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Abstract

We consider perturbations of the hydrogen atom by sufficiently small
homogeneous static electric and magnetic fields in near-orthogonal
configurations. Normalization of the Keplerian symmetry reveals that in the
parameter space such systems belong in a ‘zone’ of systems close to the 1:1
resonance, the latter corresponding to the exactly orthogonal configuration.
Integrable approximations obtained from second normalization of systems in
the 1:1 zone are classified into several different qualitative types, many of which
possess nontrivial monodromy. We compute monodromy of the complete three-
dimensional energy–momentum map, compare the joint quantum spectrum to
classical bifurcation diagrams, and show the effect of second normalization to
the joint spectrum.

PACS numbers: 32.60.+i, 02.30.Ik, 02.40.Yy, 03.65.Sq, 03.65.Vf, 45.05.+x

1. Introduction

The general problem of describing different perturbations of the hydrogen atom in the electric
and magnetic field was posed by Pauli [1] who worked at the level of the first-order perturbation
theory. It was Solov’ev [2] and Herrick [3] who, on the example of the quadratic Zeeman
effect, demonstrated the necessity of the second-order perturbation theory for the qualitative
understanding of these systems.

A number of studies for specific field configurations followed and a significant step
forwards was made in [4] where all orthogonal field perturbations were shown to be of three
basic generic types. Namely, systems near the Zeeman and Stark limits similar to those studied
in [2, 3], and systems with monodromy. There has been a significant number of studies of
this problem from different points of view [5–10]. Here we mention only the most directly
related work. A few more distant references are [11–17]. A thorough review of all works
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on other aspects of this problem (ionization, chaotic regime, purely quantum computations of
low-lying states, etc) is beyond the scope of our work.

The significance of [4] goes beyond the strictly orthogonal case: this work has essentially
shown the way to classify all perturbations of the H atom by (sufficiently weak, homogeneous
and static) electric and magnetic fields of arbitrary mutual orientation, and thus to complete the
study initiated by Pauli in 1926 [1]. In the spirit of [4], we construct integrable approximations
to these systems using a second-order perturbation theory (and going to higher orders if
necessary). Within such an approximation, the phase space is foliated into fibres which are
common level sets of the integrals of motion and typically—in three degree of freedom (DOF)
systems—three-dimensional tori. The topological properties of this (in general singular)
fibration, and in particular monodromy, give the qualitative characteristics of the original
perturbed nonintegrable system [18, 19].

Monodromy is a global topological property of integrable [20] and near-integrable [18, 19]
Hamiltonian systems. It signifies the absence of smooth global action variables or equivalently
the absence of good global quantum numbers for the quantized system. Monodromy is
usually associated in 2DOF systems to the existence of focus–focus singularities [21–23] or
deformations of such singularities [24]. In [4] it was shown that in the hydrogen atom in
orthogonal fields there is a parameter region in which the system has monodromy. In [25] the
appearance of monodromy in the system was related to Hamiltonian Hopf bifurcations.

More recently it was shown in [26–28] that near-orthogonal configurations can be
considered as deformations of the strictly orthogonal ones which break the specific Z2

symmetry of the latter. Such deformed systems can be of different qualitative types and can
have monodromy of different kinds. Furthermore, in [26] we provided a general framework
to classify all perturbations. In the parameter space of all perturbed systems we conjectured
the existence of resonant k1 : k2 zones within which the system can be approximated using a
detuned resonance characterized by two positive integers k1 and k2. Note that these resonances
and respective quantum systems were studied independently in [29]; the zone concept and the
corresponding approach in [26] are new.

The near-orthogonal field configurations correspond to the 1:1 zone which was
characterized initially in [26, 27]. We give a complete description in this paper. We
consider the hydrogen atom in near-orthogonal fields as a deformation of the case of exactly
orthogonal fields. Note that a very similar approach has been used previously in [24] to
study monodromy in a family of spherical pendula with quadratic potentials which can be
considered as deformations of the usual spherical pendulum with linear gravitational potential.
Other model Hamiltonian systems with properties similar to those of the perturbed hydrogen
atom, notably with the same reduced phase space S

2 × S
2 (see section 3), have been analysed

before: in [30] and more recently in [31] the authors study monodromy of a system of
coupled angular momenta; in [32] the authors obtain similar results for the geodesic flow on
four-dimensional ellipsoids.

Uncovering monodromy in many physical systems such as the CO2 molecule and the
hydrogen atom was a major achievement of the past decade. When present, monodromy
becomes the organizing centre of the whole joint spectrum of the quantum system. The physical
manifestations of this global phenomenon on the properties of the quantum eigenstates are
currently actively investigated. Classifying and describing perturbed hydrogen atom systems
with different types of monodromy is, in this context, an important development.

1.1. Hamiltonian and its parameterization

In the limit of the infinite proton mass and with spin and relativistic corrections neglected, the
hydrogen atom perturbed by electric and magnetic fields becomes a quantum realisation of a
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Figure 1. Electric and magnetic fields F and G.

specific class of perturbations of the Kepler system with Hamiltonian (in atomic units)

H3D = 1

2
P2 − 1

|Q| + FeQ2 + FbQ1 +
1

2
G(Q2P3 − Q3P2) +

1

8
G2(Q2

2 + Q2
3) = E, (1)

where Q are Cartesian coordinates in R
3 and P are their conjugate momenta. The 3-vectors

F = (Fb, Fe, 0) and G = (G, 0, 0), see figure 1, represent the electric and the magnetic field,
respectively. Specifically, F = −E and G = −B where E and B are the electric field and
magnetic flux density respectively. We remain at sufficiently large negative physical energy E
and consider bounded motion near the origin.

In order to describe the parameter space we introduce the n-scaled field amplitudes3

g = Gn2, (fe, fb) = 3(Fe, Fb)n
3. (2)

Here n is the value of the Keplerian integral N given by

H0 = 1

2
P2 − 1

|Q| = − 1

2N2
. (3)

It corresponds to the principal quantum number. Note that N is not an integral of motion for
the original Hamiltonian H in (1) but becomes such only after normalization (and truncation),
which we call first or Keplerian normalization. Furthermore define

s = (
g2 + f 2

b + f 2
e

)1/2
> 0, a2 = g2

s2
, d = gfb

s2
, (4a)

that satisfy

d2 � (1 − a2)a2. (4b)

For each fixed s > 0, (4b) defines a disc D in the parameter plane with coordinates (d, a2).
Therefore, in coordinates (s, d, a2) with s > 0 the parameter space of all perturbations of the
hydrogen atom by electric and magnetic fields is described as a solid cylinder R>0 × D. The
parameter s plays the role of a universal parameter which represents the total strength of the
perturbation and which should be kept small in order for all normalizations to give a realistic
approximation of the dynamics. The use of such universal scalings goes back to [4, 33].

1.2. Normalization and reduction

The normalization of the Hamiltonian in (1) involves the Kustaanheimo–Stiefel regularization
of the singularity of the Keplerian potential, and then two successive normalizations that give
an integrable Hamiltonian system. The results of this procedure are given in section 3 and the
procedure itself is detailed in [34].

3 Note that in [26] we denoted by (fe, fb, g) the energy-scaled fields.
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Table 1. Notation.

G,Fe, Fb Components of the magnetic and electric fields
g, fe, fb n-scaled components of the magnetic and electric fields, see (2).
s, a2, d Reparameterization of the system, see (4a).
N, n Keplerian action and its value, see (3).
E First normalized energy, see (14), (15).
S

2 × S
2 The phase space for the first normalized and reduced system defined by E,

see section 3.1.
�E First normalized and reduced energy correction function, see (5), (15).
�E(1), �E(2) First- and second-order terms in the first normalized energy correction function �E,

see (15b), (15c), and (21).
μ, m Second integral (momentum) and its value, see (25).
ω+, ω− Frequencies of rotation on S

2 × S
2, see (18).

�E Second normalized and reduced energy correction function, see (29), (30), table 5.
�E (1), �E (2) First- and second-order terms in the second normalized energy correction function �E ,

see (30) and table 5 respectively.
Pn,m Second reduced phase space, see section 3.3; N, μ are constant on Pn,m

with values n, m respectively.
ν, π1, π2 Coordinates on R

3 ⊃ Pn,m, see (25) and section 3.3.
H, h The Hamiltonian function on Pn,m and its value. H is defined as the nontrivial part of �E , i.e.,

it does not contain the terms of �E that depend only on n,m and are thus constant on Pn,m.
T

2
[1], T

2
[2], T

2
bi Singly pinched torus, doubly pinched torus, bitorus, see figure 7.

The first of these normalizations is made with respect to the Keplerian integral N and it
is carried out to second order. Up to the freedom in the choice of generators in the normal
form algorithm which does not affect any final physical results, see [34–37], our normal form
agrees with that by Solov’ev [2]. Thus we obtain the first normalized energy E which has the
form (see also table 1 for the notation)

E = − 1

2n2
+

1

2n2
�E. (5)

The quantity �E is a Hamiltonian function and is called the first normalized energy correction
function. Since �E commutes with N we can use the integral N to reduce the problem from
three degrees of freedom (DOF) to 2-DOF. When doing reduction we do not change �E but
we just express it in terms of different dynamical variables. These variables are functions in
phase space that commute with N. In the case of the hydrogen atom this reduction is well
known, see, for example, [4]. Thus after reduction �E becomes a Hamiltonian function on
the first reduced phase space S

2 × S
2. The coordinates on S

2 × S
2 are the Pauli vectors (X, Y)

that satisfy ‖X‖ = ‖Y‖ = n/2 and their components commute with N, see section 3.1. The
value of N is constant n on S

2 × S
2. Although the first normalized energy correction and its

reduced form are formally different functions, since they are defined on different spaces, we
denote them both by �E.

A specific characteristic of the system defined by �E on S
2 × S

2 is that the lowest
degree nontrivial term �E(1) (21) in �E, generates a linear S

1 action on S
2 × S

2 which is
the simultaneous rotation of the two spheres about an axis with frequencies ω− and ω+ that
depend on the fields4. In the case of strictly orthogonal fields ω− = ω+, thus we have an 1:1

4 In the case of only magnetic field, this symmetry is identified with the axial symmetry of the problem and the
respective generator is the projection of the angular momentum along the symmetry axis.
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resonance. We denote the generator of this resonant 1:1 S
1 symmetry by μ. In general, we

have an approximate dynamical S
1 symmetry whose existence was implied already by Pauli

and so it will be called Pauliean symmetry. For near-orthogonal fields, the lowest order �E(1)

can be written, up to a factor, as μ + (d + O(d2))ν, where d � 1 is called detuning. The set
of systems near the 1:1 resonance is called the 1:1 zone, see [26].

Normalization of �E with respect to μ gives the integrable second normalized energy
correction function �E . The integrals are the two momenta N and μ,5 with values n and m
respectively, together with �E . Reduction of the 1:1 S

1 symmetry generated by μ defines
an 1-DOF Hamiltonian system on the reduced space Pn,m (see section 3.3) with Hamiltonian
function �E . Note that we denote the second normalized energy correction function on
S

2 × S
2 and its reduced form on Pn,m by the same symbol �E . N,μ are constant on Pn,m with

values n,m respectively. Finally, from �E we obtain a simpler Hamiltonian H by removing
the ‘constant’ (on Pn,m) terms, i.e., terms that depend only on the dynamical constants n and
m. Such terms are not important for the qualitative study of the fibration of the phase space.
The value of H is denoted by h and will be called, for brevity, energy.

1.3. Qualitative characterization of different perturbations

Our analysis is built on the global integrable approximation to the system with Hamiltonian
in (1). As explained in section 1.2, and in more detail in section 3, this approximation is
obtained by normalization. We study the combined level sets of first integrals: the energy H
and the two momenta N,μ. We call these sets fibres. They may consist of one or several
invariant connected components. For each member of the parametric family of systems
with Hamiltonian in (1), we describe how fibres ‘fit together’ in the classical phase space.
In mathematics, the entire family of the fibres of the system is described as a singular
Lagrangian fibration [39]. The base space of the fibration is, by definition, the range of the
energy–momentum map

EM = (N,μ,H), (6)

with values (n,m, h). In our case the range is a domain in R
3. The base space is stratified into

sets of regular and critical values of EM. Such stratified range of the EM map is often called
bifurcation diagram BD [39, 40]. This terminology is due to the fact that such diagram shows
how the topology of the fibres changes as their image moves in the range of the EM map.
Topologically different diagrams represent qualitatively different fibrations, i.e., qualitatively
different perturbations of the hydrogen atom.

Note that the concept of BD has to be further developed in order to be used in our study. A
typicalBD consists of one or several lower cells separated by walls [26, 41]. Each cell includes
regular EM values and may have an internal structure, such as internal walls or isolated sets of
critical values which make it non-simply connected, see figure 2 left. Moreover, a regular EM
value may represent a fibre consisting of several connected components. In such situations
we think of the BD as of a surface with several leaves (or unfolded lower cells) where points
on each leaf represent single connected components and we unfold the stratified EM range
into a covering surface that we call unfolding surface or unfolded BD [26]. In our case, such
unfolding is needed for systems of type B (see table 3); we illustrate it in figure 2(right) and
figure 3. The two cells of this surface are glued along a one-dimensional segment of critical
EM values C.

5 Functions like N and μ that have periodic flows with constant period are called momenta or actions [38]. Physicists
often call actions both the functions and their values.
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a c a bc

b

Figure 2. Monodromy of systems with non-simply connected unfolded cells: systems of type A1
or A2 (left) and B1 (right). Point c in the leftmost image is an isolated critical value which lifts to a
pinched torus; other points and paths are similar to those in figure 3. Reproduced with permission
from [26].

a bc

b

a c b

a c b

b

Figure 3. Schematic representation of two overlapping lower cells in the EM image (bottom left)
and the corresponding two-sheet cell unfolding surface (top left) for systems of type B0 in table 3.
Points a, b′, b′′ and c lift each to a connected component (right); b′ and b′′ correspond to the same
EM value b. Double line marks branching boundary; bold solid line marks a path connecting a, c

and b; corresponding change in the topology of the fibre is illustrated on the right. Reproduced
with permission from [26].

1.4. Relation to the quantum mechanical system

Concluding the introduction, we like to point out that this work applies directly to the
description of the real quantum atomic system whose classical analogue we study. The
relation is provided by the quantum–classical correspondence based on the Einstein–Brillouin–
Keller (EBK) quantization principle known also as torus or action quantization. So we invite
the reader to keep this relation in mind while going through the necessary details of the
analysis based largely on the ‘abstract’ theory of nonlinear Hamiltonian dynamical systems
and corresponding toric fibrations.

In quantum mechanics, we characterize the lattice [30, 42] formed within the range of
the EM by the joint spectrum of mutually commuting operators which correspond to the
first integrals. We describe the lattice qualitatively and relate this description to that of the
classical system by superimposing the lattice on the bifurcation diagram. Its essence again
is in considering all states of the system together, i.e., for all possible values of energy and
momenta, and to characterize the lattice globally.

According to the EBK quantization principle, quantum energies correspond to those tori,
for which the values of local classical actions are integer multiples of h̄ plus a small correction.
So the joint quantum spectrum is locally isomorphic to a three-dimensional regular orthogonal
lattice Z

3 where the distance between adjacent nodes is h̄. In our case the integrals N and μ

are globally defined actions, see footnote 5. The energy H is not an action, because its flow
is not periodic. So we have to construct the third action locally. For the quantum system
this means that we have two global quantum numbers n and m but the third quantum number
may or may not be defined globally. To verify whether a third global number can be defined
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m3210−1−2−3−4

h

1

0

−1

Figure 4. The joint spectrum for the 1:(−1) resonance. The nontriviality (defect) of the lattice
can be uncovered through parallel transport of an elementary cell; it corresponds to monodromy 1.

we consider a three-dimensional elementary cell, i.e., a volume element defined by adjacent
points in the joint spectrum, and parallel transport it along a closed path in the connected
domain of regular EM values. If for all closed paths the cell comes to itself after making one
tour then it is possible to define such global number therefore our lattice is just a deformed Z

3

lattice.
The situation becomes more interesting when we have a non-simply connected set of

regular EM values. In this case the system has monodromy. As a consequence, no smooth
action coordinates can be globally defined. The corresponding joint spectrum is not a regular
lattice. Instead it can be described as a lattice with one or more elementary defects, see [42].
Recall from section 1.3 that we may have several connected sets of regular EM values. In
such situations we do the above construction within each connected set (unfolded lower cell).

A simple example that is relevant to the hydrogen atom is the 1:(−1) resonance system
[41, 43]. This system has an unstable focus–focus equilibrium, which is represented by the
isolated critical energy–momentum value (0, 0) in figure 4. Also shown in this figure is an
elementary cell which is parallel transported around (0, 0) and which does not come back to
itself after making one tour. So the lattice in figure 4 has a defect. We will observe exactly
the same behaviour in the perturbed hydrogen atom.

Note that there may be other complications of the joint spectrum which are characterized
in terms of generalized quantum monodromy (fractional monodromy, bidromy) [41, 43–46].
Such cases do not appear in the present system with near-perpendicular fields but they do
appear for other field configurations [26].

1.5. Structure of the paper

The main results of the paper concerning the stratification of the 1:1 zone and the properties of
the different types of strata are presented in section 2. In section 3, we give a brief summary
of technical results of normalization and reduction which are used to support the statements
in section 2. In section 4, we give the basic points of the analysis of the reduced Hamiltonian
H that we use to obtain the BD of our system and we demonstrate this type of analysis in a
particular case. Finally, in section 5 we compute quantum lattices for certain concrete strengths
of the perturbing fields and relate them to the classification in section 2. This provides concrete
quantum illustrations of the results in section 2.

2. Results: structure of the 1:1 zone

To study all near-orthogonal perturbations with Hamiltonian (1) which constitute the 1:1
zone, we construct the integrable approximation using a detuned 1:1 resonant normal form, as

7
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+

−

ZS

3
2 − 1 1

2

4:3

3:4

a2

d

F1

F2

+

ZS

A0

A1,1

A2

B1B1

B0B0

A1 A1

Figure 5. Structure of the 1:1 zone. Different dynamical strata of the zone (left) correspond to
vertices of the genealogy graph (right). Vertical edges of the graph represent bifurcations with
broken symmetry of order 2, other edges correspond to Hamiltonian Hopf bifurcations.

described in section 3. We use the second order of this normal form to describe the structure
of the 1:1 zone. In addition to the idea of the zone [26], two further concepts are essential
here, namely the BD type in the EM space and the dynamical stratum in the parameter space.
Each dynamical stratum contains systems with the same type of BD. Our notation for strata
is derived from that of BD types as will be explained later.

Structurally stableBD types. The three-dimensionalBD in the space (n,m, h) can be analysed
by considering constant n sections BDn. Such sections correspond to the entire n-shells of
the H atom. Table 3 lists all structurally stable BDn types that we encounter in the 1:1 zone.
Because BDn varies piecewise smoothly with n, for any type of BDn0 in table 3 there is an
interval (n′, n′′) � n0 such that all BDn with n ∈ (n′, n′′) have the same type. In other words,
the three-dimensional BD is locally a cylinder over BDn0 .

The 1:1 zone. In the parameter space—a cylinder in parameters (s > 0, d, a2)—the exact 1:1
resonance corresponds to d = 0 and the extent of the detuning is given by |d|. The range of
the validity of the detuned 1:1 resonant normal form can be given by the inequality [26]

|d| � dmax(s), where 0 < dmax(s) � 1
2 .

After fixing a suitably small s > 0, we obtain the parameter disc D with coordinates (d, a2),
where all the systems in the 1:1 resonance zone are represented by a stripe with the line
segment {d = 0, a2 ∈ [0, 1]} in the middle, see figure 5.

Strata. Among these systems, we distinguish several sets which we call dynamical and
symmetry action strata. The symmetry stratification (section 2.1) was originally given in
[33, 47]. In this work, we further classify each symmetry stratum into dynamical strata, see
section 2.2. The equivalence of systems within the same dynamical stratum is defined in
section 2 of [26]. The idea there is to study an integrable approximation (normal form) of
the system, describe the fibration given by the approximate integrals and compare the BDn’s
for different systems. Within the dynamical stratum, systems should be qualitatively the
same, i.e., have the same BDn’s, and more specifically have the same type of critical fibres
and corresponding sets of critical values. As a consequence systems in the same dynamical
stratum have the same monodromy, see section 2.3.

Scaling properties. Analysis of the normal form shows that the effective perturbation parameter
for the 1:1 zone is (ns). It follows that in order to describe the 1:1 zone we only have to

8
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Table 2. Symmetry strata of the constant s section Ds of the parameter space of the family of
perturbations of the hydrogen atom with Hamiltonian in (1), cf figure 5. Dimensionless parameters
a2 and d are defined in (4a).

Stratum Dim Symmetry Definition

S 0 C∞v × T a = 0
Z 0 C∞h ∧ Ts a = 1
‖ 1 C∞ ∧ Ts d2 = a2(1 − a2), a2 ∈ (0, 1)

(SZ) 1 Z2 × Ts d = 0, a2 ∈ (0, 1)

Generic, G 2 Ts 0 < d2 < a2(1 − a2), a2 ∈ (0, 1)

consider (ns) instead of n and s individually. As (ns) � 1 varies, the dynamical stratification
of the 1:1 zone remains qualitatively invariant, although the size and shape of different strata
in the parameter disc D with coordinates (a2, d) may change. In particular, the size of the
dynamical strata along the d-direction scale almost linearly with (ns), see (7); this property
is specific to the 1:1 zone. This implies that knowledge of the dynamical strata, and thus of
the possible BDn types, for fixed values of n and s gives all possible such types for any other
values of n and s.

The scaling properties of the 1:1 system allow us to consider only one constant s section
of the parameter space and a fixed value of n for all BDn’s. Our main result is a complete
description of the dynamical strata and the types of BDn’s in such constant s section. Since we
study exclusively constant n sections of the bifurcation diagram, in the following we denote
such sections simply BD.

2.1. Symmetry stratification of the 1:1 zone

The systems within each symmetry stratum are invariant with respect to the same symmetry
group, see table 2 which summarizes results from [33, 47]. For each symmetry stratum we
describe the symmetry group by giving a set of generators.

Systems with only electric field F define the zero-dimensional Stark (S) stratum. They
have symmetry C∞v × T . Here T is the order 2 group {1, T } where T denotes the time
reversal operation (Q, P) → (Q,−P). C∞v consists of rotations about the axis defined by F

and reflections through all planes that contain the same axis. For each s > 0 the S symmetry
stratum is defined by a2 = 0, d = 0.

Systems in the zero-dimensional Zeeman (Z) stratum, i.e., with only magnetic field G

have symmetry C∞h ∧ Ts . Here Ts is the order 2 group {1, Ts} where Ts = T ◦ σ denotes time
reversal T and reflection σ through a plane that contains the axis defined by G. C∞h consists
of rotations about the axis G and reflections σh through the plane that is perpendicular to G and
passes through the origin. The complete symmetry group is obtained by combining (denoted
by ∧) the generators of the C∞h and Ts groups. The defining equations of the Z stratum are
a2 = 1 and d = 0.

The one-dimensional parallel (‖) stratum has symmetry C∞ ∧ Ts , i.e., the same as Z
stratum except reflections σh. The ‖ stratum is defined by d2 = a2(1 − a2) and a2 ∈ (0, 1).

Systems with perpendicular electric and magnetic fields form the one-dimensional (SZ)
stratum defined by d = 0 and a2 ∈ (0, 1). Such systems have discrete symmetry Z2 × Ts of
order 4, where Z2 = {1, σh}.

Finally, all the other systems form a two-dimensional generic symmetry stratum G. Their
residual symmetry is the order 2 group Ts .

9
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2.2. Dynamical stratification of the 1:1 zone

First we describe two-dimensional dynamical strata in the parameter space D. Such strata
belong in the generic symmetry stratum and they are open in D. Therefore they represent
structurally stable systems. Since the structure of the zone is symmetric with respect to the
reflection d �→ −d, we consider only the strata in the positive semidisc D+ = D ∩ {d > 0}.
For (a2, d) ∈ D+ the two-dimensional dynamical strata are defined with the help of the
functions

F1(a
2) = 1

4 (1 − 2a4)(ns) + O(ns)3, (7a)

F2(a
2) = 1

4 (1 − 4a2 − 2a4)(ns) + O(ns)3, (7b)

and they are (see figure 5)

A′
1 = {|F2(a

2)| < d < F1(a
2)},

A′′
1 = {|F1(a

2)| < d < −F2(a
2)},

A1,1 = {0 < d < min(F1(a
2),−F2(a

2))},
B ′

1 = {0 < d < F2(a
2)}, (8a)

B ′′
1 = {0 < d < −F1(a

2)},
A0 = {max(F1(a

2),−F2(a
2)) < d < dmax}.

Their notation is derived from the type of their BD given in table 3. Some two-dimensional
strata in D+ consist of several connected components. The components near the Stark and
Zeeman configurations are marked respectively by ′ and ′′, see figure 5. For example systems
in the A′

1 and A′′
1 dynamical strata have BD’s of type A1. Note that in figure 5 the A1,1

stratum is shaded dark grey, the A1 strata are shaded grey and the rest are left white. All these
dynamical strata persist under small deformations of the Hamiltonian. Thus we still find them
if we consider higher-order terms of the normalized Hamiltonian.

The boundary of each two-dimensional dynamical stratum is a union of one- and zero-
dimensional dynamical strata. Among those we consider only the dynamical strata that are
characterized by specific symmetries and therefore persist for all orders of the normalized
Hamiltonian.

The zero-dimensional dynamical strata S and Z are defined entirely by their symmetry,
i.e., they coincide with the symmetry strata S and Z described in section 2.1. Both lie in the
1:1 zone. The respective Stark and Zeeman systems have been studied historically first. The
S stratum is dynamically unique, i.e., its BD is different from that of neighbouring systems in
the generic and (SZ) symmetry strata. Although the Z stratum is distinguished by symmetry,
it has the bifurcation diagram of the type B0 (see table 3), just as the neighbouring systems in
the dynamical stratum B ′′

0 .
The one-dimensional (SZ) ⊂ D symmetry stratum belongs entirely in the 1:1 zone. It is

further dynamically stratified into three one-dimensional parts,

B ′
0 = {d = 0, 0 < a2 <

√
3/2 − 1},

A2 = {d = 0,
√

3/2 − 1 < a2 <
√

1/2}, (8b)

B ′′
0 = {d = 0,

√
1/2 < a2 < 1}.

Near S and Z, the 1:1 zone also includes the parts of the symmetry stratum ‖ which are also
further stratified dynamically. For (a2, d) ∈ ∂D+ (the upper half of the ‖ symmetry stratum)

10
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Table 3. Qualitatively different BD’s of systems in the 1:1 zone. In the second column we show a
constant-n section of the bifurcation diagram. The horizontal and vertical axes of BD’s represent
m and h respectively. In the fourth and fifth columns we give the symmetry and dynamical strata
respectively that contain systems with the given BD, see also figure 5. In the fourth column the
symbol G stands for the generic stratum, see section 2.1. The dynamical strata are defined in
section 2.2. Monodromy is described in detail in section 2.3.

BD type BDn Comments Symm. strata Dyn. strata

A0 The BD consists of a single lower cell.
Trivial monodromy.

G, ‖ A0, ‖A′
0, ‖A′′

0

A1 The BD contains one isolated critical
value o that corresponds to a simply
pinched torus T

2
[1] × S

1. Non-trivial
monodromy.

G, ‖ A′
1, A

′′
1, ‖A′′

1

A1,1 The BD contains two isolated critical
values o−, o+ that correspond to simply
pinched tori T

2
[1] × S

1. Non-trivial
monodromy.

G A1,1

A2 TheBD contains an isolated critical value
o that corresponds to a doubly pinched
torus T

2
[2] × S

1. Non-trivial monodromy.

(SZ) A2

B1 The unfolded BD contains two partially
overlapping unfolded lower cells glued
along a line. Non-trivial monodromy.
Both BD’s depicted here are equivalent.
The top appears in the B ′

1 dynamical
stratum and the bottom in the B ′′

1 and
‖B ′′

1 dynamical strata.

G, ‖ B ′
1, B

′′
1 , ‖B ′′

1

B0 The unfolded BD consists of three
unfolded lower cells glued along a line;
two of the cells overlap completely (dark
shade). Trivial monodromy. Both BD’s
depicted here are equivalent. The top
appears in B ′

0 and the bottom in the B ′′
0

and Z dynamical strata.

(SZ), Z B ′
0, B

′′
0 , Z

A∗
0 The unfolded BD consists of one

unfolded lower cell that partially
self overlaps. Trivial monodromy.
Unfolding a BD of type A∗

0 gives a BD
of type A0.

‖ ‖A∗
0

S The unfolded BD consists of one
unfolded lower cell that self-overlaps.
Trivial monodromy. This is a special case
of A∗

0 with extra Z2 symmetry.

S S

we have the following dynamical strata:

‖A∗
0 = {(a2, d) ∈ ∂D+, 0 < d < F2(a

2), a2 < 1/2},
‖A′

0 = {(a2, d) ∈ ∂D+, F1(a
2) < d < dmax, a

2 < 1/2},
‖A′′

0 = {(a2, d) ∈ ∂D+, |F2(a
2)| < d < dmax, a

2 > 1/2}, (8c)

‖A′′
1 = {(a2, d) ∈ ∂D+, |F1(a

2)| < d < |F2(a
2)|a2 > 1/2},

‖B ′′
1 = {(a2, d) ∈ ∂D+, 0 < d < |F1(a

2)|, a2 > 1/2},

11
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2.3. Topology of BD and monodromy

The most important qualitative difference between the different types of BD’s in table 3 is the
existence of different unfolded lower cells. Further difference can be given by the topology
of each cell, notably whether it is simply connected or not, and by the nature of the critical
values involved and the respective critical fibres. The torus bundle over the regular interior of
a non-simply connected cell has nontrivial monodromy. This makes monodromy an important
characteristic of the cell.

A0 systems are the most simple: within their bifurcation diagram, the image of the set of all
regular tori (shaded grey in table 3) is simply connected. These systems have no monodromy
and can be described using global action–angle variables. Other systems with global action–
angle variables but with more complicated BD’s are B0, A

∗
0 and S. The A1, A1,1, A2 and B1

systems have monodromy of different kinds described here.

2.3.1. Cycle bases on regular tori. Recall that the integrable approximation of the
original Hamiltonian constructed after two normalizations has two integrals N and μ. The
corresponding Hamiltonian vector fields XN and Xμ have 2π periodic flows, hence N and μ

are two actions (see footnote 5). A third action I3 can be constructed (locally) using the flow
of XH. This construction is, basically, Cushman’s method [48] with modifications detailed
in [34]. The flows of the corresponding vector fields XN,Xμ and XI3 define homology
cycles γN, γμ and γ3 respectively on the regular tori 	n,m,h = T

3 corresponding to specific
regular value (n,m, h) of EM (6). These cycles form a basis of the first homology group
H1(	n,m,h, Z). Note that the values of actions N,μ and I3 are obtained by integrating PdQ

along the respective cycles γN, γμ and γ3.

2.3.2. General statement on monodromy. We compute monodromy by continuing explicitly
cycles γN, γμ and γ3 along closed paths 
 in the connected set of regular values R of the
EM map within an unfolded lower cell of the BD. After a tour on 
 the cycle basis may
change. The map between the initial and the final cycle bases characterizes monodromy. For
concrete basis choices this map is given by a matrix in SL(3, Z) ⊂ GL(3, Z) which is called
the monodromy matrix6.

Because, as explained before, our three-dimensional bifurcation diagram is locally a
cylinder in n, it is enough to consider constant n closed paths, i.e., closed paths that lie on
constant n sections Rn ⊆ BDn. The novelty with respect to previous work [26–28] is that we
compute the monodromy matrix for the three-dimensional EM map and we confirm by this
computation that the Keplerian cycle γN does not participate in the monodromy transformation
expressed in the basis (γN, γμ, γ3) of H1(	n,m,h, Z).

For a given closed path 
 monodromy may be nontrivial only if 
 cannot be contracted to
a point inside R. This occurs for types A2, A1,1, A1 and B1. In all these cases, we can choose
a closed path 
 ⊂ Rn which encircles an isolated set of critical values. Monodromy is the
same for any 
 in the homotopy class [
].

The actions N and μ define cycles γN and γμ, respectively, that depend smoothly on
(n,m, h) ∈ R. These cycles remain unchanged as we go along 
. The third basis cycle γ3 of
H1(	n,m,h, Z) transforms after completing a tour along 
 as

γ3 �→ γ3 − k · (γN, γμ) = γ3 − kNγN − kμγμ.

6 The group GL(3, Z) consists of all 3×3 integer matrices with determinant ±1. Although in general the monodromy
matrix is an element of GL(3, Z), in our study we encounter only monodromy matrices in SL(3, Z), i.e., with
determinant +1.

12
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Table 4. Monodromy matrix M(k) (see (9) for T
3 ⊂ R

6 in systems of different strata (cf table 3).
For systems of type A1,1 we distinguish additionally monodromy matrices corresponding to the
circuits [
+], [
−] and [
−] + [
−] which go around the two distinct isolated critical values with
m = 0, the upper o+ and the lower o−, and around both values, respectively (see figure 6). The
three cases are denoted by A+

1,1, A
−
1,1 and A+−

1,1.

System, case kμ kN

A2, A
+−
1,1 2 0

A+
1,1, A

′
1, B

′
1 1 0

A−
1,1, A

′′
1, B ′′

1 1 0

This transformation is characterized by two integers kμ and kN and therefore in the basis
{γN, γμ, γ3} the 3 × 3 monodromy matrix is

M[
] =
⎛
⎝1 0 0

0 1 0
−kN −kμ 1

⎞
⎠ . (9)

The values of kμ and kN for systems in different dynamical strata are given in table 4. We
observe that kN = 0 and so γN is not involved in the transformation expressed in the chosen
basis. The matrix for 1:1 systems is diag(1,M(k)) with the 2 × 2 block M(k) of the form

M(k) =
(

1 0
−k 1

)
(10)

and k = kμ equal to either 1 or 2.

2.3.3. Monodromy in specific cases. In both cases A1 and A2,BDn consists of one cell with
one isolated critical EMn-value o inside. The set of regular values is not simply connected,
and we consider monodromy for a nontrivial closed path 
 that goes once around o, see
figure 2, left. In the case of A2 which was studied early in [4], o corresponds in S

2 × S
2 to a

doubly pinched torus T
2
[2], see figure 7. This implies by the geometric monodromy theorem

[21, 23] that the A2 system has nontrivial monodromy with k = 2. In the case A1, the isolated
critical value o lifts to a singly pinched torus T

2
[1] in S

2 × S
2 (figure 7) and k = 1. We

confirmed this by explicit cycle construction [34].
The B1 systems can be obtained as a deformation of A1. The B1 type BDn consists of

two partially overlapping cells that join along a curved segment C of critical values. The
corresponding cell unfolding surface is shown schematically in figure 2, right. The critical
segment C is isolated in the ‘larger’ cell, and is part of the boundary of the ‘smaller’ cell. The
latter can be deformed continuously together with C into a single isolated critical value of the
A1 system. Under such deformation, the circuit 
 that goes around the segment in the set of
regular values of the larger cell (figure 2, right) transforms continuously into the circuit 
 of
the A1 case (figure 2, left). Hence k = 1, and the monodromy of B1 is the same as that of A1.

In the case of the A1,1 systems, the BDn has two isolated critical values o− (lower in h)
and o+ (higher in h), each lifting to a singly pinched torus T

2
[1] in S

2 × S
2. The fundamental

group of the A1,1 type BDn has two nontrivial cycles [
−] and [
+] represented in figure 6, top
right, by closed paths 
− and 
+ encircling o− and o+, respectively. We compute k− = k+ = 1
which agrees both with the ‘sign’ theorem [49] and the geometric monodromy theorem. We
compute that both matrices M[
−] and M[
+] are of the type in (10) with k− = k+ = 1.

The monodromy map is a homomorphism [
] → M[
] so the monodromy map for the
circuit [
] = [
−] + [
+] that goes once around both critical values (see figure 6, top right)

13
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A2

m

h

o

Γ

A1,1

m

h

o−

o+

Γ

Γ+

Γ− h

n

m
o− o+

Γ

Figure 6. The image of the energy–momentum map EM in (6) defined by first integrals (N, μ,H)

with values (n,m, h). The left and centre pictures show constant-n sections; the three-dimensional
image is represented on the right; grey shade represents regular EM values with the same n.
Contour 
 goes around the isolated critical value o, which lifts to a doubly pinched torus (left) of
an A2 system, and around two isolated critical values o− and o+, each lifting to a singly pinched
torus (centre) of the A1,1 system; contours 
− and 
+ encircle o− and o+ respectively. In the full
image (right), o, o− and o+ become one-dimensional threads of critical values.

Figure 7. Possible three-dimensional representations of singular fibres in two degree of freedom
systems. From left to right, singly pinched torus T

2
[1], doubly pinched torus T

2
[2] and bitorus T

2
bi.

has k = 2. The latter result follows also immediately, once we observe that A1,1 systems are
a deformation of A2 (see figures 5 and 6, top left).

In the case B0, also studied in [4], the BD consists of three unfolded lower cells, two of
which overlap. The unfolded BD is illustrated in figure 3. The regular interior of each cell is
simply connected. There is no monodromy.

2.4. Bifurcations in the 1:1 zone

We now describe how the strata fit together within the 1:1 zone, see figure 5. This can be done
as follows: there is a number of open (in their symmetry stratum), connected, non-intersecting
sets whose mutual position within the zone can be specified by a system of typical paths.
This makes up the graph in figure 5 (right). The vertices of the graph represent the sets and
the edges represent the paths. As we go along each path we should expect one or several
bifurcations to happen. From the structural point of view, going from the centre of the zone
towards |d| = dmax results in simplification so that arriving at the A0 stratum indicates the
periphery of the zone.

Along the paths A2 → A1,1, B
′
0 → B ′

1 and B ′′
0 → B ′′

1 the specific Z2 symmetry of
the orthogonal configuration breaks. Along all the other paths the system goes through a
Hamiltonian Hopf bifurcation [50]. Along the paths B ′

1 → A′
1 and B ′′

1 → A′′
1 the system goes

through a subcritical Hamiltonian Hopf bifurcation. In such bifurcation an elliptic periodic
orbit is attached to a family of T

2. The family shrinks and at the bifurcation it vanishes while
the periodic orbit becomes unstable (generically complex hyperbolic unless there is extra
symmetry).

14
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Along the paths A′
1 → A1,1, A

′′
1 → A1,1, A0 → A′

1 and A0 → A′′
1 the system goes

through a supercritical Hamiltonian Hopf bifurcation. In such bifurcation an elliptic periodic
orbit is again attached to a family of T

2. At the bifurcation the periodic orbit detaches from
the family of T

2 and becomes unstable.
Finally, along the paths B ′

0 → A2 and B ′′
0 → A2 the system goes through Hamiltonian

Hopf bifurcations that are degenerate at the order of truncation of the normal form used in this
work. These degenerate bifurcations have been resolved in [25] where it was shown that one
of them is subcritical and the other supercritical.

The ‖ stratum requires a special comment. Systems at the Z side are dynamically
indistinguishable from nearby systems outside the ‖ stratum. At the S side the situation near
and in S appears to be degenerate and considering higher-order terms in the normal form may
change this picture. As we move away from S, systems in the ‖A∗

0 dynamical stratum are
dynamically distinct from systems in the neighbouring B ′

1 stratum. They are A0 type systems
with a folded BD. Next comes the ‖A′

0 stratum near the boundary of the 1:1 zone.

3. Technical results

In this section, we obtain an integrable approximation to the system with the Hamiltonian in
(1). After reduction we obtain an 1-DOF Hamiltonian system with Hamiltonian H on the
reduced phase space Pn,m. For m �= 0,±n, the space Pn,m is a smooth sphere, for m = 0 it is
a topological sphere with two singular points and finally for m = ±n it is a point. Our further
analysis is based on H for which the parameter space is described using n-scaled fields. This
differs from previous work [4, 25, 26] where the analysis was based on energy-scaled fields.

3.1. Normalization and reduction of the Keplerian symmetry

The first step in the construction is the Kustaanheimo–Stiefel (KS) regularization of the
singularity of the Keplerian potential through which the system with Hamiltonian H3D in (1)
is described as a Hamiltonian system in R

8 with Hamiltonian HKS. The KS Hamiltonian HKS

is normalized and reduced with respect to its unperturbed part 2N , see [4].
The specifics of the KS method is that the physical energy E now enters in the formal

smallness parameter of the series for the normalized KS Hamiltonian HKS while the value of
the latter is a fictitious constant. Then the first normalized energy E(X, Y) can be obtained
by the normalized HKS using formal series inversion as detailed in [34], see also section 5.1
of [4] and earlier work [51]. These steps of the procedure are detailed in [4, 34]. The first
normalized energy is expressed in terms of the Pauli vectors

(X, Y) = (X1, X2, X3, Y1, Y2, Y3) (11)

that satisfy

X2
1 + X2

2 + X2
3 = Y 2

1 + Y 2
2 + Y 2

3 = n2

4
. (12)

Note that the vectors L = X + Y and K = X − Y are the KS-transformed angular momentum
and Laplace–Runge–Lenz (or eccentricity) vectors respectively. Equation (12) shows that
the reduced phase space is S

2 × S
2. The components of (X, Y) span the Poisson algebra

so(3) × so(3) ∼= so(4) so that

{Xi,Xj } =
3∑

k=1

εijkXk, {Yi, Yj } =
3∑

k=1

εijkYk, {Xi, Yj } = 0. (13)
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The resulting expression for the energy can be written as

E(X, Y) = − 1

2n2
+

1

2n2
�E(X, Y), (14)

where

�E(X, Y) = �E(1)(X, Y) + �E(2)(X, Y) + · · · (15a)

is called the energy correction function and each �E(k) contains only terms of degree k both
in (fe, fb, g) and in (n, X, Y). The first- and second-degree terms in (15a) are respectively,

�E(1)(X, Y) = (−fb + g)X1 − feX2 + (fb + g)Y1 + feY2, (15b)

and

�E(2) = 1
72

(
9g2n2 − 17f 2

e − 17f 2
b

)
n2 + 1

6f 2
e

(
X2

2 + Y 2
2 + Y2X2

)
+ 1

6f 2
b

(
X2

1 + Y 2
1 + X1Y1

)
+ 1

3gfe(X2Y1 − X1Y2)

+ 1
6fbfe(2(X1X2 + Y1Y2) + X1Y2 + X2Y1)

+ 1
2g2(X1Y1 + (X2 − Y2)

2 + (X3 − Y3)
2). (15c)

We should further note that the form of the normalized E(X, Y) is not unique. In the
Lie series normalization procedure [52, 53] the generator of the normalization transformation
may be modified by adding terms that commute with N and contribute to �E(k), for k � 2.
Such terms do not modify the physical results that we obtain later.

3.2. Standard form of the linear term and resonances

In order to simplify further the first-order energy correction term �E(1), in (15b), we rotate
separately each sphere in S

2 × S
2 so that �E(1) becomes a linear combination only of the new

coordinates x1 and y1. Such rotations are given by

X �→ A−1
− x, Y �→ A−1

+ y, (16)

where

A± = 1

ω±

⎛
⎝g ± fb ±fe 0

∓fe g ± fb 0
0 0 ω±

⎞
⎠ , (17)

and

ω± =
√

(g ± fb)2 + f 2
e = s

√
1 ± 2d. (18)

Because of the particular form of the transformation (16) the components of (x, y) satisfy
again

x2
1 + x2

2 + x2
3 = y2

1 + y2
2 + y2

3 = n2

4
, (19)

and the Poisson structure is preserved,

{xi, xj } =
3∑

k=1

εijkxk, {yi, yj } =
3∑

k=1

εijkyk, {xi, yj } = 0. (20)

In the new variables

�E(1)(x, y) = ω−x1 + ω+y1, (21)
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d
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2:3
3:4

3:2
4:3

Figure 8. Systems with k− : k+ resonances in the constant s section (left) of the set of all possible
perturbations of the hydrogen atom by static electric and magnetic fields F and G.

and �E(2)(x, y) can be computed from (15c). Note that �E(k) are homogeneous polynomials
of degree k in (n, x, y) and also in the parameters (fe, fb, g). The whole energy correction
�E is a perturbation of �E(1).

The flow generated by �E(1) on S
2 × S

2 is a simultaneous rotation of the two spheres
around the axes x1 and y1 with frequencies ω− and ω+ respectively,

t, (x, y) �→ (M(ω−t)x,M(ω+t)y), (22a)

where

M(t) =
⎛
⎝1 0 0

0 cos t sin t

0 −sin t cos t

⎞
⎠ . (22b)

The ratio of the frequencies is

ω−
ω+

=
√

1 − 2d

1 + 2d
, (23)

so in the parameter disc Ds each frequency ratio is represented by a horizontal line with fixed
d, see figure 8. In the case of perpendicular fields we have d = 0 and the ratio is 1:1, i.e.,
k+ω− − k−ω+ = 0 with k+ = k− = 1. In figure 8 this corresponds to the line (SZ).

As we already mentioned in the introduction, the presence of resonances k− : k+ is of
primary importance to the rest of this study and to the understanding of the system. The
subsequent normalization step depends on the particular resonance. So different resonances
have to be studied using different normal forms. When we detune the resonance, that is when
we move away in Ds from the exact value of d corresponding to the resonance, the latter
remains still important provided that the detuning is small. As long as this is the case we
remain in what is called in [26] the resonance zone. The 1:1 resonance zone is the largest and
thus the most important.

3.3. Normalization and reduction of the residual dynamical symmetry

The energy correction function �E(x, y) is a Hamiltonian function defined on S
2 × S

2. It
describes our system for fixed n and different values of E. This is a 2-DOF Hamiltonian system
which is in general not integrable. In order to obtain a completely integrable approximation
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Table 5. Coefficients of the second-order term �E (2) in the second reduced energy correction
function �E (29). In the second reduced system μ = m is a parameter. To represent invariants
μ, ν and π1 as functions on the first reduced space S

2 × S
2 use (25). Relation of dimensionless

parameters a2 and d, and smallness parameter s to the electric and magnetic field strengths is given
in (2) and (4a).

Monomial Coefficient × 24s−2(1 − 4d2)3/2

n2 a−2(1 − 4d2)1/2((2a2 + 7)a4 − 68d4 + (−36a4 + 2a2 + 17)d2)

μ2 ((1 − 4d2)1/2(−6a4 + (8d2 + 4)a2 + 22d2 − 7) − 10(a2 + 2d2 − 1)(4d2 − 1))

ν2 (10(a2 + 2d2 − 1)(4d2 − 1) + (1 − 4d2)1/2(−6a4 + (8d2 + 4)a2 + 22d2 − 7))

μν −24d(1 − 4d2)1/2(a4 − a2 + 5d2 − 1)

π1 3(a2(1 − 4d2)1/2 + a2 − 2d2)(4d2 − 1)

we need one more integral which we obtain by normalizing �E. Since the near-orthogonal
systems that we study are close to the 1:1 resonance we choose to normalize �E with respect
to the generator μ = x1 + y1 of the 1:1 S

1 symmetry (22a). In this way, the 1:1 resonant terms
that remain important for detuned systems are included in the normal form.

The result of the normalization with respect to the 1:1 resonant S
1 action of μ is a 2-DOF

Hamiltonian system on S
2 × S

2 with Hamiltonian function

�E(x, y) = �E (1)(x, y) + �E (2)(x, y), (24)

which we call second normalized energy correction function, and where �E (1) = ω−x1 +ω+y1

is the same as �E(1), and the coefficients of terms in �E (2) can be deduced from table 5.
Because {�E, μ} = 0 this is a Liouville integrable system with exact integrals μ and �E .

The final step in the construction of the integrable approximation for the hydrogen atom in
near-orthogonal fields is the reduction of the second normal form �E . For fixed N = n,μ = m

this brings us to a 1-DOF system on two-dimensional compact phase space Pn,m which we call
second reduced phase space. We use invariant theory and we follow [4] with some changes
in notation7.

The ring of polynomials in (x, y) invariant under the 1:1 S
1 (22a) action is generated by

the invariants

ν = x1 − y1, μ = x1 + y1,

π1 = 4(x2y2 + x3y3), π2 = 4(x3y2 − x2y3),

π3 = 4
(
x2

2 + x2
3

)
, π4 = 4

(
y2

2 + y2
3

)
,

(25)

that satisfy the (in)equalities

π2
1 + π2

2 = π3π4, π3 � 0, and π4 � 0. (26)

From (19) we obtain further that

π3 = n2 − (ν + μ)2, π4 = n2 − (ν − μ)2. (27)

The relations (26), (27) define the second reduced phase space Pn,m for fixed μ = m such
that |m| � n. The space Pn,m is the semi-algebraic variety defined by

π2
1 + π2

2 = (n2 − (ν + m)2)(n2 − (ν − m)2), ν ∈ [−n + |m|, n − |m|], (28)

which can be immersed in the ambient space R
3 with coordinates (ν, π1, π2), and projected

on the plane (ν, π1) as depicted in figure 9 for different values of m. Note that Pn,m and Pn,−m

7 The invariants (π1, . . . , π6) in [4] are denoted here by (ν, π1, π2, μ, π3, π4) respectively.
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Figure 9. Projections of the reduced phase spaces Pn,m to the plane {π2 = 2} with coordinates
(ν, π1) for m = 0 (outmost boundary), 0 < |m| < n (intermediate smooth boundaries) and
m = ±n (point 0). In R

3, each space Pn,m is a surface of revolution about the axis ν, so Pn,0 is
a sphere with two singular points, Pn,m for m �= 0, ±n is a smooth sphere and Pn,±n are single
points, cf figure 3 in [4].

have the same representation. Furthermore, for all values of m the second reduced space Pn,m

is a surface of revolution around the ν-axis.
The advantage of this construction over any attempts to obtain a reduced space using

various action–angle coordinates is that Pn,m is a true orbit space and the geometry of the
system is preserved. Each smooth point on Pn,m lifts to a circle S

1 in S
2 × S

2 and consequently
to a T

2 in R
6. The singular points on Pn,0 and the single-point spaces Pn,±n lift to points on

S
2 × S

2 and to S
1 orbits in R

6 which are relative equilibria S
1, i.e., periodic orbits S

1 of the
Keplerian action. Such orbits are called Kepler ellipses, see [6].

Note that the second reduced system has the residual symmetry Ts of order 2 (see table 2)
that corresponds to the symmetry under the reflection π2 �→ −π2. Due to this symmetry the
second reduced Hamiltonian does not depend on π2. For this reason it is sufficient to work
just with the projection of Pn,m on the plane {π2 = 0} with coordinates (ν, π1). This approach
was introduced in [4].

Expressing the second normalized energy correction function �E in (24) in terms of
(ν, π1, π2) and μ = m gives the second reduced energy correction function

�E(ν, π1) = �E (1)(ν, π1) + �E (2)(ν, π1), (29)

on the second reduced phase space Pn,m, where

�E (1)(ν, π1) = 1
2 (ω− + ω+)μ + 1

2 (ω− − ω+)ν, (30)

while �E (2)(ν, π1) is given in table 5. Furthermore, it is convenient to remove constant terms
from �E , i.e., terms in (30) and table 5 and that depend only on μ = m, n and not on (ν, π1).
The resulting Hamiltonian function is

H(ν, π1) = �E(ν, π1) − �E(0, 0), (31)

which using (25) can be expressed also as a function of (x, y) on S
2 × S

2. Note also that the
dynamics on Pn,m can be studied using H and the Poisson algebra of (ν, π1, π2).
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4. Analysis of dynamical strata

In order to determine the type of fibres of the system for all (n,m, h) and obtain its BD, it
is sufficient to know the topology of the trajectories of the second reduced system on Pn,m

for different values h of H. The idea of the analysis is as follows. Since we have a 1-DOF
system, trajectories are level sets of H on Pn,m. To find them on Pn,m, we should simply find
intersections

λn,m,h = {H(ν, π1) = h} ∩Pn,m (32)

of the constant h-level set of H and the reduced phase space Pn,m in R
3 with coordinate

functions (ν, π1, π2). Due to the above-mentioned symmetry Ts , it is sufficient to study
projections of λn,m,h on the R

2 plane (ν, π1), see figure 9. For each intersection λn,m,h we find
its preimage under EM in R

6.
In the trivial case m = ±n both the space Pn,±n and the intersection λn,±n,h are the point

ν = π1 = π2 = 0. The critical energy is given by the value H(0, 0;m = ±n) = 0 of H at
this point. In R

6 the critical fibre is a Kepler ellipse.
For 0 � |m| < n the reduced space Pn,m is typically a sphere, so the connected components

of λn,m,h are typically circles, and exceptionally, points or circles joined at a point (a figure-8).
The points lift to relative equilibria T

2, smooth circles lift to regular Lagrangian tori T
3, while

figure-8’s lift to T
2
bi × S

1, where the bitorus T
2
bi is depicted in figure 7 (right).

The case m = 0 is similar except for the fact that there are intersections λn,0,h∗ that contain
one or both singular points (ν, π1) = (±n, 0) of Pn,0. If λn,0,h∗ is a single singular point then
it lifts to a stable Kepler ellipse in R

6. If the intersection λn,0,h is a circle that contains exactly
one singular point of Pn,0 then it lifts in S

2 × S
2 to a singly pinched torus T

2
[1], see figure 7

(left), and in R
6 to T

2
[1] × S

1. The singular point of Pn,0 that belongs to such λn,0,h lifts in
R

6 to an unstable Kepler ellipse. Finally, if the intersection contains both singular points of
Pn,0 then it lifts in S

2 × S
2 to a doubly pinched torus T

2
[2], see figure 7 (centre), and in R

6 to
T

2
[2] ×S

1. The two singular points of Pn,0 in this case lift to two unstable Kepler ellipses. This
completes the description of the most important intersections λn,m,h that appear in the system
and the corresponding fibres in R

6.
We now are in a position to compute the BD of the system and obtain results announced

in table 3 of section 2. To this end, we study the sets of regular and various critical energy–
momentum values within the image of the EM map, and we construct the bifurcation diagram
BD. The sets of critical EM values are obtained by finding critical energies hc(n,m) for
all possible m ∈ [m′,m′′] ⊆ [−n, n]. Typically [m′,m′′] is a closed interval and the map
[m′,m′′] → R

2 : m �→ (m, hc(n,m)) defines smooth curve segments in the range of the EM
map with fixed n. Once for given ns, f and g, all critical sets are found, we obtain the BD of
the system.

As a straightforward application of the above discussion we consider systems of type A2

and A1,1. A2 systems have been completely described in [4]. The intersections of constant
energy levels with Pn,0 are given in figure 10 (left). One intersection contains both singular
points of Pn,0 and lifts to T

2
[2]×S

1. There are also two single-point intersections that correspond
to the minimum and maximum energy and that lift to T

2. These are all critical intersections.
All other intersections λn,0,h are smooth circles which correspond to regular values of EM
and lift to T

3. For all m �= ±n there are also two critical intersections that correspond to
the minimum and maximum energy just as in the case m = 0, while all other intersections
are regular. Finally, for m = ±n there is only one critical single-point intersection. Putting
together these facts we obtain the BD for A2 systems in table 3.
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π1

ν

A2

ν

A1,1

Figure 10. Different types of intersections λn,0,h of the constant h-level sets of H of systems A2
and A1,1 with the reduced space Pn,0 projected on {π2 = 0}. Dashed lines represent regular levels
whose intersections with Pn,0 are smooth circles; thick black lines represent levels that go through
the singular points (ν, π1) = (±n, 0); critical levels that are tangent to Pn,0 are shown by thin
solid curves. In the original space R

6 regular intersections correspond to smooth T
3, intersections

containing singular points become pinched tori T
2
[1] ×S

1 (or T
2
[2] ×S

1 for type A2), while tangency

points lift to relative equilibria T
2.

Breaking the specific Z2 symmetry of A2 systems leads to A1,1 systems. Intersections
with Pn,0 for A1,1 systems are depicted in figure 10, right. The most significant change is that
there are now two critical intersections each one of which contains exactly one singular point
of Pn,0. Each such intersection lifts to T

2
[1] × S

1. All other critical intersections remain the
same thus we obtain the BD for A1,1 systems in table 3.

5. Applications in the quantum system

The classical Hamiltonian monodromy described in section 2.3 manifests itself in the
corresponding quantum spectrum as explained in section 1.4. We quantize by replacing
the classical Poisson algebra of (x, y) in (20) by its quantum counterpart and all classical
quantities by the corresponding quantum operators marked by hats, e.g., μ̂. If quantum
operators do not commute, such replacement becomes ambiguous. When this happens, we
symmetrize the corresponding terms, e.g., ab → 1

2 (âb̂ + b̂â). Subsequently, we compute the
joint quantum spectrum of the commuting operators �̂E and μ̂ from the second normalized
system. Further we compute the spectrum of the first normal form �̂E. In order to compare
this spectrum with the joint spectrum of �̂E and μ̂ we should have the analogue of μ̂ in the
first normalized system so that we can label the eigenstates. This analogue can be obtained
by inverting at the classical level the normal form transformation and computing the preimage
μ′ of μ as a formal power series in (x, y). However since �̂E and μ̂′ do not commute we
can only obtain an approximate joint spectrum using the expectation values 〈μ̂′〉 of μ̂′ on the
eigenstates of �̂E. We compare the resulting joint spectra (�̂E, μ̂), (�̂E, 〈μ̂′〉).

A number of comments may be due here with regard to our quantum study. We compute
quantum spectra from the classical normal form. Classical and quantum normalizations can
be formulated in a similar way. The direct analogue of the classical Lie series transformation
[52, 54] is the Van Vleck method [55] which is, essentially, the Lie transform method with
Poisson brackets replaced by quantum commutators. However, the latter lead (typically, cf G.
C. Wick’s theorem) to nonhomogeneous terms of order (h̄ns)k with h̄ = 1 au that include (q, p)

monomials of degrees less or equal k + 2 and which agree with the classical expression only
to the principal degree k + 2. In other words, comparing to the ‘exact’ quantum normalization
we may expect small O(h̄ns) corrections in each order. Nevertheless, because we only study
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structurally stable systems and keep h̄ns sufficiently small, we argue that these corrections are
inessential.

Our comparison of quantum spectra to the classical bifurcation diagram relies on the
EBK principle. It is common knowledge that for any such comparison to be meaningful, and
for the typical structures in the classical phase space and in the bifurcation diagram BD to
be visible in the quantum spectra, h̄ has to be small compared to the structures in questions.
In our case this is achieved by choosing n � h̄ = 1 compensated by a sufficiently small
value of s. The quantum–classical agreement in our figures shows clearly enough how well
these choices work. The discrepancies between the EBK and the exact quantum results are
limited to small neighbourhoods of singular EM values invisible in the scale of our figures.
Such discrepancies may, perhaps, be of more interest for structurally unstable systems, but,
again, we avoid those here. A study of such fine details is far beyond the scope of the paper.
For the contemporary quantitative results which may provide further guidance on what low
values of n can be taken see [56], and references therein. One should note that presently, these
results concern exclusively energies and have yet to be extended to the expectation values of
approximate integrals (such as momentum μ in our case) introduced by normalization.

The question that we worry more about and that we address in more detail is whether
our values of ns are low enough for our normal forms to be trustworthy and for the EBK
principle to be relied upon. Specifically, for certain particular choices we check numerically
using eigenfunctions of the complete system that the dispersion of the expectation values 〈μ̂〉
is considerably smaller than h̄. We will also assume that the broadening of energy levels that
occurs in the presence of the electric field due to tunnelling can be neglected, i.e., the ‘width’
of the level is much smaller than h̄.

Further brief comments may perhaps be appropriate here as to the properties of the
quantum states with given values of energy and 〈μ̂〉. If the momentum μ is a well-conserved
quantity, its value 〈μ̂〉 should characterize such properties of the eigenstate as the probabilities
of specific spectroscopic transitions or collision propensity rules. The dispersion of 〈μ̂〉 would
give indication of how well these specific properties are pronounced. Further properties due
to localization depend on the position of the node of the joint spectrum lattice representing
the eigenstate in question with respect to the critical value set(s) of the classical BD. Nodes
close to the BD boundaries represent oscillatory states strongly localized at relative equilibria
T

2 or, Keplerian relative equilibria S
1 (in R

6). For B0 (near the quadratic Zeeman effect)
and B1-type systems we should expect properties typically found in situations with symmetric
and asymmetric double wells respectively. For quantum states represented by nodes close to
the bitorus critical lines we should observe strong tunnelling effects and delocalization. Due
to chaos destroying the respective hyperbolic relative equilibria and the irregular dynamics
in their immediate neighbourhoods, we should expect further disagreement with the torus
quantization data. Finally, quantum wavepackets with energy–momentum maxima near the
unstable focus–focus equilibria (such as in the A1 and A1,1 types) represent states with
nontrivial long-time behaviour [57].

5.1. Quantum lattices

Figure 12 shows the joint energy–momentum spectra for different parameter values which
correspond to different qualitative types A1, A1,1, A2, B1 and B0 of systems in the 1:1 zone
described in section 2. First of all we like to note that the joint spectrum for the case of the
exact 1:1 resonance (strictly orthogonal fields), i.e., for systems of type A2 and B0, was already
computed in [4] for energy-scaled fields and for the second normalized Kustaanheimo–Stiefel
Hamiltonian. Comparing to figure 9 of [4], we can see that these spectra are qualitatively
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Figure 11. The joint spectrum for a type A2 system. Parameters are s = 10−2, j = 19/2, h̄ =
1/2, d = 0 and a2 = 0.4 (same as the type A2 system in figure 12). Left panel: no dynamically
constant (i.e., dependent only on m and n) terms have been subtracted from the energy correction
�E . Centre panel: only the first-order dynamically constant term �E (1)(0, 0) has been subtracted.
Right panel: H is plotted, i.e., the complete dynamically constant term �E(0, 0) has been
subtracted, cf table 5 and equations (29)–(31).

identical to those computed here. The reason is that, in the exact 1:1 resonance, the difference
between the energy correction �E we use here and the second normal form used in [4] is a
function of (m, n). At the same time, exact correspondence for the values of the unscaled
fields in the two calculations is difficult to establish because the energy slightly varies while n
is fixed.

For the sake of comparison to real quantum energies of the perturbed hydrogen atom which
one may obtain for example by solving the Schrödinger equation directly for the Hamiltonian
in (1), we like also to remind that the energies here are computed without the dynamically
constant (i.e., dependent only on m and n) terms �E(0, 0) of �E , see section 3.3, table 5. In
order to illustrate the effect on the spectrum of the subtraction of such dynamically constant
terms from �E we depict in figure 11 the joint spectrum for an A2 system subtracting different
such constant terms. In the left panel �E is plotted without subtracting any terms and the joint
spectrum appears as almost a line (linear Stark–Zeeman structure). The slope of the latter
can be estimated from the values of �E (1) at relative equilibria for m = ±n, (ν, π1) = (0, 0),
given by

�E (1)(0, 0) = 1
2m(ω− + ω+).

The total energy span n(ω− + ω+) for one n-shell is determined by the above term and is much
larger than the second-order splitting barely visible as the ‘width’ of the line. In the middle
panel of figure 11, the above linear-in-m term is subtracted, and in the bottom panel, the energy
correction H, see (31), is plotted by subtracting all dynamically constant terms from �E . We
use the latter representation in all our other figures of BD and joint spectra.

In type A0 systems, the joint spectrum is a regular Z
2 lattice, see figure 12. This confirms

the classical result in section 2.3. We have two globally defined quantum numbers. In the B0

systems (either B ′
0 or B ′′

0 ) the base space consists of two disjoint regions marked in figure 12
by light and dark grey shade. The lattice within each region is regular. In all the other
cases: A1, A1,1, A2 and B1, the joint spectrum is not a regular lattice and these systems have
monodromy. We discuss monodromy further in section 5.3.

5.2. Comparison of spectra for the first and second normalized systems

Further interesting information can be conveyed by the comparison of the joint spectrum
lattices of (�̂E, μ̂) (figure 12, left column) to that computed for �̂E and 〈μ̂′〉 (figure 12,
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Figure 12. Joint spectrum for the second and first normal forms. In all cases s = 10−2, j = 19/2
and h̄ = 1/2 so that n = 2

√
j (j + 1)h̄ � 10. BD types and the corresponding parameter

values are: type A2, d = 0, a2 = 0.4 (figure 11), type A1,1, d = 0.002, a2 = 0.3, type
A′

1, d = 0.003, a2 = 0.2, type B ′
1, d = 0.001, a2 = 0.2, type B ′

0, d = 0, a2 = 0.2 and type
A0, d = 0.04, a2 = 0.3. In each row the first panel represents the joint spectrum for the second
normal form. The second panel represents the spectrum for the first normal form where the size of
the lattice points represents the uncertainty �μ̂′ for each eigenstate. In the third panel we plot the
difference 〈μ̂′〉 from the closest value of mqh̄ for half integer mq . The number that appears at the
lower left corner of the second and third panels is the maximum value of the plotted quantity �μ̂′
and |〈μ̂′〉 − mqh̄| respectively.
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Figure 13. Elementary cell diagrams for types of systems with monodromy. In each case the
initial elementary cell is represented by a white filled cell. This initial cell is parallel transported
in a counterclockwise direction around a critical value or a set of critical values of the EM map.
The final cell is represented by a cell with dotted border.

second column). In the latter figure, each eigenstate is represented as a filled disc with the
radius given by uncertainty

�μ̂′ =
√

〈(μ̂′)2〉 − 〈μ̂′〉2. (33)

For the perturbation magnitude s which we used, both the uncertainties and discrepancies
|mqh̄−〈μ̂′〉| (see figure 12 last column) are very small—they would have been invisible in the
scale of the figure without artificial magnification. Here mq is the half-integer that minimizes
|mqh̄−〈μ̂′〉|; it is essentially the nearest eigenvalue of μ̂′. This close agreement indicates that
at such s, the second normalization procedure is perfectly valid and that the intra-shell chaotic
dynamics can be safely neglected for our purposes.

We can also see that the uncertainties are small compared to 1 and therefore the
approximate joint spectrum is well defined. Furthermore normalization works visibly better
near the elliptic Keplerian equilibria with m = ±n.

5.3. Quantum monodromy

To uncover monodromy of systems A2, A1,1, A1 and B1, see figure 13, we parallel transport an
elementary cell around a closed path encircling the corresponding critical value of the energy–
momentum map (cf section 1.4). The path goes counterclockwise within the locally regular
domain of the lattice, so that at each small step the transport of the cell is unambiguously

25



J. Phys. A: Math. Theor. 42 (2009) 055209 K Efstathiou et al

defined. After closing the path, the final elementary cell is compared to the initial one. In all
depicted cases, initial and final cells differ thus proving nontrivial monodromy.

Specifically an elementary cell can be defined by two elementary vectors u1 and u2, giving
the increment of each local quantum number by 1. The transformation between the initial
(u1, u2) and the final (u′

1, u
′
2) is given by a 2 × 2 matrix in GL(2, Z) which is the inverse

transpose of the monodromy matrix M, see [21, 41, 58]. The same approach can be generalized
to three-dimensional lattices. In that way, we can confirm the results of the classical analysis
in section 2.3 for M in (9) and (10). Note that up to the natural increase in the number of nodes
near the boundaries, quantum lattices for all systems extend trivially in the third dimension n.
This is in agreement with the classical result kN = 0 in section 2.3. So here we only discuss
two-dimensional sublattices.

In all cases in figure 13 we choose the initial cell so that the vector u1 is vertical, i.e.,
along axis h, and u2 is nearly horizontal. The vector u1 does not change while u2 changes so
that u′

2 = u2 + ku1 where k is the same as in (10).
In the A2 system we observe that k = 2, as was first seen in [4]. In the A1,1 system we

consider just as in the classical case two different paths 
− and 
+ around the critical values
o− and o+ respectively, see section 2.3. For each path we find that k = 1. From the same
picture we can deduce that the monodromy matrix for the path 
 = 
− + 
+ that goes around
both o− and o+ has k = 2.

In the cases A1 and B1 (see figure 13, where only the particular cases A′
1 and B ′

1 are
depicted) the value of k for a path that goes around the isolated critical value or the segment C
of critical values respectively is again 1. In the case B1 the joint spectrum can be decomposed
into two parts that correspond to the two leaves of the unfolded BD in figure 2 (right). The
lattice corresponding to the ‘smaller’ leaf is regular. Monodromy is only related to the lattice
corresponding to the bigger ‘lower’ leaf. Note that the A1 system has monodromy of the
most standard kind, cf figure 4, while the B1 monodromy has been observed before in floppy
molecules [59], deformed spherical pendulum [24] and others [32, 60]. The existence of the
A1,1 case has been understood by [61].

6. Discussion and perspectives

A reader, who is familiar with the rich history of our subject, may suggest that its perturbation
theory analysis was completed in the 10 years after the second normalized Hamiltonian (�E
in our notation) was obtained in [62–67], that this theory is quite simple and reliable, and
that nothing ‘new’ can be expected in this direction, especially since we work here with the
same second order of the perturbation theory. However, a more careful look back at the past
work shows that nothing can be more illusory. In this system with three degrees of freedom
and three parameters, the difficulty of global analysis—in terms of both the phase-space and
the parameter-space structures, is quite substantial. Indeed, very simple, almost basic global
aspects of this parametric family of fundamental atomic systems, such as resonances of the
linearized system, monodromy, and more generally—structurally stable types of possible toric
fibrations and corresponding joint quantum spectra, become understood only now—80 years
after Pauli [1] and 25 years after Solov’ev [62, 63, 65–67] and Herrick [64].

In this paper and in the recent [28], the description, classification and characterization of
different near-orthogonal perturbations of the hydrogen atom started in [26, 27] is completed. It
is summarized in section 2 and illustrated in section 5. This classification relies on the second-
order �E . Finer details may appear at higher orders where the three-dimensional dynamical
strata (whose constant-nBD sections are given in table 3) and the nontrivial symmetry strata of
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the parameter space will not change qualitatively, but some of their boundaries may transform
into small regions with more complex BD.

An idea of what may happen can be obtained from [25] where the complete analysis of
the transition between A2 and B0 required normalizing to order 4. Other bifurcations in the
1:1 zone should be studied in the similar way. Particularly complex can be the analysis of the
near-Stark region and the region near the intersections of the boundaries of several dynamical
strata (see figure 5).

The other remaining important question is the ‘size’ or ‘width’ of the 1:1 zone, which is
given by dmax. With growing ns, the dynamical size of the zone, i.e., the interval of d in which
we can treat the system as a detuned 1:1 resonance, shrinks. This dependence for the 1:1 and
other zones is subject of ongoing studies.

The role of non-integrability should be further uncovered and we should be able to define
a limiting maximum value of (ns) up to which the approach based on integrable approximation
is meaningful. Thus for example, within our integrable approximation, the parallel stratum
near the Zeeman limit is indistinguishable dynamically from the neighbouring B ′

1 and A′′
1.

However, due to their exact axial Lie symmetry, parallel field systems should eventually
differ in certain ways from other non-integrable systems with three degrees of freedom. In
particular, outside the 1:1 zone, systems in the ‖ symmetry stratum become superintegrable
after second normalization and have global action–angle coordinates. So, systems in the ‖
stratum are indistinguishable only within the 1:1 zone because there the 1:1 symmetry and the
axial symmetry act in the same way.

Finally, the most important direction of future research is the global study of other
resonance zones that correspond to different mutual orientations of the fields. Particularly
interesting is the 1:2 zone [68]. Preliminary analysis [26] has pointed to the existence of
fractional monodromy [41, 43–45] for systems in the 1:2 zone.
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