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We introduce the notion of fractional bidromy which is the combination of fractional monodromy and

bidromy, two recent generalizations of Hamiltonian monodromy. We consider the vibrational spectrum of

the HOCl molecule which is used as an illustrative example to show the presence of nontrivial fractional

bidromy. To our knowledge, this is the first example of a molecular system where such a generalized

monodromy is exhibited.
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The description and the understanding of molecular
spectra have been a long-standing goal in the field of
molecular physics, both from experimental and theoretical
points of view (for recent reviews, see [1,2] and references
therein). Vibrational dynamics of sufficiently rigid poly-
atomic molecules can be well reproduced up to a large
fraction of the dissociation threshold by an effective
Hamiltonian which is obtained either by a fit of parameters
to a set of measured or calculated energy levels [3] or by
the application of canonical perturbation theory to an
ab initio potential energy surface [4]. An important class
of effective Hamiltonians are the classically integrable
Hamiltonians, which allow us to simplify the study of the
dynamics of the system by the use of constants of the
motion. Among them, we can distinguish the simplest
one, the Dunham expansion, which in the absence of strong
resonances describes accurately the vibrational dynamics
at low energy near a minimum of the potential energy
surface. This effective Hamiltonian can be written as a
polynomial expansion in terms of the actions of the normal
modes, which can be defined globally on the whole phase
space. Resonant Hamiltonians, i.e., effective Hamiltonians
with fundamental frequencies in resonance [1], describe
the dynamics at higher energies where the coupling be-
tween, at least, 2 degrees of freedom cannot be neglected.
Even if Hamiltonians of this kind are integrable, i.e., the
number of constants of the motion is equal to the number of
degrees of freedom, their classical dynamics may not be
globally described by action-angle variables since the latter
are in general only locally defined. The question that
naturally arises is how to detect this feature both from
the classical and quantum points of view. Indeed, the fact
that the actions are only local has a quantum counterpart in
the joint spectrum of the quantum Hamiltonian as it pre-
vents the existence of global quantum numbers [5].

In this context, monodromy, which is the simplest topo-
logical obstruction to the existence of a global set of

action-angle variables, has become a useful tool both in
classical [6–8] and quantum or semiclassical mechanics
[5,8]. First discovered and developed by mathematicians,
the phenomenon of monodromy has been exhibited in a
large variety of physical systems extending from atomic
and molecular ones [9] to purely classical systems [7,10].
Such systems have a standard monodromy which is either
characterized by an isolated focus-focus singularity in the
associated bifurcation diagram for the local case or by a
second leaf which is glued to the main leaf through a line of
bitori for the nonlocal situation [2]. Both types of mono-
dromies appear in Fermi resonant systems with a nonzero
angular momentum [11]. Recently, different kinds of gen-
eralized monodromy, such as fractional monodromy [12]
and bidromy [13,14], have been defined and their presence
shown in model Hamiltonian systems (see below for a
concrete definition of these generalizations). The next
step in this study is the determination of physical systems
having such monodromies. It is in this spirit that we revisit
the analysis of the vibrational dynamics of the HOCl
molecule with zero angular momentum. We show the
presence in this molecular spectrum of nontrivial fractional
bidromy which can be viewed as the combination of frac-
tional monodromy and bidromy. We first describe the
corresponding bifurcation diagram, which presents a line
of curled tori and a line of bitori. Fractional bidromy is
defined through a bipath, i.e., a set of two loops, which are
allowed to cross both lines of curled tori and bitori. This is
a specificity of generalized monodromies with respect to
standard ones for which the associated loop lies in the set
of regular values of the bifurcation diagram. We determine
the quantum monodromy matrix for a bipath such that only
one of its two components crosses the line of curled tori.
Conclusion and prospective views are given in the last
section.
Vibrational dynamics of HOCl.—Several studies have

investigated the vibrational dynamics of HOCl both from
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the experimental and theoretical points of view (details can
be found in [15] and references therein). In particular,
although very accurate ab initio calculations have been
undertaken, it has been shown that the use of an effective
Hamiltonian allows an original and precise understanding
of the qualitative features of the dynamics [15]. This
effective Hamiltonian includes energy levels of the ground
electronic state with an energy up to 98% of the dissocia-
tion energy. The classical Hamiltonian H is expressed in
terms of the normal modes coordinates (q1, p1, q2, p2, q3,
p3). q1, q2 and q3 are close, respectively, to the Jacobi
coordinates (r, �, R), where r is the OH bond length, R the
distance from Cl to the center of mass G of OH (R is very
close to the OCl bond length) and � the OGCl angle (� ¼
0 at linear HOCl geometry).H can be written as the sum of
two terms H ¼ HD þHF where the Dunham expansion
HD and the resonant part HF are, respectively, equal to
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The parameters!i, xij, yijk, zijkl, k, ki and kij for HOCl can

be found in [15]. Since the functions I1 ¼ ðp2
1 þ q21Þ=2,

I ¼ p2
2 þ q22 þ ðp2

3 þ q23Þ=2 and H are constants of the

motion, the system is integrable. An additional 3:1 reso-
nance between the modes 1 and 2 can also be considered
but we neglect it in this Letter since it renders the effective
Hamiltonian nonintegrable.

Bifurcation diagram.—Before describing the classical
bifurcation diagram, we have to say some words about
the quantum problem. The quantization rules for nonde-
generate vibrations are [15]

I1 ¼ @

�
v1 þ 1

2

�
; I ¼ @

�
Pþ 3

2

�
(1)

where v1 and P ¼ 2v2 þ v3 are, respectively, the number
of quanta in the OH stretching degree of freedom and the
polyad number. v1 and P are the quantum numbers asso-
ciated to the classical constants of the motion I1 and I. The
constant @ is an effective Planck constant which can, at
least theoretically, be modified at will to increase the
density of energy levels. This is necessary since the notion
of quantum Hamiltonian monodromy is only defined rig-
orously in the semiclassical limit where @ ! 0 [5]. The
value @ ¼ 1 corresponds to the physical problem [15].

From now on, we only consider 2 degrees of freedom
and we assume that there is no excitation in the OH
stretching, that is v1 ¼ 0 and I1 ¼ 1=2. The study would
be similar for other values of I1. The bifurcation diagram is
defined as the image of the energy-momentum map EM:

ðq2; p2; q3; p3Þ ! ðI ¼ I ; H ¼ EÞ. This set is constructed
from the determination of the critical values of EM: the
images under EM of points in phase space where the
differentials dI and dH are not linearly independent.
Using the Liouville-Arnold theorem under suitable condi-
tions, it can be shown that the preimage of a regular (i.e.,
not critical) value of EM is a two-dimensional torus or the
disjoint union of such tori. This also means that for each
connected set C of its regular values, EM defines a torus
bundle with base space the set C and with fiber a torus (or
the disjoint union of a fixed number of tori).The preimage
of critical values is a critical fiber which can be of different
types: point, circle, curled torus, bitorus, etc. The topology
of the corresponding critical fibers can be determined from
singular reduction theory [7,8]. The bifurcation diagram of
the HOCl molecule which has been derived in Ref. [15] is
displayed in Fig. 1. Note that the corresponding effective
Hamiltonian is of a degree larger than 4 and that this
bifurcation diagram cannot be mapped on the catastrophe
map discussed in [2,11] for polyad numbers above the
second bifurcation. To better visualize the phenomenon
of monodromy, we plot polyads up to P ¼ 44. P ¼ 38 is
the highest polyad number with an ab initio energy level
taken into account in the fit. As can be seen in Fig. 1, the
bifurcation diagram has a line of curled tori and a line of

FIG. 1 (color online). Bifurcation diagram of the HOCl mole-
cule for I1 ¼ 1=2 as a function of P [see Eq. (1)]. The energies of
the period orbit [B] characterized by p3 ¼ q3 ¼ 0 have been
subtracted from each energy in order to clarify the plot (see
Ref. [15] for details). The critical points of EM are represented
by solid and dashed lines. Points of the solid lines lift to points or
circles in the original phase space, while points of the dashed
lines lift to curled tori or bitori. A representation of these two
singular tori is also given in this figure. The red dot C is the
intersection point of these two lines. The two paths with arrows
in black correspond to the bipath used to define the bidromy (see
the text). The grey region is the zone where the two leaves of the
bifurcation diagram overlap.
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bitori which intersect at the point C. It is also composed of
two leaves, called the upper leaf and the lower one, which
overlap in the grey region of the bifurcation diagram. The
two leaves are glued together along the singular line of
bitori and along the part of the line of curled tori that lies at
the right of the point C. The other part of the line of curled
tori belongs to the upper leaf (see also Fig. 2 which dis-
plays the quantum version of this bifurcation diagram).

The vibrational energies can be obtained by a direct
quantum computation in each polyad, that is as a function
of P. However, this calculation is not sufficient to construct
the quantum version of the bifurcation diagram and a
semiclassical analysis is needed to establish the nature of
the classical dynamics associated to each quantum
energy level. For that purpose, we introduce the canonical
conjugate coordinates (Ik, �k) (k 2 f1; 2; 3g) which are
defined by the relations qk ¼

ffiffiffiffiffiffiffi
2Ik

p
cos�k and pk ¼

� ffiffiffiffiffiffiffi
2Ik

p
sin�k. Note that the polar coordinates (Ik, �k) are

not defined if pk ¼ qk ¼ 0. The Hamiltonian H can then
be expressed in the set of coordinates (I, �) and (J, c )
where I ¼ 2I2 þ I3, J ¼ 2I2, � ¼ �3 and c ¼ �2=2�
�3 with the constraints I � J and J � 0. The Hamiltonian
H is a function of only I, J and c . One of the actions of the
system is I which is global and the other one is given by
J ¼ R

� Jdc =ð2�Þ where the integral is calculated along

the projection � of the flow of H on the space (J, c ). J
depends on the values of I and E. The regular Bohr-
Sommerfeld rules state that the semiclassical energies are
those which satisfy J ¼ @ðnþ 1=2Þ and I ¼ @ðPþ 3=2Þ.
Knowing the leaf to which the loop � belongs, we associate
the same leaf to the corresponding semiclassical energy

level. The accuracy of the semiclassical energy levels
allows us to do the same for each quantum energy level
and to construct the quantum bifurcation diagram. This
diagram is displayed in Fig. 2 where we observe in the
overlap region of the two leaves a superposition of two
lattices of points.
Fractional bidromy.—Classical monodromy is the sim-

plest topological obstruction to the existence of global
action-angle coordinates [6,7]. Let us consider the torus
bundle over the regular values of EM. Because of the
presence of certain isolated singular tori such as pinched
tori, regular tori are forced to fit together with a twist which
prevents extending the action-angle variables to the whole
bundle. The system has then a nontrivial monodromy.
From a quantum point of view, we can also analyze the
joint spectrum of the corresponding quantum operators and
look for the manifestation of classical monodromy in this
spectrum [5]. The bifurcation diagram becomes a two-
dimensional lattice of points labeled by the values of the
quantum numbers, the energy E and the polyad number P
for HOCl. Locally, around a regular value, the lattice is
regular in the sense that we can find a map which sends this
lattice to Z2. In order to check the global regularity of the
spectrum, the method consists in taking a cell, transporting
continuously this cell along a closed loop and comparing
the final cell with the initial one. If the two cells are
different then the system has quantum (or at least semi-
classical) monodromy [5].
The theory of Hamiltonian monodromy has known re-

cent important developments, which resulted in the con-
cepts of fractional monodromy [12] and bidromy [13,14].
These generalizations are associated to particular singular
tori, i.e., curled tori for fractional monodromy and bitori
for bidromy (see Fig. 1 for a representation of these sin-
gular tori), and to loops in the bifurcation diagram which
are allowed to cross these lines of singularities. In [12],
fractional monodromy characterizes a line of critical val-
ues corresponding to curled tori and ended by a point
whose preimage is a pinched torus. If we consider loops
crossing this line then it can be shown that the notion of
Hamiltonian monodromy can still be defined in a restric-
tive way where the monodromy matrix has fractional co-
efficients. The bidromy phenomenon was first introduced
in a three degree of freedom system similar to the CO2

molecule [13] and exhibited recently in a general class of
two degree of freedom Hamiltonian systems with a bifur-
cation diagram having a swallowtail structure [14] very
close to the one encountered in Fig. 1, except that there is
in addition a line of curled tori in Fig. 1. The bidromy
matrix is defined through a bipath, i.e., a set of two loops
following each a different leaf of the bifurcation diagram.
A bipath appears as the only way to generalize the notion
of monodromy when the bifurcation diagram has a swal-
lowtail structure and a line of bitori. Note the difference
between this case and the standard nonlocal monodromy
[2,8] which is also characterized by a second leaf in the
bifurcation diagram but where loops surround the line of
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FIG. 2 (color online). Parallel transport of the cell through the
vibrational spectrum of HOCl. The energy levels of the upper
and lower leaves are, respectively, depicted in blue (full) and red
(open) dots. The effective value of @ is taken to be 0.5 for the
sake of a clearer illustration. The initial cell is broken into two
cells when crossing the line of bitori. One of the two cells, the
light grey one, belongs to the lower leaf, while the other belongs
to the upper leaf. The final cell, the red (medium grey) one, is
defined by the addition of the two final cells of the two paths.
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bitori without crossing it. As for fractional monodromy, a
method to cross unambiguously the line of bitori can be
defined. In the quantum version of these generalizations,
the size of the fundamental cell has to be increased as
discussed below in one of the two directions in order to
parallel transport the cell across the line of critical values.

Since the system considered in this Letter has both a
swallowtail structure and a line of curled tori, we introduce
the notion of fractional bidromy which can be viewed as
the combination of fractional monodromy and bidromy. As
displayed in Fig. 1, we consider a bipath such that one of its
two components crosses the line of curled tori. In this
example, we restrict the determination of this generalized
monodromy to the quantum case. Let u1 (v1) and u2 (v2)
be the two vectors defining the initial (final) cell. The
quantum monodromy matrix M is the matrix such that

v1

v2

� �
¼ M

u1
u2

� �
: (2)

The vectors u2 and v2 are vertical vectors oriented from the
top to the bottom, while the vectors u1 and v1 are oriented
from left to right. To cross the different lines of singular-
ities, the size of the cell has to be increased in the hori-
zontal direction for the line of curled tori [12] and in the
vertical direction for the line of bitori [14]. The parallel
transport of the cell along the bipath is represented in
Fig. 2. The cell is broken into two cells when crossing
the line of bitori. The way this line is crossed is not a priori
obvious. This parallel transport can be rigorously com-
puted by considering the classical monodromy and its
relation with quantum monodromy [14]. After crossing
this line of critical values, the two cells are transported
along the two parts of the bipath. We finally merge the two
final cells by adding their basis vectors, which gives the red
(medium grey) cell of Fig. 2. An analysis of Fig. 2 allows
us to deduce the following relations between the initial and
final vectors: v1 ¼ 2u1 þ u2=2 and v2 ¼ u2, which leads
to the following monodromy matrix M:

M ¼ 2 1=2
0 1

� �
: (3)

Note that the initial vector u01 ¼ u1 � u2=2 is transformed
into 2u01 after one loop, which leads in this case to a
diagonal monodromy matrix. If we consider now a bipath
crossing the line of bitori at the right of the point C then the
same monodromy matrix is obtained although each com-
ponent of the bipath crosses 2 times the line of curled tori.
This shows that the notion of fractional bidromy is well
defined as it does not depend on where the bipath crosses
the line of bitori.

Conclusion.—This Letter proposes, to our knowledge,
the first example of a molecular system where a general-
ized monodromy is exhibited. We hope that this example
will motivate systematic investigations of generalized mo-

nodromy in the rovibronic spectra of resonant molecular
systems. Other 2 degree of freedom molecular systems
such as HOBr [16] are expected to present nontrivial
generalized monodromies, but this situation is not general.
As an example, the bidromy phenomenon does not exist in
the HCP molecule [3] since in this case one cannot define a
closed bipath turning around the bifurcation points of the
bifurcation diagram.
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