré map. In particular, they have a one-dimensional local stable
manifold and an (n−2)-dimensional local unstable manifold. At the same time, there exists an
open set of points in the phase space that converges to the attractor. The situation is presented
schematically in figure 1. The attractor P is a saddle point and its stable set Ws(P ) contains
an open set S. Initial states inside S collapse onto the local stable set Ws

loc(P ) and converge
to P . Since P is a saddle point there is a neighbourhood U of P such that all initial states in
U \ Ws

loc(P ) leave U after some time.
These saddle attractors do not satisfy the traditional definition of an attractor [9] which

requires that the attractor is in the interior of its basin, but are consistent with the definition
due to Milnor [10] which does not restrict an attractor to be stable. Given a measure µ on the
phase space M , Milnor [10] defines

Definition 1 (Milnor attractor). A closed set A is an attractor if the following two conditions
are satisfied:

(i) The set �(A) of all points x ∈ M for which ω(x) ⊂ A has strictly positive measure. Here
ω(x) is the ω-limit set of x.

(ii) There is no strictly smaller closed set A′ ⊂ A so that �(A′) = �(A) up to a set of
measure 0.



Robustness of unstable attractors in pulse-coupled networks 15

Figure 1. Schematic picture of an unstable attractor. P is a saddle point whose stable set Ws(P )

contains an open set S. Initial states from S collapse onto the local stable set Ws
loc(P ) and converge

to P . Since P is a saddle point, almost all nearby initial states leave P .

This definition implies that a point P (or a periodic orbit) is an attractor, if there is a set
of positive measure that converges to P even if points near P move away. Therefore one can
define the notion of an unstable attractor. We follow [4]:

Definition 2 (unstable attractor). A Milnor attractorA is unstable if there is a neighbourhood
U of A such that the measure of the set of points that stay in U for all t � 0 is zero.

In other words, an attractor is unstable if there is a neighbourhood U such that almost all
points in U (except a set of measure zero), leave U after some time. Notice that the definition
is silent on whether these points eventually come back inside U . Depending on whether they
come back or not, Ashwin and Timme [4] define the notions of unstable attractors with positive
and zero measure local basin, respectively. Presently, this distinction plays no role.

In the context of this paper the requirement of definitions 1 and 2 for a set to have positive
measure is replaced by the stronger requirement that they have non-empty interior.

Unstable attractors exist even in one-dimensional maps f : [0, 1] → [0, 1]. Two such
examples, f1 and f2, are given in [4] and we reproduce them in figures 2(a) and 2(b),
respectively. In both cases the point x = 1/2 is an unstable attractor. Notice that although
both of these maps are discontinuous, the discontinuity is not essential for the existence of
the unstable attractor. Consider for example the continuous map f3 depicted in figure 2(c)
for which x = 1/2 still is an unstable attractor. That x = 1/2 is an attractor in all cases is
explained by the fact that the graph of the one-dimensional map has a ‘plateau’. In other words
there is a set S of positive measure such that fi(S) = 1/2 for all i. On the other hand, x = 1/2
is unstable because the absolute value of the slope of fi(x) in a neighbourhood of x = 1/2
(excluding x = 1/2 in the case of f2) is larger than 1.

A different example is shown in figure 2(d), where the map f4 is discontinuous at the
attractor x = 1/2. In this case, points near x = 1/2 go away under iterations of f4, therefore
the attractor x = 1/2 satisfies definition 2 of an unstable attractor. In the networks studied in
this paper we observe an analogous situation. We note that in this case the unstable attractor
is not linearly unstable, since there is no linear approximation of the dynamics.

Pulse-coupled oscillator systems such as the ones considered in this paper are piecewise
affine systems. A lot of work has been done on such systems, and simple particular models
include the tent map defined on T

1 [11], or the sawtooth standard map defined on T
2 [12].

Piecewise smooth systems can also be used in order to describe mechanical systems like dry
friction [13]. Although the systems that we consider here are piecewise smooth, they are not
piecewise invertible. This is due to the fact that the Poincaré map of these systems has ‘flat
pieces’, i.e. there are sets with non-empty interior in the state space that are mapped to the same
state. Invertible and even piecewise invertible systems cannot have unstable attractors, although
attractors with riddled basins [14–16] or Milnor attractors [17] can occur. Therefore unstable
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Figure 2. Unstable attractors in one-dimensional maps. Figures (a)-(d) depict one-dimensional
maps f : [0, 1] → [0, 1] that have an unstable attracting fixed point at x = 1/2. The examples in
figures (a) and (b) are from [4].

attractors are characteristic of maps with ‘flat pieces’. In [4] it is shown how to construct a
semiflow with unstable attractors by perturbing a smooth flow with robust heteroclinic cycles.

The paper is organized as follows. In section 2 the dynamics of the system is defined. In
particular, in section 2.1 we define the state space of the system and the evolution operator.
In section 2.2 we describe the Mirollo–Strogatz model. Then, in section 2.3 we define a
metric for the state space and show that the evolution operator is discontinuous. In section 2.4,
we discuss other representations of the dynamics of the system. In section 3, we study the
unstable attractors in the system and prove the main theorem on their existence. In particular,
in section 3.1 we present some numerical results on a system of three oscillators in order to
demonstrate the global behaviour of the system, the occurrence of unstable attractors and the
local dynamics around them. In section 3.2, we prove that for networks with n � 3 oscillators
there is an open region of parameter values for which an open set of initial states collapses
to a fixed point attractor of the return map and in section 3.3, we prove that this attractor is
unstable. Finally, in section 4 we explore the role of the discontinuity of the evolution operator
and we propose a model with continuous evolution operator.

2. Definition of the dynamics

The system studied in this paper is a delay system [18]. The state space of such systems is
an appropriate space Pn

τ of functions (see definition 3) defined on the interval (−τ, 0], where
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τ > 0 is the delay of the system, and taking values in an n-dimensional manifold N . The
state space thus is infinite dimensional. In our case, points in N represent the phases of the n

coupled oscillators, which implies that N = T
n, the n-dimensional torus.

For a given φ ∈ Pn
τ and for each t ∈ (−τ, 0], φ(t) ∈ N represents the phases of the

oscillators at time t . Using the dynamics of the system, φ can be extended to a unique function
φ+ : (−τ, +∞) → N , such that φ+(t) = φ(t) for t ∈ (−τ, 0] and φ+(t) ∈ N represents the
phases of the oscillators at any time t � −τ . Then the evolution operator �t : Pn

τ → Pn
τ is

defined by �t(φ)(s) = φt(s) = φ+(t + s) for any t � 0 and s ∈ (−τ, 0]. In other words, the
evolution operator maps the initial state φ = φ0 to the state φt of the system at time t . The
latter is the restriction of φ+ in (t − τ, t] shifted back to the interval (−τ, 0].

2.1. Pulse-coupled oscillator networks with delay

We now specialize the above notions of the theory of delay equations to the current setting. In
this section we closely follow [4].

Definition 3 (state space, cf [4]). The state space Pn
τ of the system of n pulse-coupled

oscillators with delay τ > 0 is the space of phase history functions

φ : (−τ, 0] → T
n : s �→ φ(s) = (φ1(s), . . . , φn(s)),

that satisfy the following conditions:

(i) Each φi is upper-semicontinuous, i.e. φi(s
+) := limt→s+ φi(t) = φi(s) and φi(s

−) :=
limt→s− φi(t) � φi(s) for all s ∈ (−τ, 0].

(ii) Each φi is only discontinuous at a finite (or empty) set Si = {si,1, . . . , si,ki
} ⊂ (−τ, 0]

with ki ∈ N and si,1 > si,2 > · · · > si,ki
.

(iii) dφi(s)/ds = 1 for s �∈ Si .

The coupling between the n oscillators is defined using the pulse response function.

Definition 4 (pulse response function, cf [4]). A pulse response function is a map

V : T × R+ → R : (θ, ε) �→ V (θ, ε), (1)

that satisfies the following conditions:

(i) V is smooth on (T \ {0}) × R+.
(ii) ∂V (θ, ε)/∂θ > 0 on (T \ {0}) × (R+ \ {0}).

(iii) ∂V (θ, ε)/∂ε > 0 on T × R+.
(iv) V (θ, 0) = 0 for all θ ∈ T.
(v) 0 < V (0, ε) < 1 for all ε ∈ (0, 1).

(vi) H , given by (4), satisfies

Hm(θ) = H1 ◦ Hm−1(θ) =
m-times︷ ︸︸ ︷

H1 ◦ . . . ◦ H1(θ). (2)

Notice that in the above definition ∂V/∂θ > 0, therefore V cannot be smooth everywhere
on T. This is reflected in condition (i) of the definition. The pulse response function depends
on the parameter ε � 0, called coupling strength. As a shorthand notation we introduce

Vm(θ) = V (θ, mε̂), for m = 1, 2, 3, . . . , (3)

where ε̂ = ε/(n − 1). Given a pulse response function V we also define

H : T × R+ → R : (θ, ε) �→ H(θ, ε) = θ + V (θ, ε), (4)

and

Hm(θ) = H(θ, mε̂), for m = 1, 2, 3, . . . . (5)



18 H Broer et al

Definition 5 (dynamics, cf [4]). A system of n pulse-coupled oscillators with delay is a
quadruple D = (n, V, ε, τ ), where V is as in definition 4, ε � 0 and τ � 0. Given a
system D and an initial state φ ∈ Pn

τ , we extend φ to a function φ+ : (−τ, +∞) → T
n using

the following rules:

(i) φ+(t) = φ(t) for t ∈ (−τ, 0].
(ii) dφ+

i (t)/dt = 1 for t � 0, if φ+
j (t − τ) �= 0 (mod Z) for all j �= i.

(iii) φ+
i (t) = min{1, Hm(φ+

i (t−))} (mod Z), if there are j1, . . . , jm �= i such that φ+
jk
(t − τ) =

0 (mod Z) for all k = 1, . . . , m.

The dynamics described in definition 5 can be interpreted in the following way. The phase
φi of each oscillator Oi , i = 1, . . . , n, increases linearly. When the phase reaches the value
1 = 0 (mod Z), then the oscillator Oi fires and all the other oscillators Oj , j �= i receive a
pulse after a time delay τ . In general, an oscillator Oj may receive m simultaneous pulses at
time t if m oscillators Oi1 , . . . , Oim have fired simultaneously at time t − τ . Then the phase
of Oj is increased to H(uj , mε̂) = Hm(uj ) where uj = φ+

j (t−), unless the pulse causes the
oscillator to fire and then the phase becomes exactly 1.

The evolution operator �t for t � 0 is then defined by

�t : Pn
τ → Pn

τ : φ �→ �t(φ) = φt = φ+|(t−τ,t] ◦ Tt , (6)

where Tt is the shift s �→ s + t and the positive semiorbit of φ ∈ Pn
τ is given by

O+(φ) = {�t(φ) : t � 0}. (7)

Proposition 1. The evolution operator �t is well defined.

Proof. From definition 5 it follows that the extended function φ+ can be determined for all
t � 0 and all φ ∈ Pn

τ , given D and φ ∈ Pn
τ . The only question is whether φt ∈ Pn

τ for all
t � 0. First we show that φt , t � 0 is discontinuous at a finite set. Note that, by definition 3,
each component φi of φ has only a finite number ki of discontinuities in (−τ, 0]. Therefore,
φi(0) < φi(−τ)+ki +τ , since the phase φi increases linearly (outside discontinuities) and each
discontinuity induces an increase of φi that is less than 1. This implies that φi(s) = 0 (mod Z)

in a finite set {si,1, . . . , si,	i
} ⊂ (−τ, 0] with 	i elements. Then, the number of discontinuities

of φ+
j , in (0, τ ] (and hence of φτ

j ) also is finite for all j = 1, . . . , n. This follows from the fact
that the number of discontinuities of φ+

j in (0, τ ] is less than or equal to the number of firings
of all the φi in (−τ, 0] for i = 1, . . . , n and i �= j , therefore it is less than or equal to

∑n
i=1 	i .

This shows that advancing time by τ the number of discontinuities remains finite. It follows
by induction that the number of discontinuities of φ+

i in any interval ((m− 1)τ, mτ ], m ∈ N is
finite for all i = 1, . . . , n. Thus, the number of discontinuities of φ+

i in any interval (t − τ, t],
t � 0 (and hence of φt

i ) is finite for all i = 1, . . . , n. The facts that φt is upper-semicontinuous
and dφt

i /ds = 1 (outside discontinuities) are a direct consequence of properties (iii) and (ii),
respectively, of definition 5. �
For a given system D = (n, V, ε, τ ), the accessible state space is PD = �τ(Pn

τ ). In other
words, φ ∈ PD if there is a state ψ ∈ Pn

τ such that �τ(ψ) = φ, i.e. PD includes only those
states that are dynamically accessible. From now on, we restrict our attention to PD.

2.2. The Mirollo–Strogatz model

A pulse response function V that satisfies all the requirements of definition 4 is provided by
the Mirollo–Strogatz model [5] where the pulse response function is

VMS(θ, ε) = f −1(f (θ) + ε) − θ, (8)
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Figure 3. (a) Graph of fb (9) as a function of θ for different values of b. (b) Graph of VMS (10)
as a function of θ for f = fb , b = 3 and different values of ε.

and f is a function which is concave down (f ′′ < 0) and monotonically increasing (f ′ > 0).
Moreover, f (0) = 0 and f (1) = 1. A concrete example is given by

fb(θ) = 1

b
ln(1 + (eb − 1)θ). (9)

We present a sketch of the function fb for various values of b in figure 3(a). For any given
positive value of ε, the pulse response function VMS(θ, ε) for f = fb as in (9) is affine:

VMS(θ, ε) = υε + Kεθ, (10)

where υε = (ebε − 1)/(eb − 1) and Kε = ebε − 1. The graph of VMS (10) is depicted in
figure 3(b) for different values of ε.

In the numerical computations in this paper, we use the Mirollo–Strogatz model with
fb as in (9) with fixed b = 3. After fixing b, the parameter space of the system is
{(ε, τ ) : ε > 0, τ > 0} = R

2
+ where we recall that τ is the delay and ε is the coupling

strength.
The qualitative results of our analysis depend only on the properties of the pulse response

function V given in definition 4 and not on the specific choice of the Mirollo–Strogatz model
(8) nor on the choice f = fb (9).

2.3. Metric

We introduce a metric d on PD followed by a brief study on the continuity of the evolution
operator �t with respect to d . Recall that given a phase history function φ ∈ Pn

τ , we can define
the extended phase history function φ+.

We define a lift [19] of an extended phase history function φ+ as any function Lφ :
(−τ, +∞) → R

n such that

(i) Lφ(s) mod Z) = φ+(s) and
(ii) for any s ∈ (−τ, +∞) and for i = 1, . . . , n,

(Lφ)i(s) − (Lφ)i(s
−) = φ+

i (s) − φ+
i (s−).

It follows from these properties that if L
(1)
φ and L

(2)
φ are two lifts of the same extended phase

history function φ+ then they differ by a constant integer vector, i.e. L(1)
φ (s)−L

(2)
φ (s) = k ∈ Z

n,
for all s ∈ (−τ, ∞).
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Figure 4. An initial state φ ∈ PD for which the map �τ is discontinuous. The graphs of φ+
j ,

j = 1, 2, 3 are represented by the solid lines. The graphs of ψ+
j , j = 1, 2, 3 where ψ+ is

the extended phase history function that corresponds to the initial state ψ are represented by the
dashed lines. Recall that φ (respectively, ψ) is the restriction of φ+ (respectively, ψ+) to (−τ, 0]
(represented by the grey region). The two states diverge abruptly after t = 3τ/2. On the vertical
axis, a = ϑ − 5

2 τ and b = 1 − 3
2 τ .

Definition 6 (metric on PD). The metric d : PD × PD → R is given by

d(φ, ψ) = min
k∈Zn

n∑
i=1

∫ τ

−τ

|(Lφ)i(s) − (Lψ)i(s) − ki |ds, (11)

where Lφ and Lψ are arbitrary lifts of φ and ψ , respectively.

Remark 1. Because of the delay τ , the distance in T
n between the points φ(0) and ψ(0) is

not a suitable metric for this system. Instead, it is important to take into account the values
of φ and ψ at least in the interval (−τ, 0]. Nevertheless, if the integral in (11) runs from
−τ to 0 thus defining a metric d ′, there are several states at which the evolution operator is
discontinuous with respect to d ′. For the chosen metric d in (11) the only states for which the
evolution operator is discontinuous are those that are related to the overfiring effect which is
discussed later in this section.

2.3.1. Discontinuity of the evolution operator. In general, the evolution operator �t : PD →
PD is not continuous for all t � 0. We demonstrate this by a simple example. Consider a
system of n = 3 oscillators and the initial state φ given by

φ1(s) = φ2(s) = 1 − 1
2τ + s,

φ3(s) = ϑ − 3
2τ + s,

for s ∈ (−τ, 0], where ϑ ∈ (0, 1) is close enough to 1, so that H1(ϑ) > 1 which also
implies that H2(ϑ) > 1. Following the rules of definition 5 we extend φ to a function
φ+ defined on (−τ, 2τ ]. The graphs of φ+

1 , φ+
2 and φ+

3 are depicted in figure 4 with the
solid lines. Recall that φ+|(−τ,0] = φ. The most important thing to note is that the
oscillator O3 receives two simultaneous pulses at tf = 3τ/2 while φ+

3 (t−f ) = ϑ . Therefore,
φ+

3 (tf ) = min{1, H2(ϑ)} (mod Z) = 0.
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Then, consider an initial state ψ given by ψ1(s) = φ1(s), ψ2(s) = φ2(s) − ε and
ψ3(s) = φ3(s) for s ∈ (−τ, 0], where ε > 0 is small. The distance between φ and ψ is

d(φ, ψ) = 2τε = O(ε).

The graphs of the components ψ+
1 , ψ+

2 and ψ+
3 of the extended phase history function ψ+

are depicted in figure 4 with the dashed lines. The main difference between φ and ψ is that
while in the former the oscillators O1 and O2 are synchronized, in the latter they are not. For
this reason, the oscillator O3 receives a single pulse at t = tf = 3τ/2 while ψ+

3 (t−f ) = ϑ .
Then, ψ+

3 (tf ) = min{1, H1(ϑ)} (mod Z) = 0, since as we showed before H1(ϑ) > 1. O3

receives a second pulse at t = tf + ε while ψ+
3 (tf + ε−) = ε. Hence its phase becomes

ψ+
3 (tf + ε) = V1(ε) = V1(0) + O(ε).

Therefore, for s ∈ (3τ/2 + ε, 2τ ], we have that ψ+
3 (s) − φ+

3 (s) = V1(0) + O(ε) where
V1(0) > 0 does not depend on ε. Then, it is easy to see that

d(�τ (ψ), �τ (φ)) = 1
2τV1(0) + O(ε).

This shows that the evolution operator �τ is discontinuous at φ with respect to the metric d.
We conjecture that the discontinuity of the evolution operator is independent of the choice

of a ‘reasonable’ metric but depends only on the dynamics of the system and, in particular,
on the fact that in the example above O3 fires by receiving two simultaneous pulses but could
have fired after receiving a single pulse. Also this discontinuity should not be confused with
the fact that the phases of the oscillators are discontinuous functions of time.

Motivated by the previous discussion we introduce the following definition.

Definition 7. Given a system D = (n, V, ε, τ ) and θ ∈ T, we define ν(θ) as the minimum
positive integer for which Hν(θ)(θ) := H(θ, ν(θ)

n−1ε) � 1.

In other words, ν(θ) is the minimum number of pulses that will make an oscillator with
phase θ fire. Consider an oscillator whose phase at time t− is θ and fires after receiving m pulses
at t . We say that the oscillator overfires by m−ν(θ) pulses at t if ν(θ) < m, i.e. if the oscillator
fires after receiving more simultaneous pulses than the strictly necessary number ν(θ).

Restating remark 2.3.1 in these terms, we can say that the map �τ : PD → PD is
discontinuous at φ ∈ PD because the oscillator O3 overfires by 1 pulse at t = tf = 3τ/2. In
section 4 we discuss possible ways to modify the system so that the evolution operator becomes
continuous.

The existence of discontinuous evolution has been observed in [3,20] where initial states
that give such evolution are characterized as superunstable.

2.4. Other representations of the dynamics

It is often useful in what follows to use alternative representations of the dynamics. In this
section we introduce, following [4], the past firings and the event representation.

2.4.1. The past firings representation. It follows from definition 5 that the evolution of an
initial state φ ∈ PD depends only on the values φi(0) and the firing sets �i(φ) that are defined
as follows:

Definition 8. Given a phase history function φ ∈ PD, the firing sets �i(φ) ⊂ (−τ, 0],
i = 1, . . . , n are the sets of solutions of the equation φi(s) = 0 for s ∈ (−τ, 0]. The
total firing set is the disjoint union

�(φ) =
n⊔

i=1

�i(φ) = {(i, σ ) : σ ∈ �i(φ), i = 1, . . . , n}.
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Therefore, if we are interested only in the future evolution of the system we can consider the
following equivalence relation in PD.

Definition 9. Two phase history functions φ1, φ2 in PD are equivalent, denoted by φ1 ∼ φ2, if
φ1(0) = φ2(0) and �(φ1) = �(φ2). Let PD = PD/ ∼ the quotient set of equivalence classes
and denote by [φ] ∈ PD the equivalence class of φ ∈ PD.

Points [φ] ∈ PD are completely determined by the values of the phases φi(0) and the firing
sets �(φ) (which may be empty). We denote the elements of �i(φ) by σi,1 > σi,2 > · · · > σi,ki

where ki is the cardinality of �i(φ). Remark that by definition, φi(0) � σi,1, and φi(0) = 0 if
and only if σi,1 = 0.

It is possible to give an equivalent description of the dynamics described by definition 5,
using only the variables φi(0) and σi,j . For such a definition see [4]. Also notice the following
proposition.

Proposition 2. If φ1 ∼ φ2 then

(i) �t(φ1) ∼ �t(φ2) for t � 0 and
(ii) �t(φ1) = �t(φ2) for t � τ .

2.4.2. Poincaré map. Given a network of n oscillators with dynamics defined by the pulse
response function V , the pulse strength ε and the delay τ , we can simplify the study of the
system D = (n, V, ε, τ ) by considering intersections of the positive semiorbits O+(φ) with
the set

P = {φ ∈ PD : φn(0) = 0}. (12)

The set P is called a (Poincaré) surface of section [21, 22]. We make P a metric space by
restricting the metric d , see (11).

The evolution operator �, see (6), defines a map R : P → P in the following way.
Consider any φ ∈ P, i.e. such that φn(0) = 0. Since the phases of the oscillators are always
increasing there is a minimum time t (φ) such that the phase of On becomes 0 again, i.e. such
that �t(φ)(φ)n(0) = 0. We define

R(φ) = �t(φ)(φ). (13)

The mapR is called a Poincaré map or return map. Furthermore, we can define the quotient map

R∼ : P/ ∼ → P/ ∼ : [φ] �→ [R(φ)],

of the return map R, where ∼ is the equivalence relation given by definition 9. By proposition 2
the map R∼ is well defined.

2.4.3. The event representation. Given a phase history function φ, the firing sets �i(φ) =
{σi,1, . . . , σi,ki

} describe at which moments in the interval (−τ, 0] the oscillator Oi fires. Hence,
they also describe at which instants in the interval (0, τ ] the oscillators O	, 	 �= i would receive
a pulse from Oi , making φ+

	 , 	 �= i discontinuous at σi,j + τ ∈ (0, τ ], for j = 1, . . . , ki . Also,
notice that if the phase of the oscillator Oi at time 0 is φi(0) then the oscillator will fire after
time 1 − φi(0), unless it receives a pulse before it fires. From this point of view, the numbers
σi,j and φi(0) where i = 1, . . . , n and j = 1, . . . , ki give information about events that are
going to happen in the system.

We can take advantage of this point of view in order to construct a representation of
the dynamics that is well suited for implementation in a computer program. This event
representation is a symbolic description of the dynamics in which the state of the system
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is represented by a sequence of events (pulse receptions and firings) that are going to happen.
Each event E in the sequence is characterized by a triplet [K(E), O(E), T (E)]. Here K(E)

denotes the type of the event F or mP where F stands for firing event and mP (m a natural
number) stands for the simultaneous reception of m pulses. O(E) ∈ {1, . . . , n} denotes the
index of the oscillator associated with the event, i.e. the number of the oscillator which is
going to fire or receive pulses. Finally, T (E) ∈ [0, 1] denotes after how much time the event
is taking place. For example, the event denoted by [F, 2, 0.4] signifies that the oscillator O2

will fire after time 0.4 (and this means that its current phase is 1 − 0.4 = 0.6), while the
event denoted by [P, 1, 0.3] signifies that O1 will receive a pulse after time 0.3. We use the
shorthand notation [F, (i1, . . . , ik), t] and [mP, (i1, . . . , ik), t] to indicate that the oscillators
Oi1 , . . . , Oik fire or receive m pulses, respectively, after time t .

Given a particular initial state φ ∈ PD, such that its equivalence class [φ] ∈ PD is
characterized by phases φi(0) and firing times σi,j for i = 1, . . . , n and j = 1, . . . , ki ,
consider the space A of event sequences {E1, E2, . . . , Ek} of finite (but not fixed) length and
the map

E : PD → A : [φ] → E([φ]), (14)

which maps [φ] to the event sequence E([φ]) constructed in the following way. First, consider
the set Y consisting of the following events:

(i) [F, i, 1 − φi(0)] for i = 1, . . . , n and
(ii) [P, 	, τ + σi,j ] for 	 = 1, . . . , n with 	 �= i.

Then, impose time ordering on Y (i.e. order the events so that events that occur earlier
appear first) and in the case that there are m > 1 identical events [P, i, t] collect them
together to [mP, i, t] to obtain E([φ]). It follows that E is injective and the inverse map
E−1 : E(PD) ⊂ A → PD is well defined.

Next, define the map

�A : E(PD) → E(PD) (15)

using the following algorithm:

(i) For Z ∈ E(PD), consider the first event E1 of Z and let t = T (E1). If T1 �= 0 then set
T (E) to T (E) − t for all E ∈ Z.

(ii) Take the sequence Z0 of events E ∈ Z with T (E) = 0 and define Z+ = Z \ Z0. For each
event E ∈ Z0 do the following:

(a) If K(E) = F , then
1. append to Z+ the event [F, O(E), 1];
2. append to Z+ the events [P, 	, τ ] for all 	 ∈ {1, . . . , n} with 	 �= O(E).

(b) If K(E) = mP , then
1. find the (unique) event E′ ∈ Z+ with K(E′) = F and O(E′) = O(E);
2. set T (E′) to max{T (E′) − V (1 − T (E′), mε̂), 0}.

(iii) Impose time ordering on Z+ and collect together identical pulse events.
(iv) Set �A(Z) = Z+.

Proposition 3 follows from the definition of �A.

Proposition 3. (i) The map �A : PD → E(PD) is well defined.
(ii) [�t(φ)] = E−1(�A(Z)) where Z = E([φ]) and t is determined at the first step of the

algorithm.
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(iii) Consider an initial state φ ∈ PD and the corresponding event sequence E([φ]). If we apply
�A, m times to E([φ]) and the time that elapses at the j th (j = 1, . . . , m) application is
tj with t = ∑

j tj , then it is possible to reconstruct φ+ on the interval [0, t].

The last part of proposition 3 implies that if t � τ then it is possible to obtain from the sequence
{Z, �A(Z), �2

A(Z), . . . , �m
A(Z)}, where Z = E([φ]), not only the equivalence class [�t(φ)]

but also the phase history function �t(φ) = φ+|(t−τ,t] ◦ Tt for any time t ∈ [τ, t].

3. The unstable attractor

First, we introduce the functions

g1(τ ) = H1(1 + τ + Hn−2(τ ) − Hn−1(2τ)), (16a)

g2(τ ) = Hn−1(2τ), (16b)

g3(τ ) = H1(τ + Hn−2(τ )). (16c)

Notice that in our notation we suppress the dependence of gi , for i = 1, 2, 3, on the coupling
strength ε and the pulse response function V .

Now, we can restate the main result of this paper (theorem 1) in more detail using the
terminology introduced in section 2.

Theorem 2. The Poincaré map R : P → P of a system D = (n, V, ε, τ ) (see definition 5)
such that

(i) n � 3,
(ii) V is given by the Mirollo–Strogatz model (section 2.2),

(iii) g1(τ ) < 1,
(iv) g3(τ ) < 1,
(v) ν(T (τ)) = n − 1, where T (τ) = 1 + 2τ − H1(τ + Hn−2(τ )),

has a linearly unstable attractor φP ∈ P. For any fixed values b > 0 and n � 3 the conditions
(i)–(v) define an open non-empty set in the parameter space (ε, τ ).

In section 3.1 we illustrate numerically the theorem in the case of n = 3 oscillators. The proof
of the theorem is then given in section 3.2 where we prove the existence of the attractor and in
section 3.3 where we prove its instability.

3.1. Numerical evidence of the unstable attractor in networks with n = 3 oscillators

We consider a network of n = 3 oscillators with the dynamics described in section 2.1 and
the Mirollo–Strogatz pulse response function VMS, see (8). We set b = 3 and restrict our
attention to the parameter region 0 < ε < 0.3 and 0 < τ < 0.3. The purpose of the
numerical computations in this section is to give a global picture of the different attractors and
their basins for different values of parameters, and investigate the question of the existence of
unstable attractors.

Recall that the permissible state space PD of the system is infinite dimensional. We restrict
our attention to the Poincaré section (section 2.4.2) given by P = {φ ∈ PD : φ3(0) = 0}
and we study the Poincaré map R defined by the intersections of the positive semiflow with P.
Moreover, we consider phase history functions up to the equivalence defined in section 2.4.1;
in other words we consider R∼ : P/ ∼→ P/ ∼. In order to make the task of the numerical
investigation tractable we consider only initial states that contain the minimal number of the
past firings in the time interval (−τ, 0].
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Figure 5. Regions I, IIA, IIB and III in the parameter space for the system of three oscillators with
the Mirollo–Strogatz model with f = fb , b = 3. Region IId is represented by the thin light grey
strip inside region IIA. In regions I and III an open set is mapped to a stable fixed point attractor.
In regions IIA and IIB an open set is mapped in a finite number of iterations to an unstable fixed
point attractor.

We denote φ1(0) = θ1 and φ2(0) = θ2. Then, if θ1, θ2 � τ , the initial states in the event
representation (section 2.4.3) have the general form

E([φ]) = [P, (1, 2), τ ], [F, 1, 1 − θ1], [F, 2, 1 − θ2], [F, 3, 1]

up to time ordering. If θ1 < τ then O1 has fired in the interval [−θ1, 0). We make the extra
assumption that in this case O1 has fired exactly at time −θ1. Therefore, we add to E([φ]) the
events [P, (2, 3), τ − θ1]. Similarly, if θ2 < τ we add to E([φ]) the events [P, (1, 3), τ − θ2].
In each case we time-order E([φ]).

We denote this particular set of initial states by S and we parametrize it by θ1, θ2 ∈ [0, 1]2.
In terms of the past firings representation (section 2.4.1) the initial state is given by θ3 = 0,
σ3,1 = 0, σi,1 = (−θi if θi < τ ; undefined if θi � τ) for i = 1, 2.

The square [0, 1]2 is scanned with a step size of 10−3 in the phases θ1 and θ2 and for each
point (θ1, θ2) ∈ [0, 1]2 we identify the attractor to which the corresponding orbit converges.
Notice, that in general, for a point p ∈ S represented by the phases (θ1, θ2) its image R(p)

might not belong in S and therefore the Poincaré map R : P → P cannot be restricted to S. It
also implies that one should be careful when interpreting pictures of the dynamics on [0, 1]2

since these are just projections from P to S.
In the numerical simulations, we initially observe four different types of qualitative

behaviour of the system in different parameter regions which are labelled as I, IIA, IIB and III
in figure 5. In all the cases we observe the existence of a set S of non-empty interior, which is
mapped in one iteration to a single point R(S) on the line θ1 = θ2. This means that points in
S become synchronized in one iteration of the Poincaré map R. Regions I, II (which consists
of subregions IIA, IIB) and III in figure 5 are distinguished based on whether R(S) belongs in
S or not. Also, in all cases there exists a point P with θ1 = θ2 = Hn−2(τ ) which is a saddle
fixed point of R. This corresponds to a periodic orbit P̂ in the state space PD.

We take parameter values ε = 0.25 and τ = 0.15 representing region I and the results
are shown in figure 6(a). Observe that there is an open set S which is mapped in one iteration
to a single point R(S) which lies inside S. This implies that R(S) is a fixed point attractor of
R and is obviously stable since neighbouring points are mapped to it. There is also another
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Figure 6. Basins of attraction for the system of three oscillators with the Mirollo–Strogatz model
with f = fb , b = 3.0 and ε = 0.25. In all cases we identify the square S that is mapped in one
iteration to the single point R(S). (a) Parameter region I, τ = 0.15. (b) Region III, τ = 0.30. (c)
Region IIA, τ = 0.20. (d) A detail of (c) in which we show four points close to P that are mapped
on the unstable manifold in one iteration. (e) Region IIB, τ = 0.25. (f ) A detail of (e) that shows
the local dynamics.

fixed point P but only a set of measure zero converges to it. In this case we do not observe
any unstable attractors.

In region III we consider parameter values ε = 0.25, τ = 0.3 and the results are shown
in figure 6(b). Here the region S is mapped in one iteration to the single point R(S) inside S.
In this case we again have a stable fixed point attractor.
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Figure 7. (a) The basins of attraction in region IId for ε = 0.25 and τ = 0.168. (b) Discontinuity
of the Poincaré map. Two orbits that begin near P are shown. The first orbit begins at distance
10−6 from P and it is marked with white points. The second begins at distance 2 × 10−3 from
P and is marked with filled points which are numbered 1, 2, 3 etc. In both cases the value of θ2
changes abruptly from a value close to H1(τ ) to a value close to τ .

For region IIA, we consider the parameter values ε = 0.25 and τ = 0.20 (figure 6(c)).
The initial states in S are mapped in one iteration to the point R(S) outside S on the diagonal
θ1 = θ2. Next, in a finite number of iterations the point R(S) is mapped to the fixed point P .
Moreover, we numerically observe that points on the diagonal θ1 = θ2 that are close to P are
mapped to P in one iteration of R. This means that part of the diagonal θ1 = θ2 belongs to the
stable manifold Ws(P ) of P .

On the other hand, points close to P but not on the diagonal θ1 = θ2 converge to another
attractor of the system. This shows that P is an unstable attractor. The exact behaviour of
points close to P and outside the diagonal is shown in figure 6(d). In this figure we consider
four different points close to P . We observe that in one iteration all points are mapped on the
same line Wu(P ) which is invariant under R. After the points are mapped on Wu(P ) they
move away from P and eventually they converge to another attractor. This means that Wu(P )

is the unstable invariant manifold of the saddle point P .
We observe exactly the same phenomena in region IIB. We depict region IIB for parameter

values ε = 0.25 and τ = 0.25 in figure 6(e). The only difference from the previous case is that
now the points R(S) and P coincide. The dynamics near P shown in figure 6(f ) qualitatively
is the same as in region IIA.

Besides these four regions there exists, inside region IIA, a small region that we denote
by IId. We depict the basins of attraction in figure 7(a) choosing ε = 0.25 and τ = 0.168.
In this region, the convergence of the set S to the fixed point attractor P occurs exactly as in
region IIA. The difference is that if we consider any point Q (off the diagonal θ1 = θ2) at
an arbitrarily small (positive) distance off P , we observe that the distance of R(Q) to P is
bounded away from 0 by a positive constant (figure 7(b)). This means that the Poincaré map
R is discontinuous at P . This occurs because in region IId, the oscillator O3 overfires by 1
pulse along the periodic orbit P̂ that corresponds to the fixed point P .

3.2. Existence of a fixed point attractor

In section 3.1 we numerically observed the existence of an unstable attractor P in the case of
n = 3 oscillators. Here, we begin the proof of theorem 2 by establishing the existence of a
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Figure 8. Graphs of the components of the phase history function φP extended to the interval
(−τ, τ ]. The solid line represents the phases φP

i , i = 1, . . . , n − 1 and the dashed line represents
φP

n . (a) The case H1(τ + Hn−2(τ )) < 1. Here ϕ = τ + 1 − H1(τ + Hn−2(τ )). (b) The case
H1(τ + Hn−2(τ )) � 1.

fixed point attractor φP on the surface of section P for networks with n � 3 oscillators. The
phase history function φP corresponds to the point P in the previous section and it is defined
by (see also figure 8)

(i) For (ε, τ ) such that H1(τ + Hn−2(τ )) < 1,

φP
i (s) =

{
τ + s, for i = 1, . . . , n − 1,

2τ + 1 − H1(τ + Hn−2(τ )) + s, for i = n,
for s ∈ (−τ, 0),

(17a)

and

φP
i (0) =

{
Hn−2(τ ), for i = 1, . . . , n − 1,

0, for i = n.
(17b)

(ii) For (ε, τ ) such that H1(τ + Hn−2(τ )) � 1,

φP
i (s) =

{
τ + s, for i = 1, . . . , n − 1,

2τ + s, for i = n,
for s ∈ (−τ, 0), (18a)

and

φP
i (0) =

{
Hn−2(τ ), for i = 1, . . . , n − 1,

0, for i = n.
(18b)

Then, the following lemma gives the conditions under which φP is a fixed point attractor.

Lemma 4. Given a system D = (n, V, ε, τ ) such that

(i) n � 3,
(ii) Hn−1(2τ) − Hn−2(τ ) − τ is a strictly increasing function in τ for any fixed ε > 0,

(iii) g1(τ ) < 1,
(iv) g3(τ ) < 1,
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there is an open set of initial states Ŝ ⊂ P that converges to the fixed point attractor φP �∈ Ŝ

in finite iterations of the Poincaré map R : P → P.

Note that the Mirollo–Strogatz pulse response function VMS (10) satisfies the requirement (ii)
of lemma 4. Therefore, lemma 4 implies the existence of a fixed point attractor of the Poincaré
map R when V is given by the Mirollo–Strogatz model, hence it can be considered as the first
part of theorem 2. The second part of theorem 2 is the proof of the instability of φP which is
given in section 3.3.

The set Ŝ is determined in the course of the proof. The connection between lemma 4 and
the numerical observations of section 3.1 is that the periodic attractor φP corresponds to the
fixed point P , Ŝ is related to the set S that collapses to the single point R(S) and the parameter
region for which conditions (iii) and (iv) of lemma 4 hold, corresponds to region II.

The plan of the proof is as follows. First, we identify a set S on the surface of section P
that is mapped to a single point φS ∈ P in one iteration of the Poincaré map R and we find a
non-empty set Ŝ ⊂ S that is open in P. Then, we find criteria on the parameters (ε, τ ) and the
pulse response function such that φS is inside or outside Ŝ. In this way the parameter space
is separated into regions I, II and III such that in regions I and III, φS ∈ Ŝ while in region II,
φS �∈ Ŝ. Region II is exactly the region of the parameter space in which the requirements (iii)
and (iv) of lemma 4 are satisfied. The third step is to show that φP ∈ P is a fixed point of R.
Finally, we show that in the regions II and III, φS (hence Ŝ) is mapped to φP in a finite number
of iterations of R. Then, lemma 4 follows directly from these facts.

3.2.1. Collapse of S ⊂ P onto a single point. In this section, we identify an open set S ∈ P
which is mapped to a single point φS = R(S) in one iteration of the return map R.

Proposition 5. Consider a system D = (n, V, ε, τ ) such that

(i) n � 3,
(ii) τ + Hn−2(τ ) < 1,

(iii) Hn−1(2τ) − Hn−2(τ ) − τ is a strictly increasing function in τ for any fixed ε > 0,

and consider the set

S = {φ ∈ P : φi(0) = θi, �i(φ) = ∅ for i = 1, . . . , n − 1, and

φn(0) = 0, �n(φ) = {0}}, (19)

where θi satisfies the relations τ < θi < 1 − τ and H1(θi + τ) > 1 for i = 1, . . . , n − 1. The
set S is mapped in one iteration of R onto the single phase history function φS = R(S) ∈ P
given by

(i) If Hn−1(2τ) < 1 − τ , then

φS
i (s) =

{
Hn−2(τ ) + 1 − Hn−1(2τ) + s, for i = 1, . . . , n − 1,

1 + s, for i = n,
for s ∈ (−τ, 0].

(20)

(ii) If 1 − τ < Hn−1(2τ) < 1, then

φS
i (s) =

{
τ + 1 − Hn−1(2τ) + s, for i = 1, . . . , n − 1,

2τ + 1 − Hn−1(2τ) + s, for i = n,
(21a)

for s ∈ (−τ, Hn−1(2τ) − 1), and

φS
i (s) =

{
Hn−2(τ ) + 1 − Hn−1(2τ) + s, for i = 1, . . . , n − 1,

1 + s, for i = n,
(21b)

for s ∈ [Hn−1(2τ) − 1, 0].
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(iii) If 1 � Hn−1(2τ), then φS = φP , i.e.

φS
i (s) =

{
τ + s, for i = 1, . . . , n − 1,

2τ + s, for i = n,
for s ∈ (−τ, 0), (22a)

and

φS
i (0) =

{
Hn−2(τ ), for i = 1, . . . , n − 1,

1, for i = n.
(22b)

Proof. The evolution of the initial states in S can be represented in the event sequence
representation as follows:

[P, (1, . . . , n − 1), τ ], [F, 1, 1 − θ1], . . . , [F, n − 1, 1 − θn−1], [F, n, 1]
1→[P, (1, . . . , n − 1), 0], [F, 1, 1 − θ1 − τ ], . . . , [F, n − 1, 1 − θn−1 − τ ], [F, n, 1 − τ ]
2→[F, (1, . . . , n − 1), 0], [F, 3, 1 − τ ]
3→[(n − 2)P, (1, . . . , n − 1), τ ], [(n − 1)P, n, τ ], [F, n, 1 − τ ], [F, (1, . . . , n − 1), 1]
4→[(n − 2)P, (1, . . . , n − 1), 0], [(n − 1)P, n, 0], [F, n, 1 − 2τ ], [F, (1, . . . , n − 1), 1 − τ ].

In transition 2 we used the fact that H1(θi + τ) > 1 which implies that all the oscillators
O1, . . . , On−1 fire after receiving the pulse from On. Notice that after this step the oscillators
O1, . . . , On−1 are synchronized. In transition 3 we used the fact that τ < 1/2 so that τ < 1−τ

in order to get the correct time ordering. At this point we have to distinguish two cases.
If Hn−1(2τ) < 1 the evolution is

5→[F, n, 1 − Hn−1(2τ)], [F, (1, . . . , n − 1), 1 − Hn−2(τ )]
6→[F, n, 0], [F, (1, . . . , n − 1), Hn−1(2τ) − Hn−2(τ )]
7→[P, (1, . . . , n − 1), τ ], [F, (1, . . . , n − 1), Hn−1(2τ) − Hn−2(τ )], [F, n, 1].

In transition 5 we used the fact that Hn−1(2τ) < 1, to obtain that On does not fire after
receiving the n − 1 pulses. In transitions 5 and 7 we used (A.4) in order to obtain the correct
time ordering. The last event sequence corresponds to a phase history function φS ∈ P.
Reconstructing φS from the successive event sequences we obtain (20) and (21). In both
cases, all the oscillators receive pulses at t = Hn−1(2τ)− 1. The difference is that in the latter
case −τ < Hn−1(2τ) − 1 < 0, therefore φS must have discontinuities at t = Hn−1(2τ) − 1,
while in the former case Hn−1(2τ) − 1 � −τ , therefore φS has no discontinuities in (−τ, 0].

In the case Hn−1(2τ) � 1 we obtain
5→[F, n, 0], [F, (1, . . . , n − 1), 1 − Hn−2(τ )]
6→[P, (1, . . . , n − 1), τ ], [F, (1, . . . , n − 1), 1 − Hn−2(τ )], [F, n, 1].

In this case, we used in transition 5 the fact that Hn−1(2τ) � 1, to obtain that On fires. In the
same transition we used the fact that Hn−2(τ ) < 1− τ < 1 in order to show that the oscillators
Oi (i = 1, . . . , n−1) do not fire. Finally, in transition 6 we used that τ < 1−Hn−2(τ ), in order
to obtain the correct time ordering. The last event sequence corresponds to a phase history
function φS ∈ P. Reconstructing φS from the successive event sequences we obtain (22). �

Proposition 6. S contains the non-empty open set

Ŝ = {φ ∈ S : φn(−τ) > 0}. (23)

Proof. See appendix A.2. �
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3.2.2. Parameter regions. In this section we show that given a system D = (n, V, ε, τ ) there
is a neighbourhood in the parameter space with non-empty interior for which φS �∈ Ŝ.

Then we immediately read from lemma 5 that φS = φP if and only if
g2(τ ) = Hn−1(2τ) � 1, see (16b). Also notice that φS is inside Ŝ if the phases φS

i (0),
i = 1, . . . , n − 1 satisfy

H1(φ
S
i (0) + τ) > 1. (24)

Applying inequality (24) in the case that g2(τ ) < 1 we get that φS ∈ Ŝ if and only if
H1(1 + τ + Hn−2(τ ) − Hn−1(2τ)) = g1(τ ) > 1, see (16a). Applying the same inequality
in the case g2(τ ) > 1 we obtain that φS ∈ Ŝ if and only if H1(τ + Hn−2(τ )) = g3(τ ) > 1,
see (16c).

Combining these together we have the following cases:

(i) Case I: If g2(τ ) < 1 and g1(τ ) > 1, then φS ∈ Ŝ and φS �= φP .
(ii) Case IIA: If g2(τ ) < 1 and g1(τ ) < 1, then φS �∈ Ŝ and φS �= φP .

(iii) Case IIB: If g2(τ ) > 1 and g3(τ ) < 1, then φS �∈ Ŝ and φS = φP .
(iv) Case III: If g2(τ ) > 1 and g3(τ ) > 1, then φS ∈ Ŝ and φS = φP .

Notice that if φS is inside Ŝ then it is a fixed point of R and its basin of attraction contains
Ŝ. Therefore, in order for Ŝ to converge to an unstable attractor the system must realize at least
one of the cases IIA or IIB. If either of these cases are realized, then we show that the unstable
attractor is φP (17). In the rest of this section we determine the conditions under which the
cases IIA and IIB can appear in the system.

Proposition 7. In a system D = (n, V, ε, τ ) such that

(i) n � 3,
(ii) Hn−1(2τ) − Hn−2(τ ) − τ is a strictly increasing function in τ for any fixed ε > 0,

the cases IIA and IIB can be realized if and only if Hn−1(0) = H(0, ε) < 1.

Note that the relation H(0, ε) < 1 in the case of the Mirollo–Strogatz model is equivalent
to ε < 1.

Proof. The functions g2 and g3 are strictly increasing. Moreover, if we denote derivatives
by ′ we have

g′
2(τ ) = 2 + 2V ′

n−1(2τ) > 2,

g′
3(τ ) = 2 + V ′

n−2(τ ) + V ′
1(2τ + Vn−2(τ ))(2 + V ′

n−1(τ )) > 2.

Notice also that

g2(0) = Hn−1(0) = H1(Hn−2(0)) = g3(0) < 1. (25)

These facts imply that given a pulse response function V and a coupling strength ε such that
Hn−1(0) < 1, there are unique τ2, τ3 ∈ (0, 1/2) (that depend on V and ε) such that

g2(τ2) = 1 and g3(τ3) = 1.

From (A.5) we conclude that τ2 < τ3. Notice then that

g1(τ2) = H1(1 + τ2 + Hn−2(τ2) − Hn−1(2τ2)),

= H1(1 + τ2 + Hn−2(τ2) − g2(τ2)), (26)

= H1(τ2 + Hn−2(τ2)) = g3(τ2) < 1.

Since g1(0) > 1 (A.6), g1(τ2) < 1 and g1 is strictly decreasing (because
Hn−1(2τ) − Hn−2(τ ) − τ is strictly increasing) we conclude that there is a unique τ1 < τ2

such that g1(τ1) = 1.
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Therefore we can characterize cases I, IIA, IIB and III in the following way:

(i) Case I: 0 < τ < τ1, because then g1(τ ) > 1, g2(τ ) < 1 and g3(τ ) < 1.
(ii) Case IIA: τ1 < τ < τ2, because then g1(τ ) < 1, g2(τ ) < 1 and g3(τ ) < 1.

(iii) Case IIB: τ2 < τ < τ3, because then g1(τ ) < 1, g2(τ ) > 1 and g3(τ ) < 1.
(iv) Case III: τ3 < τ < 1/2, because then g1(τ ) < 1, g2(τ ) > 1 and g3(τ ) > 1.

This shows that if Hn−1(0) < 1 then the cases IIA and IIB can be realized.
For the opposite, notice that if Hn−1(0) > 1 then g2(τ ) = g3(τ ) > 1 for all τ � 0. This

implies that only case III can be realized in this situation. �

From now on, we restrict our attention to parameters for which the cases IIA and IIB can be
realized.

Definition 10. For a given system D = (n, V, ε, τ ) such that

(i) n � 3,
(ii) Hn−1(2τ) − Hn−2(τ ) − τ is a strictly increasing function in τ for any fixed ε > 0,

the permissible parameter region is

MV = {(ε, τ ) ∈ R
2
+ : 0 < τ < τ4, Hn−1(0) = H(0, ε) < 1} (27)

where τ4 ∈ (0, 1/2) is the unique solution of τ + Hn−2(τ ) = 1.

Notice that g3(τ ) = H1(τ + Hn−2(τ )) > τ + Hn−2(τ ) and (τ + Hn−2(τ ))′ = 2 + V ′
n−2(τ ) > 2,

therefore τ3 < τ4 < 1/2.

Definition 11. For a given system D = (n, V, ε, τ ) such that

(i) n � 3,
(ii) Hn−1(2τ) − Hn−2(τ ) − τ is a strictly increasing function in τ for any fixed ε > 0,

we define the following regions in MV :

(i) Region I: {(ε, τ ) ∈ MV : 0 < τ < τ1}.
(ii) Region IIA: {(ε, τ ) ∈ MV : τ1 < τ < τ2}.

(iii) Region IIB: {(ε, τ ) ∈ MV : τ2 < τ < τ3}.
(iv) Region III: {(ε, τ ) ∈ MV : τ3 < τ < τ4}.
We also call the union of regions IIA and IIB, region II.

A picture of regions I, IIA, IIB, III for the Mirollo–Strogatz model with n = 3 has already
been given in figure 5.

3.2.3. φP is a fixed point of R

Proposition 8. Given a pulse response function V ∈ G, φP ((17),(18)) is a fixed point of R

for (ε, τ ) ∈ MV .

Proof. P evolves in the event sequence representation as follows:

[P, (1, . . . , n − 1), τ ], [F, (1, . . . , n − 1), 1 − Hn−2(τ )], [F, n, 1]
1→[P, (1, . . . , n − 1), 0], [F, (1, . . . , n − 1), 1 − τ − Hn−2(τ )], [F, n, 1 − τ ].
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In transition 2 we used the fact that for τ < τ4(V ) we have that τ + Hn−2(τ ) < 1. If
g3(τ ) = H1(τ + Hn−2(τ )) � 1 (region III), then the oscillators Oi , i = 1, . . . , n − 1 fire after
receiving the pulse from On, so we get

2→[F, (1, . . . , n − 1), 0], [F, n, 1 − τ ]
3→[(n − 2)P, (1, . . . , n − 1), τ ], [(n − 1)P, n, τ ], [F, n, 1 − τ ], [F, (1, . . . , n − 1), 1]
4→[(n − 2)P, (1, . . . , n − 1), 0], [(n − 1)P, n, 0], [F, n, 1 − 2τ ], [F, (1, . . . , n − 1), 1 − τ ]
5→[F, n, 0], [F, (1, . . . , n − 1), 1 − Hn−2(τ )]
6→[P, (1, . . . , n − 1), τ ], [F, (1, . . . , n − 1), 1 − Hn−2(τ )], [F, n, 1],

where as in transition 5 we used the fact that when g3(τ ) � 1 we also have
g2(τ ) = Hn−1(2τ) > 1. We observe that we return to the initial state, i.e. φP is a fixed point
of R. If g3(τ ) < 1 (regions I and II), the evolution is

2→[F, (1, . . . , n − 1), 1 − H1(τ + Hn−2(τ ))], [F, n, 1 − τ ]
3→[F, (1, . . . , n − 1), 0], [F, n, H1(τ + Hn−2(τ )) − τ ]
4→[(n − 2)P, (1, . . . , n − 1), τ ], [(n − 1)P, n, τ ], [F, n, H1(τ + Hn−2(τ )) − τ ],

[F, (1, . . . , n − 1), 1]
5→[(n − 2)P, (1, . . . , n − 1), 0], [(n − 1)P, n, 0], [F, n, H1(τ + Hn−2(τ )) − 2τ ],

[F, (1, . . . , n − 1), 1 − τ ]
6→[F, n, 0], [F, (1, . . . , n − 1), 1 − Hn−2(τ )]
7→[P, (1, . . . , n − 1), τ ], [F, (1, . . . , n − 1), 1 − Hn−2(τ )], [F, n, 1].

The only transition in question is 6, which is valid only if

Hn−1(T (τ )) � 1,

where

T (τ) = 1 + 2τ − H1(τ + Hn−2(τ )),

= 1 + 2τ − g3(τ ), (28)

= 1 − Vn−2(τ ) − V1(2τ + Vn−2(τ )).

Notice that T (τ) is a strictly decreasing function of τ and this implies that Hn−1(T (τ )) is
also strictly decreasing. Since g3(τ ) < 1 we have τ < τ3. Therefore, in order to prove that
Hn−1(T (τ )) � 1 it is enough to show that Hn−1(T (τ3)) � 1. We find

T (τ3) = 1 + 2τ3 − g3(τ3) = 2τ3.

and

Hn−1(T (τ3)) = Hn−1(2τ3) = g2(τ3) > 1. �

Remark 2. The function T (τ) (28) is the period of the periodic orbit O+(φ
P ) in regions I and

II, i.e. �T (τ)(φP ) = φP . This can be easily verified by computing how long it takes to go from
the initial to the final event sequence in the previous proof. In region III, the period is 2τ .

Remark 3. In regions I and II we used the fact that Hn−1(T (τ )) � 1 to show that On fires after
receiving n− 1 pulses. It is possible in general ν(T (τ)) = m < n− 1, i.e. that Hm(T (τ)) � 1
and Hm−1(T (τ )) < 1 for some m < n−1, which means that On overfires by n−1−m pulses.
Recall from section 2.3.1 that in this case the evolution operator �t is discontinuous for some
t > 0. We come back to this point later.
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3.2.4. Finite time convergence. In this section we prove that in regions II and III, the point
φS is mapped to φP in a finite number of iterations of R.

Proposition 9. Given a system D = (n, V, ε, τ ), φS (proposition 5) is mapped to φP (given by
(17) and (18)) in finitely many iterations of R, if the system is in regions II or III (definition 11).

Proof. In the cases IIB and III there is nothing to prove since φS = φP . In the case IIA,
consider the one-parameter family [φw] ∈ P/ ∼ given by

φw
i (0) = w, �i(φ) = ∅, for i = 1, . . . , n − 1,

φw
n (0) = 0, �n(φ

w) = {0},
where

w ∈ L = [W1, W2] = [Hn−2(τ ), Hn−2(τ ) + 1 − Hn−1(2τ)].

Clearly, φP ∈ [φW1 ] and φS ∈ [φW2 ]. Then [φw] evolves as

[P, (1, . . . , n − 1), τ ], [F, (1, . . . , n − 1), 1 − w], [F, n, 1]
1→[P, (1, . . . , n − 1), 0], [F, (1, . . . , n − 1), 1 − w − τ ], [F, n, 1 − τ ]
2→[F, (1, . . . , n − 1), 1 − H1(w + τ)], [F, n, 1 − τ ]
3→[F, (1, . . . , n − 1), 0], [F, n, H1(w + τ) − τ ]
4→[(n − 2), P, (1, . . . , n − 1), τ ], [(n − 1)P, n, τ ], [F, n, H1(w + τ) − τ ],

[F, (1, . . . , n − 1), 1]
5→[(n − 2)P, (1, . . . , n − 1), 0], [(n − 1)P, n, 0], [F, n, H1(w + τ) − 2τ ],

[F, (1, . . . , n − 1), 1 − τ ].

In transition 2 we used the fact that H1(w + τ) < 1. Let

L′ = {w ∈ L : Hn−1(1 + 2τ − H1(w + τ)) � 1}.
The interior of L′ is not empty. This follows from the fact that Hn−2(τ ) ∈ L′, since

Hn−1(1 + 2τ − H1(τ + Hn−2(τ )) = Hn−1(T (τ )) > 1

and that the inequality that defines L′ depends smoothly on w. When w ∈ L′ we obtain the
evolution

6→[F, n, 0], [F, (1, . . . , n − 1), 1 − Hn−2(τ )]
7→[P, (1, . . . , n − 1), τ ], [F, (1, . . . , n − 1), 1 − Hn−2(τ )], [F, n, 1]

i.e. all phase history functions in the equivalence class [φw] for w ∈ L′ are mapped to φP in
one iteration of R.

In order to finish the proof we need to show that points in L′′ = L \ L′ enter L′ in a finite
number of iterations. When w ∈ L′′ the evolution is

6→[F, n, 1 − Hn−1(1 + 2τ − H1(w + τ))], [F, (1, . . . , n − 1), 1 − Hn−2(τ )]
7→[F, n, 0], [F, (1, . . . , n − 1), Hn−1(1 + 2τ − H1(w + τ)) − Hn−2(τ )].

This means that when w ∈ L′′, the point [φw] is mapped to [φw′
] with

w′ = Hn−2(τ ) + 1 − Hn−1(1 + 2τ − H1(w + τ)).
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Consider the function

�(w) = w′ − w = Vn−2(τ ) + V1(w + τ) − Vn−1(1 − w + τ − V1(w + τ))

which is a strictly increasing function of w. For w = W2 = max L = Hn−2(τ )+1−Hn−1(2τ)

we obtain that

�(W2) = Hn−1(2τ) − Hn−1(1 + 2τ − H1(W2 + τ)).

Notice that

H1(W2 + τ) = H1(1 + τ + Hn−2(τ ) − Hn−1(2τ)) = g1(τ ).

In the case IIA we have that g1(τ ) < 1, i.e.

1 + 2τ − H1(W2 + τ) > 2τ,

and since Hn−1 is strictly increasing we obtain

Hn−1(1 + 2τ − H1(W2 + τ)) > Hn−1(2τ).

Therefore, �(W2) < 0. Combined with the fact that � is strictly increasing and that
W2 = max L we obtain that

�(w) � �(W2) < 0, for all w ∈ L.

Moreover, one can easily see that if w ∈ L′′ then w′ > Hn−2(τ ), i.e. w′ ∈ L. This
means that beginning with a w ∈ L′′ we can iterate this procedure to get a sequence
	 = w → w′ → w′′ → . . . until a point in the sequence enters L′. That this will happen
after a finite number of steps is ensured by the fact that 	 is a decreasing sequence (since
w′ −w = �(w) < 0) and the fact that for smaller w the absolute difference |�(w)| = −�(w)

between w′ and w actually becomes larger (since � is a strictly increasing function of w). The
first point in the sequence 	 that enters L′ is then mapped in one iteration to φP . �

3.3. Instability of the attractor

In the previous section we proved that φP is a fixed point attractor of R for (ε, τ ) ∈ MV

which implies that it corresponds to a periodic attractor for the evolution operator �t with
period T (28). In this section we prove that φP is unstable in the parameter region II as long as
ν(T (τ)) = n − 1 where T (τ) is the period of O+(φ

P ). In other words, since φP
n (0−) = T (τ),

we prove that φP is unstable when the oscillator On does not overfire along the periodic positive
semiorbit O+(φ

P ). We state and prove the instability of φP in the case that the pulse response
function is given by the Mirollo–Strogatz model, i.e. V = VMS (10). The theorem can be
stated and proved in a similar way for the general case but the computations are much more
involved.

Lemma 10. Given a system D = (n, V, ε, τ ) such that

(i) n � 3,
(ii) V is given by the Mirollo–Strogatz model,

(iii) g1(τ ) = H1(1 + τ + Hn−2(τ ) − Hn−1(2τ)) < 1,
(iv) g3(τ ) = H1(τ + Hn−2(τ )) < 1,
(a) ν(T (τ)) = n − 1,

the fixed point attractor φP given by lemma 4 is linearly unstable. For any fixed values b > 0
and n � 3 the conditions (i)–(v) define an open non-empty set in the parameter space (ε, τ ).

This is the second part of theorem 2, therefore it concludes the proof of the existence of an
unstable fixed point attractor.
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3.3.1. Proof of the linear instability. In order to prove that φP is linearly unstable under the
conditions given in lemma 10 we identify first an open neighbourhood of φP in P.

Proposition 11. In region II there is ρ > 0 such that if d(φP , φ) = η < ρ for some φ ∈ P
then |φi(0) − Hn−2(τ )| < η2 = O(η) and �i(φ) = ∅ for i = 1, . . . , n − 1, while φn(0) = 0
and �n(φ) = {0}. Moreover, if On overfires at 0 (i.e. Hm(T (τ)) > 1 for some m < n − 1)
then On receives the last n − m + 1 pulses simultaneously.

Proof. The proof is given in appendix A.3. �
In the rest of this section we study the dynamics of R in a small neighbourhood of φP .

Consider any permutation λ of n − 1 symbols. Then define the set Uλ by

Uλ = {φ ∈ Bρ(φ
P ) : φλ(1)(0) � φλ(2)(0) � · · · � φλ(n−1)(0)}. (29)

We denote φλ(i)(0) = Hn−2(τ ) + ηi and R(φ)λ(i)(0) = Hn−2(τ ) + η′
i for i = 1, . . . , n − 1

where ηi and η′
i are small (not necessarily positive). The oscillator On has at t = 0 phase

φn(0) = 0 and therefore gives a pulse to the other oscillators after time τ . Hence, at time t = τ

each oscillator Oi , i = 1, . . . , n − 1 receives a pulse and its phase becomes

H1(τ + Hn−2(τ ) + ηi) = H1(τ + Hn−2(τ )) + Aηi.

Here we used that fact V is given by the Mirollo–Strogatz model so we have that

Hk(θ + η) = Hk(θ) + Akη,

where A = Kε + 1, and Kε is defined in (10).
Notice that since H1(τ + Hn−2(τ )) = g3(τ ) < 1, there is ρ1 > 0 such that, if |ηi | < ρ1

then H1(τ + Hn−2(τ )) + Aηi < 1. This implies that in this case the oscillators Oi do not fire
after receiving the pulse at t = τ . Each oscillator Oλ(i), i = 1, . . . , n − 1 then fires at time

ti = 1 + τ − H1(τ + Hn−2(τ )) − Aηi = T − τ − Aηi.

Given the original assumption η1 � · · · � ηn−1 we deduce that t1 � · · · � tn−1, i.e. the
oscillators fire in the order Oλ(1), . . . , Oλ(n−1). Define

δi,j = tj − ti = A(ηi − ηj ). (30)

Then, the oscillator On receives pulses from the oscillators Oλ(i), i = 1, . . . , n − 1 at the
moments τ + ti . It is easy to see that after receiving the first n − 2 pulses (at t = tn−2 + τ ) the
phase of the oscillator On becomes

φn(tn−2 + τ) = Hn−2(T ) − An−1η1 + An−3δ1,2 + . . . + Aδn−3,n−2.

Since Hn−2(T ) < 1, there is ρ2 > 0 such that φn(tn−2 + τ) < 1 for |ηi | < ρ2. This means that
in this case On does not fire after receiving the first n − 2 pulses. When On receives the last
pulse at t = tn−1 + τ coming from Oλ(n−1) its phase becomes

φn(tn−1 + τ) = min{1, Hn−1(T ) − Anη1 +
n−2∑
k=1

An−k−1δk,k+1}.

Since Hn−1(T ) > 1 we deduce that there is ρ3 > 0 such that if |ηi | < ρ3, then φn(tn−1 +τ) = 1.
Therefore, On fires at t = tn−1 + τ = T − Aηn−1.

Using similar arguments we can show that the phase R(φ)λ(j)(0) of Oλ(j) at t = tn−1 + τ

(on the surface of section) is Hn−2(τ ) + η′
j , where

η′
j = −An−2δ1,j +

j−1∑
k=1

An−k−2δk,k+1 +
n−2∑
k=j

An−k−1δk,k+1. (31)
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Figure 9. Schematic representation of the local stable and unstable manifolds of φP for n = 4.
The stable manifold Ws(P ) is one dimensional while the unstable manifold Wu(P ) consists of 6
two-dimensional pieces that join in a continuous but not smooth way.

In the last expression, each sum is defined to be zero if the starting index is greater than the
ending index. Then, we compute

η′
j − η′

j+1 = An−j−2(Aj + A − 1)δj,j+1 = An−j−1(Aj + A − 1)(ηj − ηj+1).

Since A = K + 1 and K > 0 we have A > 1 and An−j−1(Aj + A − 1) > 1. From this we
conclude that the phases of the oscillators O1, . . . , On−1 have the same ordering in R(φ) as
they had in φ, i.e.

R(φ)λ(1)(0) � · · · � R(φ)λ(n−1)(0),

therefore we can apply the same reasoning to obtain R2(φ), R3(φ), etc until Rm(φ) is outside
Bρ(φ

P ) for some m � 0.
Moreover, notice that every application of the Poincaré map R increases the distance

between two ‘adjacent’ phases and from this we can conclude the instability of φP . In
particular, equations (30) and (31) show that the map L from ηi to η′

i is a linear map, whose
eigenvalues and eigenvectors we can explicitly compute. The eigenvalues of L are λ0 = 0 and
λj = Aj−1(An−1−j + A − 1) > 1 for j = 1, . . . , n − 2. This shows that L has n − 2 unstable
directions and 1 collapsing (stable) direction. The corresponding eigenvectors are

w0 = ∑n−1
k=1 ek,

wj = A

1 − An−1−j

∑n−1−j

k=1 ek +
∑n−1

k=n−j ek,

where ek , k = 1, . . . , n − 1 is the standard basis of R
n−1. Moreover, a tedious but

straightforward computation shows that if we define κ1 = 1, κj = Aj(2A − 1)(Aj + A −
1)−1(Aj−1 +A−1)−1 for j = 2, . . . , n−2, and κn−1 = A(2A−1)(A−1)−1(An−2 +A−1)−1

we have that
n−1∑
j=1

κjη
′
j = 0.

This means that all points in Uλ are mapped in exactly one iteration to the set

Wu
λ = {φ :

∑n−1
j=1 κj (φj (0) − Hn−2(τ )) = 0}.

This set is the n − 2 dimensional unstable manifold of φP as it can be shown that it is spanned
by the ‘unstable’ eigenvectors w1, . . . , wn−2 of L. Recall that this discussion is restricted in the
set Uλ, given by (29), where λ is a permutation of n−1 symbols. Actually, in each set Uλ there
is a respective set Wu

λ . This has already been shown in figure 6 where we depicted the unstable
manifolds of φP for n = 3 and we showed that they are one-dimensional sets that join at φP

in a non-smooth way. As a representative of the situation for larger n we depict schematically
the case n = 4 in figure 9. In this case, there are six permutations of three symbols, hence



38 H Broer et al

the unstable manifold Wu consists of six pieces that join along the dashed lines continuously
but not smoothly, forming six creases. The vertical line in the same figure corresponds to the
stable manifold of φP in which all the oscillators O1, . . . , On−1 are synchronized.

Finally, in order to show that φP is unstable we need to compute the distance d(R(φ), φP ).
Actually, it is easier to compute instead the distance between the points �τ(R(φ)) and �τ(φP ).
Notice that

�τ(R(φ))i(s) = φi(s + τ) =
{

Hn−2(τ ) + η′
i + τ + s, for i = 1, . . . , n − 1

τ + s, for i = n,

for s ∈ (−τ, 0) and

�τ(R(φ))i(s) = φi(s + τ) =
{

H1(Hn−2(τ ) + τ) + Aη′
i + s, for i = 1, . . . , n − 1

τ + s, for i = n,

for s ∈ [0, τ ]. At the same time

�τ(φP )i(s) = φi(s + τ) =
{

Hn−2(τ ) + τ + s, for i = 1, . . . , n − 1

τ + s, for i = n,

for s ∈ (−τ, 0) and

�τ(φP )i(s) = φi(s + τ) =
{

H1(Hn−2(τ ) + τ) + s, for i = 1, . . . , n − 1

τ + s, for i = n,

for s ∈ [0, τ ]. Therefore

d(�τ (R(φ)), �τ (φP )) =
n∑

i=1

∫ τ

−τ

|φi(s) − φP
i (s)|ds,

=
n−1∑
i=1

∫ 0

−τ

|φi(s) − φP
i (s)|ds +

n−1∑
i=1

∫ τ

0
|φi(s) − φP

i (s)|ds

+
∫ τ

−τ

|φn(s) − φP
n (s)|ds,

=
n−1∑
i=1

τ |η′
i | +

n−1∑
i=1

τA|η′
i | = τ(1 + A)

n−1∑
i=1

|η′
i |.

The fact that the linear map L : η �→ η′ is unstable means that the quantity
∑n−1

i=1 |η′
i | which

is the distance in R
n−1 from the origin eventually increases. This means that after each step

d(�τ (R(φ)), �τ (φP )) also increases and that R is unstable.

3.3.2. The parameter region of linear instability is non-empty. The conditions of theorem 2
(and consequently of lemma 10) hold in an open region in the parameter space (ε, τ ) that
depends on the values of b > 0 and n � 3. The following proposition shows that this region
is not empty.

Proposition 12. Consider a pulse response function V , given by the Mirollo–Strogatz model
(9) and a fixed b > 0 for a network with n � 3 oscillators. Then, the parameter region
defined by

(i) 0 < ε < 1,
(ii) τ > 0,

(iii) g1(τ ) < 1,
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(iv) g3(τ ) < 1,
(v) ν(T (τ)) = n − 1, where T (τ) = 1 + 2τ − H1(τ + Hn−2(τ )),

is not empty. Moreover, for every n � 3 there is a range of values of b such that for any value
of ε ∈ (0, 1) there is a range of values of τ such that the above conditions hold.

Proof. For given b > 0 and n � 3, denote by τ3(ε) the solution of the equation g3(τ ) = 1:

τ3(ε) = −ebnε̂ + eε̂b+b

(eb − 1)(e2bε̂ + ebnε̂)
, (32)

where ε̂ = ε/(n − 1). It is a decreasing function of ε and τ3(0+) = 1/2 while τ3(1−) = 0.
Moreover, g3(τ ) < 1 for τ < τ3(ε).

In the same way, define as τ1(ε) the solution of the equation g1(τ ) = 1 which is given by

(−1 + ebε̂)(ebnε̂ − eε̂b+b)

(eb − 1)(e2bε̂ + ebnε̂ − 2eb(n+1)ε̂)
. (33)

It is a decreasing function with τ1(ε) < τ3(ε) for 0 < ε < 1, τ1(1−) = 0 and g1(τ ) < 1 for
τ > τ1(ε).

Therefore, conditions (i)–(iv) of the lemma are satisfied in the non-empty open region
given by

{(ε, τ ) ⊆ (0, 1) × (0, 1/2) : τ1(ε) < τ < τ3(ε)}. (34)

In order to take into account condition (v) of the lemma, notice that ν(T (τ)) = n − 1
for τ ∈ (h2(ε), h1(ε)), where h1 and h2 are defined as the solutions of the equations
Hn−1(T (τ )) = 1 and Hn−2(T (τ )) = 1, respectively. These are given by

h1(ε) = ebε̂ − ebnε̂ + eε̂b+b − eb−b(n−2)ε̂(−1 + eb
) (−2ebε̂ + e2bε̂ + ebnε̂

) , (35)

h2(ε) = − −ebε̂
(
1 + eb

)
+ ebnε̂ + eb−b(n−3)ε̂(−1 + eb

) (−2ebε̂ + e2bε̂ + ebnε̂
) . (36)

They are both decreasing functions with h2(ε) < h1(ε) for ε ∈ (0, 1) and h1(1−) = 0 while
h2(1−) < 0. Moreover, h1(ε) > τ3(ε) for ε ∈ (0, 1). This shows that for a given ε the region
of validity of the lemma is non-empty if max{h2(ε), τ1(ε)} < τ3(ε). Since τ1 < τ3 it is enough
to show that there are values of ε such that h2 < τ3.

This follows from the fact that h2(1−) < 0 = τ3(1−) and that h2 and τ3 are smooth
decreasing functions of ε. Therefore, there is ε∗ ∈ (0, 1) such that for ε ∈ (ε∗, 1), it holds that
h2(ε) < τ3(ε). This shows that for any n � 3 and b > 0 there is an open non-empty parameter
region in which the conditions of the lemma hold and that is given by

{(ε, τ ) ⊆ (ε∗, 1) × (0, 1/2) : max{τ1(ε), h2(ε)} < τ < τ3(ε)}. (37)

Moreover, one can show that the difference τ3(ε) − h2(ε) is a strictly decreasing function
of ε, therefore if τ3(0+) > h2(0+) we obtain that τ3(ε) > h2(ε) for all ε ∈ (0, 1), i.e., ε∗ = 0.
One can verify that for n = 3 and n = 4, τ3(0+) > h2(0+) for all b > 0. For n � 5 we obtain
that τ3(0+) > h2(0+) if and only if 0 < b < ln n−2

n−4 . Therefore, for all n � 3, there is a range
of values b ∈ (0, ln n−2

n−4 ) such that for arbitrary ε ∈ (0, 1) there is a range of values of τ for
which the conditions of theorem 2 hold. �
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Figure 10. Overfiring regions in the Mirollo–Strogatz model with b = 3. The permissible
parameter region MV , see definition 10, lies between the dotted line and the ε-axis. The dotted
line represents τ4 given in definition 10. Region II lies between the two thick black curves. The
upper curve is given by τ1, see (33), and the lower curve by τ3, see (32). Different shades of grey
represent regions with different values of ν(T (τ)). This value is shown inside each region and
ranges from 1 to n − 1. Notice that the value of ν(T (τ)) is relevant to our discussion only inside
region II since this is the only case in which the attractor φP is unstable.

4. Discussion

4.1. Applicability of the instability theorem and discontinuity of the evolution operator

We proved theorem 2 in the case that ν(T (τ)) = n − 1 and we showed that the parameter
region (inside region II) for which this condition holds is non-empty for any fixed b > 0 and
any n � 3. In this section we discuss what happens when ν(T (τ)) < n − 1. In figure 10,
we depict for b = 3 the parameter regions in which ν(T (τ)) has a specific value. The region
where ν(T (τ)) = n − 1 is represented by the darkest shade of grey. Region II lies between
the two thick black lines.

We observe that for n = 3 the region where ν(T (τ)) = n − 1 = 2 covers most of region
II. For n = 4 the situation has changed but still for any ε we can find a small interval of time
delays in which ν(T (τ)) = n−1 = 3. But for n � 5 the situation changes dramatically. Most
of the region where ν(T (τ)) = n − 1 = 4 is now outside region II and for small ε we can
find no time delays that belong both in region II and the region where ν(T (τ)) = n − 1. As
the number of oscillators increases the situation becomes progressively worse and for large n

there is only a very small intersection (which is not even visible in the figure for n = 6) of the
region where ν(T (τ)) = n − 1 and region II for ε very close to 1. Nevertheless, as we proved
in proposition 12, such intersection is non-empty for any n � 3.

In figure 10 we also observe that for large n, region II is almost completely covered by
regions in which ν(T (τ)) < n − 1. What can we say about instability in these regions?
According to lemma 11, if On overfires by n − 1 − m pulses (i.e. if ν(T (τ)) = m) then the
last n − m oscillators to fire should be synchronized. This implies that we can describe phase
history functions near φP by n − 1 phases as before, but n − m of them should be equal, so
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there are only m free variables that characterize phase history functions φ near φP . Therefore,
in the case that On overfires, we can follow the same arguments as in the previous section to
show that φP is linearly unstable for the neighbourhood of φP given by proposition 11.

But there is a fundamental problem to this reasoning. φP is a periodic orbit of �.
Therefore, we can in principle consider phase history functions not near φP but near another
point along the orbit O+(φ

P ). In particular, we can consider phase history functions near
�τ(φP ). Notice, that no oscillator overfires for �τ(φP ) in the time interval (−τ, τ ). This
implies that no oscillators have to be synchronized in phase history functions φ near �τ(φP ).
But if we consider any phase history functions φ near φP with non-synchronized oscillators,
then there will be a finite time t (which in this case is T (τ)−τ , i.e. the time until the oscillator On

will overfire again) such that the evolution operator �t (and consequently R) are discontinuous
for the same reasons as in the example we described in section 2.3.1.

This also explains the discontinuity that we observed numerically in region IId in
section 3.1. There, n = 3 and ν(T (τ)) = 1 in region IId, which means that both oscillators O1

and O2 should be synchronized for phase history functions φ near φP . Since we considered
an initial state with θ1 �= θ2 we expect the evolution operator to be discontinuous and this is
what we observed numerically.

Therefore, the discontinuity of the evolution operator in the specific model studied,
presents some issues regarding the instability of certain states because of the overfiring. Notice
that this does not mean that all states overfire but nevertheless as pointed out in this section the
parameter region in which a specific state (in our case the fixed point φP ) overfires can be much
larger than the parameter region where it does not overfire. For this reason we believe that a
model with continuous evolution operator would be more appropriate for studying instability in
coupled networks. In the following section we propose such a model, which is a modification
of the model studied in this paper and for which we conjecture that the evolution operator of
the system is continuous.

4.2. A model with continuous evolution operator

We pointed out that the evolution operator of this system is discontinuous. Since this system is
modelling physical processes [2,3,6], this discontinuity is not merely a curiosity that one can
ignore but has to be addressed. In general, in a real physical system (like a neuron network) we
cannot expect its components (neurons) to be perfectly synchronized as occurs in the present
model. This means that we would like to have a model at our disposal that gives the same
results for either perfectly synchronized or almost synchronized components. In this respect
the present model fails.

A natural question then is, what is the minimal modification to the present model that can
make the evolution operator continuous. We propose the following refractory period model
which is defined exactly as the present model in section 2.1 with the following modification.
Consider constants τ1, τ2 with 0 < τ1 < τ2 
 τ . Then redefine the pulse absorption process
so that when an oscillator Oi fires at time t then in the time interval [0, τ1] any pulse that arrives
at the oscillator is ignored, while in the interval [τ1, τ2] if a pulse arrives at Oi at time t ′ and
its phase is θi(t

′−) = ui then

θi(t
′) = θi(t) + h(

t ′ − τ1

τ2 − τ1
)V1(θ).

Here, h : [0, 1] → [0, 1] is a strictly increasing smooth function such that h(0) = 0, h(1) = 1.
If Oi receives a pulse at time t ′ > τ2, then it absorbs the pulse completely as in the present
model.
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In order to see why the evolution operator for the refractory period model is continuous
we should revisit section 2.3.1. There, the oscillator O3 receives two pulses and overfires by
one pulse in the phase history function φ and then in the nearby phase history function ψ , the
same oscillator receives two pulses at different but nearby moments. If we consider the same
phase history functions and their evolution in the refractory period model, we observe that
when O3 receives the second pulse, it does not absorb it at all if the time difference between
the two pulses is less than τ1. This means the phases φ3 and ψ3 are exactly the same. Recall
that in section 2.3.1 the discontinuity is caused by the fact that the distance between φ3 and ψ3

becomes H1(0) = O(1). Therefore in the refractory period model there is no discontinuity of
the evolution operator.

The refractory period model takes into account the fact that neurons have a refractory
period in which they cannot absorb any pulses. In this respect our proposal not only makes
the evolution operator continuous but also it is more appropriate as a physical model.

Most of the results in this paper concerning unstable attractors in the present model persist
for the refractory period model. Moreover, if we consider phase history functions near φP in
the case that On overfires, no oscillators have to be synchronized. Then we conjecture that φP

is a linearly unstable attractor for all parameters in region II.

4.3. Conclusions

In this paper we established the existence of unstable attractors in a pulse-coupled oscillator
network with delay for arbitrary number of oscillators n � 3. For this purpose we used the
mathematical framework given in [4]. The main difference between [4] and this paper is that
we introduced a metric in the infinite dimensional state space that allowed us to study issues
such as continuity and instability. Moreover, we emphasized the discontinuity of the evolution
operator, discussed its effect on the system and proposed a model with continuous evolution
operator.

The networks considered in this paper are globally connected and all oscillators are
identical. A natural question then would be if unstable attractors persist when changing the
connectivity characteristics (topology) of the network and/or when considering non-identical
oscillators. It is possible to study networks with different connectivities like random networks
[23], small world networks [24] or fractally coupled networks [25, 26]. In random networks,
numerical studies [23] show the existence of unstable attractors. Therefore, globally connected
networks like the one studied in this paper are not the only ones with unstable attractors. The
fact that in the present model the oscillators are identical is essential in our proof of the existence
of unstable attractors because it implies that when two oscillators become synchronized they
remain synchronized for ever. Therefore, if unstable attractors exist in networks with non-
identical oscillators it would be interesting to study what is the exact mechanism that leads to
their appearance. It would also be interesting to study the question of existence of unstable
attractors in more general coupled map lattices [27, 25, 28].

Another interesting point is the possible existence of heteroclinic connections between
unstable attractors [4]. An unstable attractor can represent a task performed by a neuron
network. Therefore, the existence of heteroclinic connections means that, in the presence
of some external noise, the network can move from one task to another [3] and there are
several studies [29–34] which propose that dynamics along heteroclinic orbits are important
for information processing in neural systems. In the model studied in this paper there
are no heteroclinic connections for n = 3 oscillators but we found that there exist such
connections for n � 4. We prove the existence of heteroclinic connections in a forthcoming
paper [35].
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Appendix A. Technical details

Appendix A.1. Properties of nearby phase history functions

Consider a phase history function φ ∈ PD. Then we show that the characteristics of φ determine
to a large extent the characteristics of nearby phase history functions ψ ∈ PD. In particular,
we have the following three propositions. Notice that in the following we make no distinction
between a phase history function φ : (−τ, 0] → T

n and the corresponding extending phase
history function φ+ : [−τ, ∞) → T

n and we denote both by φ.

Proposition 13. Assume that φi has no discontinuities in an interval (s1, s2) ⊂ [−τ, τ ]
and that φi(s) �= 0 (mod Z) for all s ∈ (s1, s2). Define E = 1

8M(s2 − s1) where
M = min{V1(0), 1 − φi(s2)}. Then, if ψ ∈ PD satisfies d(φ, ψ) = η < E we find that
|φi(s) − ψi(s)| < η2 = 2η/(s2 − s1) for all s ∈ (s1 + η1, s2 − η1), where η1 = 2η/M . In
particular, ψi has no discontinuities in (s1 + η1, s2 − η1).

Proof. Assume, for simplicity, that s1 = 0, s2 = S < τ and that φi(s) = u + s with u > 0 and
u + S < 1. Then M = min{V1(0), 1 − (u + S)}.

Suppose that ψi(s) has one or more discontinuities in (η1, S − η1) and that one of these
discontinuities (caused by m � 1 simultaneous pulses) is at p.

If ψi(p
+) � φi(p), then

d(φ, ψ) �
∫ S

p

|φi(s) − ψi(s)|ds � (ψi(p
+) − φi(p))(S − p) � (ψi(p

+) − φi(p))η1.

The second inequality follows from the fact that φi increases linearly, while ψi increases at
least linearly. The third inequality follows from p < S − η1. Similarly, if ψi(p

−) � φi(p),
then

d(φ, ψ) �
∫ p

0
|φi(s) − ψi(s)|ds � (φi(p) − ψi(p

−))p � (φi(p) − ψi(p
−))η1.

Again, the second inequality follows from the fact that φi increases linearly, while ψi increases
at least linearly. The third inequality follows from p > η1. Then, we can distinguish three
cases.

If both ψi(p
−) and ψi(p

+) are greater than φi(p), then ψi(p
+) = min{1, ψi(p

−) +
Vm(ψi(p

−))}. If ψi(p
+) = 1 then ψi(p

+) − φi(p) = 1 − φi(p) > 1 − (u + S) � M . This
means that

d(φ, ψ) � Mη1 = 2η,

which is a contradiction. If ψi(p
+) = ψi(p

−) + Vm(ψi(p
−)), then ψi(p

+) − φi(p) =
Vm(ψi(p

−)) + ψi(p
−) − φi(p) > V1(0) � M and we get again a contradiction.

In the second case we assume that both ψi(p
−) and ψi(p

+) are smaller than φi(p).
Then φi(p) > ψi(p

+) = ψi(p
−) + Vm(ψi(p

−)) > ψi(p
−) + V1(0) so we get that

φi(p) − ψi(p
−) > V1(0) � M and

d(φ, ψ) � Mη1 = 2η.
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In the third case we assume that ψi(p
−) < φi(p) and ψi(p

+) > φi(p). This implies
that φi(p) − ψi(p

−) = κVm(ψi(p
−)) > κV1(0) � κM for some κ ∈ (0, 1) and that

ψi(p
+) − φi(p) = min{1 − φi(p), (1 − κ)V1(ψi(p

−))} � (1 − κ)M . Therefore

d(φ, ψ) � κMη1 + (1 − κ)Mη1 = 2η.

In all cases we have reached a contradiction and this implies that ψi cannot have any
discontinuities in (η1, S − η1).

This also implies that ψi(s) = u′ + s for s ∈ (η1, S − η1) and in particular that
φi(s) − ψi(s) = u − u′ is constant in this interval. Then, we obtain

d(φ, ψ) �
∫ S−η1

η1

|φi(s) − ψi(s)|ds = |u − u′|(S − 2η1).

Hence, |u − u′| � η/(S − 2η1) � 2η/S. This concludes the proof of the first statement. �

Proposition 14. Assume that φi has a discontinuity at p ∈ (−τ, τ ), such that φi(p
+) =

Hm(φi(p
−)) (i.e. the oscillator Oi receives m simultaneous pulses). Also assume that φi

has no other discontinuities in the open interval (p − δ, p + δ) and that φi(s) �∈ Z for all
s ∈ (p − δ, p + δ). Then, there is E′ > 0 such that if ψ ∈ PD satisfies d(φ, ψ) = η < E′

we find that ψi receives m pulses in the interval (p − η1, p + η1), where η1 = 2η/M and
M = min{φi(p + δ), V1(0)}.

Proof. Since φi has no discontinuities in (p − δ, p) and (p, p + δ) we can apply the previous
result in each one of these intervals. Define M = min{1 − φi(p + δ), V1(0)}. Then for any
ψ with d(φ, ψ) = η < 1

8Mδ we conclude that ψi has no discontinuities in the intervals
W1 = (p − δ + η1, p − η1) and W2 = (p + η1, p + δ − η1), where η1 = 2η/M and
|φi(s) − ψi(s)| < η2 = 2η/δ in the same intervals. Hence,

|ψi(p − η1) − φi(p
−) + η1| < η2,

and

|ψi(p + η1) − φi(p
+) − η1| < η2.

Combining the two inequalities we obtain

2(η1 − η2) < ψi(p + η1) − ψi(p − η1) − Vm(φi(p
−)) < 2(η1 + η2).

If ψi has discontinuities in (p − η1, p + η1) that correspond to reception of κ pulses, then

ψi(p − η1) + Vκ(ψi(p − η1)) + 2η1 � ψi(p + η1)

� ψi(p − η1) + 2η1 + Vκ(ψi(p − η1) + 2η1),

or

Vκ(ψi(p − η1)) + 2η1 � ψi(p + η1) − ψi(p − η1),

� 2η1 + Vκ(ψi(p − η1)) + V ′
κ(ψi(p − η1))2η1 + O(η2).

From |ψi(p − η1) − φi(p
−) + η1| < η2, we obtain the estimate

Vκ(φi(p
−) − (η1 + η2)) < Vκ(ψi(p − η1)) < Vκ(φi(p

−) + (η2 − η1)),

or

Vκ(φi(p
−)) − V ′

κ(φi(p
−))(η1 + η2) + O(η2) < Vκ(ψi(p − η1)),

< Vκ(φi(p
−)) + V ′

κ(φi(p
−))(η2 − η1) + O(η2).
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This implies that

Vκ(φi(p
−)) − V ′

κ(φi(p
−))(η1 + η2) + 2η1 + O(η2)

� ψi(p + η1) − ψi(p − η1)

� 2η1 + Vκ(φi(p
−)) + V ′

κ(φi(p
−))(η2 − η1) + V ′

κ(ψi(p − η1))2η1 + O(η2),

or

−V ′
κ(φi(p

−))(η1 + η2) + 2η1 + O(η2) � ψi(p + η1) − ψi(p − η1) − Vκ(φi(p
−))

� 2η1 + V ′
κ(φi(p

−))(η2 + η1) + O(η2).

Combining inequalities we obtain

− V ′
κ(φi(p

−))(η1 + η2) − 2η2 + O(η2) � Vκ(φi(p
−)) − Vm(φi(p

−)) (A.1)

� V ′
κ(φi(p

−))(η1 + η2) + 2η2 + O(η2)

If κ �= m then the difference |Vκ(φi(p
−)) − Vm(φi(p

−))| > |κ − m|V1(0) is bounded away
from zero. This implies there is some positive E′ < 1

8Mδ such that the inequality (A.1) does
not hold for any κ �= m and η < E′. Therefore, if η < E′ we conclude that κ = m. This
concludes the proof of this part. �

Proposition 15. Assume that φi has a discontinuity at p ∈ (−τ, τ ), such that φi(p
+) = 1 (i.e.

the oscillator Oi receives m � ν(φi(p
+)) simultaneous pulses and fires). Also assume that

φi has no other discontinuities in the open interval (p − δ, p + δ) and that φi(s) �∈ Z for all
s ∈ (p − δ, p + δ). Then, there is E′ > 0 such that if ψ ∈ PD satisfies d(φ, ψ) = η < E′

we find that ψi receives at least ν(φi(p
−)) pulses in the interval (p − η1, p + η1), where

η1 = 2η/M and M = min{φi(p + δ), V1(0)}. If ψi receives m′ pulses with m′ > ν(φi(p
−))

then the last m′ − ν(φi(p
−)) + 1 pulses are simultaneous.

Proof. Since φi has no discontinuities in (p − δ, p) and (p, p + δ) we can apply the previous
result in each one of these intervals. Define M = min{1 − φi(p + δ), V1(0)}. Then for any
ψ with d(φ, ψ) = η < 1

8Mδ we conclude that ψi has no discontinuities in the intervals
W1 = (p − δ + η1, p − η1) and W2 = (p + η1, p + δ − η1), where η1 = 2η/M and
|φi(s) − ψi(s)| < η2 = 2η/δ in the same intervals. Hence,

|ψi(p − η1) − φi(p
−) + η1| < η2,

and

|ψi(p + η1) − 1 − η1| < η2.

Combining the two inequalities we obtain,

2(η1 − η2) < ψi(p + η1) − ψi(p − η1) − (1 − φi(p
−)) < 2(η1 + η2).

If ψi has discontinuities in (p − η1, p + η1) that correspond to reception of κ < ν(φi(p))

pulses, then

ψi(p + η1) � ψi(p − η1) + 2η1 + Vκ(ψi(p − η1) + 2η1),

or

ψi(p + η1) � ψi(p − η1) + 2η1 + Vκ(ψi(p − η1)) + V ′
κ(ψi(p − η1))2η1 + O(η2).

As in the previous proposition, since |ψi(p − η1) − φi(p
−) + η1| < η2, we obtain the estimate

Vκ(φi(p
−)) − V ′

κ(φi(p
−))(η1 + η2) + O(η2) < Vκ(ψi(p − η1))

< Vκ(φi(p
−)) + V ′

κ(φi(p
−))(η2 − η1) + O(η2).
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Therefore

ψi(p + η1) � Hκ(φi(p
−)) + η2 + η1 + V ′

κ(φi(p
−))(η2 − η1) + V ′

κ(ψi(p − η1))2η1 + O(η2).

Since κ < ν(φi(p)) we deduce that Hκ(φi(p
−)) therefore taking η small enough we deduce

that ψi(p + η1) < 1 which is a contradiction. This implies that κ � ν(φi(p
−)). Moreover,

if κ > ν(φi(p
−)) then the last κ − ν(φi(p

−)) + 1 pulses must be simultaneous, otherwise
ψi(p + η1) > H1(0) which gives a contradiction since ψi(p + η1) = O(η). �

Appendix A.2. Proof of proposition 6

For φ ∈ P we define the open ball of radius ρ around φ by

Bρ(φ) = {ψ ∈ P : d(ψ, φ) < ρ}.
We will prove that for any φ ∈ Ŝ there is ρ > 0 such that Bρ(φ) ⊂ Ŝ. This shows that Ŝ is
open.

Since φn(s) = s for s ∈ [0, τ ] (i.e. no discontinuities and no firings) we use proposition 13
to deduce that there is ρ > 0 such that if d(φ, ψ) = η < ρ then there are η1, η2 > 0 such that
|ψn(s) − φn(s)| < η2 for s ∈ (η1, τ − η1). Since ψn(0) = 0 this implies that ψn(s) = s for
s ∈ (0, τ − η1).

Consider now φi for i �= n. We have that φi(s) = θi + s for s ∈ [0, τ ]. Recall that
by definition for φ ∈ S, φi(0) = θi . Then, we deduce that there is ρ ′ > 0 such that if
d(φ, ψ) = η < ρ ′ then there are η′

1, η
′
2 > 0 such that |ψn(s)−φn(s)| < η′

2 for s ∈ (η′
1, τ −η′

1).
We consider the following two cases.

(i) If φi is continuous at 0 for all i �= n, then there is δ > 0 such that all φi are continuous
in (−δ, τ ). This implies that there is a ρ2 > 0 such that if d(φ, ψ) = η < ρ2 then
ψi has no discontinuities in (−δ + η1, τ − η1), where η1 = O(η). This implies that if
we make ρ2 small enough, we can ensure that η1 < δ/2. Therefore, no oscillator fires in
(−τ −δ+η1, −η1) ⊃ (−τ, −η1). Moreover, |φi(s)−ψi(s)| < η2 for s ∈ (−δ+η1, τ −η1)

where η2 = O(η). Choose again ρ2 small enough so that ψi(s) is bounded away from
zero. This implies that �i(ψ) = ∅ for all i �= n and also that ψn has no discontinuities in
(−δ + η1, τ − η1). Therefore, the oscillator On fires only once exactly at 0. This shows
that �n(ψ) = {0}. Finally, |ψi(0) − φi(0)| < η2 therefore by making ρ2 small enough
we can ensure that ψi(0) satisfies the defining relations for Ŝ.

(ii) Assume that at least one of the phases φi , i �= n is discontinuous at 0. Since φn(−τ +) > 0,
the pulse to φi cannot come from φn. In general, assume that there are 1 � m � n − 1
oscillators Oj1 , . . . , Ojm

with jk �= n for all k ∈ {1, . . . , m} such that φjk
(−τ +) = 0. Then

these oscillators receive m − 1 pulses at t = 0 while all the other oscillators (including
On) receive m pulses at t = 0. The oscillator On fires after receiving these m pulses.
Then there is some δ > 0 such that none of the φi have any discontinuities in (−δ, 0).
Then we can apply propositions 13–15 in the interval (−δ, δ) to deduce that there is ρ > 0
such that if d(ψ, φ) = η < ρ then there are η1, η2 = O(η) > 0 such that

(a) ψjk
receive m pulses in (−η1, η1) and they do not fire in the interval (−δ +η1, δ−η1),

(b) ψi , i �= j1, . . . , jm, n receive m − 1 pulses in (−η1, η1) and do not fire in the interval
(−δ + η1, δ − η1),

(c) ψn receives at least 1 pulse in (−η1, η1) and fires exactly once in the interval
(−δ + η1, δ − η1) and

(d) all oscillators have no discontinuities in (η1, τ − η1) and |ψi(s) − φi(s)| < η2 for all
s in this interval.
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Moreover, we can choose ρ small enough so that η1 < δ/2. From (d) we conclude that
no oscillators fire in (−τ + η1, −η1).
Notice then that ψn(0) = 0 and |ψn(s) − s| < η2 for s ∈ (η1, τ − η1). This implies that
ψn(s) = s in the whole interval [0, τ −η1) and in particular that ψn has no discontinuities
in this interval. Therefore no ψi , i �= n fires in (−τ, −η1). Combining this with (a) and
(b) and noticing that −δ + η1 < −η1 we conclude that no ψi , i �= n fires in (−τ, 0]. This
means that �i(ψ) = ∅ for i �= n.
Also, from (a)–(c) we conclude that ψj1 , . . . , ψjm

are the oscillators that fire in (−τ −
η1, −τ + η1) in order to send the corresponding pulses in (−η1, η1). Hence, ψn cannot
fire in (−τ − η1, −τ + η1) and this shows that ψn(−τ +) �= 0.
Also, all ψi are continuous in (η1, τ −η1) hence ψn does not fire in (−τ +η1, −η1) which
means that it does not fire in (−τ, −η1) and from (c) we know that it fires exactly once in
(−δ + η1, δ − η1). Combining everything together we conclude that ψn fires exactly once
at t = 0 and �n(ψ) = {0}.
Notice that since no oscillator fires in (−τ, 0), the oscillators ψi have no discontinuities
in [0, τ ), therefore |ψi(s) − φi(s)| = |ψi(0) − φi(0)| = |ψi(0) − θi | < η2. This shows
that ψi(0) have values that satisfy H1(ψi(0) + τ) > 1 as long as ρ is chosen to be small
enough.

Appendix A.3. Proof of proposition 11

The fixed point φP (17) is depicted in figure 8(a) for parameters (ε, τ ) in region II. Given the
form of each φP

i , i = 1, . . . , n we apply proposition 13 to conclude that there is a ρ > 0 such
that if d(φP , φ) = η < ρ, then there are numbers η1, η2 = O(η) for which

(i) In (−τ + η1, −η1), φi has no discontinuities for any i ∈ {1, . . . , n}, and

|φi(s) − φP
i (s)| < η2. (A.2)

(ii) In (η1, τ − η1), φi has no discontinuities for any i ∈ {1, . . . , n}, and

|φi(s) − φP
i (s)| < η2. (A.3)

(iii) Each φi for i = 1, . . . , n−1 receives n−2 pulses in (−η1, η1). φn receives m � ν(T (τ))

pulses in the same interval and the last m − ν(T (τ)) + 1 of them are simultaneous.

Since φn(0) = 0, if φn has any discontinuities in (0, η1], then φn(η1) − η1 � V1(0). But
we already know from (A.3) that |φn(η1) − η1| < η2. Therefore, if we choose ρ small enough
so that η2 < V1(0) we can exclude the possibility that φn has any discontinuities in (0, τ −η1).
Since φn(0) = 0, this implies that φn(s) = s for s ∈ [0, τ − η1). In turn, this implies that
no φi , i �= n fires in (−τ, −η1). Also, we have established already that no φi , i �= n fires in
(−η1, η1) therefore �i(φ) = ∅.

But, each φi receives n − 2 pulses in (−η1, η1) while φn receives at least ν(T (τ)) � 1
pulses in (−η1, 0]. If n � 4, the only way for all the oscillators (except φn) to receive n − 2
pulses is if they receive the pulses from each other and they receive no pulse from φn. In the
case n = 3, there is also the possibility that oscillators φ1 and φ2 receive one pulse from φ3 but
then φ3 should receive no pulses which is a contradiction. Therefore, for all n, the oscillators
φi , i �= n receive the n − 2 pulses from the other oscillators in the same group and receive no
pulses from φn.

This means that φi fire in (−τ − η1, −τ ]. Also it means that φn does not fire in
(−τ − η1, −τ + η1). Putting everything together we conclude that �n(φ) = {0}. Also
these facts imply that in [0, τ − η1), φi have no discontinuities. Therefore, φi(s) = φi(0) + s

and |φi(s) − Hn−2(τ ) − s| < η2, from where we get that |φi(0) − Hn−2(τ )| < η2.
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The oscillator On receives n− 1 pulses in (−η1, 0]. If n− 1 > ν(T (τ)) (i.e., φP
n overfires

at 0), then the last n − ν(T (τ)) must be simultaneous. This concludes the proof.

Appendix A.4. Some useful inequalities

Proposition 16. For any V ∈ F , τ > 0 and ε > 0,

Hn−1(2τ) − τ − Hn−2(τ ) > 0. (A.4)

Proof. We have

Hn−1(2τ) − τ − Hn−2(τ ) = H1(Hn−2(2τ)) − τ − Hn−2(τ )

= Vn−2(2τ) − Vn−2(τ ) + V1(2τ + Vn−2(2τ)).

The last expression is strictly positive, because V1 is strictly positive and Vn−2 is strictly
increasing. �

Proposition 17. For any V ∈ F , τ > 0 and ε > 0,

g2(τ ) > g3(τ ), (A.5)

where g2, g3 are defined in (16).

Proof. We need to prove that

Hn−1(2τ) > H1(τ + Hn−2(τ )),

or equivalently

H1(Hn−2(2τ)) > H1(τ + Hn−2(τ )).

Since H1 is strictly increasing the last inequality becomes

Hn−2(2τ) > τ + Hn−2(τ ),

or Vn−2(2τ) > Vn−2(τ ), which is true because Vn−2 is strictly increasing and τ > 0. �

Proposition 18. For any V ∈ F , we have that Hn−1(0) < 1 if and only if

g1(0) = H1(1 + Hn−2(0) − Hn−1(0)) > 1. (A.6)

Proof. We have

g1(0) = H1(1 + Hn−2(0) − H1(Hn−2(0))),

= H1(1 − V1(Hn−2(0))),

= 1 − V1(Hn−2(0)) + V1(1 − V1(Hn−2(0))).

Then, since V1 is strictly increasing we obtain that g1(0) > 1 if and only if

1 > Hn−2(0) + V1(Hn−2(0)) = H1(Hn−2(0)) = Hn−1(0).

�
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