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We study a perturbation of the hydrogen atom by small homogeneous static electric and magnetic fields

in a specific mutual alignment with angle approximately �=3 which results in the 1:2 resonance of the

linearized Keplerian n-shell approximation. The bifurcation diagram of the classical integrable approxi-

mation has for most such field configurations the same typical structure that we describe. The structure of

the corresponding quantum energy spectrum, which we describe in detail, is in certain ways an analogue

of the well-known degeneracy found by Herrick [Phys. Rev. A 26, 323 (1982)] for the quadratic Zeeman

effect.
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Introduction.—With minor simplifications, the hydrogen
atom in weak static electric and magnetic fields is a specific
perturbation of the Kepler system of two bodies. Pauli [1]
recognized the importance of this system to quantum me-
chanics and atomic physics and came up with a first order
analysis which is carried out at the level of the linearization
of the Keplerian average of the perturbation. Herrick [2]
and Solov’ev and co-workers [3–5] laid the foundation of
the second order theory.

Our system is described using integrable approximations
with three first integrals that include the energy E and the
Keplerian action N; the latter is the classical analogue of
the principal quantum number n and for the unperturbed
system E ¼ �1=ð2N2Þ. The third integral � depends es-
sentially on the external fields configuration, as we explain
later. The integrals N and � are often called momenta
(because they generate a rotation in appropriate coordi-
nates in the phase space R6) and the map EM ¼
ðN;�; EÞ:R6 ! R3 that assigns to each point in the phase
space R6 the values of the integrals is called the energy-
momentum map.

The basic tool for understanding the classical dynamical
behavior of the system is the stratified image of EM, or
bifurcation diagram. In the bifurcation diagram we depict
the physically accessible values (n;m; e) of EM, and we
distinguish such values based on the topological type of the
fiber of EM at (n;m; e), i.e., of the common level set fN ¼
n;� ¼ m;E ¼ eg. Such fibers are typically three-
dimensional tori T3 or unions of such tori. In the bifurca-
tion diagram the emphasis is on the nontypical (critical)
fibers since they affect the global dynamical properties of
the system and the structure of its energy spectrum.

A recent advancement in the understanding of such
systems has been the uncovering of resonances of the
linearized Keplerian n-shell approximation in Ref. [6]

and independently in Ref. [7]. In the latter work the con-
cept of resonance zones was introduced to describe sys-
tems near an exact resonance.
Presently, systems which are well understood dynami-

cally (at the level of their integrable approximations) in-
clude the two single field limits (Stark and Zeeman effect)
and practically all (near-)orthogonal configurations [7–9].
The latter constitute the 1:1 resonance zone. Despite stud-
ies of other field configurations [10] our understanding of
them remains incomplete.
Results.—Compared to the 1:1 zone, the 1:2 zone cor-

responds to the next most important resonance, and it is
expected and has been found to contain more dynamically
complex systems [7] due to the higher order of the
resonance.
In this Letter we report that although the dynamical

behavior of systems in 1:2 resonance is more complicated
compared to systems in the 1:1 zone, nevertheless there is a
typical 1:2 resonant system. Thus we observe that for most
values of the parameters the stratified image of the (clas-
sical) energy-momentum map and the corresponding
(quantum) energy spectrum have a specific structure that
we describe in detail. The typical quantum n-shell energy
spectrum is presented.
Systems with such structure have generalized good

quantum numbers and corresponding global action coor-
dinates and we explain how the latter are introduced in the
quantum energy spectrum. The existence of global action
coordinates is not ensured even if the system is integrable.
The hydrogen atom in near-orthogonal fields has monod-
romy [8] and thus no global action-angle coordinates for
many field configurations.
Hamiltonian and parameters.—Let F ¼ ðFb; Fe; 0Þ ¼

�E andG ¼ ðG; 0; 0Þ ¼ �jejB represent the electric field
E and the magnetic flux density B. Without the center of
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mass, spin, and relativistic corrections, the Hamiltonian of
our system is (in atomic units)

H3D ¼ 1

2
P2 � jQj�1 þ FeQ2 þ FbQ1 þ 1

2
GðQ2P3

�Q3P2Þ þ 1

8
G2ðQ2

2 þQ2
3Þ

¼ E; (1)

where (Q;P) are canonical coordinates on R6. For a given
value n � 0 of the Keplerian integral N, we introduce the
n-scaled field amplitudes g ¼ Gn2, and f ¼ ðfe; fbÞ ¼
3ðFe; FbÞn3 and related field configuration parameters
[7,8,11],

a2 ¼ g2

s2
; d ¼ gfb

s2
; s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 þ f2b þ f2e

q

� 0;

(2a)

where the combined field strength s is a universal small
parameter. For the angle � between G and F, we have

ðtan�Þ2 ¼ F2
e=F

2
b ¼ f2e=f

2
b ¼ 1þ ð1� a2Þa2=d2: (2b)

Furthermore, from the inequality d2 � ð1� a2Þa2 it fol-
lows that the n-shell parameter space of our system is a
solid cone which we can further restrict as a constant-s disk
with coordinates (d; a2) ([7], Fig. 5). In this disk, systems
with a given resonance are represented by constant-d
lines; for 1:1 (orthogonal fields) and 1:2 we have d ¼ 0
and d ¼ 3=10, respectively.

Keplerian or first normal form (average).—The
Keplerian or n-shell approximation to the system with
Hamiltonian H3D is a 2 degree of freedom Hamiltonian
system. For any given n > 0, it is defined in terms of
dynamical variables x ¼ ðx1; x2; x3Þ and y ¼ ðy1; y2; y3Þ,
which are appropriately rotated [7] combinations of the
angular momentum and the eccentricity (also known as
Laplace-Runge-Lenz) vectors and which satisfy kxk ¼
kyk ¼ n=2. The last relation defines the four-dimensional
phase space S2 � S2. The Poisson algebra generated by
the six components of (x; y) has the standard structure of
soð3Þ � soð3Þ: fxi; xjg ¼ "ijkxk, fyi; yjg ¼ "ijkyk, and

fxi; yjg ¼ 0. The n-shell Hamiltonian on S2 � S2

�Eðx; yÞ ¼ �Eð1Þ þ �Eð2Þ þ � � � ¼ 2n2E� 1;

is obtained, following previous work [7,8,11,12], through
Kustaanheimo-Stiefel (KS) regularization of H3D and an
additional calculation to recover �E from the normalized
KS Hamiltonian.

Resonances.—�E has 2 degrees of freedom and should
be normalized further. We turn to the principal (first) order
term of �E [7]

�Eð1Þ ¼ !�x1 þ!þy1; (3a)

with two frequencies

!� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðg� fbÞ2 þ f2e

q

¼ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2d
p

: (3b)

On S2 � S2, �Eð1Þ defines a linear Hamiltonian flow,
which is a rotation of the two spheres around the axes x1
and y1 with respective frequencies !� and !þ. We can
normalize a second time with respect to this flow. If!� are
in resonance (this flow is periodic), we have an S1 sym-
metry and we need a resonance specific approach. The
same is true near the resonance, i.e., within the correspond-
ing resonance zone.
1:2 system.—Here we study the exact resonance !þ ¼

2!�, i.e., d ¼ 3=10. We begin with describing all 1:2
systems. Introducing two Hamiltonian functions� ¼ x1 þ
2y1 and � ¼ x1 � 2y1, called momenta or actions because
they define periodic Hamiltonian S1 flows on S2 � S2, we

obtain �Eð1Þ ¼!��. The momentum� defines a dynami-
cal symmetry S1

� and is central to our analysis. S1
� acts

diagonally on the factors of S2 � S2 by rotating one of
them twice as fast as the other about their respective axes
y1 and x1 (cf. the recent study [13] of such symmetries).
We normalize and reduce this symmetry using essen-

tially the same universal approach of Ref. [8]. The 1:2
resonant normalized Hamiltonian is expressed in terms of
the dynamical variables, N ¼ 1

2 ðx2 þ y2Þ, �, �, and the

two 1:2 specific cubic polynomials �1 ¼ Re�, �2 ¼ Im�
with � ¼ 23ðx2 þ ix3Þ2ðy2 � iy3Þ. It follows that—unlike
in the 1:1 systems where the second-order theory typically
sufficed—we must, and we do, normalize at least to the
third order, the lowest order in which �1;2 appear. The

resulting energy approximation �E Poisson commutes (to
order 3 in our case) with � and by default,—with N, and
can be expressed in terms of the above invariants.
Furthermore, due to an additional reversal symmetry�2 �
��2, �E is a polynomial in (N;�; �; �1) only. Replacing
N and� for their conserved values n andm, which become
dynamical parameters, �E becomes

�En;mð�;�1Þ ¼ �Escalar
n;m þH n;mð�; �1Þ; (4a)

with �Escalar
n;m ¼ !�mþ � � � which is independent of dy-

namical variables (�; �1), and the essential part

H n;m ¼ s2H ð2Þ þ s3H ð3Þ þ � � � ; (4b)

whereH ð3Þ includes the specific 1:2 resonance variable�1

[14]. Thus we have expressed the original system as a
Hamiltonian system with three dynamical variables
(�; �1; �2). These variables obey the relation

½n2 � ð�� �Þ2=4�½n2 � ð�þ �Þ2�2 ¼ �2
1 þ �2

2; (5a)

and their values are further restricted by the inequalities

n � 0; jmþ �j � n; and jm� �j � 2n: (5b)

We can see that jmj and j�j can be only less than or equal to
m0 ¼ 3n=2, and that j�j reaches m0 when jmj ¼ m1 ¼
n=2. The relations (5) define a 2D surface P1:2

n;m in the 3D
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space (�;�1; �2) that we call the reduced phase space. The
spaces P1:2

n;m (see Fig. 1) are spheres with two isolated

singular points when jmj � m1 and one such point when
m1 < jmj<m0. They are points when jmj ¼ m0.

Energy-momentum map, fibers.—The bifurcation dia-
gram of the energy-momentum map EM can be con-
structed by analyzing �En;m ¼ �Escalar

n;m þH n;m as a

function on P1:2
n;m. Thus the type of the fiber fN ¼ n;� ¼

m;E ¼ eg can be determined by studying the intersections
of the constant-h level sets fH n;mð�;�1Þ ¼ hg with P1:2

n;m

in the space (�; �1; �2), where 2n
2e� 1 ¼ �Escalar

n;m þ h.
Connected components of these intersections and the

corresponding connected components of the fibers in the
initial phase space R6 will be denoted �n;m;e and �n;m;e,

respectively. Any set �n;m;e that corresponds to an equilib-

rium in the reduced space, i.e., for which �n;m;e is a single

point, is called relative equilibrium (RE). Typically �n;m;e

is a smooth circle and �n;m;e is a smooth T3. The analysis

of the nontypical (critical) intersections gives the following
types for �n;m;e, its preimage on S2 � S2, and finally for

�n;m;e.

�,R6 On S2 � S2 �,Pn;m

S1 RE Point Point space m ¼ �m0; � ¼ 0
S1 RE Point Cuspy point �� ¼ m ¼ �m1

Short T2 RE Short S1 RE Any other singular point c
T2 RE S1 RE Regular point

S1 � curlT2 curlT2 Singular S1 3 c
S1 � biT2 biT2 Figure eight

Regular T3 Regular T2 Regular S1

Among the critical components � of the EM map fibers,
we recognize the usual four S1 RE known as Keplerian
ellipses [8,12], T2 RE, and bitori biT2 [8] that appear also
in the 1:1 zone. The important 1:2 specific components are
short REs and curled tori curlT2 [15,16]. Short REs are
circular orbits in S2 � S2 of the S1

� action with period �
instead of 2�. A curled torus consists of an unstable short
RE together with its stable and unstable manifolds; see
Fig. 2 for a representation.

Stratified range of EM.—We now turn to the study of a
particular 1:2 system with a2 ¼ 1=2 (and � � 0:3�). This
system is structurally stable within a large interval of a2

including those with larger a2 (smaller �). Furthermore
this system is typical of most 1:2 resonant systems.
The setRn of regular values of EM for a fixed value of n

consists of three parts which we call left and right ‘‘legs’’
and ‘‘top’’ (see Fig. 3). Each leg is attached to the top

FIG. 2. Bitorus biT2 (left) and curled torus curlT2 (right).

FIG. 1. Intersections (thick black lines) with f�2 ¼ 0g of the
second reduced phase spaces P1:2

n;m of the 1:2 resonant systems.

We show intersections for seven different values of m starting at
m ¼ m0 and ending at m ¼ �m0. Each such intersection lies on
a plane with coordinates (�;�1).

FIG. 3. (a) Joint energy-momentum spectrum (lattice dots) and
classical energy-momentum bifurcation diagram (lines) of the
1:2 resonant system with s ¼ 1=200, a2 ¼ 0:5, and d ¼ 0:3 for
n ¼ 40 and @ ¼ 1. (b) Decomposition of the bifurcation diagram
in which the three regions have been separated for clarity and
where we indicate the type of the fiber in S2 � S2 along the
boundary of each region.
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along the respective left and right curlT2 wall (thick dark
gray line) and along the common biT2 wall (thick light
gray line) in the center, where all three are joined together.
Below the biT2 wall, the legs overlap necessarily forming a
‘‘flap’’ over which each regular fiber has two components.

Joint spectrum.—The system on S2 � S2 with
Hamiltonian H n;m is quantized by replacing x and y for

their quantum analogues, and the joint spectrum of com-

muting quantum operators (N̂; �̂;Ĥ ) is computed
straightforwardly in the n-shell basis. This spectrum gives
a second normal form approximation to that of the initial
system with good quantum numbers n and m. In Figs. 3(a)
and 3(b), dots within Rn mark quantum states. We see in
Fig. 3(b) that in each of the three parts of Rn, the spectrum
forms a regularZ2 lattice. The left and right lattices overlap
inside the flap area.

Generalized global action.—The passable curlT2 walls
allow us to relate the Z2 lattices in each part of Rn thus
defining a third global good quantum number k. This is
done as follows (Fig. 4). Starting in the top part, we define
k locally using a double elementary cell. We transport the
cell easily left and right and then bring it down across the
curlT2 walls. Note that the latter operation is possible only
for a double cell [15]. At each step we extend the definition
of k until every quantum state is reached. The classical
analogue of this procedure connects coordinate systems on
all regular tori and defines the third global generalized
action.

Conclusion and perspectives.—We gave a complete de-
scription of the most typical, exactly 1:2 resonant pertur-
bation of the hydrogen atom. We expect that spectroscopy
will produce the typical described structure of the energy
spectrum for field configurations that give 1:2 resonance,
i.e., for angle � � 60	 between the two fields. Comparing
to Ref. [2], which began the study of the 1:1 systems, we
would like this Letter to initiate a comprehensive analysis
of the rest of the parameter space of this fundamental
atomic system.
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FIG. 4 (color online). Detail of the bifurcation diagram.
Dashed lines join states with the same value of the global
quantum number k defined by the parallel transport of the
elementary cell; below the curlT2 wall these lines branch in two.
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