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The hydrogen atom perturbed by sufficiently small homogeneous static electric and magnetic fields of
arbitrary mutual alignment is a specific perturbation of the Kepler system with three degrees of
freedom and three parameters. Normalization of the Keplerian symmetry reveals that the parameter
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of its own �Efstathiou, Sadovskií, and Zhilinskií, 2007, Proc. R. Soc. London, Ser. A 463, 1771�. Based
on the fully integrable approximation, the bundle of invariant tori of individual systems within zones
is characterized globally and the qualitative dynamical stratification is uncovered. The techniques
involved in this analysis are illustrated with the example of the 1:1 resonance zone �near orthogonal
fields� whose structure is known at present. Applications in the corresponding quantum system are
also described.
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I. INTRODUCTION

Global analysis from the theory of integrable dynami-
cal systems point of view is the key to this review. We
study perturbations of the hydrogen atom by sufficiently
small homogeneous static electric �F� and magnetic �G�
fields of any mutual orientation. In spite of this system
being one of the most widely studied in quantum and
classical mechanics �see Sec. VIII�, its consistent global
dynamical description began to be finalized recently by
Cushman and Sadovskií �1999, 2000� and is presently
limited to the subset of systems with nearly orthogonal
fields1 called by Efstathiou, Sadovskií, and Zhilinskií
�2007� the 1:1 resonance zone and so remains incom-
plete. We detail the scheme of the global analysis and
explain it with the example of the 1:1 and 1:2 zones.

A. Global dynamical analysis

We assume conditions under which an integrable ap-
proximation can be used for a dynamical classification of
our systems, and the influence of unbound motion and
irregular dynamics can be subdued at our level of detail
�cf. Sec. VIII.B�. Subsequently, we proceed with the glo-
bal analysis of the integrable approximation, which has
two principal aspects: �i� complete topological character-
ization of each individual perturbation for given fixed
values of parameters and �ii� partition of the whole pa-
rameter space into dynamical strata representing sys-
tems of the same topological type.

1. Characteristics of individual perturbations

The first aspect is primary and requires considerable
effort. Each individual system in the three-parameter
family of perturbations under study is, typically, a system
with three degrees of freedom �3-DOF� without strict
Lie symmetries. After normalizing this system and con-
structing an integrable approximation, we give a global
description of the latter by analyzing the fibration of the
phase space defined by the common level sets of its first
integrals. In particular we describe the fiber bundle of
regular Liouville tori T3 by establishing global connec-
tions between them. In that we follow the standard ap-

1See Efstathiou, Sadovskií, and Zhilinskií, �2007�, Schleif and
Delos �2007, 2008�, and Efstathiou et al. �2008, 2009�, and dis-
cussion in Sec. VIII.C.8.
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proach in the contemporary theory of integrable Hamil-
tonian dynamical systems described by Cushman and
Bates �1997� and in a wider sense by Bolsinov and Fo-
menko �2004� �see also Michel and Zhilinskií �2001a�,
Efstathiou �2005�, and Efstathiou and Sadovskií �2005��.
The obtained qualitative dynamical characteristics can
be then attributed to the original nonintegrable system if
the latter satisfies the conditions of the Kolmogorov-
Arnol’d-Moser �KAM� theory and retains sufficiently
many invariant tori �Rink, 2004; Broer et al., 2007�.

2. Stratification of the parameter space

Once all systems in our three-parameter family are
characterized, the second stage of the analysis involves
finding how these systems form strata in the parameter
space which is a domain in R3. Within this space, we
distinguish symmetry strata �Michel and Zhilinskií,
2001a� and dynamical strata �Efstathiou, Sadovskií, and
Zhilinskií, 2007�. The former are well defined and fixed,
while the exact definition of the latter may depend, to an
extent, on the order of the perturbation theory used in
the study. In most cases, but not necessarily, dynamical
strata form subsets within symmetry strata. We are inter-
ested only in structurally stable dynamical strata that
persist after the perturbation theory is extended to
higher orders.

B. Hamiltonian and parameter space

We can represent the electric and magnetic fields by
respective three-vectors F= �Fb ,Fe ,0�=−E and G
= �G ,0 ,0�=−�e�B with E the electric field and B the mag-
netic flux density, as shown in Fig. 1. Since for any such
pair of three-vectors

�F,G�2 � G2F2 = G2F2 = G2�Fb
2 + Fe

2� , �1�

the set of all possible mutual orientations of the two
fields can be represented in R3 with coordinate functions

��1,�2,�3�:�F,G� � ��F,G�,G2,F2�

as a solid cone ��2�3��1 ,�2�0,�3�0	 drawn in Fig. 2.
This representation of the parameter space of the sys-
tem was given by Michel and Zhilinskií �2001a�.

Assuming infinite proton mass and neglecting spin
and relativistic corrections the Hamiltonian of our sys-
tem is �in atomic units�

H3D =
1
2

P2 −
1

�Q�
+ FeQ2 + FbQ1 +

1
2

G�Q2P3 − Q3P2�

+
1
8

G2�Q2
2 + Q3

2� = E , �2�

where �Q ,P� are standard canonical coordinates on
T*R3 and 1

2P2− �Q�−1 corresponds to the unperturbed
two-body Hamiltonian. For this specific perturbation of
the Kepler system, we study sufficiently large negative
physical energies E at which the classical motion re-
mains bound in a domain of sufficiently small �Q��0.
Since H3D is singular in �Q�=0, the phase space of our
system is �R3 \ �0	��R3 which will be denoted R

*
6.

The Hamiltonian �2� has an approximate first integral
N which becomes exact after normalization.2 N is called
the Keplerian action; it Poisson commutes with the un-
perturbed Hamiltonian. The value3 n�0 of N can be
used to define the n-scaled field amplitudes

g = Gn2, �fe,fb� = 3�Fe,Fb�n3. �3�

Rewriting inequality �1� in terms of such amplitudes,

�gfb�2 � g2f2, �4a�

we define the n-shell parameter space C. In coordinates
�gfb ,g2 , f2�, it is a right-angle cone, identical to that in
Fig. 2, left. Next we introduce parameters

s = 
g2 + fb
2 + fe

2 � 0, a2 =
g2

s2 , d =
gfb

s2 , �4b�

where s is the combined field strength which serves as a
universal perturbation scale parameter and should re-
main small. It is natural to consider constant-s sections

2See Sec. IV.A.1 for details and explicit definition of N.
3See Sec. VII for the action quantization of N and the rela-

tion of n to the principal quantum number.

GQ1

Fb

Fe

Q2

F

Q3

FIG. 1. Orientation of electric and magnetic fields F and G.

0
〈F,G〉 G2

F 2

ZS
ZeemanStark

〈G,F〉

G2−F 2

FIG. 2. The set of all distinct mutual configurations of electric
�F� and magnetic �G� fields is a solid cone C �left�: its constant
F2+G2 section is a disk D �right�. The shaded quarterplane
�F20G2� inside C and bold median line of D represent orthogo-
nal fields; the boundaries �C \ ��G ,F�=0	 and �D \ �S ,Z	 with-
out exceptional points representing single fields and no fields
correspond to parallel symmetry stratum; other points repre-
sent generic configurations.
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D of C. Since for each fixed s�0 the dimensionless pa-
rameters a2 and d satisfy

d2 � �1 − a2�a2, �4c�

D is a disk in the parameter plane �d ,a2�. So for s�0 the
parameter space C \0 is a solid cylinder R�0�D.

The uniform n scaling �3� and its energy equivalent

g̃ = G�2/	�2, �f̃e, f̃b� = 3�Fe,Fb��2/	�3, �5�

with

	 = 
− 8E , �6�

were introduced by Sadovskií et al. �1996� and Sadovskií
and Zhilinskií �1998�. Cushman and Sadovskií �1999,
2000�, Efstathiou, Cushman, and Sadovskií �2004�, and
Efstathiou, Sadovskií, and Zhilinskií �2007� relied on E
scaling4 �5� which may seem more natural in classical
mechanics where we work within a constant E level set.
All our essential results, such as possible qualitative
types of systems, dynamical strata, etc., do not depend
on the choice of scaling, but the quantitative correspon-
dence may be quite involved. The n scaling �Efstathiou
et al., 2009� is more suited in quantum mechanics. It sim-
plifies comparison to quantum energies and to other
work �Schleif and Delos, 2007, 2008�.

C. Historical overview and perspective

We point here to the milestones in the global analysis
of perturbation �2�; Sec. VIII gives a more substantial
discussion of the literature. Pauli �1926� set up the prob-
lem and used the first order of the perturbation theory.
On the example of the quadratic Zeeman effect, Herrick
�1982� and Solov’ev �1982, 1983� demonstrated the im-
portance of the second order for the qualitative under-
standing of these systems.

After numerous studies of concrete field configura-
tions, significant progress was made by Cushman and
Sadovskií �1999, 2000�, who showed that all orthogonal
field perturbations were of three basic generic types. Of
these, systems near the Zeeman and Stark limits are
similar to the ones studied by Herrick �1982� and
Solov’ev �1982, 1983�, while systems of the third kind
had monodromy. This work opened the way to classify
all perturbations with the Hamiltonian �2� and thus to
complete the study initiated by Pauli �1926�.

Michel and Zhilinskií �2001a� described all symmetry
strata in the parameter space C; Efstathiou, Sadovskií,
and Zhilinskií �2007� conjectured that this space was fur-
ther stratified into zones of resonant k1 :k2 approxima-
tions. The resonances themselves were analyzed by
Karasev and Novikova �2005�. A complete description
of the near and exactly orthogonal field configurations
which correspond to the 1:1 zone was given by Ef-
stathiou, Sadovskií, and Zhilinskií �2007�, Schleif and

Delos �2007, 2008�, and Efstathiou et al. �2009�. For
other resonances, it is not even known how large their
zones are in the parameter space and how stable they
may be in the presence of nonintegrability. At the level
of common physical intuition, it seems that the size and
the stability of a zone decrease with the order of the
resonance. This makes the 1:1 zone the largest and the
most important and the 1:2 zone the second largest and
stable. The structure of the 1:2 zone and of higher zones
is not established. Known examples of the 1:2 systems
�Efstathiou, Sadovskií, and Zhilinskií, 2007; Efstathiou
et al., 2008� suggest that a relatively small subset of them
may have fractional monodromy.

D. Structure of the paper

Careful definition of our subject and scope �cf. Sec.
VIII.B� results in a field which continues to be important
both to the particular family of fundamental physical
system �2� and beyond it and which remains large and
rich in substance. Understanding the ideas and results of
the global analysis requires certain concretization of
tools and constructions involved, which we discuss with
a concrete example. With regard to these techniques,
two aspects are notable: their necessity for the analysis
of the concrete system and their universality within a
broader context of dynamical systems.

Thus normalization and reduction of the Keplerian S1

symmetry is in many ways similar to those in the study
of molecular vibrations where n-shells of the hydrogen
atom correspond to the so-called polyads. Furthermore,
resonances and related techniques that we encounter
here �Secs. IV and V� are commonly found in molecules.
All these aspects are intricately connected to concepts of
dynamical symmetry which were developed extensively
for the hydrogen atom and its perturbations �cf. Sec.
VIII.C.4�. In the presence of typically nonfree actions of
the dynamical symmetries associated to the resonance�s�
and of the exact given symmetries, singular reduction
and required invariant theory �Sec. IV� is the most uni-
versal single method discussed in this review. Its impor-
tance goes far beyond our examples. Furthermore, the
geometry of the reduced phase spaces of our system is
by far not exceptional. The range of systems with the
�reduced� phase space S2�S2 goes from systems with
several coupled angular momenta �cf. Sadovskií and
Zhilinskií �1999�; Hansen et al. �2007�� to systems of in-
teracting laser beams in nonlinear optics �Sugny et al.,
2009�. Finally, many of our examples have Hamiltonian
monodromy, a basic global nontrivial property found in
many different systems. Even though it is crucial to any
qualitative description, monodromy is not widely known
and understanding its potential as a physical phenom-
enon is only beginning �Delos et al., 2008, 2009;
Lagrange et al., 2010�. A detailed explanation of various
basic and advanced examples of monodromy in Secs.
II.D and VI should be greatly beneficial.

In Sec. II we continue with a review of the mathemati-
cal concepts and tools required for our study. We illus-
trate them using the results on the stratification of the

4Efstathiou, Sadovskií, and Zhilinskií �2007� denoted the
E-scaled fields as �fe , fb ,g�.
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1:1 zone �Efstathiou, Sadovskií, and Zhilinskií, 2007;
Schleif and Delos, 2007; Efstathiou et al., 2009� and the
properties of the different types of systems in this zone
in Sec. III.

In Sec. IV we detail the standard two-stage normaliza-
tion and reduction procedure. At the first stage, after the
Keplerian reduction, we uncover resonances and intro-
duce zones. At the second stage, we reduce Pauliean
symmetry and construct the second-order integrable ap-
proximation to the original system. Again the 1:1 zone is
used as an example.

In Sec. V we analyze our integrable approximation for
the 1:1 zone systems. We consider the energy-
momentum map for different parameters a2 and d, de-
scribe the respective fibration, and find all qualitatively
different bifurcation diagrams. Following Efstathiou, Sa-
dovskií, and Zhilinskií �2007� and Efstathiou et al.
�2009�, this provides a classification of all perturbed sys-
tems under consideration �Sec. III�. We discuss and com-
pute monodromy, a specific aspect of this classification,
in Sec. VI.

In Sec. VII we consider how to use the integrable ap-
proximation in order to compute the �approximate� joint
quantum spectra of our system and construct lattices
representing quantum states within the regular domain
of classical energy-momentum values. We relate the re-
sulting lattices to the 1:1 zone classification of Efstathiou
et al. �2009�.

The literature on the subject is reviewed in two ways.
The most relevant references are cited immediately in
the text. A broader discussion of the literature is given
in Sec. VIII. The notation used is summarized in the List
of Symbols.

II. BASIC MATHEMATICAL CONCEPTS

Looking back at the rich history of the subject �see
Sec. VIII�, it is most natural to ask why a basic global
description of this fundamental system is being devel-
oped at such a late stage. This seems to happen not due
to the absence of interest—at least not in the mid-1980s
and 1990s, when the perturbation theory of this system
was the subject of intense research—but to an extent
due to the lack of an appropriate and timely combina-
tion of mathematical tools and ideas.

Here, along with providing further details of the de-
scription of our system, we give an informal introduction
to the basic concepts from the theory of Hamiltonian
dynamical systems used throughout the study, notably
the geometry of the reduction of Lie symmetries, and
the elementary topology of toric fiber bundles.

A. Regularization, first integrals, and their flows

Working directly with the original 3-DOF system with
the Hamiltonian �2� is inconvenient due to the 1/r sin-
gularity, and it is quite common to regularize it first by
lifting to a 4-DOF system. To this end, we apply the
Kustaanheimo-Stiefel �KS� map as explained in Sec.
IV.A.1. The regularized 4-DOF system possesses an ad-

ditional strict integral �. The construction of a com-
pletely integrable approximation to the perturbed sys-
tem is detailed in Sec. IV. In addition to the energy H
and the KS integral �, the integrable approximation has
two more first integrals N and 
.

The integrals �N ,
 ,�� and energy H are Hamiltonian
functions on the phase space R8 of the regularized sys-
tem, and we can study the Hamiltonian flows of the re-
spective vector fields. The flows of �N ,
 ,�� are periodic
with period 2� and define three different S1 symmetry
actions on R8. The symmetries corresponding to N and �
are called Keplerian and KS symmetries, respectively,
while the symmetry defined by 
 will be called Pauliean
�see Secs. II.B.2 and IV.D�. Following the established
terminology in the theory of integrable Hamiltonian sys-
tems we call integrals such as �N ,
 ,�� with periodic
flows of constant period, momenta, or actions. Their S1

orbits serve to establish three global angle coordinates
on all regular Liouville tori T4 in R8. The fourth angle
coordinate on these tori is, in general, defined only lo-
cally on and in a sufficiently small open neighborhood of
a given torus �see Sec. VI�. In other words, �N ,
 ,�� are
global actions, while the fourth action can only be de-
fined locally.

We can always reduce the S1 orbits of �N ,
 ,�� to the
original phase space R6 using the KS regularization map.
In that way, we construct S1 orbits of actions on R6 as-
sociated with N and 
, while the � orbits become points
in R6. The nonperiodic Hamiltonian flow associated with
H can be studied similarly.

B. Geometry of the reduction map

1. First or Keplerian reduction

The integrable approximation to our system and the
reduced energy H are obtained in two steps. The first
step, at which Keplerian symmetry is reduced, is com-
mon to all perturbed two-body systems and its geometry
was understood quite well due to a combined effort of
mathematicians and physicists.5 For finite energies E
�0, the Keplerian symmetry action associated to N is
free, all its orbits are circles S1, and any point on the first
reduced phase space S2�S2 lifts to one such circular or-
bit. This is regular reduction. The 2-DOF first reduced
system on the phase space S2�S2 �for N=n�0� is de-
scribed using six invariants �see Sec. IV.C�,

x = �x1,x2,x3�T and y = �y1,y2,y3�T,

of the Keplerian symmetry action satisfying two rela-
tions,

5See, e.g., Guillemin and Sternberg �1990�, Cushman �1992�,
and Cordani �2003�.

2103K. Efstathiou and D. A. Sadovskií: Normalization and global analysis of …

Rev. Mod. Phys., Vol. 82, No. 3, July–September 2010



x2 = x1
2 + x2

2 + x3
2 = y2 = y1

2 + y2
2 + y3

2 = �n/2�2. �7�

�x ,y� are appropriately rotated Fock vectors 1
2 �K±L�,

where K is the eccentricity �or Laplace-Runge-Lenz6�
vector and L is the angular momentum. They generate a
Lie-Poisson algebra with the standard so�3��so�3�
=so�4� structure: for any functions � and 
 of �x ,y� we
have the Poisson bracket

��,
	x,y = x · ��x� � �x
� + y · ��y� � �y
� . �8�

2. Resonant Pauliean symmetry S1 and zones

For any �Q ,P�-polynomial perturbation of the fixed
center Kepler system and in particular for the one in Eq.
�2�, the lowest nontrivial term in the first reduced Hamil-
tonian defines a linear flow on S2�S2. This has been
implied already by Pauli �1926�. Specifically, to the low-
est nontrivial order, the first reduced energy is

�E�1� = �−x1 + �+y1, �9�

where for our system we show in Sec. IV.C that

�± = 
�g ± fb�2 + fe
2 = s
1 ± 2d . �10�

The Hamiltonian flow generated by �E�1� on S2�S2 is a
simultaneous rotation of the x and y spheres around
axes x1 and y1 with respective frequencies �− and �+. In
the fixed-s parameter disk Ds �see Fig. 3�, systems with
frequency ratio

�−

�+
=
1 − 2d

1 + 2d
�11�

are represented by a constant-d �horizontal� segment.

We come to the central point of the analysis. Assum-
ing that �− and �+ are incommensurate, we may normal-
ize our system completely with respect to �E�1�. Then
the momenta x1 and y1 become two first integrals of the
system and we can use them as actions and so have glo-
bal action-angle coordinates. However, there are reso-
nances. Thus for orthogonal fields �line SZ in Fig. 3� we
have d=0 and the ratio is 1:1. Furthermore, it is clear
that near resonances a blind complete normalization
would be useless for understanding the dynamics be-
cause it discards the effects of the nearby resonance. We
come to the concept of a resonance zone �Efstathiou,
Sadovskií, and Zhilinskií, 2007�.

Suppose that frequencies �− and �+ are close to a
k− :k+ resonance of order7 k−+k+, where k− and k+ are
positive integers with gcd�k− ,k+�=1; then

�−k+ − �+k− � 0. �12�

Introducing momenta


 = k−x1 + k+y1 and � = k−x1 − k+y1, �13�

which define two periodic flows on S2�S2, we rewrite

�E�1� =
1
2
��−

k−
+

�+

k+


 +

1
2
��−

k−
−

�+

k+

� ª ��
 + ��� ,

�14�

where ��1 is called detuning and � is the frequency of
the Pauliean motion. In particular, for the 1:1 resonance
we have 
=x1+y1 and

�

s
= 1 −

d2

2
+ O�d4�, � = d + O�d3� ,

�± = 1 ± d + O�d2� .

The principal term �
 in �E�1� defines a periodic Hamil-
tonian flow. We call its S1 action on S2�S2 the resonant
Pauliean symmetry.

The main proposition of Efstathiou, Sadovskií, and
Zhilinskií �2007� is that all systems within a k− :k+ zone
�and not only those with exact k− :k+ resonance� should
be normalized with respect to such S1 symmetry. The
width of the zone �max�0 is the maximum value of ���
for which the k− :k+ resonant approximation to the dy-
namics is regarded to be meaningful.

Note that it is possible that resonances of the linear
�Pauliean� approximation, or at least the 1:1 resonance,
were known before but remained ignored. Recently the
resonances and respective quantum algebras were stud-
ied comprehensively by Karasev and Novikova �2005�.
Efstathiou, Sadovskií, and Zhilinskií �2007� added the
zone concept. The main advantage of the zones is that
systems within each zone are described on the basis of
the same resonant approximation and can be considered
and classified as a family. It may be possible to cover a

6One can probably attach several more names to the eccen-
tricity vector K �see p. 400 of Cushman and Bates �1997�, and
also Goldstein �1975, 1976� and Guillemin and Sternberg
�1990��.

7The order of a nonreducible rational k1 /k2 is �k1�+ �k2�. Be-
cause k± are positive �cf. Eqs. �10� and �12�� and mutually
prime, the order of the k− :k+ resonance equals k−+k+.

S Z 1:1

collapse ↑↓

collapse ↑↑

a2

d �
1:3
1:2
2:3
3:4

3:2
4:3

�

FIG. 3. k− :k+ resonant systems in the constant-s nonzero sec-
tion Ds of the set of all possible perturbations �Eq. �2�� of the
hydrogen atom by small static electric and magnetic fields F
and G.
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large part of the parameter space by a small number of
zones, i.e., a number of such families. The width of a
zone is likely to decrease with the order �see footnote 7�
of the resonance, so the 1:1 zone, which represents
nearly orthogonal fields, is the largest. This zone is cen-
tered on the ZS line with d=0 �Fig. 3� and its width is
given by dmax�0.

3. Singular reduction of Pauliean symmetry

Because the second reduction depends on the con-
crete form of the perturbation �2�, it was studied largely
by atomic physicists who relied in their classical me-
chanical analysis on action-angle-like coordinates8 and
corresponding normalization techniques widely used in
applied dynamical systems of the time, especially in as-
tronomy. As the standard example of the asymmetric
Euler top9 shows, action-angle variables are not optimal
for the global description of all possible motions in the
system, while they may be quite appropriate for local
results, such as small planetary orbit corrections. As
shown in Sec. IV.D.2, the second reduced 1-DOF system
with the Hamiltonian H is topologically similar to an
Euler top �see footnote 9�. Hence its global analysis re-
quires the use of Euler-Poisson techniques and invariant
theory �Cushman and Bates, 1997; Efstathiou and Sa-
dovskií, 2005�. Although physicists uncovered the Euler
top analogy �Sec. VIII.C.5� the adaptation of the corre-
sponding techniques did not follow, and the main casu-
alty was geometry.

Any Pauliean S1 symmetry action is not free. This can
be seen most simply for the axial spatial symmetry SO�2�
of the Zeeman limit �Michel and Zhilinskií, 2001a�. Such
action has four fixed points on S2�S2 �Sadovskií et al.,
1996; Sadovskií and Zhilinskií, 1998; Michel and Zhilin-
skií, 2001a�. A nonfree action requires singular
reduction.10 The geometry of the resulting reduced
spaces depends on the properties of the specific Pauliean
S1 symmetry action that we reduce and in particular on
the specific resonance. For each resonance, the family of
reduced spaces is parametrized by the values m of 
.
These spaces are not all the same; some may be different
topologically, while others may be singular.

Our second reduced phase spaces Pn,m �for n�0�, i.e.,
the spaces of orbits of the combined T2 action associated

with momenta N and 
, are single points for �m�=mmax
and have S2 topology for �m��mmax. This makes the sec-
ond reduced system with �m��mmax similar to the Euler
top �see footnote 9�. However, under the Pauliean re-
duction map, two of the four fixed points become
Pn,±mmax

, while the images of the other two end up on
spaces Pn,±mcrit

with mcrit�mmax which are not smooth as
a result.

Thus for the 1:1 systems, mmax=n and mcrit=0, and the
two fixed points map to two isolated conical singularities
of the singular space Pn,m=0 �see Fig. 4�, while all other
spaces with 0� �m��n are smooth �see Fig. 5�. Under-
standing this geometry and the specifics of the m=0
space was achieved by Cushman and Sadovskií �1999,
2000�.

C. The study of the integrable fibration

Two constructions, the energy-momentum map EM
and the bifurcation diagram BD, are indispensable to
any global analysis �Cushman and Bates, 1997; Ef-
stathiou and Sadovskií, 2005�. We explain them below.

8See, e.g., Delos et al. �1983a, 1983b, 1984� as well as Deprit et
al. �1996�; Main et al. �1998�; Salas et al. �1998�; Salas and Lan-
chares �1998�; and Berglund and Uzer �2001�.

9A Euler top �rotor� is a freely rotating rigid body. It is called
asymmetric when its three moments of inertia differ; its re-
duced phase space is a smooth S2 equipped with a Lie-Poisson
algebra so�3� generated by the components of angular momen-
tum. Using action-angle variables for this system �Kozlov,
1974; Postell and Uzer, 1990; Fassò, 1996� requires several
charts in order to cover the whole phase space.

10Singular reduction, as an extension of the regular case of
free actions by Marsden et al. �1990�, was introduced by Arms
�1986, 1988�, Arms et al. �1990, 1991�, and Cushman and
Sjamaar �1991� �see also Cushman and Bates �1997�, Ortega
and Ratiu �1998�, and Efstathiou and Sadovskií �2005��.

-n
0 n

ν
-n2

0

n2

π2

-n2

0

n2 π1

FIG. 4. Second reduced phase space Pn,0 with n�0 of the 1:1
systems is a two-sphere with two isolated conical singular
points. Adapted from Cushman and Sadovskií, 2000.

1:1

m = n

0 < m < n

m = 0−n < m < 0

m = −n

FIG. 5. Successive constant-m sections of the orbit space of
the action of the 1:1 resonant Pauliean symmetry S1 on the
reduced phase space S2�S2 for fixed Keplerian action n�0;
each section represents a projection of a reduced phase space
Pn,m. Such orbit spaces are discussed in detail by Michel and
Zhilinskií �2001a� �see also Sadovskií et al. �1996� and Cushman
and Sadovskií �2000��.
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1. Energy-momentum map EM

First integrals �N ,
 ,H� take values �n ,m ,h� with n
�0 and �m�� 1

2 �k++k−�n, while the KS integral � is al-
ways 0. We define the energy-momentum map11

EM:�R8��=0 → R3:�q,p� � „N�q,p�,
�q,p�,H�q,p�…

= �n,m,h� , �15a�

which maps invariant manifolds �in the KS space re-
stricted to �=0� of the integrable approximation to
points in R3. We also use the n-shell map,

EMn:S2 � S2 → R2:�x,y� � „
�x,y�,H�x,y�… = �m,h� ,

�15b�

which maps invariant manifolds in the first reduced
phase space S2�S2 �on which N=n�0 is fixed� to points
in R2. Images of EMn are constant-n sections of the EM
image. Furthermore, we can pull back the EM map
�15a� to the original phase space R

*
6 and define

EM3D�Q,P� = EM�q,p� �15c�

for any �q ,p� such that KS�q ,p�= �Q ,P�.

2. Critical points of EM

At regular points �q ,p�, the Jacobian of map EM
�15a� has rank 3 �maximal�; the rank cannot vanish on
R8 \ �0	 because the Keplerian symmetry acts freely on
R8 \ �0	 and this implies that the Hamiltonian vector field
XN corresponding to N and also dN do not vanish there.
So we can have critical points �q ,p�crit�0, i.e., for n�0,
at which the rank drops to either 2 or 1 and which we
call points of rank 2 or 1. Linearizing at �q ,p�crit we can
analyze their stability. This analysis can be done either in
the full phase space or after successive reduction of sym-
metries in Sec. IV. We make a few basic observations
here and in the next section.

a. Critical points of rank 2

When the rank of the Jacobian of the EM map at
�q ,p�crit is 2, the Hamiltonian vector field XH is a linear
combination of XN and X
. Thus XH is tangent to the T2

orbit of XN and X
 that goes through �q ,p�crit. This T2

orbit is a dynamically invariant set and all points on it
are rank 2 critical points. Its stability in the normal di-
rection is determined by an appropriately selected 2
�2 block of the Hamiltonian matrix of the linearized
equations of motion. Alternatively, the normal stability
can be determined by reducing the T2 symmetry gener-
ated by XN and X
, thus descending to Pn,m where the
T2 orbit becomes an equilibrium and we can study the
2�2 Hamiltonian matrix of the linearized equations of
motion. Its eigenvalues ±� may be imaginary or real,

depending on whether the equilibrium is elliptic or hy-
perbolic. Since we have two other symplectic two-planes
and two respective parameters �n ,m�, such T2 orbits of
rank 2 critical points form typically two-parameter fami-
lies. They look like two-surfaces in the image of EM and
thus become one-dimensional curves in the image of
EMn.

b. Critical points of rank 1

At these points the vector fields XH, XN, and X
 are
collinear. Thus XH is tangent to the S1 orbit of XN that
goes through �q ,p�crit. This S1 orbit is a dynamically in-
variant set and all points on it are rank 1 critical points.
Such S1 orbits form typically one-parameter families.
Their stability in the normal direction is determined by
an appropriately selected 4�4 block of the Hamiltonian
matrix of the linearized equations of motion. Alterna-
tively, the normal stability can be determined by reduc-
ing the S1 symmetry generated by XN, thus descending
to S2�S2 where the S1 orbit becomes an equilibrium and
we can study the 4�4 Hamiltonian matrix of the linear-
ized equations of motion.

Linear stability is determined by the four eigenvalues
of this matrix. In 2-DOF systems, four typical arrange-
ments of the eigenvalues12 occur: elliptic-elliptic �EE�
and complex hyperbolic �CH� whose eigenvalues are il-
lustrated below

EE

Im

Re

CH

Im

Re

as well as hyperbolic-hyperbolic and elliptic-hyperbolic.
Nondegenerate13 equilibria o of integrable 2-DOF

Hamiltonian systems with the Hamiltonian H and first
integral J can be classified in terms of the respective
linearly independent quadratic parts of the linearization
at o,

�H�2�

J�2� 
 = �a b

c d

�A

B

 with det�a b

c d

 � 0,

where �A ,B� can be of one of the following four types
�see footnote 13�

Equilibrium type A B

Elliptic-elliptic �EE� �p1
2+q1

2� /2 �p2
2+q2

2� /2
Elliptic-hyperbolic �EH� �p1

2+q1
2� /2 p2q2

Hyperbolic-hyperbolic �HH� p1q1 p2q2

Focus-focus �FF� p1q1+p2q2 p1q2−p2q1

in appropriate symplectic coordinates �q1 ,p1 ,q2 ,p2�. For

11The historical convention for the name “energy-
momentum” is opposite to that for the value, which has the
momentum value m before that of energy h, so that m follows
the abscissa.

12See classification of symplectic matrices by Williamson
�1936�.

13Definition of nondegeneracy and complete linear classifica-
tion of equilibria can be found in Bolsinov and Fomenko
�2004�.
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all types except FF the type of o corresponds to that
given by the eigenvalues of the Hamiltonian matrix at o.
For nonzero a ,b�R \ �0	, the FF case corresponds to
CH; this is always the case in our system.14

Only EE and FF equilibria occur in our system. Be-
cause their matrix factorizes in two 2�2 blocks, the EE
families �as well as HH and EH� are typically intersec-
tions of respective two-parameter families of rank 2
critical values. In the range of EM, a critical set of type
EE is a line of intersection of two critical two-surfaces
representing rank 2 elliptic critical points. In the
constant-n section, i.e., in the range of EMn, this gives a
point of intersection of two lines. The FF family forms a
thread in the image of EM that is �excluding its possible
endpoints� isolated. In the image of EMn this gives an
isolated point.

c. Restrictions due to symmetry and topology

Let H be a Morse-type Hamiltonian function on S2

�S2. Four is the minimum number of stationary points
�equilibria� such H can have �Sadovskií and Zhilinskií,
1998; Michel and Zhilinskií, 2001a; Symington, 2003�.
On the other hand, we have a specific Pauliean symme-
try S1, which brings drastic simplification into the system:
if H, like the second normalized Hamiltonian H, is in-
variant with respect to this S1 symmetry, the equilibria
must be located at the fixed points of the S1 action. The
number of fixed points is again four. It follows that our
system has on S2�S2 exactly four nondegenerated equi-
libria.

Morse theory also restricts the indices of the four
equilibria �Sadovskií and Zhilinskií, 1998� to 4, 2, 2, and
0. Points of index 4 and 0 �or Hessian signature ����
or ����� are necessarily of type EE. They correspond
to a maximum and a minimum15 and, as can be seen
from Eq. �14�, to maximal and minimal values m= ±n of
momentum 
. Index 2 points can be either EE �with
frequencies of opposite signs and signature ����� or
CH. For the 1:1 resonance, they correspond to m=0.

The reason why EH and HH points cannot exist is
again due to the Pauliean symmetry. EH does not have
the correct index. To exclude HH, consider the specific
S1 action induced by the Pauliean symmetry on the sym-
plectic Rx

2�Ry
2 neighborhood of the fixed point on S2

�S2. The action is diagonal �see Sec. IV.D.1� and in each
symplectic R2 plane it is a rotation about the origin
which permits only elliptic-elliptic or focus-focus points.

3. Fibers of the energy-momentum map EM

Fibers EM−1�n ,m ,h� of EM will be denoted �n,m,h. If
� has several connected components, the latter will be

distinguished as ��, ��, etc. A regular fiber of EM or
EM3D is a union of regular tori T4 or T3, respectively. A
critical fiber EM−1�c� over a critical value c contains at
least one critical point �q ,p�crit. Such a fiber has at least
one connected component �c which is not a regular
torus, except in certain degenerate cases where the criti-
cal value c appears at the boundary of the bifurcation
diagram BD and EM−1�c� differs from the nearby fibers
in the number of connected components. When describ-
ing fibers, we drop their Keplerian and KS cycles asso-
ciated with integrals n and � and describe only fibers of
EMn �15b� in S2�S2 from which fibers in the original
phase space R

*
6 or in the KS space �R8��=0 can be obtained

by taking into account the respective S1 or T2 orbits over
each point in S2�S2. In most cases this means taking the
Cartesian product of the EMn fibers with S1 or T2, re-
spectively. In this section, we describe what kinds of fi-
bers are to be found. These are basic types for a 2-DOF
system.

a. Relative equilibria (RE)

Lower dimensional �non-Lagrangian� tori that are
purely group orbits of the Lie symmetries of the system
are its relative equilibria.16 After reduction of these sym-
metries, RE become equilibria of the reduced system.

When �c consists of elliptic critical points of rank 2, it
is a T2 Keplerian-Pauliean RE in R

*
6, i.e., a T2 defined

entirely by the combined periodic flows of Hamiltonian
vector fields XN and X
 of momenta N and 
. On S2

�S2, such RE is represented as an S1 Pauliean orbit, and
on Pn,m it is a regular point which is an equilibrium of
the second reduced system. They form families with two
parameters n and m.

When �c consists of EE critical points of rank 1, it is a
purely Keplerian RE S1 in R

*
6 called Kepler ellipse

�Flöthmann et al., 1994; Sadovskií and Zhilinskií, 1998�.
There are four families of such ellipses, each param-
etrized by n �see Fig. 6�; on S2�S2, we have four equi-14If b=c=0, the eigenvalues are �±a , ±a� and the FF equilib-

rium is not CH. This may happen in the presence of symme-
tries, as in the example of the spherical pendulum �Efstathiou,
2005�.

15In most configurations except near the collapse �Fig. 3�,
these elliptic equilibria are global maximum and minimum.

16For a standard definition of RE, see Appendix 5C of
Arnol’d �1989� and Chap. 3.3 of Arnol’d, Kozlov, and Neísh-
tadt �1988�.
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FIG. 6. Kepler ellipses for a2= 3
4 , d=0 �orthogonal fields�, s

�0.2, and n�1 projected in the physical space R3. Rectangles
set the scale of the center plot; dashed and solid circles mark
limits of the unperturbed and full potential; arrows on the or-
bits indicate Keplerian flow. From Sadovskií and Zhilinskií,
1998.
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librium points.

b. Singular fibers

If �c contains hyperbolic points of rank 2 or CH
points of rank 1, it is typically �excluding degenerate
cases� a singular three-dimensional variety in R

*
6. It in-

cludes both critical and regular points. The former con-
stitute an unstable RE, while the latter belong to the
stable and unstable manifolds of that RE. Reducing the
Keplerian symmetry, we obtain two-dimensional singu-
lar varieties in S2�S2 shown in Figs. 7 and 8.

A singly pinched torus T�1�
2 is a torus with one funda-

mental loop contracted to a point which is a FF equilib-
rium. In a space R3 it can be represented in two different
ways �Fig. 7� which are the same in R4. A doubly
pinched torus T�2�

2 �Fig. 8, left� is a degenerated singular
fiber which contains two FF points, i.e., has two pinches.
A curled torus T�1/2�

2 and bitorus Tbi
2 are the two simplest

hyperbolic two-dimensional singular varieties which can
be obtained as a cylinder on a figure eight whose ends
are glued with or without a twist, respectively. Both con-
tain hyperbolic points of rank 1 which form a Pauliean
S1 RE on S2�S2.

4. BD as stratified unfolded EM image

In order to uncover the topology of an integrable fi-
bration we go through a number of steps: we find the
base of the fibration, reconstruct individual fibers, and
establish connections between them. The combined re-
sult of the first two steps can be represented in the form
of the stratified image of the EM map �Efstathiou, Sa-
dovskií, and Zhilinskií, 2007; Efstathiou et al., 2009�,
which is otherwise called bifurcation diagram17 �Bolsi-
nov and Fomenko, 2004�, critical locus �Cushman and
Bates, 1997�, or base diagram �Symington, 2003� and
which will be denoted BD. In comparison the new ele-
ment in our concept of BD is that we consider it as a
multisheeted covering surface, similar to a Riemann sur-
face. This construction is essential to our study and we
give more detail.

The base of the fibration is, of course, the image of the
EM map in Eqs. �15�. It is a domain in R3. Within the
base, we distinguish regular and critical values. The set
of all regular values or regular stratum is a union of
open domains in R3, whose closure consists of critical
values. The latter are further distinguished by the type
of connected components of their preimages and form

critical strata. We focus on the topology of critical and
regular strata.

We first look for the EM values which lift to fibers
with k�1 connected components, and if they exist, we
construct an unfolding or covering surface S of the base.
As a simple example, consider the case of a 2-DOF sys-
tem with EM values �m ,h� shown in Fig. 9, right, where
the set of all regular values �left side projection� is
shaded gray, and within it, values with k=2 and k=1 are
distinguished by dark and light shades. The correspond-
ing unfolded surface S �bottom projection� consists of a
single regular sheet. Within it, the set of all regular val-
ues is an open two-ball whose points lift to single regular
tori T2. The upper boundary of the k=2 subset is made
up of critical values c such that EM−1�c� consists of a
single regular torus; such a boundary is called a caustic
�Efstathiou, Sadovskií, and Zhilinskií, 2007�. Caustics
can be structurally stable in the presence of a symmetry
that forbids specific resonances, e.g., for parallel fields.

A different 2-DOF example is given in Fig. 10. In this
case, the unfolded EM image S consists of several open
regular domains, which are glued along a common
boundary whose points c lift to bitori Tbi

2 . This example
illustrates the concepts of cells and walls.18

We work normally with unfolded lower cells, called
cells for brevity. Such a cell is defined as the closure of a
connected domain of regular values of the unfolding sur-
face S; it intersects other cells only along a common
boundary in S, such as the line of critical values c. Any
common boundary of several cells is a wall. In the 1:1
zone, we encounter only walls of this kind. For 1:2 and
higher resonances, Nekhoroshev et al. �2006� discovered
walls of a different kind, called passable. Such walls are
formed by lines of “weakly” critical values c which lift to
a hyperbolic singular fiber called a curled torus. They
exist in the 1:2 zone �Efstathiou, Sadovskií, and Zhilin-
skií, 2007�.

D. Global action-angle variables and monodromy

So far we have focused on covering the set of regular
EM values by disconnected regular interiors of several
cells. This is the basic consequence of the presence of
hyperbolic fibers called bitori. For each cell, we want to
describe all Liouville tori in the preimage EM−1�R� of its
regular interior R using one set of smooth action-angle

17A bifurcation diagram shows how the topology of the fibers
changes as their image moves in the range of the EM map.

18Nekhoroshev et al. �2006� distinguished upper and lower
cells situated in the full space and the base of the fibration,
respectively �see also Bolsinov and Fomenko �2004��.

T
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[1]

FIG. 7. Two R3 embeddings of a singly pinched torus T�1�
2 .

T
2
[2] T

2
[1/2] T

2
bi

FIG. 8. Possible R3 representations of singular fibers �left to
right�: doubly pinched torus, curled torus, and bitorus.
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coordinates. Physicists prefer such coordinates because
they make quantization simple �see Sec. II.E�, give a
unified description of large groups of states, and are at
the foundation of many perturbation theory variants,
notably the methods by Birkhoff. Simple systems with
global actions, such as a nonresonant harmonic oscilla-
tor, are used widely as models. Unfortunately, the study
of the domain of such coordinates �in R6� is often ig-
nored. Aggravated by the complexity of the coordinates
in use, this is admittedly far from trivial.

The task can be systematized by pulling actions I�q ,p�
back to R, i.e., by considering them as functions I�m ,h�.
If global actions exist, then I�m ,h� can be defined as
smooth single valued functions on the entire R. It is
clear that a nontrivial topology of R and in particular the
situation when R is not simply connected should be a
first alert. We consider this in detail.

The important specific of action-angle coordinates is
that they are only guaranteed �under certain general
conditions by the Arnol’d-Liouville theorem19� to exist
locally in a neighborhood of a regular torus. This was
well understood by mathematicians, who searched sys-
tematically for conditions under which these coordinates
can be extended �Nekhoroshev, 1969, 1972�. Duister-
maat �1980� turned the question around and defined the
simplest topological obstruction to global action-angle
variables which he called Hamiltonian monodromy and
which we call monodromy20 for brevity.

1. Basic case of Hamiltonian monodromy

In the simplest case �Duistermaat, 1980�, which has
many concrete physical realizations,21 monodromy oc-
curs in a 2-DOF system with a nondegenerate FF equi-
librium. As explained in Sec. II.C.3 and shown in Fig. 11,
left, such equilibrium is typically isolated; it is the singu-
lar point of the singly pinched torus T�1�

2 which is repre-
sented as an isolated critical EM value o. The set of
regular values R is a punctured open two-ball B

*
2

=B2 \o. To uncover monodromy, consider a closed di-
rected path � in R which encircles o and the regular
torus bundle over �. Using local action-angle coordi-
nates, regular tori in this bundle can be connected, i.e.,
we can give a continuous map from a torus to its neigh-

19See Arnol’d, Kozlov, and Neíshtadt �1988�, and Arnol’d
�1989�. As usual, several other names may be added to this
theorem: Nekhoroshev �1994� suggested Poincaré and
Lyapunov, while Vū NgIc and Nguyên Tiên pointed to a simi-
lar statement by Mineur �1937�.

20Monodromy describes what happens after we go once
�
ó�o� around a path ���ó
o��. It appears in the topology of
fiber bundles, complex analysis, Poincaré maps, and other con-
texts. Symington �2003� considered topological and affine
monodromy, which are what we use here for the classical sys-
tem �Sec. VI� and for its quantum analog �Secs. II.E and VII�,
respectively.

21See Cushman and Bates �1997� and discussion in Sec.
VIII.D.
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FIG. 9. �Color online� Example of a self-overlapping BD with
a caustic from Efstathiou, Sadovskií, and Zhilinskií �2007�: the
EM map image is shown projected on the left vertical plane
with coordinates �m ,h�.
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FIG. 10. Overlapping lower cells in the EM image �middle�
and their unfolding surface �top�. Double line marks branching
boundary; bold solid line shows a path, which corresponds to
the change in the topology of the fiber illustrated on the bot-
tom. Points a, b�, b�, and c lift each to a single connected
component; b� and b� correspond to the same EM value b; the
graph a→c→ �b� ,b�� is what Bolsinov and Fomenko �2004�
called the “B atom.” From Sadovskií and Zhilinskií, 2007.

a o
Γ

a b′c

b′′

Γ

FIG. 11. Nonsimply connected cells: the preimage of the iso-
lated critical value o �left� is a pinched torus; the nontrivial
path � is used to study monodromy: other points and paths are
similar to those in Fig. 10. From Efstathiou, Sadovskií, and
Zhilinskií, 2007.
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bor. It turns out22 that the bundle is nontrivial, i.e., it is
not a direct product S1�T2 and these tori cannot be
described by one set of action-angle coordinates.23 We
discuss this phenomenon and its consequences further in
Sec. VI.

2. Specifics of monodromy

Monodromy is a topological property. It does not de-
pend on the particular contour � chosen for its compu-
tation but on the homotopy class ��� of the fundamental
group �1�R� of R. So it extends to the whole of R and,
consequently, the system has no global action I�m ,h� on
R. Monodromy is a property of the bundle �see footnote
23�. Considering each fiber individually does not un-
cover it. The key is in establishing an additional struc-
ture which is a global connection on the bundle and
which describes how regular tori “fit together” in the
total space. The specifics of this phenomenon is that de-
spite its seemingly humble local origins, “just” an iso-
lated singular fiber and ‘‘just’’ one isolated value o, its
topological consequences are global. This made mono-
dromy so difficult to uncover and to explain in physics
and at the same time so interesting. Cushman was first to
appreciate monodromy fully as a potential physical phe-
nomenon �see footnote 21�.

3. Multivalued action functions

In the presence of monodromy, at least one of the
action functions I�m ,h� is a multivalued real function on
the set R of regular EM values �m ,h�. In the simplest
situation of Sec. II.D.1, such an action I2 has near
�m ,h�=0 a universal form �Vū NgIc, 2000�

2�I2�m,h� � m arg�h + im� + ¯ .

As can be seen from Fig. 12, this makes a global action
in the regular neighborhood of o impossible: for any
single valued choice of I2�m ,h�, going once around �
results in a different �I2 /��m ,h� or in a different value
of I2 itself. Note that for an isolated FF singularity, two
continuous choices are possible24 and have been popular
in applications,25 but they are by no means the only pos-
sibility and cannot be equated with monodromy itself.

4. Generalized or fractional monodromy

As pointed out in Sec. II.C.3, the bitorus is by far not
the only possible hyperbolic fiber with rank 2 �corank 1�
critical points. So the 1:2 zone systems may have families
of curled tori T�1/2�

2 with parameters �n ,m�. Nekhoroshev
et al. �2006� called them “weakly singular” fibers be-
cause, contrary to bitori, they do not separate different
upper cells or form boundaries and because we can con-
nect regular tori along a path crossing them.

Within a BDn, a family of T�1/2�
2 is represented as a line

called a passable wall �see Fig. 13�. Considering a path �
across such wall, Nekhoroshev et al. �2002, 2006� defined
a mapping between two index 2 subgroups of first ho-
mologies H1��a�� and H1��a�� of tori �a� and �a� on the
opposite sides of the wall. This formal mathematical
construction is shown in Fig. 14 which shows the evolu-
tion of a specific basis cycle26 of H1. It can be seen that a
single cycle breaks and does not survive the passage,
while a double cycle can be continued. Note that for a
regular K-torus �, its first homology H1 and its funda-
mental group �1 are isomorphic and are both equivalent
to a ZK lattice. However, it is the index 2 subgroup of

22As follows most directly from the so-called geometric
monodromy theorem, see Sec. VI.B.5.

23The nontriviality of the bundle is the principal aspect. Thus
in some “exotic” situations when o corresponds to 12 elemen-
tary FF points �Nguyên Tiên, 1995; Cushman and Zhilinskií,
2002; Zhilinskií, 2005�, monodromy along a non-null-
homotopic path �, can be trivial but the bundle over the part
of R encircled by � remains highly nontrivial.

24This agrees with a general statement by Symington �2003�.
25Notably by Bates �1991�, Child �1998, 2001, 2007�, Child et

al. �1999�, and Winnewisser et al. �2006� for the champagne
bottle or Mexican hat potential and its analogs.

26Cycles of H1 can be defined using local actions and the
latter can be continued along �. This is the most common way
to establish the connection on the tori and to compute mono-
dromy. For fractional monodromy it was implemented by Ef-
stathiou, Cushman, and Sadovskií �2007�; a different proof was
given by Sugny et al. �2008�. Nekhoroshev et al. �2006� and
Nekhoroshev �2007, 2008� defined cycles in a more general
geometric nondynamical way that underlines the topological
nature of monodromy.

-0.1

0

0.1

-0.1
0

0.1
-0.2

-0.1

0

0.1

0.2

h

m
-0.1

0

0.1

-0.1
0

0.1
-0.2

-0.1

0

0.1

0.2

h

m

FIG. 12. �Color online� Different possible choices of the leaves
of the multivalued part m arg�h+ im� of the second action
I2�m ,h� near �0,0�. In the special case �left�, I2�m ,h� is C0

smooth, while in a more general case �right�, I2�m ,h� is discon-
tinuous.

a′

c
a′′ o

Γ

FIG. 13. The BD of a system with fractional monodromy �cf.
Fig. 11, left�. The passable wall �dashes� is a line of weakly
critical values that lift to curled tori; a� and a� are regular
values on different sides of the wall: o is an isolated strongly
critical value. The path � encircles o and crosses the wall trans-
versely at c.
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H1��� that can be continued across passable walls �Gia-
cobbe, 2008�. In the situation when a passable wall has
an open end terminated by an isolated critical value o
�see Fig. 13�, the path � can be chosen so that it encircles
o crossing the wall only once. The preimage of such an o
is a pinched torus and the system has monodromy. Be-
cause we deal with a subgroup of H1, this generalized
monodromy is also called fractional. A more formal rea-
son for such terminology is given in the next section.

5. Monodromy map and its matrix

Monodromy is a mapping M that for each class ��� of
closed directed paths ��R supplies an automorphism
M��� of the first homology group H1��a�, a transforma-
tion of the affine coordinates on the regular torus �a
with a��. For orientable R and for a given initial cycle
basis in H1��a�, the automorphism M��� can be repre-
sented by a matrix M in SL�K ,Z�;27 the rows of M cor-
respond to the new basis elements expressed in terms of
the initial basis. Since the group of orientation preserv-
ing automorphisms �see footnote 27� of H1��a� is
SL�K ,Z�, M is defined up to conjugation in SL�K ,Z�.

For a concrete construction, recall that cycles of
H1��a� are coordinate “axes” on �a. In an integrable
Hamiltonian dynamical system, these cycles can be de-
fined using commuting periodic Hamiltonian flows on �a
corresponding to local actions I, and in that case conju-
gate angles � serve as affine coordinates. This leads to
an identification of a K-torus �a with a lattice ZK, which
Duistermaat �1980� called the period lattice. Matrices M
define transformations of the basis vectors of this lattice.
See more in Sec. VI.

For the most basic monodromy in Sec. II.D.1, the
standard form of the monodromy matrix is

M�1� = � 1 0

− 1 1

 .

In other words, on all tori in a saturated neighborhood
of the singly pinched torus we can always choose one
“fixed” cycle28 �1 which M��� leaves unchanged, while
the second cycle �2 transforms under M��� into �2−�1.

The fixed cycle is normally associated with a momentum
of an S1 action, which in simple cases, including our sys-
tem, is defined globally.

When k�1 FF points combine in a degenerated sin-
gular fiber29 known as torus with k pinches, the standard
matrix is

M�k� = � 1 0

− k 1

 .

For fractional monodromy30 this matrix can formally be
written as M� 1

2 �, while the actual cycle transformation is
defined only for the index 2 subgroup with basis ��1 ,2�2�
which transforms according to matrix M�1�.

E. Quantum-classical correspondence

Duistermaat �1980� introduced monodromy as a prop-
erty of the regular toric bundle that originates in the
topology of its base R. Furthermore, we have seen that
monodromy can be uncovered without studying the fi-
bers if we introduce an additional structure on R defined
by I�m ,h� �local actions pulled back to R�. In 2-DOF
�see Secs. II.E.1 and II.E.2�, in a sufficiently small regu-
lar neighborhood of every regular point �m ,h��R, the
functions I�m ,h� define two unit vectors �u1 ,u2�
=u�m ,h� along the directions in R which correspond to
the individual increase of actions I1 and I2, i.e., to the
columns of the inverse of the Jacobian matrix
��I1 ,I2� /��m ,h�. It is said that �u1 ,u2� define an affine
structure on R �Symington, 2003; Vū NgIc, 2007�.
Monodromy is related to this structure and not to
I�m ,h� itself.

1. Quantum joint spectrum lattice

For us the interest in the above affine structure is due
to its direct relation to quantum mechanics. According
to the Einstein-Brillouin-Keller �EBK� quantization
principle, also known as torus or action quantization,
allowed quantum �m ,h� are those for which I1 ,I2 are
integer values �times � and plus a small constant correc-
tion�. It follows that quantum �m ,h� form in R a two-
dimensional discrete lattice of points whose two transla-
tion operations are given locally by u�m ,h�. Since at all
regular �m ,h� the Jacobian �I /��m ,h� is nondegenerate,
the local structure of the lattice �for 2-DOF� is Z2.

In practice, the lattice can be computed directly as the
joint spectrum of mutually commuting operators 
̂ and

Ĥ which correspond to the first integrals, momentum 
,
and energy H. At any regular node, the spectrum can be
described by local quantum numbers �n1 ,n2� which in-
crease by 1 in the directions given by �u1 ,u2� and which
can be thus extended consistently to neighboring nodes.27SL�K ,Z� is the group of integer K�K matrices M with

det M=+1. It is used for all systems described or mentioned. If
R is not orientable, e.g., a Möbius strip �or if the regular fibers
are not tori and are not orientable�, we should allow for im-
proper changes of the directions �signs� of cycles and use a
larger group GL�K ,Z� where det M= ±1.

28Called vanishing cycle in the Picard-Lefschetz theory.

29See Bates and Zou �1993�, Matveev �1996�, and Nguyên
Tiên �2002�.

30See Nekhoroshev et al. �2002, 2006�, Efstathiou, Cushman,
and Sadovskií �2007�, and Sugny et al. �2008�.

Λa′ Λc Λa′′

FIG. 14. Deformation of cycles of regular fibers �a� and �a� as
we go from a� to a� on � in Fig. 13. From Nekhoroshev et al.,
2006.
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In a system with several cells, we consider several quan-
tum lattices within the regular interiors R of each cell
that may overlap in the EM range.31

2. Quantum monodromy

In the presence of monodromy, the locally trivial regu-
lar toric bundle is nontrivial globally. Similarly, the cor-
responding affine locally regular Z2 lattice has a defect32

which prevents extending the Z2 structure to the whole
lattice. In other words, it prevents choosing a fixed
unique basis �u1 ,u2� or, equivalently, it prevents choos-
ing global quantum numbers. This phenomenon has be-
come known as quantum �Sadovskií and Zhilinskií, 1999;
Vū NgIc, 1999� or affine �Symington, 2003� monodromy.
It can be most clearly uncovered from an elementary
cell diagram �Cushman and Duistermaat, 1988; Sa-
dovskií and Zhilinskií, 1999�, such as the one in Fig. 15.
At the initial point �m ,h� on the nontrivial path ��R,
we choose a basis u�m ,h� which defines an elementary
cell. Moving along � we redefine continuously the vec-
tors �u1 ,u2� and the cell. We come back with a different
cell. The resulting change of the elementary cell is de-
scribed by the matrix which relates the initial vectors
�u1 ,u2� and the final vectors �w1 ,w2�. Considering the
transformation properties of �I /��m ,h�, we can verify
�Vū NgIc, 1999; Nekhoroshev et al., 2006� that this ma-
trix is the inverse transpose �M−1�T of the classical
monodromy matrix M.

3. Generalizations

For integrable systems with K�2 DOF we proceed
similarly. For the original system with the Hamiltonian
�2�, K is 3 and, after normalizing and introducing first
integrals N and 
, we study three-dimensional lattices
with local Z3 structure �see Sec. VII�.

In order to apply the same approach in the presence
of weak singularities, for example, to study quantum
fractional monodromy, we should transport multiple el-

ementary cells �Nekhoroshev et al., 2002, 2006; Zhilin-
skií, 2005�. Thus double cells are used in the 1:2 zone.

F. Main conjecture of the global classification

Reconstruction starting from the bifurcation diagram
BD �stratified unfolded image of the EM map� is at the
heart of our analysis. We obtain six dimensions �initial
physical phase space� from eight �KS space�, eight from
four �reduced space S2�S2�, and—as in the title of Sym-
ington �2003�—four from two �bifurcation diagram BD�.
The main conjecture �Efstathiou, Sadovskií, and Zhilin-
skií, 2007� is that our global dynamical classification can
be given in terms of BD topology. Two groups of prob-
lems have to be cleared in order to make this into a
more rigorous statement: we should �i� extend the re-
sults deriving the topology and symplectic geometry of
the integrable fibration from its BD and �ii� understand
the reliability of the integrable approximation.

1. Toric fibrations and their BD

A K-DOF integrable system with a toric fibration, i.e.,
a trivial fibration whose every regular fiber is a single
torus TK and whose only critical fibers are non-
Lagrangian tori TK� with K��K, has global action-angle
variables. In other words, the system has K first integrals
in involution which are momenta, i.e., which define pe-
riodic Hamiltonian flows, and the EM map is equivalent
to a global momentum map J. In particular, the images
of EM and J are diffeomorphic. The diffeomorphism is
given by the expression for energy in terms of momenta.

Furthermore, if additionally the phase space is closed,
then after replacing EM by J �cf. Fig. 9� the BD of this
system becomes a solid convex polytope �with some ad-
ditional characteristics� and the set of regular values
within it is an open K-ball BK with piecewise linear
boundary �BK �Atiyah, 1982, 1983; Guillemin and Stern-
berg, 1982, 1984�. The set of all regular tori is a trivial
regular toric bundle BK�TK. The inverse is also true
�Delzant, 1988�: a BD diffeomorphic to the one de-
scribed above together with an effective33 torus action
on the total space define completely a toric fibration of
the latter. These statements extend to more general
phase spaces if the EM map is proper,34 and all fibers
are connected.

The phase space S2�S2 of the first reduced system
allows a regular toric fibration �Symington, 2003� and
the family of integrable approximations to system �2�
includes systems with such fibration. In the 1:1 zone they
are called A0 �Efstathiou, Sadovskií, and Zhilinskií,
2007; Efstathiou et al., 2009�, and their constant-n BDn is
a rectanglelike two-ball whose boundary has four cone
singular points. The latter correspond, of course, to
Keplerian RE.

31See Joyeux et al. �2003� and Efstathiou, Joyeux, and Sa-
dovskií �2004� for an early example and Sec. VII.

32See Cushman and Duistermaat �1988�, Sadovskií and Zhil-
inskií �1999�, Zhilinskií �2005�, and Nekhoroshev et al. �2006�.

33We work with effective torus actions in Sec. VI.A.2.
34Under a proper map, the inverse image of any compact

space remains compact.

m3210−1−2−3−4

h

1

0

−1

FIG. 15. Lattice of the joint energy-momentum spectrum for
the 1:−1 resonant oscillator. Dark quadrangles show parallel
transport of an elementary cell around the lattice defect at o
= �0,0�, which is the critical value of the classical EM map
similar to that in Fig. 16, left. From Nekhoroshev et al., 2002.
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2. Recovering topology of singular fibrations from their BD

Results for integrable fibrations with singular fibers
were obtained primarily in 2-DOF. Symington �2003�
and Vū NgIc �2007� studied “almost” toric fibrations or
fibrations, which can only have pinched tori �Fig. 8, left
and center� as their singular fibers and therefore are de-
fined by an EM map with either elliptic or focus-focus
critical points. In this case, the topology of the fibration
and the total space follows from that of the BD. Syming-
ton also proved that S2�S2 can have an almost toric
fibration. Such systems exist in our family; in the 1:1
zone, they are called A1, A2, and A1,1 �Efstathiou, Sa-
dovskií, and Zhilinskií, 2007; Efstathiou et al., 2009�.
These systems have one, two on the same fiber, and two
on distinct fibers focus-focus equilibria, respectively, and
all of them possess nontrivial monodromy. What is par-
ticularly interesting from Symington �2003� and Vū NgIc
�2007� is that their extension of Delzant �1988� to almost
toric fibrations relies on an additional affine integral
structure instead of an assumption of an existing torus
action �in the total space� �see Sec. II.E and, for an in-
teresting parallel, Kontsevich and Soibelman �2006��.
The geometric monodromy theorem �Nguyên Tiên,
1997; Cushman and Duistermaat, 2001�, discussed in
Sec. II.D, fits in the same context. The difference from
Symington �2003� and Vū NgIc �2007� is that the state-
ment is more local. It does not attempt to consider the
whole BD and to recover the whole fibration from it, as
can be done for a compact or properly compactified to-
tal space and almost toric fibration.

3. Extending to systems with hyperbolic singular fibers

Alas, when the mathematical theory in the preceding
section meets physical reality, we realize that the former
is far from satisfactory. In our system, hyperbolic fibers
appear regularly. In the 1:1 zone, the fiber is a bitorus
�Fig. 8, right�, and systems which possess it are called B
type. In the 1:2 zone we can also have curled tori, and
both fibers appear typically following the disintegration
of a caustic �Efstathiou, Sadovskií, and Zhilinskií, 2007�.
So we have to deal with the situation.

In Sec. II.C.4 we saw that bitori are related to the
existence of several unfolded cells in the BD. In 2-DOF
bitori appear typically as a one-dimensional family C, so
that their images c form a C segment of critical values
within the BD, which forms a wall between the cells. We
detach the cells, ignore the C segments, and consider
each cell individually as a base of an almost toric fibra-
tion. This divides the whole integrable fibration into sev-
eral subfibrations fitting in the same total space. Al-
though it might be possible to connect these fibrations
between themselves, i.e., “across” the bitorus walls, we
will not attempt that presently for the lack of reliable
theory �see, however, Bartsch et al. �2007� and compare
to the phenomenon of bidromy in Sec. III.C.1�. In quan-
tum mechanics, such construction corresponds to several
overlapping joint spectrum lattices within one energy-
momentum domain.

With regard to all kinds of possible arrangements of
hyperbolic singularities in a 2-DOF system �Bolsinov
and Fomenko, 2004�, the fibrations considered here can
be called almost toric with trivial families of hyperbolic
singularities or trivially singular. Basically, this means
that �in 2-DOF� we do not have HH critical points
�Dullin and Vū NgIc, 2007�, whose existence compli-
cates significantly the unfolding of the stratified EM im-
age into a BD. In our systems, different one-dimensional
families C of bitori do not come out of a neighborhood
of the same singular fiber �i.e., their EM images do not
“intersect”� and this makes unfolding straightforward.

Another kind of Bott-type hyperbolic singular fibers
that we encounter in our systems with resonances 1:2
and higher is curled tori. These are weakly singular,
meaning that EM images of their families C constitute
passable walls within the same cell. The example in Sec.
III.C.2 shows that families of curled tori and bitori can
join. In k− :k+ resonant systems with both k−�1 and k+
�1, families of different curled tori exist and can excep-
tionally join at the same singular fiber �Nekhoroshev,
2007; Giacobbe, 2008; Sugny et al., 2008�.

4. Extending to nearly integrable systems

The conjecture that monodromy can apply not only to
integrable systems but also to systems with a reliable
integrable approximation was made “out of necessity”
by Cushman and Sadovskií �2000�. It was later confirmed
by Rink �2004� and Broer et al. �2007� who established a
connection on the Cantor set of KAM tori along a path
crossing these tori in the total space. This involves inter-
polation of the first homologies along the path. We can
also envisage interpolating local actions and reproducing
the affine structure of the integrable approximation.
This can be quite naturally done in quantum mechanics
by computing average values of approximate integrals
�see Sec. VII for more details�.

III. RESULTS: QUALITATIVE TYPES OF
PERTURBATIONS

The first complete global second-order description of
perturbations �Eq. �2�� was given by Cushman and Sa-
dovskií �1999, 2000� for the one-parameter subfamily
with perpendicular fields. In the same spirit, integrable
approximations to other perturbations �Eq. �2�� can be
constructed using second-order normalization and going
to higher orders if necessary. For each approximation,
we study the fibration of the phase space defined by its
first integrals. The topological properties of the fibration
and in particular monodromy give comprehensive quali-
tative characteristics of the original perturbed noninte-
grable system.

A. Symmetry strata and their stabilizers

Depending on the configuration of fields G and F,
systems with the Hamiltonian �2� have different isotropy
symmetries and have been classified by Michel and Zhi-
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linskií �2001a�. We list all possible configurations and re-
spective isotropies in Table I and give the action of these
groups on the phase space R6. The order 2 group T
= �1,T	 includes the �time� reversal operation

T:�Q,P� � �Q,− P�;

the group Ts= �1,Ts	 includes a combination Ts=T �� of
T and reflection in the plane of vectors F and G,

�:�Q,P� � �Q1,Q2,− Q3,P1,P2,− P3�

�see Fig. 1�; the discrete order 4 group Z2�Ts of � con-
figurations includes the group Z2= �1,�h	 of reflections in
the plane orthogonal to G �cf. Sadovskií and Zhilinskií
�1998��. Single fields G and F and parallel fields G �F
have Lie symmetry SO�2� with the axis C� aligned with
the field vector: we use axis Q1 for G and G �F and axis
Q2 for F. The groups C�v and C�h are standard spatial
extensions of the two respective C� groups.

Note that symmetry strata do not depend on the inte-
grable approximation and persist for the nonintegrable
case. On the other hand �albeit for a differently oriented
axis�, the action of the approximate S1 symmetry of any
system in the 1:1 zone is equivalent to that of C�. After
normalization, such systems have isotropy symmetry
S1∧Ts�C�∧Ts. This makes the analysis and results of
Michel and Zhilinskií �2001a� closely related to our
analysis of 1:1 systems.

Michel and Zhilinskií �2001a� used invariant theory to
reduce the spatiotemporal symmetries in Table I and de-

scend to the orbit space O that they call orbifold. For all
cases with SO�2� isotropy, this space is similar to the one
in Fig. 5—a pillowlike closed three-ball with four conical
corners on its surface. Subsequently, they studied pos-
sible reduced Hamiltonians as functions H :O→R.
Qualitatively different H are distinguished by the set of
their critical levels. In comparison to this approach, we
go into more detail by considering combined levels of
momentum 
 and energy H on O. This allows us to
reconstruct fibers of the EM map. We make similar em-
phasis on the critical levels.

B. Classification of systems in the 1:1 zone

Within the n-shell parameter space Dn �see Fig. 3 and
Eq. �4c��, the 1:1 zone is a strip

��a2,d� � Dn, �d� � dmax � 1
2 	 �16�

divided by the �SZ� segment. The structurally identical
halves of the zone correspond to slightly acute ��G ,F�
�0� and obtuse ��G ,F��0� angles between F and G. So
assuming �G ,F��0 suffices. The size of the 1:1 zone is
given by dmax. Different criteria for this value are pos-
sible. We can look for the closest sufficiently low-order
resonance, e.g., 4:3 used in Fig. 16, which cannot be ig-
nored at time scales comparable to that of the second-
order average. We can also follow structures specific to
the particular resonance, e.g., gray shaded areas and tri-
angular regions near S and Z limits in Fig. 16, and as-
sume that they vanish at the periphery of the zone.35

As shown in Fig. 16, the 1:1 zone includes the � sym-
metry stratum �SZ�, S, Z, and part of the � stratum near
S and Z. Cushman and Sadovskií �1999, 2000� showed
that SZ itself is stratified into three dynamical strata.
Systems in the central stratum have monodromy. Later
Efstathiou, Cushman, and Sadovskií �2004� related tran-
sitions from and to this central region to Hamiltonian
Hopf bifurcations. Recently Efstathiou, Sadovskií, and
Zhilinskií �2007� and Schleif and Delos �2007� showed
that near orthogonal configurations are deformations of

35Consistent mathematical zone width estimates which may
reproduce the above criteria can probably be given by adapt-
ing Nekhoroshev stability theory to parametric isochronous
systems �Fassò, 2008�.

TABLE I. Symmetry strata of the constant s section Ds of the parameter space of the family of
perturbations of the hydrogen atom with the Hamiltonian equation �2�; see Sec. III.A and Michel and
Zhilinskií �2001a� and Efstathiou et al. �2009�.

Stratum Dimension Symmetry Definition �cf. Fig. 16 and Eq. �4b�� Comment

S 0 C�v�T a=0 One point
Z 0 C�h∧Ts a=1 One point
� 1 C�∧Ts d2=a2�1−a2�, a2� �0,1� Two open semicircles
�SZ� or � 1 Z2�Ts d=0, a2� �0,1� Open interval
Generic 2 Ts 0�d2�a2�1−a2�, a2� �0,1� Two open half-disks

+

−

S Z

√
3
2
− 1

√
1
2

4:3

3:4�
a2

�d

F1

F2(a)

+

S Z

A0

A1,1

A2

B′′
1B′

1

B′′
0B′

0

A′
1 A′′

1(b)

FIG. 16. Structure of the 1:1 zone �Efstathiou, Sadovskií, and
Zhilinskií, 2007; Efstathiou et al., 2009�. Different dynamical
strata of the zone �a� correspond to vertices of the genealogy
graph �b�; vertical edges of the graph represent bifurcations
with broken symmetry of order 2, and other edges correspond
to Hamiltonian Hopf bifurcations.
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the strictly orthogonal ones breaking the specific Z2 sym-
metry of the latter. Classification of these systems was
finalized by Schleif and Delos �2008� and Efstathiou et
al. �2009�.

Table II lists qualitatively different structurally stable
1:1 systems. The B systems may have regular fibers con-
sisting of two components �tori�; all regular fibers of A
systems are single tori. The BD’s of B systems consist of
several cells �cf. Figs. 10 and 11, right� or may consist of
one folded cell �cf. Fig. 9�; the latter case is called A*.
Plain single cell BD’s are of type A. Nonsimply con-
nected cells �cf. Fig. 11�, i.e., cells with nontrivial funda-
mental group �1�R� of their regular interior R, are fur-
ther characterized using monodromy. This characteristic
is reflected in the subscripts k=0,1 ,2, each correspond-
ing to a cycle of �1�R� and to the respective class of
monodromy matrices M�k� in Sec. II.D.5.

The structure of the zone is described completely by
specifying how the types in Table II fit within the param-
eter strip �16�. This structure is shown in Fig. 16 using
the results of Efstathiou et al. �2009� who computed ana-
lytically the parametric boundaries of all dynamical
strata within the second-order approximation. We can

now pick a structurally stable traversal path that starts
on the SZ axis and describe the topology of the zone by
specifying the types of systems we may encounter. As
can be seen from Fig. 16, there are two such paths,
B0B1A1A0 and A2A1,1A1A0.

C. Systems in the 1:2 zone

The characteristic feature of any 1:2 resonance is that
the respective symmetry action has special “short” S1

orbits with isotropy Z2. Their period is half that of ge-
neric orbits. The Pauliean 1:2 symmetry action on S2

�S2 has such critical orbits in addition to the four fixed
points common to any Pauliean symmetry �Sec. II.C.2�.
In the total space R

*
6, the former lift to ‘‘short’’ T2 RE,

whose Pauliean cycle is half the period of the Keplerian
cycle, while the latter correspond to the four Keplerian
ellipse RE. Among these four Keplerian RE, two have
again the maximum absolute values �m�=mmax=3n /2 of
the Pauliean momentum 
, while two others have inter-
mediate nonzero values �m�=mcrit=n /2; the boundaries
of the BD are formed by the images of both short and

TABLE II. Qualitatively different systems in the 1:1 zone �Efstathiou et al., 2009�. For each system, constant-n sections BDn of
bifurcation diagrams BD in coordinates m �horizontal� and h �vertical� are displayed in the second column.

Type BD Monodromy Additional description of the BD

A0
generic, �

Trivial The single cell BD

A1
generic, �

Nontrivial
M�1�
�cf.

Sec. II.D.1�

Contains an isolated critical value o that corresponds
to a singly pinched torus T�1�

2

A1,1
generic

Nontrivial
M�1� or

M�2�

Contains two isolated critical values o−, o+ that
correspond to different singly pinched tori

A2
�SZ�

Nontrivial
M�2�

Contains an isolated degenerated critical value o that
lifts to a doubly pinched torus T�2�

2

B1
generic,
�

B′
1

B′′
1

Nontrivial
M�1�

Two partially overlapping cells glued along a bitorus
line. Both BD’s are equivalent and appear in the
dynamical strata B1� near the Stark limit and B1� and �

B1� near the Zeeman limit
B0 �SZ�,
Z B′

0

B′′
0

Trivial Three cells glued along a line; two of the cells overlap
completely �dark shade�. Both BD’s are equivalent
and appear in the B0� and B0� dynamical strata near
the Stark and Zeeman limits, respectively

A
0
* � near

S
Trivial Single unfolded cell that partially overlaps itself; upon

unfolding, becomes a type A0 BD

S Trivial Single unfolded cell that overlaps itself, a special case
of A

0
* with additional Z2 symmetry
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regular T2 RE �see Figs. 17 and 18�. Typical singular
fibers are curled tori and bitori.

1. Most typical 1:2 structure

For the exact 1:2 resonance, the most typical BD is
shown in Fig. 17. It consists of a single unfolded cell. In
the range of the EM map, this cell partly overlaps itself
�in the region shaded dark gray in Fig. 17, top�. It can be
disassembled in two overlapping sheets which are glued
together along the bitorus wall C. Comparing to Fig. 9,
we notice that C comes from a disintegrated caustic.
Comparing to Figs. 10 and 11, right, we see a different
situation: here a path starting “above” C at point a can
reach “below” C in two different ways by entering the
overlap region either from the left or from the right and
arriving at respective b� or b�, which correspond to the
same EM value b. Except for crossing passable walls
�dashed lines in Fig. 17, top, representing families of
curled tori�, such path remains in the regular interior R
of the same cell and the coordinates on the two regular
torus components �b� and �b� of fiber EM−1�b� can be
related. Therefore, the system has global actions.36

2. Fractional monodromy

A more rare �but stable within a small interval of pa-
rameter a2� is the three-cell BD in Fig. 18. Each of its
two small “triangular” cells or “kites”37 has �at its tip�
the image of a Keplerian RE with intermediate momen-
tum m= ±mcrit. They are attached to the large main cell
in Fig. 18, bottom, along two respective segments �walls�
of critical values �double line� corresponding to bitori.
Each segment continues with a “string” �passable wall�
of weakly critical values �dashed line� corresponding to
curled tori; the strings merge with the boundary when
curled tori contract to their short singular circle.

Except for the strings, the situation is similar to the B1
systems in the 1:1 zone. Each kite represents a stable
local deformation of an ideal system with fractional
monodromy studied by Nekhoroshev et al. �2002, 2006�,
Efstathiou, Cushman, and Sadovskií �2007�, and Sugny
et al. �2008�. In other words, the kite can be obtained
continuously from the germ pinched torus which in-
cludes the Keplerian equilibrium and whose image is an
endpoint of a string of curled torus images. Therefore,
the system has fractional monodromy for each of the

36Except for the passable walls associated with the 1:2 reso-
nance, the BDn in Fig. 17 resembles the case with bidromy, a
nontrivial topological characteristics proposed by Sadovskií
and Zhilinskií �2007�. Further study is required to understand
whether these systems do indeed have bidromy. 37We employ the terminology of Waalkens et al. �2004�.

0.5 ns=0.2

FIG. 17. Most typical single-cell BD of 1:2 resonant systems.
Dashed and double lines mark images of curled tori and bitori,
respectively; four black dots represent Keplerian S1 RE, bold
and regular boundaries correspond to short and regular T2 RE;
and energy scale is adjusted. In the upper plot, dark gray shade
represents values with two-component preimages. Lower plots
show two parts of the cell which join �with an overlap� along
the bitorus line C and the respective parts of the bipath �two
merged thin solid and dotted loops� used to uncover fractional
bidromy. Upper plot, from Efstathiou, Sadovskií, and Zhilin-
skií, 2007.

0.43 ns=0.5

0.43 ns=0.5

FIG. 18. �Color online� BD of a 1:2 resonant system with frac-
tional monodromy �top� and its main cell �bottom�, compare to
Fig. 17. The energy scale is adjusted arbitrarily. The closed
path � encircling the segment of bitorus images and intersect-
ing the line of curled torus images results in fractional mono-
dromy. From Efstathiou, Sadovskií, and Zhilinskií, 2007.
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two paths in the main cell which encircle the bitorus
segments as shown in Fig. 18, bottom.

D. Higher-order resonance zones

All zones with k−+k+�3 remain completely unex-
plored. It should be understood that studying a k− :k+
resonant zone requires going to at least order k−+k+ of
the normal form H. Technical difficulties of such compu-
tations apart, the size of the zone, and its structural sta-
bility with regard to the nonintegrable component of the
dynamics decrease exponentially with growing order. So
before we attempt to study higher resonances seriously,
the theory of zones may require quantitative develop-
ment �see footnote 35�.

Another aspect of k−+k+�2 zones is the role of “non-
resonant” terms H�k� of orders k�k−+k+. Specific k− :k+
systems, notably those with k− :k+ fractional
monodromy,38 would exist only if H�k� becomes insignifi-
cant. This seems to be possible for 1:2 but may no longer
be so for higher resonances. Indeed, the 1:2 systems with
fractional monodromy �Sec. III.C.2� are already rather
exceptional: they exist in a relatively small interval of a2,
where nonresonant terms in H�2� nearly vanish and re-
quire large values of ns to make the resonant term H�3�

sufficiently important. For k−+k+�3 such arrangements
may be even more problematic in our three-parameter
family, and we are more likely to encounter structures
similar to that in Sec. III.C.1.

Nevertheless, even if the H�k−+k+� resonance term can
be made dominant, we should not expect to find �fami-
lies of� k− :k+ curled tori because unlike T�1/2�

2 such sin-
gular fibers are structurally unstable. Instead, in the im-
age of the EM map, we may typically find small passable
“corridors” for which “fuzzy” monodromy can be de-
fined �Nekhoroshev, 2008�.

E. Systems with additional Lie symmetry

Finally, systems with �approximate� additional Lie
symmetries may require special attention: if such sym-
metries are incompatible with the S1 symmetry of the
resonant part of the linearized first reduced Hamiltonian
on S2�S2, then we may have to consider constructing
and analyzing a superintegrable approximation system.
Such systems lie near the boundary �D of the parameter
space D in Fig. 3 which includes the � stratum, S, and Z
�see Table I� and where we should select additionally
two collapse points with a2=1/2 and d= ±1/2.

It can be shown that for a2�1/2, i.e., on the Z side of
�D, the action of the axial symmetry C� coincides with
the resonant S1 action and therefore, the � stratum and Z
can be analyzed as integral parts of resonant zones. On
the S side of �D, we need to consider a special � zone
with a2�1/2 and d close to a2�1−a2�, within which reso-

nances result in different superintegrable approxima-
tions. Of these, only S and, to some extent, the collapse
points �Sadovskií et al., 1996� have been studied.

IV. THE INTEGRABLE APPROXIMATION

As outlined in Sec. II, the first step in the construction
of an integrable approximation to the system with the
Hamiltonian �2� is the Kustaanheimo-Stiefel �KS� regu-
larization through which the system is described as a
perturbation of a 4-DOF isotropic harmonic oscillator. It
is followed by the Keplerian normalization of the regu-
larized system �cf. Sec. II.B.1� with respect to the ap-
proximate dynamical oscillator symmetry S1 associated
with the approximate first integral N. After the subse-
quent reduction, we obtain a 2-DOF Hamiltonian sys-
tem on the first reduced phase space S2�S2. The final
step is the construction of an integrable 1-DOF Hamil-
tonian system by a second normalization and reduction
of the 2-DOF system on S2�S2 �cf. Sec. II.B.3�. We go
through these steps in detail.

Up to the final step, the procedure is common to all
resonance zones. It has been refined throughout a num-
ber of papers, started with Reinhardt and Farrelly
�1982�, Johnson et al. �1983�, Robnik and Schrüfer
�1985�, and Kuwata et al. �1990�, and continued by Far-
relly et al. �1992� for parallel fields and Gourlay et al.
�1993� for orthogonal fields, where the KS transforma-
tion becomes essential; we follow closely Sadovskií and
Zhilinskií �1998�, Cushman and Sadovskií �2000�, Ef-
stathiou, Cushman, and Sadovskií �2004�, and Efstathiou
et al. �2009�. The second reduction is specific to each
zone and we mostly focus on the 1:1 case, which em-
braces all of the above cited work and is the only one for
which the complete stratification of the resonance zone
is presently obtained.

Before describing the consequent stages of normaliza-
tion and reduction, we describe our notation. Coordi-
nates on the original phase space R

*
6= �R3 \ �0	��R3 are

given by three-vectors �Q ,P�. Similarly, coordinates on
the KS phase space R8 are given by four-vectors q and p;
q2, p2 will denote their respective scalar squares. We also
identify R8 with C4 where we use complex coordinates

z = �z1,z2,z3,z4�T, zj = qj + ipj for j = 1, . . . ,4.

Our subsequent analysis in Sec. V is based on the second
reduced energy correction obtained in Sec. IV.D.2.f.
This quantity is our main objective here. It will be de-
noted by �E and it will have two dynamical parameters
n�0 and m that are the values of the momenta N and 
,
respectively. Recall from Sec. I.B that N is called Keple-
rian integral and that n is the classical equivalent of the
principal quantum number. Subtracting “scalar” terms
that depend only on �n ,m�, we obtain the Hamiltonian
function H whose value will be called h. It plays the role
of “energy” in our EM maps �15a� and �15b� and our BD
�Table II and elsewhere�.

38See Zhilinskií �2005�, Nekhoroshev �2007, 2008�, Giacobbe
�2008�, and Sugny et al. �2008�.
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A. Keplerian normalization and reduction

1. KS regularization

The KS method is a standard procedure to regularize
the Keplerian vector field. The first step is time rescal-
ing: fixing an energy level E�0 �negative, since we are
only interested in classically bound motion�, we intro-
duce the new time scale dt�dt / �Q�. Equation �2� be-
comes

1 =
1
2

�P2 − 2E�Q + FeQ2Q + FbQ1Q +
G

2
�Q2P3

− Q3P2�Q +
G2

8
�Q2

2 + Q3
2�Q , �17�

where 1
2 �P2−2E��Q� is the unperturbed Hamiltonian.

The subsequent KS transformation �Kustaanheimo,
1964; Kustaanheimo and Stiefel, 1965; Stiefel, 1970;
Stiefel and Scheifele, 1971� maps R

*
8= �R4 \ �0	��R4 onto

the original phase space R
*
6,

KS:�q,p� � �MKS�q�q,
1

q2MKS�q�p
 = �Q,0,P,−
2�

q2
 ,

�18�

where MKS�q� is the 4�4 matrix,

MKS�q� =�
q1 − q2 − q3 q4

q2 q1 − q4 − q3

q3 q4 q1 q2

q4 − q3 q2 − q1

� . �19�

Note that the quadratic Hamiltonian function

� = 1
2 �q1p4 − q2p3 + q3p2 − q4p1� , �20�

which appears in Eq. �18�, generates on R8 an S1 action
called the KS symmetry. Since, as can be computed
straightforwardly, all Poisson brackets of � with any of
the coordinates �Q ,P� expressed in terms of �q ,p� are
zero, � Poisson commutes with any function HKS defined
on R8 as the KS transform H �KS of a function H on R

*
6.

Moreover, since the Kepler system corresponds to �=0,
we can treat � as a constant of motion identically equal
to 0, i.e., restrict to �R8��=0. So the KS map �18� and the
space R

*
6 can be seen as a singular reduction map for the

KS symmetry and its space of orbits with �=0, respec-
tively.

After further successive coordinate and time rescal-
ings

�q,p� � �q/
	,p
	�, t � 	t ,

the KS transformed Hamiltonian becomes

HKS = 1
2 �p2 + q2� + 1

3 f̃e�q1q2 − q3q4�q2 + 1
6 f̃b�q1

2 − q2
2

− q3
2 + q4

2�q2 + 1
2 g̃�q2p3 − q3p2�q2 + 1

8 g̃2�q1
2 + q4

2�

��q2
2 + q3

2�q2 = 4	−1, �21�

where g̃, �f̃e , f̃b�, and 	 are defined in Eqs. �5� and �6� in
Sec. I.B. HKS is a perturbation of

2N = 1
2 �p1

2 + q1
2 + p2

2 + q2
2 + p3

2 + q3
2 + p4

2 + q4
2� , �22�

which describes a 4-DOF harmonic oscillator in 1:1:1:1
resonance.

For our purposes it is convenient to make one more
symplectic and orthogonal �in R8� change of coordinates,

�q1,q4,p1,p4�T � A · �q1,q4,p1,p4�T, �23a�

�q2,q3,p2,p3�T � A · �q2,q3,p2,p3�T, �23b�

given by the matrix

A =
1

2�

0 0 − 1 − 1

1 − 1 0 0

1 1 0 0

0 0 1 − 1
� . �23c�

After this change of coordinates, the KS integral � in Eq.
�20� becomes diagonal,

� = 1
4 �− p1

2 − q1
2 − p3

2 − q3
2 + p2

2 + q2
2 + p4

2 + q4
2� . �24�

At the same time, since the transformation in Eqs. �23�
is orthogonal, the expression for N remains unchanged.
From now on we work with coordinates �q ,p� defined by
Eqs. �23�.

2. Normalization of the Keplerian symmetry

We normalize the KS Hamiltonian HKS in Eq. �21�
with respect to its unperturbed part 2N= 1

2 �q2+p2�. The
normalization is done most naturally using the standard
Lie series algorithm of Gröbner �1960, 1967�, Deprit
�1969�, Deprit et al. �1969�, Henrard �1970�, and Meyer
and Hall �1992�. In this algorithm, HKS and its normal

form H̄KS are manipulated as formal series in �q ,p� with
uniform smallness parameter s̃ in Eq. �4b� tracing the
order k of terms in the series. We obtain

H̄KS = H̄KS
�0� + H̄KS

�1� + H̄KS
�2� + ¯ , �25�

where H̄KS
�0� =2N and each term H̄KS

�k� of order O�s̃k� is a
homogeneous polynomial in �q ,p� of degree 2k+2. For
the 1:1 systems, we can truncate Eq. �25� at terms of
degree 6 in �q ,p�; for a k− :k+ resonance, we should nor-

malize to order k=k++k−. Expressions for H̄KS
�1� and H̄KS

�2�

can be obtained from those for the reduced Hamiltonian
which we give in Eqs. �30a� and �30b� and in Table III.

Since normalization preserves the KS symmetry, H̄KS
Poisson commutes with both N and �.

3. Reduction of the Keplerian symmetry

Each of the integrals 2N and 2� is an action for H̄KS
because their respective flows S1�C4→C4 given by

t,z � �2N
t �z� = �z1eit,z2eit,z3eit,z4eit� �26a�

and
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t,z � �2�
t �z� = �z1e−it,z2eit,z3e−it,z4eit� �26b�

are periodic �with period 2��; here S1=R /2�Z. The Car-
tesian product of these two S1 actions is a T2 symmetry
action in R8. This action is not effective because the non-
trivial element �� ,�� in T2 acts trivially on C4. Indeed,
�2N

� ��2�
� �z�=z for all z�C4.

Modifying the older approach of Cushman and Sa-
dovskií �2000� and Efstathiou, Cushman and Sadovskií
�2004�, we consider first momenta �+=N+� and �−=N
−� which generate an S1 symmetry action on the respec-
tive C2 subspaces �z2 ,z4� and �z1 ,z3� of C4. The Cartesian
product of these actions is an effective symmetry action
T2�C4→C4�R8 given by

�t+,t−�,z � �z1eit−,z2eit+,z3eit−,z4eit+� . �27�

When reducing this T2 symmetry, we notice that the S1

symmetry actions on C2�R4 generated by �± are 1:1
resonant. The reduction map of such actions defines the
Hopf fibration �see, e.g., Cushman and Bates �1997��.
Therefore, we face a Cartesian product of two Hopf fi-
brations.

Our reduction relies on algebraic invariant theory: we
give a set of T2 invariant polynomials such that any
smooth T2 invariant function can be expressed as a
smooth function of these polynomials. The ring of all T2

invariant polynomials is generated by

X1 = 1
4 �− p1

2 − q1
2 + p3

2 + q3
2� ,

X2 = 1
2 �− p1p3 − q1q3� ,

X3 = 1
2 �p3q1 − p1q3� ,

Y1 = 1
4 �− p2

2 − q2
2 + p4

2 + q4
2� ,

�28�
Y2 = 1

2 �p2p4 + q2q4� ,

Y3 = 1
2 �− p4q2 + p2q4� ,

N = 1
4 �p1

2 + p2
2 + p3

2 + p4
2 + q1

2 + q2
2 + q3

2 + q4
2� ,

� = 1
4 �− p1

2 + p2
2 − p3

2 + p4
2 − q1

2 + q2
2 − q3

2 + q4
2� .

Vectors X= �X1 ,X2 ,X3�T and Y= �Y1 ,Y2 ,Y3�T satisfy

X2 = Y2 = �N − �

2

2

= �n

2

2

, �29�

where after reduction we set N=n and �=0. Equation
�29� shows that the reduced phase space is S2�S2. Like x
and y in Eq. �8�, the invariants X and Y span the Poisson
algebra which has the standard structure of so�3�
�so�3�=so�4�. Note that L=X+Y and K=X−Y are the
KS transformed angular momentum and eccentricity
�see footnote 6� vectors, respectively.

We can now reduce the T2 action �27�. Expressing the

normalized Hamiltonian H̄KS in Eq. �25� in terms of the
invariant polynomials �28� and setting, subsequently, �
=0 and N=n, we obtain

H̄KS
�0� = 2n �30a�

and

H̄KS
�1� = n��− f̃b + g̃�X1 − f̃eX2 + �f̃b + g̃�Y1 + f̃eY2� .

�30b�

The coefficients in H̄KS
�2� are given in Table III.

B. Energy correction

The first reduced Hamiltonian H̄KS is a conserved

quantity parametrized using 	�E�-scaled fields f̃e, f̃b, g̃ in
Eq. �5� but its value is related to the physical energy E of
the system in a complicated way. It is adequate if we
work at one constant value of E. At the same time, an
approximation to E itself is essential for comparisons to
other methods of normalization, to quantum computa-
tions �see, e.g., Schleif and Delos �2007, 2008�� and to
experimental applications. Derivation of such approxi-
mation was already used by Robnik and Schrüfer �1985�;
it is described by Sadovskií and Zhilinskií �1998� and
Cushman and Sadovskií �2000�.

Equations �5� and �21� define E implicitly. Similarly,
for the first normal form we have

H̄KS�X,Y ; f̃e, f̃b, g̃� = 4	−1
ª 4� . �31�

We rewrite Eq. �31� substituting �f̃e , f̃b , g̃� and 	 by their
explicit definitions in Eq. �5� and �. The small param-
eters are the strengths of the fields �Fe ,Fb ,G�. In order
to track the orders of terms, we make the change

TABLE III. Second order of the Keplerian �first� normal form H̄KS in Eq. �25� and the energy correction �E in Eqs. �32�.

Terms in 72n−1H̄KS
�2� Terms in 72�E�2�

�27g̃2−17f̃b
2 −17f̃e

2�n2

−6f̃b
2�7X1

2+7Y1
2−20X1Y1�−6f̃e

2�7X2
2+7Y2

2−20X2Y2�
+12f̃ef̃b�−7X1X2+10X1Y2+10X2Y1−7Y1Y2�
+24f̃eg̃�3X1X2+4Y1X2−4X1Y2−3Y1Y2�
+72f̃bg̃�X1

2−Y1
2�−9g̃2�6X1

2+6Y1
2+8X2Y2+8X3Y3�

�9g2−17fe
2−17fb

2�n2

+12fb
2�X1

2+Y1
2+X1Y1�+12fe

2�X2
2+Y2

2+X2Y2�
+12fefb�2X1X2+X1Y2+X2Y1+2Y1Y2�

+24feg�X2Y1−X1Y2�
+36g2�X1Y1+ �X2−Y2�2+ �X3−Y3�2�
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�Fe ,Fb ,G�→��Fe ,Fb ,G� implying 0���1. In this way

H̄KS in Eq. �31� becomes a power series in � truncated at
degree k=3. We can now obtain from Eq. �31� a power
series

��X,Y ;�� =
n

2
+ ��1�X,Y� + �2�2�X,Y� + O���3,

where we compute �1 and �2 by comparing to the H̄KS
terms in Eq. �31� of the same order in �. Then the en-
ergy E of the system can be computed by Taylor ex-
panding

E = − 1/�8�2�

�which follows from Eqs. �6� and �31�� to the same order
in �, to which the normal form was obtained initially,
i.e., second in our case. Finally, we undo the � scaling
and obtain the energy in the form

E�X,Y� = −
1

2n2 �1 − �E�X,Y�� , �32a�

where

�E = �E�1� + �E�2� + ¯ , �32b�

and each �E�k� contains terms of order k in �Fe ,Fb ,G�.
Further simplification of Eqs. �32� can be achieved by

substituting the n-scaled fields �fe , fb ,g� defined in Eq.
�3�. This makes each term �E�k� an order-k homoge-
neous polynomial in the variables �n ,X ,Y�. We compute

�E�1� = �− fb + g�X1 − feX2 + �fb + g�Y1 + feY2, �33�

which is, up to replacing the energy scaled parameters

�f̃e , f̃b , g̃� by the n-scaled parameters �fe , fb ,g� and an
overall scaling factor of n, identical to the principal or-

der of H̄KS in Eq. �30b�. The second-order term �E�2� is
given in Table III.

The function �E�X ,Y� is called energy correction; it
is a Hamiltonian function defined on S2�S2 which can
be used to study our system for fixed n and different
values of E. In order to do this, we normalize �E again
and obtain the second normal form energy correction
�E.

C. Standard form of the linear term and resonances

In order to simplify the first-order energy correction
�E�1� in Eq. �33� further, we rotate S2�S2 so that

X � A−
−1x, Y � A+

−1y , �34a�

with matrices

A± = diag� 1

�±
�g ± fb ±fe

�fe ±g ± fb

,1� �34b�

and �± in Eq. �10�. As a result, �E�1� becomes a linear
combination of the new coordinates x1 and y1 only �see
Eq. �9��. Note that all �E�k� are homogeneous polynomi-
als of degree k in �n ,x ,y� and also in the parameters
�fe , fb ,g�.

Rotations in Eqs. �34� preserve the Poisson structure
and furthermore, due to the particular form of this
transformation, the invariants �x ,y� satisfy automatically
Eq. �7� and generate the so�3��so�3� Poisson algebra in
Eq. �8�. We obtain �E�x ,y�=�E�1�+�E�2�, where �E�1� is
given by Eq. �9� and �E�2� can be computed from Table
III.

On S2�S2, �E�1� generates a linear Hamiltonian flow

t,�x,y� � „R��−t�x,R��+t�y… , �35a�

where

R�t� = diag�1,� cos t sin t

− sin t cos t

� , �35b�

which is a simultaneous rotation of each of the two
spheres with frequency ratio in Eq. �11�. Recall that in
Sec. II.B.2 we called this residual approximate dynami-
cal symmetry of the system Pauliean.

D. Normalization and reduction of the Pauliean symmetry

In the previous sections we constructed an approxima-
tion to the original Hamiltonian system for which the
Keplerian action N is an exact first integral. In order to
have a completely integrable approximation, we need
one more integral, and for this reason we normalize a
second time. This is possible because, as discussed in
Sec. II.B.2 and as follows from Eqs. �35�, the Hamil-
tonian vector field defined on the first reduced phase
space S2�S2 by the lowest-order term �E�1� of �E has a
linear flow and we can normalize with respect to this
flow.

Note that in an arbitrary 3-DOF system such second
normalization may not be always possible and thus per-
turbed Keplerian systems such as the Hamiltonian in
Eq. �2� are a special case. Indeed, we can see from Eqs.
�17� and �21� that the regularized perturbation terms in
the Kustaanheimo-Stiefel regularized Hamiltonian HKS
have a common factor of �Q � =q2. The latter results in a
common factor of n in the normalized KS Hamiltonian
HKS and this leads to a common factor of �2n2�−1 in
E�X ,Y� given by Eqs. �32� with each term �E�k� being of
degree k in �X ,Y�. Thus the linear-in-�X ,Y� term �E�1�

has necessarily a linear flow. It appears �Valent, 2003�
that Pauli �1926� relied implicitly on this property of the
Hamiltonian �2� in his linear level theory and we ac-
knowledge this in the name of the symmetry action in
Eqs. �35�.

1. Resonances, zones, and second normalization

When the frequency ratio �−/�+ in Eq. �11� is irratio-
nal, the flow in Eqs. �35� generated by �E�1� defines an
R1 action. If we normalize with respect to R1, the normal
form �E will be a function only of x1 and y1. The latter
will become two additional global actions, and the torus
bundle of the integrable approximation will be trivial.
An example of the result of such trivialization is shown
in Fig. 9, where the bottom projection represents the
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image of the momentum map in the plane �x1 ,y1�. From
the topological point of view, all such systems are the
same. In Table II, we call this type of system A0.

If �−/�+ is rational, the flow in Eqs. �35� is periodic
and hence defines an S1 action on S2�S2 which we called
resonant Pauliean symmetry in Sec. II.B.2. Normalizing
�E with respect to this symmetry gives different results.
The resonant normal form �E contains resonant terms
that appear in �E�2� and higher-order terms of �E and
has only one additional conserved momentum 
 defined
in Eq. �13�; its other first integral is �E. By the usual
small denominator argument, it is clear that resonant
terms, especially for low-order �see footnote 7� reso-
nances, are important even when we detune the reso-
nance, i.e., for small ��k− ,k+��0 in Eq. �14�. Following
Efstathiou, Sadovskií, and Zhilinskií �2007� we consider
a k− :k+ zone in the parameter space where all systems
are normalized with regard to the same k− :k+ resonant
Pauliean symmetry S1. For a slightly detuned system,
i.e., within the zone, such normalization will preserve
more adequately the qualitative properties of the origi-
nal nonintegrable system.

Resonances k− :k+ occur for certain angles between
the electric and magnetic fields F and G. The condition

k−/k+ = �G − 3nF�/�G + 3nF�

follows from Eqs. �3�, �4b�, �11�, and �12�. For strictly
orthogonal fields d=0, we have �+=�−=s, and the reso-
nance is 1:1. As a detailed example, we discuss approxi-
mate 1:1 resonances which correspond to near orthogo-
nal fields with d�0. These systems form the 1:1 zone.
Recall from Fig. 3 that, in any fixed s�0 section of the
parameter space, the strictly orthogonal fields corre-
spond to the d=0 segment �SZ� and the 1:1 zone is a
strip with �SZ� in the middle.

The Hamiltonian �E�x ,y� in Eq. �32b� describes a
2-DOF system on S2�S2, which in general has no other
exact first integrals. Pulled back to the original KS space
R8 with coordinates �q ,p�, �E„x�q ,p� ,y�q ,p�… defines a
4-DOF system in R8 with three exact integrals N, �, and
�E.

We normalize �E with respect to the generator 
 in
Eq. �13� of the exact k− :k+ resonant S1 symmetry. Trun-
cating the normal form at a certain order, we obtain a
2-DOF Liouville integrable approximation system on
S2�S2 with Hamiltonian �or the second normal form�,

�E = �E�1� + �E�2� + ¯ , �36�

such that ��E ,
	=0, i.e., 
 and �E become exact first
integrals. The first term in �E is

�E�1� = �−x1 + �+y1 = ��
 + ��� , �37�

where momenta 
 and � are defined in Eq. �13�. It
equals �E�1� in Eq. �14� because �� ,
	=0. Higher-order
terms are specific to the particular resonance. For a gen-
eral k− :k+ resonance, normalization should be carried
out to least order �see footnote 7� k−+k+ where the
lowest-order specific resonant term �1 appears. Thus for

the 1:1 resonance we should go to the second order
�E�2�. As an example, terms in �E�2� of the 1:1 resonant
normal form can be obtained from Table IV and Eq.
�13�.

�E can be normalized either in S2�S2 or in R8. We
describe both approaches. Note that because of the for-

mal similarity of �E�1� and H̄KS
�1� , the following discussion

applies also to the second normalization of H̄KS which is
useful when working at a constant physical energy level.

The most studied resonance is 1:1. Instead of restrict-
ing immediately to this particular case, we give basic
formulas for the general k+ :k− resonance, which can be
obtained at no additional cost following the general out-
line of the 1:1 work. We illustrate these relations further
using the 1:1 and 1:2 systems. Analysis of k+ :k− reso-
nances can also be found in Karasev and Novikova
�2005�.

a. Second normalization in S2�S2

Normalization on S2�S2 is done most easily in coor-
dinates

u1 = x1, u2 = x2 + ix3, ū2 = x2 − ix3,
�38�

w1 = y1, w2 = y2 + iy3, w̄2 = y2 − iy3.

The Lie operator �
 , · 	 acts diagonally on the space of
monomials in �u ,w� and the standard Lie series
algorithm39 applies immediately.

b. Second normalization in R8

Instead of normalizing on S2�S2, we can reexpress
first energy correction �E in the KS coordinates �q ,p�
on R8. Then the lowest-order term �E�1� in Eq. �9� and
the momentum 
 in Eq. �13� become quadratic functions

39See Gröbner �1960, 1967�, Deprit �1969�, and Meyer and
Hall �1992� for a general introduction. The adaptation for S2

�S2 is given by Efstathiou, Cushman, and Sadovskií �2004�
and Efstathiou �2005�.

TABLE IV. Coefficients of the second-order term �E�2� in the
1:1 second reduced Hamiltonian. To represent invariants 
, �,
and �1 as functions on the first reduced space S2�S2 or the KS
space R8, use Eqs. �47� and �44�. The relation of dimensionless
parameters a2 and d, and smallness parameter s to the electric
and magnetic field strengths, is given in Eqs. �3� and �4b�.

Monomial Coefficient�24s−2�1−4d2�3/2

n2 a−2�1−4d2�1/2��2a2+7�a4−68d4+ �−36a4+2a2

+17�d2�

2 ��1−4d2�1/2�−6a4+ �8d2+4�a2+22d2−7�−10�a2

+2d2−1��4d2−1�	
�2 �10�a2+2d2−1��4d2−1�+ �1−4d2�1/2�−6a4+ �8d2

+4�a2+22d2−7�	

� −24d�1−4d2�1/2�a4−a2+5d2−1�
�1 3�a2�1−4d2�1/2+a2−2d2��4d2−1�
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of �q ,p� that can be written, after an appropriate linear
change of coordinates �q ,p�→ �� ,��, as respective linear
combinations

�E�1� = 1
2 ��−N1 + �+N2 − �−N3 − �+N4� �39�

and


 = 1
2 �k−N1 + k+N2 − k−N3 − k+N4� �40�

of four terms,

Ni = 1
2 ��i

2 + �i
2� with i = 1, . . . ,4, �41�

representing four one-dimensional harmonic oscillators.
Subsequently, �E is normalized straightforwardly with
respect to the linear diagonal flow generated by the
dominant resonant part �
 of �E�1� in Eq. �39�. We now
give more details. The required change of coordinates,

�q1,q3�T � C�fb − g,fe���1,�3�T,

�p1,p3�T � C�fb − g,fe���1,�3�T,
�42�

�q2,q4�T � C�fb + g,− fe���4,�2�T,

�p2,p4�T � C�fb + g,− fe���4,�2�T,

is given by the 2�2 matrix,

C�a,b� =
1


2�
� − a
� − b � − a

a − � − b

 � SO�2� , �43�

with �= �a2+b2�1/2. This transformation is orthogonal
and symplectic. In the new coordinates �� ,�� we have

N = 1
2 �N1 + N2 + N3 + N4� ,

�44a�

� = 1
2 �− N1 + N2 − N3 + N4� ,

and

x1 = 1
2 �N1 − N3�, y1 = 1

2 �N2 − N4� ,

x2 = 1
2 ��1�3 + �1�3�, y2 = 1

2 ��2�4 + �2�4� , �44b�

x3 = 1
2 ��3�1 − �1�3�, y3 = 1

2 ��4�2 − �2�4� .

The lowest order in Eq. �39� represents a harmonic four-
oscillator. In the k− :k+ zone, its frequencies are close to
the k+ :k− : �−k+� : �−k−� resonance. For the same reasons
as in the previous section, we normalize with respect to
the exact k+ :k− : �−k+� : �−k−� resonance.

For near orthogonal fields, the resonance is
1 :1 : �−1� : �−1� and we normalize with respect to the lin-
ear periodic flow defined by the momentum


 = x1 + y1 = 1
2 �N1 + N2 − N3 − N4� �45�

using again the standard Lie series algorithm. The re-
sulting �E�2��� ,�� follows from Table IV and Eqs. �44�.

2. Reduction of the Pauliean symmetry

The final step in the construction of the integrable
approximation for the system with the Hamiltonian �2�
is the reduction of the residual dynamical S1 symmetry
of the second normal form energy correction �E. Since
��E ,
	=0 by construction, �E is invariant under the
flow of the Hamiltonian vector field X
 of 
. This re-
mains true no matter if we consider �E and 
 as func-
tions on S2�S2 or R8. For simplicity, and since the re-
duction map R8→S2�S2 is already defined, we start
with the second normalized system on S2�S2 and we
proceed with its final reduction by constructing the sec-
ond reduced space Pn,m and the second reduced Hamil-
tonian H on it. We give details of the 1:1 case.40

a. Invariants of the k� :k� resonant S1 action

The k− :k+ momentum 
 generates an S1 action on
S2�S2,

�

t :�t,�x,y�� � �R�k−t�x,R�k+t�y� , �46�

where the rotation matrix R�t� is defined in Eq. �35b�.
The algebra of polynomials in �x ,y� invariant under the
S1 action in Eq. �46� is generated by the invariants


 = k−x1 + k+y1, � = k−x1 − k+y1,

�1 = Re p, �2 = Im p , �47�

�3 = 4�x2
2 + x3

2� � 0, �4 = 4�y2
2 + y3

2� � 0,

where in coordinates zi=�i− i�i or �u2 ,w2� from Eq. �38�,

p = �z1z̄3�k+�z2z̄4�k− = 2k−+k+u2
k+w̄2

k−.

From Eq. �7� we obtain immediately that

�3 = 4N1N3 = n2 − �� + 
�2/k−
2 ,

�48a�

�4 = 4N2N4 = n2 − �� − 
�2/k+
2 .

Furthermore, our invariants satisfy

�1
2 + �2

2 = �3
k+�4

k− = �k−:k+
�n,
,��2, �48b�

where �k−:k+
�0 is a function of �n ,
 ,��.

b. Pauliean orbit space On

Orbits of a symmetry action are distinguished by the
values of invariants �Michel and Zhilinskií, 2001b�. For a
fixed value n�0 of the Keplerian action, we can choose

, �, and �1 as three principal invariants labeling con-
tinuously the orbits of the Pauliean S1 symmetry up to
an additional discrete label that may be given by �the
sign of� the auxiliary invariant �2. We can see from Eqs.
�48� that all such orbits form a closed ball On which can
be embedded in R3 with coordinates �
 ,� ,�1�. This orbit

40For the 1:1 systems, we follow Cushman and Sadovskií
�2000� with some changes in notation: their invariants
��1 , . . . ,�6� are denoted here by �� ,�1 ,�2 ,
 ,�3 ,�4�.
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space is shown in Figs. 5 and 19 for the 1:1 and 1:2 reso-
nances, respectively. Points of �On represent orbits with
�2=0, while interior points represent pairs of orbits dis-
tinguished by the sign of �2. Orbits with �2�0 and �2
�0 are mapped into each other by the residual discrete
symmetry operation Ts �see Sec. III.A and Table I�
which acts as

Ts:�
,�,�1,�2� � �
,�,�1,− �2� . �49�

Immersing in R3 reflects the geometry of On. The gen-
eral orbit space On

k−:k+ looks like a “pillow.” For �1=�2
=0, it has four singular points and may have line singu-
larities. More specifically, we can see from Eq. �48b� that
�On

k−:k+ � ��1=0	 is a rectangle with corners at m
= ±mcrit and m= ±mmax, where

mmax =
k+ + k−

2
n and mcrit =

�k+ − k−�
2

n . �50�

The corners represent Keplerian ellipses �Sec. II.C.3.a�.
For On

1:1 they are conical and are the only singularities;
for On

1:2, the m= ±mcrit= ±n /2 corners become cusplike
and there are also two singular lines. Points on these
lines represent short T2 orbits. For k±�3 all sides of the
rectangle represent two different families of short T2 or-
bits.

Michel and Zhilinskií �2001a� considered the second
reduced Hamiltonian H as a function on On. Such study
enables one to distinguish certain possible qualitatively
different systems. The analysis on the reduced phase
space Pn,m makes the classification more substantial.

c. Second reduced phase space Pn,m

Fixing 
=m in Eqs. �48�, we obtain the second re-
duced phase space Pn,m as a semialgebraic variety de-
fined by Eq. �48b� with

n � 0, �m� � mmax, � � ��min,�max� , �51�

where

�min = max�− nk− − m,− nk+ + m� ,

�max = min�nk− − m,nk+ + m� .

For all m, Pn,m can be immersed in the ambient space R3

with coordinates �� ,�1 ,�2� as a surface of revolution
around axis �. So it suffices to consider the projection of
Pn,m on the plane ��2=0	 with coordinates �� ,�1�, as
shown in Fig. 20 for the 1:1 resonance. Such a projection
is compatible with the Ts symmetry �49� of the system
and is nothing but a constant-m section of On �cf. Fig. 5�.
We can see that the spaces Pn,±n consist of one point and
that Pn,m with �m��n has topology S2.

d. Second reduced phase spaces Pn,m
1:1 and Pn,m

1:2

In the 1:1 case, the spaces Pn,m
1:1 and Pn,−m

1:1 have the
same representation and Pn,m

1:1 is invariant under

Z2:�
,�,�1,�2� � �
,− �,�1,�2� , �52�

which is the additional discrete symmetry of G�F �i.e.,
exact 1:1 resonant systems with d=0 �see Sec. III.A��.
Furthermore, the space Pn,m=0

1:1 has two conical singular
points at �� ,�1�= �±n ,0� �see Fig. 4�, while Pn,m�0

1:1 is dif-
feomorphic to a smooth sphere. Each smooth point on
Pn,m

1:1 lifts to a circle S1 in S2�S2 and subsequently to a T3

in R8 and a T2 in R6. Two singular points of Pn,0
1:1 and two

single point spaces Pn,±n
1:1 lift to four points on S2�S2 and

to four Keplerian ellipses S1 in R6. In the 1:2 case, all
spaces Pn,m�mmax

1:2 are nonsmooth S2. For �m��mcrit, they
have two conical singularities similar to Pn,0

1:1 �a “lemon”;
see Fig. 4� and have one such singularity for mmax� �m�
�mcrit �a “turnip”; see Fig. 19�.

e. Spherical deformation of Pn,m
k�:k�

Since the space Pn,m
k−:k+ for �m��mmax has the topology

of S2, it is possible to map41 Pn,m
k−:k+ explicitly to a smooth-

41For 1:1 systems, spherical-like coordinates for the second
reduced system were quite popular. However, their singulari-
ties impeded the analysis of the geometry and the dynamics on
Pn,m

1:1 . See Secs. VIII.C.2 and Uzer �1990�, Farrelly et al. �1992�,
Gourlay et al. �1993�, and von Milczewski and Uzer �1997a�,
discussed in Sec. VIII.C.5, as well as Main et al. �1998� and
Berglund and Uzer �2001�.

−3n/2

m < −n/2

m = −n/2

|m| < n/2

m = n/2

m > n/2

3n/2

FIG. 19. Characteristic intersections �thick solid lines� of the
orbit space On

1:2 for the 1:2 resonance with constant-m planes.
Each intersection also represents the projection of the second
reduced phase spaces Pn,m

1:2 with the plane ��2=0	. We show
intersections for seven different values of m starting at m
=mmax=3n /2 and ending at m=−mmax.

1:1π1/n
2

ν/mmax

−1 0 1
−1

0

1
1:2π1/n

3

ν/mmax

−1 0 1
−1

0

1

FIG. 20. Projections of the reduced phase spaces Pn,m
1:1 and Pn,m

1:2

on the �2=0 plane with coordinates �� ,�1�. For Pn,m
1:1 we see

m=0 �outmost boundary�, 0� �m��n �intermediate smooth
boundaries�, and m= ±n �point 0� �cf. Figs. 4 and 5�; for Pn,m

1:2

we see boundaries entirely for sufficiently large m�mmax and
partially for m�−mcrit �cf. Fig. 19�.
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sphere. This map should be singular at the isolated sin-
gular points of Pn,m

k−:k+. Because Pn,m
k−:k+ is a surface of revo-

lution, the map can be defined relatively easily. We now
give more details.

Taking the components of �x ,y� or, equivalently, the
canonical four-oscillator coordinates in Sec. IV.D.1.b,
which we may rewrite as

��i,�i� = 
2Ni�sin �i,cos �i� with i = 1, . . . ,4,

using canonical angle variables �i conjugate to oscillator
actions Ni, we can define42 conjugate canonical angle

� = k−��1 − �3� − k+��2 − �4� �53�

and action

�

k− + k+
=

k−�N1 − N3�
2�k− + k+�

−
k+�N2 − N4�
2�k− + k+�

, �54�

which are action-angle variables of the lowest-order sec-
ond reduced system whose Hamiltonian �En,m

�1� depends
only on � and dynamical parameters n and m. Further-
more, the two other Pauliean invariants �1 and �2 can
be now rewritten as

��1,�2� = �k−:k+
�n,m,���cos �,sin �� .

As in the 1:1 case, one can go further and define the
longitude angle  � �0,�� such that

� = �mcrit + j cos  , j = mmax − m, m � mcrit,

� = − �m + j cos  , j = mmax − mcrit, �m� � mcrit,

� = − �mcrit + j cos  , j = mmax + m, m � − mcrit,

where �=sgn�k−−k+� and the algebraic relation �48b�
becomes

�1
2 + �2

2 = �k−:k+

2 = 
k−:k+

2 j2 sin2  ,

where the function 
k−:k+
�0 of �n ,m ,�� is obtained by

combining the above formulas with Eqs. �48�.

f. Second reduced energy correction on Pn,m

Expressing the second normalized energy correction
�E in Eq. �36� in terms of �� ,�1 ,�2� and 
=m gives the
second reduced energy correction

�E = �E�1� + �E�2� + ¯ �55�

on Pn,m, where

�E�1� = 1
2 ��− + �+�m + 1

2 ��− − �+�� . �56�

Table IV gives �E�2� for the 1:1 resonance. Because of
the Ts symmetry �49�, �E is a function of �� ,�1�, dynami-
cal parameters �n ,m�, and external parameters �s ,d ,a2�

only, i.e., it does not depend on �2. Furthermore, it is
convenient to remove from �E terms that do not depend
on �� ,�1� and are thus constant on Pn,m. This gives the
Hamiltonian

H��,�1� = �E��,�1� − �E�0,0� . �57�

Note that up to an extra detuning term d� this Hamil-
tonian is equivalent to the one used by Cushman and
Sadovskií �1999, 2000�. Using Eq. �47�, H is expressed as
function H�x ,y� on S2�S2; using Eqs. �34� and �28�, H
can be expressed in terms of the �q ,p� coordinates on
the KS space R8.

g. Reduced dynamics and trajectories on Pn,m

The second reduced space Pn,m is a symplectic leaf of
S2�S2 equipped with a nonlinear Poisson structure. In
the general k− :k+ case, the latter is

��,�1	 = 2k−k+�2,

��,�2	 = − 2k−k+�1, �58�

��1,�2	 = − k−k+��k−:k+

2 �n,m,��/��

�see also Karasev and Novikova �2005��. The algebras
are deformations of so�3�: the Poisson algebra generated
by

�J1,J2,J3� = �2k−k+�−1��1
k−:k+

−1 ,�2
k−:k+

−1 ,j cos  �

has the structure of so�3�. The reduced dynamics on Pn,m

is defined by the Euler-Poisson equations �̇= �� ,H	, �̇1

= ��1 ,H	, and �̇2= ��2 ,H	.
For our purposes �see Sec. V� solving these equations

is usually unnecessary because we only need to know the
topology of the trajectories of the second reduced sys-
tem for different values h of H. Since we have a 1-DOF
system, trajectories are level sets of H on Pn,m. To find
them on Pn,m immersed in R3, we should simply find
intersections

�n,m,h = �H��,�1� = h	 � Pn,m �59�

in R3 of the constant h-level set of H and Pn,m. Again
due to the above-mentioned symmetry Ts, it is sufficient
to study projections of �n,m,h on the R2 plane �� ,�1�. We
obtain our results by studying such projected intersec-
tions in Sec. V.

E. Ambiguity of the integrable approximation

Within the framework of the Lie series method
�Gröbner, 1960, 1967; Deprit, 1969�, the near identity
canonical transformation used to put a Hamiltonian H

=H0+H1+¯ in the normal form H̃=H0+H̃1+¯ is
given by the time-1 flow of the generator W=W1+W2

42Use Eqs. �44� and �13�; for 1:1 systems, use the particular
form �47� and compare to Cushman and Sadovskií �2000, Sec.
5.4, pp. 189–190�. For other resonances, Karasev and Novikova
�2005� used similar coordinates to define cylindrical charts of
Pn,m with singularities at the poles.

2124 K. Efstathiou and D. A. Sadovskií: Normalization and global analysis of …

Rev. Mod. Phys., Vol. 82, No. 3, July–September 2010



+¯ written as a formal series.43 In each order j, the
generator Wj can be written as a sum Uj+Zj such that44

Uj= �Uj� ,H0	 for some Uj� and �Zj ,H0	=0, i.e., Zj

�ker adH0
where adH0

= �H0 , · 	. While Uj contributes to

the jth order term H̃j of the normal form and is defined
uniquely by the homological equation, the extra term Zj

remains undetermined. It does not affect H̃j but in gen-
eral it does modify higher-order terms in the normal
form.45

For systems in the 1:1 zone, going through the con-
struction of the integrable approximation �KS normal-
ization, energy inversion, and Pauliean normalization�,
one finds that to our order of normalization the only
additional modification of the second normalized energy
correction �E may come from the part Z� of Z1 �of de-
gree 4 in �q ,p�� which is involved at the first step of the
KS normalization and which Poisson commutes with 
.
The resulting modification is the addition to �E�2� of
��E�1� ,Z�	. It follows �see footnote 43� that Z�=!�2

which gives Z�=−��!�1. So the Keplerian normal forms
that appear in the literature46 may differ from the KS
normal form in Eqs. �32� and Table III due to an appro-
priate term Z1�ker adN. We have verified this on sev-
eral examples. At the level of the second 1:1 normal
form, the only difference may be due to !�2 in W1.

The freedom in the construction of the normal form
�E raises the question on whether the results in Sec. III
are not an artifact of the particular choice of the genera-
tor W. We turn again to the 1:1 example. We first notice
that the ambiguity term −!���1 vanishes for exactly or-
thogonal fields where d=�=0. For nearly orthogonal
fields �the 1:1 zone, �d��1�, �E may be modified quali-
tatively if the �1 term �Table IV� changes considerably.
However, making this term vanish requires !�sa2 /d
+O�d�, which for most 1:1 systems is much larger than
the allowed magnitude s of the terms in W1. So for these
systems the results in Sec. III are structurally stable. The
near-Stark 1:1 systems with a2� �d��1 are exceptional.
For them, the �1 term in �E�2� can be eliminated and
higher orders must be considered to complete the analy-
sis.

V. DYNAMICAL STRATA IN THE PARAMETER SPACE

Together with Sec. VI this section is the principal
workground of our review. We explain how the results
announced in Sec. III for the 1:1 zone are obtained from
the study of the integrable 1-DOF system with the
Hamiltonian H in Eq. �55� on the reduced space Pn,m. In
order to construct the bifurcation diagrams BD �Sec.
II.C.4� in Table II, we study regular and critical intersec-
tions � in Eq. �59� of the h-level sets of H and Pn,m. We
specify all critical values of the energy-momentum map
EM and the corresponding critical fibers, i.e., RE and
singular fibers �see Sec. II.C.3�. Subsequently in Sec. VI,
we compute monodromy for nonsimply connected cells
of BD. Results for higher resonances can be obtained by
a similar approach.

A. Energy-momentum map EM and its image BD

The principal tools in the global study of our system
are the maps EM introduced in Eqs. �15� of Sec. II. They
define integrable fibrations with fibers labeled by the
values �n ,m ,h� of the Keplerian action N, the nontrivial
part H of the second reduced energy correction �E ob-
tained in Sec. IV.D.2.f, and the Pauliean momentum 

defined in Eq. �47�, respectively. Depending on the total
space of the fibration, both H and 
 are pulled back to
R8 or to S2�S2 by the respective reduction maps. Recall
from Sec. IV.E that using �E is qualitatively similar to

using the second normal form H� KS in the earlier work
�Cushman and Sadovskií, 2000; Efstathiou, Cushman,
and Sadovskií, 2004; Efstathiou, Sadovskií, and Zhilin-
skií, 2007� but is more convenient for practical compari-
sons to quantum calculations and possible experiments.

The image �range� of EM is the base of the fibration;
regular EM values represent generic fibers and lie inside
the range. For the EM in Eq. �15a� the base is a con-
nected domain in R3 with coordinates �n ,m ,h� and con-
nected components of its generic fibers EM−1�n ,m ,h�
are T4 tori in the KS space R8. For the map EMn in Eq.
�15b�, the base is a connected domain in R2 with coordi-
nates �m ,h� which is a constant n section of the three-
dimensional image of EM. Connected components of
the generic fiber EMn

−1�m ,h� are T2 tori in S2�S2. By
the inverse KS map, the fiber EM−1�n ,m ,h� is related to
a T3 in the original physical phase space R6.

1. Constant h level sets of the reduced system

In the ambient space R3 with coordinate functions
�� ,�1 ,�2�, we study intersections �n,m,h in Eq. �59�. Since
for all �m��mmax the space Pn,m is a two-sphere which
may have at most two isolated singular points �Sec. IV�
and H is a smooth function R3→R, typical connected
components of �n,m,h are smooth circles S1. Components
of critical intersections can be a single point, a union of
two circles sharing a point �a figure 8�, or they can be
singular circles that include the singular point�s� of Pn,m.
The inverse map EM−1 sends smooth circles to regular

43Note that in order for �W ,H	 and, consequently, H̃ to retain
the reversal Ts symmetry of H �Sec. III.A�, the generator W
should be antisymmetric with respect to Ts.

44Recall that for the KS normalization, H0=N and that in the
second normalization, we use the resonant part 
 of H0.

45Terms Zj are widely known to cause ambiguity of effective
spectroscopic Hamiltonians �Watson, 1967, 1968�; it was also
suggested to use them for additional simplification of the nor-
mal form �see, e.g., Gaeta �1997, 1999, 2001��.

46See Solov’ev �1981, 1982, 1983�, Grozdanov and Solov’ev
�1982�, Braun and Solov’ev �1984a, 1984b�, Braun �1993�, Main
et al. �1998�, and Schleif and Delos �2007, 2008�, and the dis-
cussion in Sec. VIII.C.1.
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tori, single points to relative equilibria, while nonsmooth
circles and figure 8’s are lifted to singular fibers. So the
analysis of �n,m,h provides the description of the fibers.

Recall that it is sufficient to study the projection of
�n,m,h on the plane �� ,�1� where the level curve H=h is
given by

�1 = fn,m,h��� . �60a�

On the other hand, we can see from Eqs. �48b� and �51�
that the projection of Pn,m on the plane �� ,�1� is either a
point �� ,�1�= �mcrit ,0� for �m�=mmax or a disk for �m�
�mmax with boundary given by

�1 = ± �k−:k+
�n,m,�� . �60b�

For certain values of m, the latter may have singular
points �cf. Fig. 20�. The exact form of intersections �n,m,h
can be deduced by studying the curves defined by � and
f. Typically we find that �n,m,h is a curved segment, which
becomes a circle S1 on Pn,m or, in same cases, a union of
several such disjoint segments. The former situation oc-
curs when for given n, m, and h, either of the two equa-
tions

fn,m,h��� ± �k−:k+
�n,m,�� = 0 �60c�

has two distinct real roots �1,2�n ,m ,h� in �−mmax,mmax�;
the latter corresponds to the case with more such solu-
tions. This describes all typical intersections.

2. Relative equilibria and other critical fibers

In the trivial case m= ±mmax, the space Pn,±mmax
and

the intersection �n,±mmax,h are the point �� ,�1 ,�2�
= �±mcrit ,0 ,0� at which the critical energy is given by
Hn,±mmax

�0,0�. In the KS space R8, the critical fiber is a
Tn

2 RE; in the original phase space R
*
6, it corresponds to

the Keplerian S1 RE �Sec. II.C.3�.
Critical intersections �n,m,h with �m��mmax can typi-

cally either include singular points of Pn,m or include a
tangency of f and one of the � curves in Eq. �60b�. In the
latter case, one of the two equations

±
��n,m

��
=

�fn,m,h

��
�61�

is satisfied. Solving them for � at given �n ,m� gives criti-
cal values �c

±�n ,m� whose superscript " indicates the
particular Eq. �61� they satisfy. Substituting �c

±�n ,m� into
Eq. �60c� �with appropriate sign� gives critical �1c�n ,m�.
Subsequently, the critical energy hc�n ,m� is obtained as
Hn,m��c ,�1c�. When �c

±�n ,m� is the only possible real
root for either of Eq. �60c�, hc gives the energy of a
relative equilibrium S1�S2�S2 �or, equivalently, T2�R6

and T3�R8�. If Eq. �60c� has more roots, we should in-
vestigate the connectivity of �n,m,hc

.

3. Bifurcation diagrams

We are now in a position to construct stratified images
BD of the EM map. To this end, we assemble all pieces
of information obtained in the previous section. Specifi-

cally, we find the sets of critical EM values by finding
critical energies hc�n ,m� for all possible m
� �m� ,m��� �−mmax,mmax� as explained in Secs. V.A.1
and V.A.2. Typically �m� ,m�� is a closed interval and the
map �m� ,m��→R2 :m� „m ,hc�n ,m�… defines smooth
curve segments in the range of the EM map with fixed n.
Once for given ns �in the 1:1 resonance zone the product
of n and s plays the role of the small perturbation pa-
rameter�, f, and g, all critical sets are found, we obtain
the BD of the system.

The full BD is a three-dimensional domain in the
�n ,m ,h� space. One natural possibility is to study first its
constant ns slices BDn and then consider how they may
vary in a small but finite interval of n values for suffi-
ciently small ns�0. Clearly, the only results of general
interest are the ones for which the BD topology does not
change qualitatively. Furthermore, qualitative character-
istics, such as monodromy, should not change if the
analysis is extended to higher orders of the normal form.
Results of this kind will be called structurally stable. If,
additionally, the slices BDn are structurally stable within
the whole interval of ns, we can reduce the analysis to
two dimensions. This happens in �the most of� the 1:1
zone.

To analyze the dependence of BDn on ns, consider
rescaling

�x,y� � �nx,ny� ,

��,�1,�2� � �n�,n2�1,n2�2� ,

and the resulting expression for the normal form,

H̃ = �ns�H̃1 + �ns�2H̃2 + �ns�3H̃3 + ¯ , �62�

where all dependence on n and s is contained in front

factors �ns�k. The rescaled terms H̃k do not change when
�ns� is varied, but the relative importance of higher or-
ders increases with �ns�. Note also that the only interest-

ing term in H̃1 is the detuning �� �cf. Eq. �14��, whose
magnitude � is controlled by the additional small param-
eter ��1 and is limited by the width of the zone.

B. Energy-momentum map EM of 1:1 systems

The important specific feature of the 1:1 systems is
that in a wide interval of sufficiently large �ns��1 their
three-dimensional BDs are cylinders in ns, i.e., the
constant-ns sections BDn remain, essentially, qualita-
tively the same within this interval. The reason for such
structural stability is explained in Sec. V.B.3. We make
use of it by restricting most of the analysis to typical
BDn.

1. Constant h level sets of reduced 1:1 systems

We have mmax=n and mcrit=0. So for �m�� �0,n�, the
space Pn,m is a smooth sphere and �n,m,h are smooth S1,
while Pn,0 has two conical singularities and �n,0,h can be
singular S1. Projection of Pn,m in �� ,�1� is a point �
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=�1=0 for Pn,±n or a disk which for Pn,0 has two singular
points on its boundary. Since H is linear in �1 and qua-
dratic in �, the level curve H=h is given by

�1 = fn,m,h��� = a0h + �a1 + a1�m�� + 1
2a2�2, �63�

where a0, a1, a1�, and a2 depend only on the parameters
�fe , fb ,g�. When d=0, the extra Z2 symmetry in Eq. �52�
forces a1=a1�=0, while in all detuned systems a1 ,a1��0.
The number of distinct roots in �−n ,n� that Eq. �60c�
with f in Eq. �63� can have is 2 or 4 �maximum�. Respec-
tive regular intersections consist of either one or two
segments.

2. Relative equilibria and other critical fibers of 1:1 systems

The critical energy of the Keplerian S1 RE with m
= ±n equals Hn,±n�0,0�=0. For �m�� �0,n�, critical inter-
sections �n,m,h satisfy Eq. �61� with f in Eq. �63�. Com-
puting the derivatives, we obtain

�2��n2 + m2 − �2��−1 = a2� + a1 + a1�m , �64�

which do not depend on energy h and which show that
Eq. �60c� may have either one or three possible roots
�c

±�n ,m�. In the latter case, depending on whether �n,m,hc
is connected or not, hc may still give the energy of an RE
or that of a bitorus.

For critical intersections �n,0,hc
that do not include sin-

gular points �� ,�1 ,�2�= �±n ,0 ,0� of Pn,0, the analysis is
the same as outlined above. If �n,0,h±

contains one or
both �� ,�1 ,�2� of Pn,0, the energy h± is H±n,0�±n ,0� and
the intersection is necessarily critical. Figure 21 shows
two distinct possibilities: �b� and �c� the singular point is
an isolated component of �n,0,h±

or �a� �n,0,h±
is a singular

circle that includes the point. The latter occurs when

�a1 ± na2� = � �fn,0,h±

��
� ± n�� � � ��n,0

��
� ± n�� = 2n . �65�

Geometrically, when Eq. �65� holds, the slope of the con-
stant h± level set is such that the set enters inside Pn,0 as
shown in Fig. 21�a�. When Eq. �65� does not hold, the set
remains outside Pn,0 near �±n ,0 ,0� and �n,0,h±

either
consists only of a singular point �±n ,0 ,0� �Fig. 21�b�� or
is a disjoint union of this point with a circle �Fig. 21�c��.
The latter occurs when the distance between the two
roots of fn,0,h±

is less than 2n, i.e., if

2�a1a2
−1 ± n� � 2n or �a1a2

−1� � n . �66�

Considering possible combinations in Eqs. �65� and �66�
for the two singular points �±n ,0�, we obtain cases A0,
A1, A1,1, A2, B0, and B1 shown in Fig. 22. The subse-
quent analysis of each individual case leads to the types
of BD in Table II.

a. Case A0

In the most simple case with large �a2� and �a1 /a2�, we
have two single point intersections for every m. They
occur either as singular points of Pn,0 for m=0 or as
tangencies for m�0 and lift to relative equilibria Tn

2 �R8

or Tn,m
3 �R8, respectively. The reduced energies h of the

two single point intersections define the minimum and
maximum energies for given n and m.

b. Case A1,1

When both �a1��0 and �a2� are sufficiently small but
�a1 /a2� is large so that at each of the two singular points,
Eq. �65� holds while Eq. �66� does not, intersections
�n,m,h are also simple �see Fig. 22�. For any m, there are
two single point intersections where f and � are tangent.
At these points h attains its maximum and minimum
values for given n and m. The respective fibers are rela-
tive equilibria Tn,m

3 . All other intersections are circles.
For m=0, the circles that go through one of the singular
points �� ,�1�= �±n ,0� of Pn,0 are singular at that point.
These are critical levels with energy h±. Each of the fi-
bers �n,0,h±

is the product of T2 and the two-dimensional
simply pinched torus T�1�

2 in Fig. 8.

c. Case A2

Studied first by Cushman and Sadovskií �1999, 2000�
for the strictly orthogonal configuration, this case is simi-

fn,0,h

(a)

π1

π1

fn,0,h

(b)

π1

−n n
ν

fn,0,h

(c)

FIG. 21. ��2=0	 projections of the reduced space Pn,0 and pos-
sible critical intersections �n,0,h+

of the level curve fn,0,h+
that

include the singular point �n ,0� of Pn,0: �a� a singular circle, �b�
a single point, and �c� the union of a single point and a smooth
circle. The three types are distinguished by the slope of fn,0,h+
at �n ,0� and the distance between the two roots of the equa-
tion fn,0,h+

=0 �see Eqs. �64� and �65��.
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lar to A1,1 but due to the additional Z2 symmetry of this
configuration �52�, the coefficient a1=0. As a result, both
singular points of Pn,0 lie on the same critical intersec-
tion �n,0,hc

. The singular fiber �n,0,hc
in R8 is a T2 bundle

over a doubly pinched torus T�2�
2 in Fig. 8, center. As we

break the Z2 symmetry, the double pinched torus sepa-
rates into two singly pinched tori and we go from A2 to
A1,1.

d. Case A1

This case is intermediate between A1,1 and A0. It can
be obtained by deformation of either A0 or A1,1 and it
has one singular circle �n,0,hc

which includes one of the
singular points of Pn,0 while the opposite singular point
is a single point intersection. This case has only one sin-
gular fiber which is the product of T2 and a singly
pinched torus T�1�

2 .

e. Case B0

Studied by Cushman and Sadovskií �2000� along with
A2, this case is qualitatively the same as that of the qua-
dratic Zeeman effect �pure magnetic field, point Z�. B0
systems were studied extensively following Herrick
�1982� and Solov’ev �1982�. It has large �a2� and a1=0. As
a result, regular intersections �n,m,h can have either one
or two smooth circle components lifting to one or two
regular tori �see Fig. 22�. Furthermore, the two singular
points of Pn,0 are the only components of the same in-
tersection �n,0,hc

. They lift to a pair of symmetry equiva-
lent relative equilibria Tn

2. Other critical intersections
correspond to tangencies of fn,m,h and �. They can be of
two kinds: a single point or a figure 8. The former lifts to

a Tn,m
3 RE, while the latter corresponds to the product of

a bitorus Tbi
2 �see Fig. 8� with T2.

f. Case B1

Unlike B0, this case does not have extra Z2 symmetry
and a1�0. As a result, critical intersections that go
through singularities of Pn,0 differ: one consists of just
one of the singular points, while the other is a disjoint
union of the other singular point and a regular circle
�see Fig. 21, bottom, and Fig. 22�. Other intersections
are qualitatively the same as in B0.

3. Constant ns bifurcation diagrams BDn of 1:1 systems and
their structural stability

Using the previous section, we can obtain BDn for
certain fixed n and s and arrive at the results announced
in Sec. III and Table II. We should also verify that the
classification of the 1:1 zone systems given in Sec. III is
structurally stable for sufficiently small ns�0. For 1:1
systems we work at the second-order level and ns affects

the relative importance of rescaled terms H̃2 and H̃1 in
Eq. �62�. However, because d�1, the 1:1 detuning term

�ns�d� in H̃1 is a priori small and H̃2 dominates as long
as �ns�2� �ns�d. Under this condition the structure of

BDn is defined solely by H̃2.
For given s and 0�dmax�1, this gives an interval of n

values where our results are stable. Concrete calcula-
tions showed that this interval is quite large. Within this
interval, the structure of the whole three-dimensional
image of the EM map can be represented as a cylinder
in n over one of the two-dimensional images in Table II.
This situation is quite specific to the 1:1 zone. It allows
us to focus essentially on the two-dimensional analysis.

If we go to higher orders of the normal form, the situ-
ation may become more complex. First, attention should
be paid to the nongeneric transitional systems which are
represented by points of the boundaries between the dy-
namical strata in Fig. 16. Higher orders become increas-
ingly important as we approach these boundaries. In our
second-order treatment, transitional systems often have
degenerated critical EM values which go away at certain
higher orders. An example is treated by Efstathiou,
Cushman, and Sadovskií �2004�, who studied the bound-
ary between A2 and B2. When the degeneracies are re-
moved, the system and nearby systems in the parameter
space may change qualitatively. If this happens, the cor-
responding part of the boundary between the dynamical
strata in Fig. 16 becomes replaced by a small transitional
boundary region, so that the transition between our dy-
namical strata does not happen as a result of a single
bifurcation but after a coordinated sequence of bifurca-
tions closely following one another. As ns increases and
the included higher order�s� become more important,
these complicated regions expand. However, as long as

ns remains sufficiently small and the second-order H̃2
remains dominating, dynamical strata in Sec. III persist

π1

A0 A1,1

π1

A2 A1

π1

ν

B0

ν

B1

FIG. 22. Different types of intersections �n,0,h of the
constant-h level sets of H with the reduced space Pn,0 pro-
jected on ��2=0	. Dashed lines represent regular levels whose
intersections with Pn,0 are �a union of� smooth circles; thick
black lines represent levels that go through the singular points
�� ,�1�= �±n ,0�; critical levels that are tangent to Pn,0 are
shown by thin solid curves.
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and occupy most of the parameter space. They can be
used for concrete estimates of an admissible interval of
the ns values.

C. Analysis of 1:2 systems and higher resonances

To analyze 1:2 resonant systems we normalize �at
least� to order 3. Compared to the systems in the 1:1
zone, we should be aware of the following new impor-
tant aspects. Because now ns controls the rivalry of H2
and H3 in Eq. �62�, the BDn of these systems are much
less stable and study of the rich three-dimensional BD in
�n ,m ,h� is imposed. It is generally difficult for H3 to
dominate because this requires “dangerously” large ns
and a fine adjustment of parameter a2. So specific 1:2
features such as fractional monodromy may be harder to
find.

Another aspect of 1:2 systems is the presence of a new
singular fiber, the curled torus T�1/2�

2 . It appears, as shown
in Fig. 23, under the same geometric conditions as the
pinched torus �cf. Fig. 21�a�� but for �m��mmax and �m�
�mcrit when the singularity of Pn,m

1:2 corresponds to the
short T2 RE and not to the Kepler ellipse �Sec. II.C.3.a�.

For higher resonances, we should encounter increas-
ing difficulties of the same kind. Furthermore, we should
face shrinking zone sizes and require quantitative dy-
namical justification �cf. footnote 35� of the applicability
of the high-order normal form. The higher-order curled
tori are rather exceptional singular fibers. Geometrically
this can be seen from the fact that singularities of Pn,m

k−:k+

with k−+k+�3 are cuspidal and intersections similar to
that in Fig. 23 are not typical.

VI. MONODROMY

As pointed out in the Introduction, Sec. III, and Table
II, certain systems in the 1:1 zone, namely, A1, A1,1, A2,
and B1, have nontrivial monodromy of different kinds.
We discuss this property in more detail. After introduc-
ing the technical concepts of the rotation angle and the
first return time and explaining how one can compute
monodromy in an integrable system, we recall some gen-
eral properties of the monodromy map.

First we discuss monodromy in the 2-DOF integrable
systems defined on S2�S2. There the form of the mono-

dromy matrix can be easily deduced �up to conjugation
in SL�2,Z�� using the geometric monodromy theorem
and other general properties of the monodromy map.

Our final aim is to give the monodromy map for the
3-DOF system defined in the original space R6 with co-
ordinates �Q ,P�. In order to do this, we first study the
monodromy map in the KS space R8. Then we deduce
the monodromy map in R6 from the one on �R8��=0 using
the properties of the KS map.

Even though the BD of our 3-DOF system is three
dimensional, we only consider constant-n closed paths in
the set of regular values of the energy-momentum map,
i.e., closed paths that lie on BDn. Monodromy for an
arbitrary closed path can be deduced from such
constant-n paths as long as BD can be represented
within an interval of n values as a cylinder in n. This is
certainly the case of the 1:1 systems �Sec. V.B.3�. More-
over, it is possible to compare the monodromy map for
such closed paths to the monodromy computed for the
2-DOF integrable system. We show that the third di-
mension �n� enters trivially in the monodromy map.

A. Computation of monodromy

1. Rotation angles in systems with two degrees of freedom

Computation of monodromy in Hamiltonian systems
with two degrees of freedom �2-DOF� has been de-
scribed and used before.47 We give a brief outline. In the
simplest case, when the system possesses already a glo-
bally defined action I1, we can use periodic orbits �1
generated by the flow of the Hamiltonian vector field
XI1

of I1 to define the first basis element �cycle� ��1� of
the basis of the homology group H1�T2� of a regular
torus T2. The second basis cycle ��2� of H1�T2� is con-
structed using the integral curve of the nonperiodic flow
of the vector field XH of the Hamiltonian H and an ap-
propriately chosen segment of �1. This is done as follows
�see Fig. 24�. Consider a regular torus T2 corresponding
to the values �m ,h� of momentum I1 and energy H and
take a point p�T2 and the S1 orbit �1 which starts at p.
Launch an integral curve of XH and continue it until it
crosses �1 first time at point p�. The time T required for
the flow of XH to go from p to p� is called the first return
time; the time # required for the flow of XI1

to travel
from p to p� along �1 is called the rotation angle. Con-
struct now the vector field

XI2
= �TXH − #XI1

�/�2�� ,

which has a 2�-periodic flow: an orbit �2 of this flow
started at p comes back to p in time 2�. This orbit rep-
resents the second basis cycle of H1�T2�.

We can perform the above procedure for any regular
torus and thus obtain # as a real-valued function on the

47See Lerman and Umanskií �1994a, 1994b, 1995�, Matveev
�1996�, Cushman and Bates �1997�, Nguyên Tiên �1997�, Cush-
man and Duistermaat �2001�, Efstathiou, Joyeux, and Sa-
dovskií �2004�, and Efstathiou �2005�.

1:2

ξ
νξ = m − n

{Hn,m = h}

FIG. 23. Critical intersection �n,m,h of the constant-h-level set
of Hn,m �bold line� of a 1:2 system and Pn,m

1:2 �gray� with mcrit
�m�mmax which corresponds to a curled torus T�1/2�

2 .
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image of the energy-momentum map EM with coordi-
nates �m ,h�. In systems with monodromy, #�m ,h� is lo-
cally smooth and single valued but is globally multival-
ued: going once around a closed nontrivial path � in the
set of regular �m ,h� values in the counterclockwise di-
rection, the rotation angle increases by an integer mul-
tiple of 2�, i.e.,

# � #� = # + 2k�, k � Z . �67a�

This in turn means that the vector field XI2
becomes

XI2
� XI2

� = XI2
− kXI1

, �67b�

and, similarly, the respective cycle ��2� changes to

��2� � ��2� − k��1� , �67c�

while ��1� remains unchanged. Consequently, ��2� can-
not be defined globally over the whole set of regular
�m ,h� values. The above transformation of the cycle ba-
sis ���1� , ��2�	 is expressed by matrix M�k� in Sec. II.D.5.

To have an idea how # is computed, first note that the
flow of XI1

defines an S1 symmetry and that after reduc-
ing this symmetry, the period T can be found as the
period of the reduced 1-DOF dynamics. At the same
time, in many cases it is possible to find coordinates on
the total phase space R4, in which the action of I1 be-
comes a diagonal simultaneous rotation of two planes
�q1 ,p1� and �q2 ,p2�. In complex coordinates z= �z1 ,z2�
one has

z � „z1 exp�i�1t�,z2 exp�i�2t�… .

When at p= �z1 ,z2� we launch the orbit of XH and it
comes back to �1 after we follow it for time T, we arrive
at p�= �z1� ,z2��. Since p���1 we should have

z� = „z1 exp�i�1#�,z2 exp�i�2#�… ,

from where, using either of the two equations, we should
obtain consistently the rotation angle

# = �1
−1 arg�z1/z1�� = �2

−1 arg�z2/z2�� .

Note also that derivatives d arg�z1� /dt and d arg�z2� /dt
can always be expressed as functions on the reduced
phase space �Efstathiou, Cushman, and Sadovskií, 2007�
and can be integrated using the reduced dynamics. Fur-
thermore, it is often possible to compute analytically ei-
ther the integral or at least its variation along the path �.

2. Rotation angles in systems with K�2 degrees of freedom
and K−1 diagonal S1 actions

The situation is conceptually the same for systems
with K�2 degrees of freedom and K−1 �globally� de-
fined actions Ij �momenta�, j=1, . . . ,K−1, the vector
fields �XIj

, j=1, . . . ,K−1	 of which define K−1 diagonal
actions on the phase space. Then in some complex coor-
dinates z= �z1 , . . . ,zK�, we have K−1 commuting flows

�j
t:z � �j

t�z� = „z1 exp�i�1jt�, . . . ,zK exp�i�Kjt�… ,

which combine into

$t1,. . .,tK−1:z � �1
t1 � ¯ � �K−1

tK−1�z� .

We consider a regular torus TK and its homology group
H1�TK��ZK. We can use closed orbits �j of the commut-
ing flows �j with j=1, . . . ,K−1 to represent the first K
−1 basis cycles of H1�TK�. This is possible only if the
TK−1 action $ on TK is effective.48 In the opposite case,
there is no cycle �K that we can add to the collection of
K−1 cycles �j so that ��1 , . . . ,�K� span the whole
H1�TK�: no matter how we choose �K, only a subgroup
G�H1�TK� will be spanned. Since the monodromy map
is an automorphism of the whole H1�TK�, we must en-
sure effectiveness of the TK−1 action $ on all regular tori
TK in order to compute monodromy.

As in the case K=2, the Kth basis cycle is constructed
using the Hamiltonian vector field XH. Taking a point
p�TK, we consider in TK the orbit of the TK−1 action $
passing through p. We launch an integral curve of XH
from p and stop when it returns for the first time to the
TK−1 orbit at a point p�. The first return time T at which
this happens can again be computed beforehand from
the 1-DOF reduced dynamics. Since we make sure that
the TK−1 action is effective, there is a unique �up to ad-
ditional integer multiples of 2�� combination of rotation
angles #1 , . . . ,#K−1 such that

p� = $#1,. . .,#K−1�p� ,

which implies K linear equations

48A group action of a group G on a manifold M is effective if
g� id�G implies that there is some z�M for which gz�z.

XH
γ1
p

p′

p

p′kγ1

φ2

φ1

XH

p

p′

XH

φ3

φ2

φ1

FIG. 24. �Color online� Orbits of the flow of the two Hamil-
tonian vector fields XH and XI1

on a regular T2 torus �top left�
and in the standard flat representation of the torus �top right�
used as an example of computing rotation angles; similar con-
struction for a T3 torus �bottom�.
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zi� = zi exp�i �
j=1

K−1

�ij#j
, i = 1, . . . ,K

for K−1 unknowns #1 , . . . ,#K−1. �The one extra equa-
tion can be used as a consistency check.� We can now
define the 2�-periodic vector field,

XIK
=

1

2�
�TXH − �

j=1

K−1

#jXIj
 ,

and define subsequently the last cycle ��K�.
When we go around a closed circuit � in the

K-dimensional domain of regular energy-momentum
values �m1 , . . . ,mK−1 ,h�, our K−1 rotation angles evolve
smoothly, and when we complete a tour on �, they might
change by integer multiples of 2�. We have

#j � #j� = #j + 2�kj, kj � Z .

If the system has monodromy and � is nontrivial,49 then
at least one of the integers kj must be nonzero. The
corresponding change in the cycle ��K� is

��K� � ��K� − �k1��1� + ¯ + kK−1��K−1��

or denoting the row vector k= �k1 , . . . ,kK−1�,

��K� � ��K� − k · ���1�, . . . ,��K−1��T,

which gives the K�K monodromy matrix

M�k1, . . . ,kK−1� =�
1 0 ¯ 0 0

0 1 ¯ 0 0

] ] � ] ]

0 0 ¯ 1 0

− k1 − k2 ¯ − kK−1 1
� .

�68�

In this particular basis, the monodromy matrix is given
solely by its last row. Furthermore, matrices of the kind
in Eq. �68� form a subgroup of SL�K ,Z� isomorphic to
the Abelian group ZK−1. Indeed we have

M�k�−1 = M�− k� , �69a�

M�k��M�k�� = M�k� + k�� . �69b�

B. General properties of the monodromy map

We summarize a number of simple general properties
of monodromy mappings which are helpful in analyzing
particular concrete results discussed later. A mono-
dromy mapping will be denoted m; the K-dimensional
set of regular EM values of the system will be denoted
R. For each homotopy class ��� of closed paths � in R,
the monodromy mapping m defines an automorphism

m��� of the first homology H1�TK�. In other words, m is a
mapping from the fundamental group �1 of R to the
group of automorphisms of H1�TK�.

1. Monodromy matrix and changes of cycle bases

Since m��� is an automorphism of H1�TK�, its mono-
dromy matrix M belongs to SL�K ,Z�, i.e., det M=1 and
all its entries are integer numbers. The matrix M itself is
defined up to conjugation in SL�K ,Z�. Specifically, let
B�SL�K ,Z� define a change of the cycle basis in
H1�TK�. Then in the new basis the monodromy matrix is
BMB−1. In other words, for a given monodromy map-
ping, its matrix M belongs to a given class of SL�K ,Z�.
Describing classes of SL�K ,Z�, one can come up with a
standard form of monodromy matrices. Thus, for k-fold
FF singularities in K=2 this form is

�1 0

k 1

, k � Z .

Two further simple aspects should be taken into account
with regard to possible monodromy matrices M: one
should agree on the choice of the positive direction of
circuits ��R �counterclockwise for K=2� and on the
orientation of regular tori that defines proper cycle
bases. Note that a base can be always made proper by
reversing the direction of one of the cycles, such as �K in
the previous section or more generally by using a matrix

B̄ over Z with det B̄=−1.

2. The sum rules

The mapping m :�1�R�→H1�TK� is a homomorphism.
This means in particular that for monodromy matrices
M��� and M−��� corresponding to �homotopy classes of�
circuits ��� and −���, i.e., to the same class of closed
paths taken in opposite directions, we have

M−��� = M���
−1 . �70a�

Furthermore, consider two �homotopy classes of� cir-
cuits ���� and ���� and their combination, ����+ ����. We
have for the respective monodromy matrices �cf. Eq.
�69b��

M����+���� = M����M����. �70b�

3. Deformation principle

Monodromy is a purely topological property. It is in-
sensitive to the particular path ��R used for its compu-
tation and depends solely on the homotopy class ��� of
�1�R�. In other words, any continuous deformation of �,
for which � remains in R, gives the same monodromy
m���. Furthermore, if we deform the set R itself by
changing the parameters of the system �in our case, field
strengths g and f� and the deformation is such that �
evolves continuously within R, then the monodromy
m��� remains the same. Thus m��� does not change even if49More generally, see footnote 23.
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qualitative changes of the bifurcation diagram occur lo-
cally inside the region encircled by � or outside that
region.

4. The sign of monodromy

The Hamiltonian character of the system imposes fur-
ther restrictions on the possible monodromy mappings
�Cushman and Vū NgIc, 2002; Zhilinskií, 2005�. Let a
system with K=2 have an isolated singular fiber �c,
which is a k-pinched torus �see Fig. 8, left, for a singly
pinched torus�. Each “pinch” is a focus-focus equilib-
rium. There is always an orientable neighborhood Bc of
the pinched point c and the orientation in Bc induces an
orientation on the fibers EM−1�f�, f�Bc �see Cushman
and Vū NgIc �2002��. Then for all � with fixed positive
�counterclockwise� direction in Bc which encircle c once,
the matrices M��� belong in the SL�2,Z� conjugacy class
of

M�k� = � 1 0

− k 1

 with k � Z�0; �71�

thus k measures the number of focus-focus equilibria
encircled by �. The 2�2 matrix M�k� and its inverse
M�−k�, where k�Z�0, are not similar in SL�2,Z�. Thus
fixing the orientation in Bc fixes the class of M��� in
SL�2,Z� and consequently the sign of k. This justifies the
terminology sign of monodromy. When the image of
EM is orientable and the system has a global S1 action,
then a consistent orientation for all critical values of EM
that correspond to pinched tori can be chosen, and the
monodromy M��� for a path � that encircles k focus-
focus points is given by Eq. �71�.

The term “sign” comes from the above K=2 case.
More generally, we should consider allowed classes of
SL�K ,Z�. The issue remains open for K�2, but it is
quite possible, especially in the special case of maps in
Eq. �68�, which nontrivial restrictions exist there as well.

5. Geometric monodromy theorem

This theorem �Lerman and Umanskií, 1994a, 1994b,
1995; Matveev, 1996; Nguyên Tiên, 1997; Cushman and
Duistermaat, 2001� states that in a 2-DOF system the
monodromy map is completely determined by the num-
ber k of focus-focus singularities �or pinches� on the iso-
lated singular fiber called k-pinched torus. With all
choices made as described above, the matrix of this
monodromy belongs to the class in Eq. �71�. Generaliza-
tions of this theorem to K�2 are not studied compre-
hensively. An extension to K�2 can be made readily
when the extra degree�s� of freedom correspond to glo-
bal S1 actions which act freely so that regular fibers of
the K=2 case are multiplied by TK−2 orbits. But even in
this trivial, in some sense, case, we should make certain
that we work with effective cycle bases �Dullin et al.,
2004; Giacobbe et al., 2004�. Generalizations to frac-
tional monodromy �Nekhoroshev et al., 2002, 2006; Ef-
stathiou, Cushman, and Sadovskií, 2007; Sugny et al.,
2008� are not known.

C. Monodromy of systems in the 1:1 zone

1. Monodromy of the n-shell system on S2ÃS2

We consider first the n-shell energy-momentum map
EMn in Eq. �15b� for a fixed value of Keplerian action n
which is sufficiently small so that the integrable normal
form approximation is valid. On the regular components
of fibers EMn

−1�m ,h� we can define cycle bases following
the outline in Sec. VI.A.1. The momentum 
 is a global
action and it can be chosen as I1; the corresponding fixed
cycle ��
�= ��1� can be defined on all tori. The stratified
image of EMn is one of the BDn in Table II which is
described in Sec. V.B.2. Each BDn is a base of a singular
toric fibration of S2�S2 for which we can deduce mono-
dromy by finding its singular fibers and applying the geo-
metric monodromy theorem �Sec. VI.B.5� together with
deformation arguments �Sec. VI.B.3�.

The system has nontrivial monodromy only if the set
Rn of regular values of EMn is not simply connected.
This occurs for types A2, A1,1, A1, and B1. In all these
cases we can choose a closed path ��Rn which encircles
an isolated set of critical values. The monodromy matrix
M��� has the form �71�, so the second basis cycle ��2�
transforms after going once around � according to Eq.
�67c� with k�0. We say that the system has monodromy
k. We can find k from the geometric monodromy theo-
rem �Sec. VI.B.5�.

In both cases A1 and A2, the base space consists of
one cell with one isolated critical EMn value o inside.
The set of regular values is not simply connected, and
we consider monodromy for a nontrivial closed path �
that goes once around o �see Fig. 11, left�. In the case of
A2, which was studied originally by Cushman and Sa-
dovskií �2000�, o corresponds in S2�S2 to a doubly
pinched torus T�2�

2 . This implies that the A2 system has
nontrivial monodromy with k=2. In the case of A1, the
isolated critical value o, lifts to a singly pinched torus
T�1�

2 in S2�S2 and the monodromy is 1.
The B1 systems can be obtained as a deformation of

A1. The B1 base space consists of two partially overlap-
ping cells that join along a curved segment C of critical
values. The corresponding cell unfolding surface is
shown in Fig. 11, right. The critical segment C is isolated
in the larger cell and is part of the boundary of the
smaller cell. The smaller cell can be deformed continu-
ously together with C into a single isolated critical value
of the A1 system. Under such deformation, the circuit �
that goes around C in the set of regular values of the
larger cell �Fig. 11, right� transforms continuously into
the circuit � of the A1 case �Fig. 11, left�. Hence k=1:
the monodromy of B1 is the same as that of A1.

In the case of the A1,1 systems, the base space has two
isolated critical values o− �lower in h� and o+ �higher in
h�, each lifting to a singly pinched torus T�1�

2 in S2�S2.
The two nontrivial cycles ��−� and ��+� which form a
basis of the fundamental group �1�R� of the A1,1 base R
are shown in Fig. 25 by closed paths �− and �+ encircling
o− and o+, respectively. From the sign theorem �Sec.
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VI.B.4� and the geometric monodromy theorem �Sec.
VI.B.5� we obtain that both matrices M��−� and M��+� are
of the class M�1� in Eq. �71�, i.e., k−=k+=1. Moreover,
due to the global S1 symmetry associated with 
, the
fibers �±=EM−1�o±� share the same globally defined
cycle ��1�, while ��2� can be chosen so that the respective
monodromy matrices have the same standard form
M�1�. Then by the sum rule �Sec. VI.B.2� in Eq. �70b�,
the monodromy for the circuit �=�−+�+ that goes once
around both critical values �see Fig. 25� is 2. The latter
result follows also immediately once we observe that
A1,1 systems are a deformation of A2 �see Figs. 16 and 25
and top left�.50

In the B0 case, also studied by Cushman and Sa-
dovskií �2000�, the base of the fibration consists of three
cells, two of which overlap. The unfolded BD is shown in
Fig. 10. The regular interior of each cell is simply con-
nected. There is no monodromy.

Finally, the simplest case of 1:1 systems is type A0. In
this case, the detuning d is so large that the specific
structure of the 1:1 resonance vanishes. We have one cell
with no isolated critical values. The set of regular values
is simply connected and the system has no monodromy.

As a consequence, A0 systems have globally defined
action-angle coordinates.

2. Monodromy on �R8��=0

We compute first monodromy for fibers in the KS
space R8 and we use these results in the next section to
compute monodromy in the physical space R6. The
energy-momentum map in R8 is defined by four first in-
tegrals of the second normalized system, the momenta
�N ,
 ,�� which induce global diagonal S1 actions on R8,
and energy �E pulled back to R8. Since we only consider
�=0, we can consider the EM map in Eq. �15a�. The
monodromy along a path � in the set of regular values R
of EM is described by 4�4 monodromy matrices of the
kind in Eq. �68� with K=4. Furthermore, within a certain
interval of the n values, which we study here, any closed
path � in the three-dimensional set R of regular values
of this EM is homotopic to a closed constant-n path �n
�cf. Sec. V.B.3�. Consequently, the 4�4 monodromy ma-
trix corresponding to � can be always computed using its
�n analog.

There are several ways to build an effective T3 action
out of the three S1 actions associated with �N ,
 ,��. One
possibility is to use the 2�-periodic Hamiltonian flows of
the vector fields of Hamiltonian functions 
+�, N+�,
and N−�. For this choice of actions and for circuits �
with fixed N=n and �=0, we have computed the mono-
dromy matrices for systems of different types in Table II
following the outline in Sec. VI.A.2. The matrices al-
ways have the form M�k� in Eq. �68� with K=4 and

k = �k
+�,kN+�,kN−�� ,

where k
+�, kN+�, and kN−� are integers. Concrete values
of k for the 1:1 systems of different types are given in
Table V.

To assess the results in Table V, one should verify the
monodromy properties in Sec. VI.B. Thus the matrix
MA1,1

−+ for the circuit �++�− of the A1,1 system �case A1,1
−+

in Table V� is the same as the matrix MA2
for the A2

system. This is required by the deformation principle in
Sec. VI.B.3 and the already mentioned fact that A1,1 is a
deformation of A2 �see Fig. 16�. On the other hand, by
the sum rule in Sec. VI.B.2, the matrix

MA2
= MA1,1

−+ = M�k−+�

should be the product of matrices

MA1,1
− = M�− = M�k−�

and

MA1,1
+ = M�+ = M�k+� .

This is indeed true since by Eq. �69b�, multiplication of
matrices M�k−� and M�k+� comes down to taking the
sum of vectors k− and k+, and in Table V we have k−+

=k−+k+.
Furthermore, we note that �− deforms continuously

�in the set of regular values R� as we go from A1,1 to-

50In our case, the deformation merges two singly pinched tori
�± into one doubly pinched torus �. In the case without S1

symmetry and the respective common fixed cycle ��1� on �±,
the two singly pinched tori �± would merge instead into a
singular sphere S2 �Gross, 2001, Theorem 1.4�. Such a case is
reminiscent of the A2 singularity; not our A2 system �cf. Bates
and Cushman �2005��, but no physical examples are known to
date.
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Γ

A1,1

m

h

o−
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Γ
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h

n

m
o− o+

Γ

FIG. 25. Energy-momentum map EM in Eq. �1� defined by
first integrals �N ,
 ,H� with values �n ,m ,h�. Top row shows
constant-n sections; the three-dimensional image is repre-
sented on the bottom; gray shade represents regular EM val-
ues with the same n. Contour � goes around the isolated criti-
cal value o, which lifts to a doubly pinched torus �top left� of
an A2 system, and around two isolated critical values o− and
o+, each lifting to a singly pinched torus �top right� of the A1,1
system; contours �− and �+ encircle o− and o+, respectively. In
the full image, o, o−, and o+ become one-dimensional threads
of critical values.
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wards the Zeeman limit �see Fig. 16, bottom�, enter A1�
and, subsequently, B1� because during this deformation
the upper critical value o+ disappears while o− persists in
A1� and then becomes a one-dimensional isolated seg-
ment of critical values in B1� �cf. Fig. 11�. Consequently,
we must have

MA1,1
− = MA1�

= MB1�
,

and by the similar argument �closer to the Stark limit�,

MA1,1
+ = MA1�

= MB1�
,

as given in Table V.
It should also be noted that all matrices in Table V �in

R8� are similar: changing to an appropriate basis, they
can be brought to the same standard form
diag„1,1 ,M�1�… where the 2�2 block M�1� is given by
Eq. �71� with k=1. The basis choices are given below.

Matrix standard cycle basis

MA2
=MA1,1

−+��N+� ,�N+
 ,−�2
 ,�4�
MA1�

=MA1,1
− ��N+� ,�N−� ,�
+� ,�4�

MA1�
=MA1,1

+ ��N+� ,�N−� ,�
−� ,�4�

All three matrices belong in the same class of SL�4,Z�.
This seems to be an extension of the sign theorem �Sec.
VI.B.4�. However, contrary to the two-dimensional case,
the corresponding inverse matrices also belong to the
same class.

Finally we should understand how the matrices in
Table V are related to the 2�2 matrices M�k� obtained
from the analysis of the reduced system on S2�S2 �Sec.
VI.C.1�. This can be readily achieved once we recall that
the map�R8��=0→S2�S2 is a reduction of a T2 symmetry
acting freely on �R8��=0. Over each point of S2�S2, we
have a T2 orbit Tn,�=0

2 of the combined 2�-periodic flows
of vector fields X2N �Keplerian� and X2� �KS symmetry�.
So identifying a regular torus �m,h=T2�S2�S2, with its
preimage T4 in the KS phase space R8 at the level of first
homologies, we have

H1�T4� → H1��m,h� ,

��
+�,�N+�,�N−�,�4� → ��
 + 0,0,0,�4� = ��
,�2� .

Since under the monodromy map

�4 � �4 − k · ��
+�,�N+�,�N−�� ,

this means that the second cycle of the two-tori �m,h of
the reduced system transforms as

�2 � �2 − k · ��
+�,0,0� = �2 − k
+��
,

and therefore k
 in Table V and k in Sec. VI.C.1 must be
equal.

3. Monodromy in R6

Monodromy in the original physical phase space R6 of
the system with the Hamiltonian �2� can be deduced
from that computed in R8 by the same method that we
used in the end of Sec. VI.C.2 to relate k and k. Here we
consider the KS reduction map �R8��=0→R6 and analyze
the map that it induces between the first homologies of
the regular tori �n,m,h=T3�R6 and their preimages
T4��R8��=0�R8.

Note that the image of the energy-momentum maps in
the two cases is the same since we only consider �=0.
The circuits � are also the same. The system in R6 has
two global action coordinates N and 
; the correspond-
ing S1 orbits can be found explicitly after first computing
them in R8 and then bringing them down to R6 by the
KS map in Eq. �18�. In particular, it can be shown that
the flow of XN and X
 is 2� periodic in R6 �while it has
a period of 4� in R8�. We can also verify in the same way
that the flow of X� reduces to identity in R6. For the first
homology identification H1�T4�→H1��n,m,h� this means

��
+�,�N+�,�N−�,�4� → ��
 + 0,�N + 0,�N + 0,�4�

→ ��
,�N,�N,�3� � ��N,�
,�3� .

In particular, it can be argued that the T2 symmetry ac-
tion in R6 associated with ��N ,�
� is effective because
this basis is an image ��
+� ,�N+� ,�N−�� and the latter is
associated with an effective action in R8. The mono-
dromy matrix in R6 in the basis ��N ,�
 ,�3� can be di-
rectly obtained from k= �k
+� ,kN+� ,kN−��. Because glo-
bally defined cycles �N and �
 are fixed, this 3�3 matrix
is of the same kind as in Eq. �68� with K=3, and it is
given by two integers kN and k
. For the third cycle of

TABLE V. Monodromy matrix M�k� �see Eq. �68�� for T4�R8 and for T3�R6 in systems of different
types in Table II. For systems of type A1,1 we distinguish additionally monodromy matrices corre-
sponding to the circuits ��+�, ��−�, and ��−�+ ��−� which go around the two distinct isolated critical
values with m=0, the upper o+ and the lower o−, and around both values, respectively �see Fig. 25�.
The three cases are denoted by A1,1

+ , A1,1
− , and A1,1

+−.

System

Monodromy in R8 Monodromy in R6

k
+� kN+� kN−� k
 kN

A2, A1,1
+− 2 1 −1 2 0

A1,1
+ , A1�, B1� 1 1 −1 1 0

A1,1
− , A1�, B1� 1 0 0 1 0
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H1��n,m,h�, the monodromy transformation is

�3 � �3 − k · ��
,�N,�N� = �3 − k
�
 − kN�N

from where we obtain

k
 = k
+� and kN = kN+� + kN−�.

This gives the results for R6 in Table V. We observe that
in R6 the Keplerian cycle �N does not participate in the
monodromy transformation �for 1:1 systems�; the matrix
is diag„1,M�k�… with the 2�2 block M�k� of the form in
Eq. �71� and k=k
 is equal to either 1 or 2. This justifies
the use of the constant-n sections BDn for the classifica-
tion in Table II and of the respective n-shell map EMn in
Eq. �15b�.

VII. QUANTUM DYNAMICAL STRATIFICATION

The classical Hamiltonian monodromy described in
Sec. VI manifests itself in the corresponding quantum
spectrum as explained in Sec. II.E. We quantize by re-
placing the classical Poisson algebra by its quantum
counterpart and all classical quantities by the corre-
sponding quantum operators marked by hats, e.g., 
̂. If
quantum operators do not commute, such replacement
becomes ambiguous. When this happens, we symmetrize

the corresponding terms, e.g., ab→ 1
2 �âb̂+ b̂â�. Subse-

quently, we compute the joint quantum spectrum of the

commuting operators �Ê, which corresponds to �E given
in Eqs. �32� and 
̂. Furthermore, we compute the spec-

trum of the first normal form �Ê that corresponds to �E
given in Eq. �55� and we compare it to the joint spec-

trum. Since �Ê and 
̂ do not commute, there is no joint

spectrum and in order to classify the eigenvalues of �Ê
we should use the expectation value of 
̂ on the corre-
sponding eigenstates.

A. Quantized second normal form

In order to find their joint spectrum, the Hamiltonian
functions �E and 
 should be quantized. We work on
the phase space S2�S2 where it is most straightforward.
We now give the essentials. Dynamical variables �x ,y�
span an so�3��so�3� Poisson algebra. Their quantum
counterparts �x̂ , ŷ� span the so�3��so�3� algebra

�x̂j, x̂k� = i��
�=1

3

�jk�x̂�, �ŷj, ŷk� = i��
�=1

3

�jk�ŷ�,

�x̂j, ŷk� = 0 for all j,k .

Note that quantized invariants in Eqs. �47� contain only
products of commuting components of x̂ and ŷ, and
moreover, to the principal order k++k− �which is linear
in �1�, terms that appear in the k− :k+ resonant normal
form �E are of this kind. In higher orders of �E, replac-
ing �x ,y� by �x̂ , ŷ� should eventually produce products of

noncommuting operators which make the resulting �Ê

O��� ambiguous. However, sufficiently close to the clas-
sical limit �large n� this well-known ambiguity51 may be
disregarded.

The matrix representation of �Ê can be given in a
suitable common eigenfunction basis

�j1,j2;m1,m2� ¬ �j ;m1,m2� with j1 = j2 = j

of operators x̂1, ŷ1, x̂2, and ŷ2. The quantum number j
�0 can be integer or half integer, while the quantum
numbers m1 and m2 take the values −j ,−j+1,−j
+2, . . . , j−1, j. It follows that the total number of states is
�2j+1�2 which corresponds to the shell with principal
quantum number n=2j+1�Z�0.

Operators x̂1, ŷ1, x̂2, ŷ2 act on �j ;m1 ,m2� as follows:52

x̂1�j ;m1,m2� = m1��j ;m1,m2� ,

ŷ1�j ;m1,m2� = m2��j ;m1,m2� ,

x̂2�j ;m1,m2� = ŷ2�j ;m1,m2� = j�j + 1��2�j ;m1,m2� .

Furthermore, we note


̂�j ;m1,m2� = �m1 + m2���j ;m1,m2� = m�j ;m1,m2� ,

where m=−2j� , . . . ,2j� is an integer multiple of � which
corresponds to the value of the classical action 
, and we
impose

N̂�j ;m1,m2� = �2j + 1���j ;m1,m2� .

Equality j1= j2= j reflects Eq. �7� from where the value of
the classical action N is obtained,

n = 2
j�j + 1�� � �2j + 1�� for j � 1. �72�

First normalization defines the n-shell approximation
�see Sec. IV.A�. So both first and, of course, second nor-

malized energy operators �Ê and �Ê commute with N̂
and their matrix representations in the basis �j ;m1 ,m2�
factorize into blocks which describe noninteracting
shells. In other words, for each fixed value of quantum
number n=2j+1, we can work on the n2-dimensional
n-shell Hilbert space

51Advantages and accuracy of different approaches to quan-
tization are beyond this review. In general, we can distinguish
two issues here: �i� to which extent a classical canonical trans-
formation, such as normalization, followed by quantization in
new variables agrees with analogous direct quantum transfor-
mation; �ii� to which extent quantization commutes with Euler-
Poisson reduction. Issue �i� goes back to the origins of quan-
tum mechanics. It was examined particularly extensively for
molecular Hamiltonians �see, e.g., Louck �1976��. For an expo-
sition of �ii�, see Ginzburg et al. �2002, Chap. 8�. Computing
joint spectra from semiclassically quantized normal forms was
discussed by Laurent and Vū NgIc �2008�.

52In atomic units, � equals 1, but we may use different values
to increase artificially the density of states.
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Hj = L2��j ;m1,m2� ;m1,m2 = − j, . . . ,j� .

Furthermore, since �Ê also commutes with 
, this space
can be further split into subspaces

Hj,m = L2��j ;m1,m2� ;�m1 + m2�� = m� � Hj

invariant under �Ê and 
̂. In order to find joint eigen-

values of �Ê and 
̂ with quantum number m, we diago-

nalize the matrix of �Ê in the basis of Hj,m. In the
energy-momentum domain, the resulting joint spectrum

of �Ê and 
̂ is represented by points �m ,h� where for
each m=−2j� , . . . ,2j� the energies h are given by the

respective eigenvalues of �Ê.

B. Quantized first normal form �Ê

For many reasons, such as avoiding possible discrep-
ancies introduced by the integrable approximation and
its quantization �see footnote 51�, quantum calculations
are better performed for the second normalized system
but for the Keplerian normalized system �n-shell ap-
proximation� or even for the initial system with the
Hamiltonian �2�. An extensive calculation of this kind
may be considered as “experimental data” which can be
interpreted using the results for the normalized system.
In this case, the main difficulty is the absence of strictly
defined joint eigenspectrum. For the original system, the

quantum operators 
̂ and N̂ no longer commute with

the Hamiltonian Ĥ. However, for each eigenfunction %

of Ĥ we can obtain an estimate of the corresponding
classical value m �and n� as the average �
̂�= �%�
̂�%�
�and �N̂��. Additionally, for each eigenstate, we can esti-
mate the uncertainty

�
 = 
�%�
̂2�%� − �%�
̂�%�2,

which we expect to be smaller than � and which is
smaller for the eigenstates for which 
 is conserved bet-
ter. Another similar characteristic is given by

− �%���Ê,
̂�2�%� .

This uncertainty can be improved using normalized 
̂

�and N̂� which will be denoted 
̄. We give more detail on
the example of the first normalized system where the
role of H is played by the first normalized energy �E in
Sec. IV.B, n is an exact quantum number, and we use �
̂�
to approximate m.

Transforming �E�x ,y� into �Ê and computing the

eigenspectrum of �Ê can also be done as outlined in
Sec. VII.A. Two specific aspects should be noted. Cer-

tain terms in �Ê contain products of noncommuting op-
erators which require symmetrization. Furthermore,

since ��Ê , 
̂��0, we should use the n2�n2 matrix rep-

resentation of �Ê in the basis of Hj.

The momentum 
 in Eq. �47� and �E Poisson com-
mute only in the first order. An improved estimate of m
can be obtained using the normalized


̄ = 
̄�1� + 
̄�2� = x1 + y1 + 
̄�2�, �73�

which commutes with �E to the third order; i.e., the
lowest-order contribution to ��E , 
̄	 is ��E�2� , 
̄�2�	�0.
Table VI gives an example of 
̄�2� obtained by Ef-
stathiou et al. �2009� for the 1:1 systems. To understand
how it was computed, recall that the second normaliza-
tion is a near unity coordinate transformation L on S2

�S2 defined so that in the transformed coordinates the
second normalized energy correction �E �or Hamil-
tonian� commutes with 
=x1+y1 up to second degree
terms. The series �73� is the preimage L−1�
� of 
 de-
fined in the same �original� coordinates as the first nor-
mal form �E.

C. Quantum joint spectra

The first interpretation of the joint spectrum of the
perturbation �2� in terms of monodromy was given by
Cushman and Sadovskií �1999, 2000� for A2-type sys-

tems. They used �Ê and their elementary cell diagram is
reproduced in Fig. 26. Schleif and Delos �2007, 2008�
obtained this diagram using a quantized initial Hamil-
tonian �2� and expectation values �
̂� of the momentum
�cf. Sec. VII.B�; they also extended the analysis to near
orthogonal systems and uncovered other types, notably
the A1,1 also shown in Fig. 26. The same diagrams were

obtained by Efstathiou et al. �2009� using �Ê and �Ê.
Quantum lattices for the B-type 1:1 systems can also

be found in the works cited above. Their specific feature
is the presence of two sublattices corresponding to the
two overlapping leaves of their respective BD. Figure 27
shows how such structures change for the 1:2 resonance.
In this case, the multileaf B-type BD is replaced by a
single-leaf self-overlapping BD with two internal walls
due to the presence of curled tori. A double cell can be
moved across these walls and can reach everywhere in
order to define the third global quantum number k.

Another interesting aspect of quantum joint spectra of
our systems is their simple relation to the Duistermaat-

TABLE VI. Normalizing correction 
̄�2� to momentum 
 ex-
pressed in the coordinates �x ,y� of the first normalized near 1:1
resonant system; ds=
1−2d and dc=
1+2d.

Term Coefficient�−6ds
3dc

3�ds+dc� /s

x2y2−x3y3 −6ds
2dc

2��dsdc−1�a2+2d2�
x2

2−x3
2 dc

3�dc+ds��−a4+a2−d2�
y2

2−y3
2 ds

3�ds+dc��−a4+a2−d2�
x2y1 dc

2ds�ds+dc��1−10d�
−a4+a2−d2

x1y2 −ds
2dc�dc+ds��1+10d�
−a4+a2−d2

x1x2 2dc
3�dc+ds��2a2−4d+1�
−a4+a2−d2

y1y2 −2ds
3�ds+dc��2a2+4d+1�
−a4+a2−d2
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Heckman �DH� theorem,53 the theory of lattice defects
�Zhilinskií, 2005� and, for the A-type systems, the theory
of almost toric fibrations �Sec. II.F� for which the base
space can be described as a convex polytope with cuts in
the action space, i.e., in the space of global quantum
numbers.

We now comment on the DH theorem. Consider the
Hamiltonian S1 action on the Keplerian reduced phase

space S2�S2 �which is a compact symplectic manifold�
defined by momentum 
 for some fixed n�0. Suffi-
ciently far in the semiclassical limit, the phase space vol-
ume of Pn,m is well approximated by the total number of
states N�m� with the same quantum number m. We ob-
serve that N�m� is a piecewise linear function of m that
changes slope when m= ±mcrit, i.e., when Pn,m is singu-
lar. Thus in the 1:2 example in Fig. 27�c�, the slopes are
�+ 1

2 , 0, and �− 1
2 when m�−mcrit, �m��mcrit, and m

�mcrit, respectively, and, furthermore, N�m� has an os-
cillatory component typical for resonances of order k+
+k−�2 �cf. Sadovskií and Zhilinskií �1995��.

VIII. BIBLIOGRAPHIC REMARKS

We provide further discussion of the literature on the
perturbation problem of the hydrogen atom by static

53Duistermaat and Heckman �1982� considered orbit spaces
Pj obtained by reducing a proper Hamiltonian S1 action on a
compact symplectic manifold M. They showed that the Liou-
ville volume of Pj is a piecewise-linear continuous function of
the value j of the associated momentum J and that the slope
change is given by the change of the Chern index of the S1

bundle over Pj. See also Atiyah and Bott �1984�, Ginzburg et
al. �2002�, Nguyên Tiên �2002�, and Guillemin �2007�.
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FIG. 26. Joint energy-momentum spectrum �black dots� and
elementary cell diagrams of 1:1 systems with monodromy �cf.
Fig. 16 and Table II�. In each case, the initial elementary cell is
painted white and is parallel transported in a counterclockwise
direction around a critical value �opaque circle� or a set of
critical values of the EM map. The final cell is represented by
a cell with a dashed boundary.
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FIG. 27. �Color online� Joint spectrum and number of states of
the 1:2 resonant system. �a� and �b� Joint energy-momentum
spectrum �lattice dots� and classical energy-momentum bifur-
cation diagram �lines� of the 1:2 resonant system with s
=1/200, a2=0.5, and d=0.3 for n=40 and �=1. �b� Dashed
lines join states with the same value of the global quantum
number k defined by the parallel transport of the elementary
cell; below the T�1/2�

2 wall these lines branch in two. �c� Corre-
sponding number of states N as a function of the value m of
the 1:2 momentum 
. Adapted from Efstathiou et al., 2008.
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homogeneous electric and magnetic fields, one of the
oldest in atomic physics. A complete survey of the vast
stream of papers on this subject is beyond our scope.
Within this stream it is important to identify clearly spe-
cific papers which are related in spirit and technique to
the global approach described here. To this end we �i�
give a summary of the guiding ideas of this approach, �ii�
move aside all work that is not directly relevant, and �iii�
review concisely the remaining body of work.

To assess the pertinence of such discussion, it can be
noted that despite a great number of detailed studies of
concrete perturbations in the 1980s and 1990s, no gen-
eral, concise and meaningful classification of the family
of all perturbations was provided while the interest had
shifted gradually from the perturbation regime to a pre-
dominantly chaotic one. It appears that physicists fo-
cused largely on the complicated dynamical behavior for
concrete fixed values of first integrals �energy, Keplerian
action, angular momentum, etc.� and neglected estab-
lishing a �global� connection between systems with dif-
ferent values. Subsequently, as it often happens to in-
tensely studied topics, the problem demanded a
disengagement and a refreshed point of view.

While selecting the papers for this review, we used
their contribution towards the above classification as a
primary criterion and tried exclude any other bias. This
structuring idea helped in the vast publications on the
subject. Indeed, given the large number of papers, it is
hardly possible to review everything adequately.

A. The general idea of our approach

Our approach is a natural continuation of the geomet-
ric methods initiated in the theory of Hamiltonian dy-
namical systems during the last two decades.54 Consid-
ered most generally, our above problem is a study of a
perturbation which depends essentially on three param-
eters. Additionally, for sufficiently small parameter val-
ues, an integral approximation to this system always has
two momenta, i.e., two Hamiltonian functions in involu-
tion which by their respective Hamiltonian flows define
a T2 Lie symmetry group action on the phase space. In
order to analyze this system as a perturbation, we con-
sider a three-parameter family of three-dimensional bi-
furcation diagrams �or stratified images of the energy-
momentum map EM�. This gives potentially a
comprehensive classification of all possible perturba-
tions and thus describes the problem as a whole.

In our view, as long as the features of a particular
nonintegrable system under study, such as surviving
Lagrange tori, tangles, and lower-dimensional �non-

Lagrangian� tori, can be related to the respective ele-
ments of the integrable approximation, namely, invari-
ant tori, singular fibers, relative equilibria, or relative
periodic orbits, this relation must be fully uncovered.
Only when such a relation is shown not to exist, the
features under study can be attributed as truly specific
features of the individual system �or of a narrower class
of systems�.

B. Topics outside our scope

We leave out all numerous studies which �for suffi-
ciently large fields with ns�1� treat the system as com-
pletely chaotic; this includes the work based on the
closed orbit theory, an offspring of periodic orbit quan-
tization methods, and the related topics of recurrence
spectroscopy, near-threshold field ionization, etc. Fur-
thermore, we restrict ourselves to static homogeneous
fields and to the standard Keplerian two-body setup in
the limit of the infinite mass of the proton. Hence we do
not discuss modifications due to nonhydrogenic core ef-
fects, time dependent �periodic� fields, quadrupole fields,
finite proton mass, spin, and relativistic corrections. At
the energies we study, the classical motion remains
bound; this excludes all work on the continuous quan-
tum spectrum and resonances �not to be confused with
resonances of our integrable approximation�. Because
we rely on basic quantum-classical correspondence, we
will not cover the effects of broadening due to the tun-
neling interaction with the continuous spectrum. Addi-
tionally, we will not discuss purely quantum studies of
individual levels, typically at low quantum numbers for
which the quantum-classical correspondence principle is
difficult to apply. And equally, we are not interested in
the studies of local “phase space structures,” typically
centered on specific elliptic periodic orbits, which are
studied starting at the chaotic end without relation to
any possible global structure of the phase space.

The last point deserves mention. For an example of
such local structures see Gekle et al. �2006, 2007�, where
a numerical technique to track some non-Lagrangian
�two-dimensional� tori of the system is implemented.
Persistence of such invariant manifolds under perturba-
tion can be regarded within the framework of the re-
fined KAM theories or more generally that of periodic
orbits �Nekhoroshev, 2002, 2005�. In the former case,
such structures can be related to two-dimensional rela-
tive equilibria, i.e., two tori which are orbits of the dy-
namical symmetry T2 or relative periodic orbits of the
integrable approximation �normal form�, and it is pos-
sible that the ones studied by Gekle et al. �2006, 2007�
are similar. However, with no such analysis provided we
cannot comment on this work any further.

C. Review of relevant literature

Pauli �1926�55 formulated the linear problem. He sug-
gested a treatment of perturbations of the hydrogen

54See Cushman and Bates �1997�, Michel and Zhilinskií
�2001b�, Bolsinov and Fomenko �2004�; and Efstathiou �2005�
for a general survey and Sadovskií et al. �1996�, Sadovskií and
Zhilinskií �1998, 1999�, Cushman and Sadovskií �2000�, Michel
and Zhilinskií �2001a�, Efstathiou, Cushman, and Sadovskií
�2007�, and Efstathiou, Sadovskií, and Zhilinskií �2007� for
concrete applications to our present system. 55See Van der Waerden �1968� and Valent �2003�.
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atom within the framework of the neue Quanten-
mechanik and obtained the first-order perturbation
Hamiltonian by averaging over hydrogenic states. In our
context �see Valent �2003��, his most essential contribu-
tion was the proposition that after the Keplerian averag-
ing, i.e., in the n-shell approximation, the perturbed sys-
tem for any configuration of electric and magnetic fields
has automatically an additional �second� approximate
dynamical symmetry S1 associated with the linear flow of
the momentum 
. So this symmetry can be rightfully
called Pauliean. We should also attribute to Pauli the
general approach based on a reduced �averaged� n-shell
Hamiltonian which has the advantage over quantum
perturbation corrections to individual levels in that it
gives a global view at the particular system and at the
parametric family of these systems and can potentially
be related to classical dynamics.

Higher-order theory, notably for the pure magnetic
field �Edmonds, 1970� perturbations known as quadratic
Zeeman effect �QZE� or diamagnetism of hydrogen or
Rydberg atoms, was encouraged by advances in high res-
olution atomic spectroscopy �Garton and Tomkins,
1969�. Many detailed experiments followed, and some
are listed in Table VII. The early attempt to obtain the
second-order correction to the n-shell energy levels in
the presence of both fields �Demkov et al., 1969� was
unsuccessful due to the difficulty of accounting for the
electric field �see Manakov et al. �1976��. However, these
studies set the stage for the subsequent comprehensive
analysis. The setup was completed by Clark and Taylor
�1980, 1981� and Zimmerman et al. �1980�, who conjec-
tured that the typical regular level patterns observed in
QZE �for m=0�, the so-called “quasi-Landau” se-
quences, which resembled those of a rotator and an os-
cillator, reflected an “approximate dynamical symme-
try.” The precise meaning of this similarity remained
unresolved �see Sec. VIII.C.5�.

1. Second-order perturbation theory of the 1980s

The major advancement of the early 1980s was ex-
tending Pauli’s analysis to the second-order Hamiltonian
of the QZE system, which was obtained by Solov’ev
�1981, 1982� and Grozdanov and Solov’ev �1984� by di-

rect classical averaging over Keplerian orbits56 and, at
about the same time, by Herrick �1982�, who constructed
a quantum n-shell effective operator �cf. Delande and
Gay �1984��. Recall that for QZE the Pauliean symmetry
is simply the axial symmetry SO�2� and, therefore, the
reduced Hamiltonian they obtained corresponds to the
particular form of the second-order H2 of our second
reduced Hamiltonian H. A study for orthogonal fields
followed by Grozdanov and Solov’ev �1982� and
Solov’ev �1983� and later by Braun and Solov’ev �1984a,
1984b�.

Two additional important ideas appeared at this stage:
the use of classical mechanics and the search for a rela-
tion between global quantum level patterns and the re-
duced Hamiltonian. Specifically, from the quasidegen-
eracies of the level patterns, all states within one n shell
and m multiplet, i.e., all states of the second reduced
system, were separated by Herrick �1982� into vibra-
tional and rotational. The former are doublets which lie
in the dark gray shaded part of the B0 BD where the two
of its three cells overlap, while the latter lie above that
part in a single cell �see row B0 in Table II�. In the physi-
cal phase space R6, vibrations correspond to the motion
near one of the two equivalent stable Keplerian S1 RE
with m=0 �lower tip of the BD�, which go up and down
the field axis, while rotations correspond to the localiza-
tion near the T2 RE �upper boundary of the BD�.

A further important technical development was the
implementation of the regularization of the Kepler
Hamiltonian, followed by the normalization of the re-
sulting coupled oscillator system, and quantization of
the reduced Hamiltonian. This combined approach was
implemented by Robnik and Schrüfer �1985� for the
QZE system, which after reduction of the axial symme-
try can be regularized by the Levi-Cività method; quan-
tization followed from the Poisson algebra of the oscil-
lator system �Robnik, 1984�. This scheme was,
essentially, a direct predecessor of our techniques.

A number of studies of concrete field configurations
followed �see, e.g., Cacciani et al. �1986�, Cacciani, Luck-
oenig, et al. �1988�, and Braun �1993��. These were
mostly restricted to systems with axial symmetry �QZE
or parallel fields� and quite often to states with zero pro-

56See a simplified derivation given by Reinhardt and Farrelly
�1982� and Gay et al. �1983�.

TABLE VII. Experimentally scaled field strengths attained in the perturbation regime ns�1.

Reference F �kV/cm� B �T� n f g ns a2

Garton and Tomkins, 1969 0 2.4 30 0 0.009 0.27 1
Cacciani, Liberman, et al., 1988;
Cacciani et al., 1986

0.025 3.11 30 3.9�10−4 0.012 0.35 0.9989

0.1 1.65 30 0.0015 0.0063 0.19 0.94
Wiebusch et al., 1989 2 6 21 0.010 0.011 0.32 0.52

4 6 21 0.021 0.011 0.51 0.21
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jection of the angular momentum on the field axis �m
=0�. Furthermore, it was customary to rescale the ener-
gies by the magnetic field amplitude which suited the
case of relatively weak electric fields, i.e., B0 and B1 in
Table II. Thus Cacciani et al. �1986� and Cacciani, Luck-
oenig, et al. �1988�, who represented, arguably, the best
of the perturbation results of 1980s,57 explored what we
call today the 1:1 zone58 and, in particular, they distin-
guished three types of localized states in the B1 system:
�I� near the minimum energy RE of the larger cell, �II�
near the minimum energy RE of the smaller cell, and
�III� near the maximum energy RE. Naturally, states of
types I and II are called vibrational, while those of type
III are called rotational. Because their study is limited to
m=0, Cacciani et al. do not notice that there is, in fact, a
smooth transition between states of types I and III at
m�0 which does not exist for pure QZE. For further
comparison, it may be helpful to consider more recent
work on the same subject59 and it is also instructive to
recall the similarity to the spherical pendulum �type A1�
and its quadratic deformations �type B1� discussed by
Efstathiou �2005, Sec. 4.2�.

2. Geometry of the reduction map

The above-mentioned �see footnote 59� work by Salas
et al. �1998� affords us to now comment on certain mis-
leading conclusions, mistakes in a strict geometrical and
physical sense, which are both somewhat implicit and
quite characteristic to a number of similar studies. They
observed correctly the two stability changes of one of
the two Keplerian REs with m=0 �which they denoted
E2 and which corresponds to one of the singular tips of
the second reduced space Pn,0�. They saw these events as
pitchfork bifurcations involving two unstable RE �which
they denote E3,4� for the B1 system and two stable RE
�E5,6� at the maximum energy of the B1 and A1 systems.
Comparing to what really goes on in S2�S2, the two
unstable RE should correspond to only one singular
circle on the m=0 bitorus, while the two stable RE
should represent a single S1 orbit; both lift to a T2 RE in
the physical phase space R6. On the other hand, Salas et
al. saw no orbit “doubles” for m�0 where they have

standard fold catastrophes �Deprit et al., 1996; Salas and
Lanchares, 1998�. Since m=0 and m�0 are treated in
separate papers and no reconstruction of invariant sets
in R6 is undertaken, the discontinuity of the description
remains well hidden.60 As for the nature of the two bi-
furcations, both are in fact Hamiltonian Hopf bifurca-
tions �van der Meer, 1985�, possibly modified by a Z2
symmetry �Efstathiou, Cushman, and Sadovskií, 2004�,
and are specific phenomena in two degrees of freedom
which cannot be analyzed adequately on the two-
dimensional reduced phase space of Salas et al. �1998�.

At the origin of these discrepancies is the use by Salas
et al. �1998� of �certain combinations of� Delaunay
variables.61 These variables are not global �Cordani,
2000� and care should be taken to avoid distorting the
geometry of the flow of the system �Efstathiou and Sa-
dovskií, 2005�. More specifically, in many studies62 re-
duced phase spaces for all m become smooth spheres63

S2. We can see from Sec. IV.D.2.c that such a represen-
tation is adequate for n� �m��0, while for m=0 it fails
because the true �in the sense one orbit–one point� re-
duced phase space Pn,0 of any 1:1 system is a sphere with
two conical singularities �Cushman and Sadovskií, 2000,
see Sec. 5.4�. This singularity is masked by that of polar
coordinates themselves or worse, it is assumed, as in
Salas et al. �1998�, to be “removed.” Yet it does not go
away without a price. For Salas et al. �1998� this is work-
ing with a twofold covering of Pn,0 by a smooth S2

sphere64 which explains the doubling of RE.

3. Restrictions to specific systems

Classification of all possible perturbations was im-
peded in the 1990s by certain popular restrictions. Thus,
in many papers of that and earlier period,65 the dynam-
ics and quantum levels in the presence of the axial sym-
metry �parallel fields, QZE� were often studied at differ-
ent fixed values of the projection m of the angular

57Such studies come essentially to the reduced dynamics on
the m=0 space Pn,0 whose two singular tips get lost in polar
coordinates �called typically angle action� that map Pn,0 to a
cylinder �cf. Delos et al. �1983b, 1984�, Waterland et al. �1987�,
and Braun �1993�, and Secs. VIII.C.2 and VIII.C.5�.

58See Cacciani, Luckoenig, et al. �1988, Fig. 3� where the 1:1
zone corresponds to the range of � field ratio parameter &
whose values 0, �0, 1

5 �, � 1
5 ,1�, and &�1 represent systems of

types B0, B1, A1, and A0, respectively. Compare to quantum
levels of Sadovskií et al. �1996, Fig. 2�.

59See Deprit et al. �1996�, Salas and Lanchares �1998�, and
Salas et al. �1998�. In Fig. 1 of Salas and Lanchares �1998�, the
parameter � goes from �=1 �QZE system B0� to �=0 �Stark
limit�, in the intervals �1, 3

4 � and � 3
4 , 3

8 � we have systems B1 and
A1, respectively, for ��

3
8 the type becomes A0, and we quit

the 1:1 zone.

60Following Cushman, we note that the main problem of
Salas et al. �1998� is that after reducing axial symmetry and
using Levi-Cività regularization, their regularized energy sur-
face becomes not the unit tangent bundle to the two-sphere
�which is real projective three-space RP3� but a three-sphere
S3. The latter is a double covering of RP3, and this caused
discrepancies in the subsequent analysis.

61See Eq. �7� of Salas et al. �1998� and compare to Eq. �43� of
Farrelly et al. �1992� and to Uzer �1990�, Farrelly and Krantz-
man �1991�, Farrelly and Milligan �1992�, Krantzman et al.
�1992�, and Gourlay et al. �1993�.

62See Uzer �1990�, Farrelly and Krantzman �1991�, Farrelly
and Milligan �1992�, Farrelly et al. �1992�, Krantzman et al.
�1992�, Gourlay et al. �1993�, and Salas et al. �1998� and Sec.
VIII.C.5.

63Represented in polar coordinates as S1� �0,1� cylinders.
64Using the notation of Salas et al. �1998�, points �u ,v ,w� and

�−u ,v ,−w� on the smooth S2 represent the same S1 orbit on
S2�S2 and should be identified, giving thus Pn,0.

65See, e.g., Braun and Solov’ev �1984b�, Cacciani et al. �1986�,
Cacciani, Luckoenig, et al. �1988�, Uzer �1990�, and Farrelly
and Krantzman �1991�.
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momentum almost as if they were different systems and
often only the case m=0, the most accessible in experi-
ments, was considered. One would display diagrams of
quantum energies of the m=0 states as a function of
field strengths �Braun and Solov’ev, 1984a; Braun, 1993�
ignoring the presence of many other close energy levels
of the same n shell. Similarly, Salas et al. �1998� can see
nothing outside the 1:1 zone while they followed the
single m=0 submanifold continuously all the way to the
Stark limit. This is one of the reasons why such basic
phenomena as collapse �Sadovskií et al., 1996� and
higher resonances �Efstathiou, Sadovskií, and Zhilinskií,
2007� remained unnoticed for a long time �cf. Sec. IV.C�.

Other frequent restrictions occur due to the choice of
scaling and the resulting ordering of the perturbing
terms. Thus Cacciani, Luckoenig, et al. �1988� �see foot-
note 58� focused exclusively on the 1:1 zone using a field
configuration parameter & that suits the near Zeeman
limit. Similarly, unlike the uniform scaling in Eq. �3�, the
scaling of Salas et al. �1998� placed the QZE term and
the linear Stark term in the same order of the perturba-
tion and is therefore preferential to the amplitude G of
the magnetic field. Another similar frequent choice, im-
plying relatively weak electric fields with F�G, is to
scale the n-shell energies by G. Neither choice is ad-
equate for the description of the whole parametric fam-
ily.

4. Dynamical symmetry, equivalent operators

The SO�4� dynamical symmetry approach to the hy-
drogen atom �Fock, 1935; Bargmann, 1936� was formu-
lated ten years after Pauli �1926� and Schrödinger �1926�.
The subject was discussed widely �Bander and Itzykson,
1966; Englefield, 1972; Prince and Eliezer, 1981;
Guillemin and Sternberg, 1990� and its potential appli-
cations to perturbations were analyzed by Kalnins et al.
�1976�, Avron et al. �1979�, and Barut et al. �1979�. The
approach provides the so-called equivalent operators
and supplies convenient wave function bases and tech-
niques to calculate matrix elements and can be used to
model complicated systems without tracing everything
explicitly back to the original formulation �Adams et al.,
1982�. Concrete results begin with Herrick �1982�, who is
closely related to the original ideas of Fock �1935�.
These are followed by extensive applications to the axi-
ally symmetric case including QZE and parallel fields.66

Note that in our systems equivalent operators are in-
variants of the action of the dynamical symmetry, which
can be studied explicitly �on R6 or R8�. Thus all SO�4�
equivalent operators are Keplerian invariants and are
functions of the six components in Eq. �28� for which the
quantum n-shell calculus is rather straightforward �see
Sec. VII�. Note also that an n-shell equivalent of the
Hamiltonian is its one-time Keplerian average, which
may differ in the second and higher orders from the

Keplerian normal form, such as H̄KS in Eq. �25�, because
the latter may accumulate contributions from the lower
orders. In principle, a normal form gives a more accu-
rate description than an SO�4� equivalent operator. This
limits the technical value of the equivalent operator ap-
proach, while the importance of the dynamical symme-
try analysis persists in the use of invariants and in the
geometry of corresponding Hamiltonian flows. More
generally, outside the n-shell approximation, Lie alge-
braic methods �Adams et al., 1988� explicitly related to
classical invariants and their Poisson algebra seem to be
the most appropriate strategy of treating dynamical sym-
metries. Such an approach is essentially a continuation
of the thread beginning with Pauli �1926� and Bargmann
�1936�.

5. Reduced dynamics, rotator models

We saw in Sec. IV that after the reduction of Keple-
rian and Pauliean S1 symmetries corresponding to mo-
menta N and 
 with values n and m, the original system
with the Hamiltonian �2� becomes �for �m��n� a one-
degree-of-freedom reduced system on a compact two-
dimensional phase space Pn,m, which is diffeomorphic
for most m or homeomorphic for specific critical mc to a
smooth S2 sphere.67 Quantization of this system can be
done in two ways. �i� We can return to the first reduced
�n-shell� system and quantize it straightforwardly as a
system of two coupled angular momenta x and y �Eqs.
�34�� with fixed amplitudes n /2 �Eq. �7�� �see Sec. VII�.
�ii� Alternatively, we can deform the Poisson algebra in
Eq. �58� into an algebra with standard so�3� structure
and quantize the latter �for each m separately�. The de-
formation preserves the Poisson structure on Pn,m but
the resulting map Pn,m→S2 is necessarily singular68 for
m=mc. This approach was developed generally by
Karasev and Novikova �2005� as a natural realization of
the ideas of Poisson quantization.69

The above discussion appears straightforward. His-
torically, however, it was a source of considerable confu-
sion because the second reduced system �often consid-
ered only for m=0� is only topologically similar to an

66See, in particular, Delande and Gay �1984, 1986, 1991� and
Iu et al. �1991�.

67For the 1:1 case with mc=0, i.e., for orthogonal and near-
orthogonal fields, this has been shown by Cushman and Sa-
dovskií �2000�, for other resonances see Theorem 5.1 of
Karasev and Novikova �2005�, where Pn,m is called closure of a
symplectic leaf, and Efstathiou, Sadovskií, and Zhilinskií
�2007�.

68For the 1:1 case, the explicit deformation of Cushman and
Sadovskií �2000, Sec. V.D.2� is singular for m=0 at points �1
= ±1, i.e., at the conical tips of Pn,0. It is inspired by action-
angle coordinates of Uzer �1990�, Farrelly and Krantzman
�1991�, Farrelly and Milligan �1992�, Farrelly et al. �1992�,
Krantzman et al. �1992�, and Gourlay et al. �1993�.

69See Karasev and Maslov �1982�, Vorob’ev and Karasev
�1987�, and Karasev �1998� and also Śniatycki and Weinstein
�1983�, Weinstein �1994�, and Bates et al. �2009�.
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Euler top and is different geometrically from the latter,70

i.e., their flows, orbits, and reduced phase spaces are
geometrically different �Sec. VIII.C.2�. This difference
was often implied but remained implicit until Cushman
and Sadovskií �2000�. Thus ten years after Solov’ev
�1981, 1982� obtained the second normal form H2 fol-
lowed closely by Grozdanov and Solov’ev �1982� and
Reinhardt and Farrelly �1982�, Farrelly and Milligan
�1992� wrote71 “Despite much study, an outstanding
problem in the theory of QZE is the semiclassical quan-
tization.”

After conjectures of Clark and Taylor �1980, 1981,
1982� and Zimmerman et al. �1980�, Delos et al. �1983a,
1983b, 1984� reproduced correctly the quantum QZE
energies by reducing axial symmetry and following nu-
merically classical trajectories in Delaunay angle coordi-
nates. In that way, the double well nature of the lower
part of the spectrum and, separately, the higher energy
states were described. The corresponding trajectories
were shown to be librational and rotational,
respectively.72 This reproduced the quantum results of
Herrick �1982� and separated clearly the Keplerian com-
ponent of the flow of the QZE system that Solov’ev
�1981, 1982� used for averaging. However, such an essen-
tially local approach did not uncover what if any ap-
proximate dynamical symmetry there was. Neither was
the relation of the trajectory analysis to the global inte-
grable approximation by Solov’ev �1981, 1982�,
Grozdanov and Solov’ev �1982�, and Reinhardt and Far-
relly �1982� and its quantum analog by Herrick �1982�
given.73

The situation was slightly helped by applying Cou-
lomb scattering theory by Fano et al. �1988�. A descrip-
tion was obtained separately for the two kinds of states.
Interestingly, in this approach, the rotational states were
viewed as localized near a “ridge” of an effective poten-
tial �Fano, 1980a, 1980b, 1988; Rau and Armen, 2000�
and this was singled out as a specific phenomenon. Of

course, on a compact space, such as S2�S2, or Pn,m, or
an S2 of the reduced Euler top, localization near any
elliptic equilibrium comes as no surprise, but this may be
different within the scattering theory context, where
compactification and self-interference are achieved via
the boundary conditions. The ridge is most likely related
to the axial �and in general to Pauliean� symmetry. So

the reduced Hamiltonian H̄KS on S2�S2 has an S1 ridge
maximum �the image of the T2 RE� and two equivalent
minimum equilibrium points. Since scattering methods
moved, naturally, into high energy-field chaotic regimes,
we will not discuss them further.

Effective potentials also appear in the so-called dis-
crete semiclassical methods �Braun, 1993� which gave
again a description without a clear analysis of global in-
tegrability, i.e., without geometry �see footnote 72�. Such
methods were equally successfully applied to describe
quantum rotators and 1:1 resonant oscillators, but the
differences were lost in technical details of the compari-
son �Braun, 1993; Appendix C�.

The first direct attempts to relate the system of the Ĥ2
eigenstates as a whole to that of a rotator can be found
in Rau �1986� and Rau and Zhang �1990�. The decisive
step was made by Uzer �1990�, who stated explicitly the
SO�3� dynamical symmetry74 and the correspondence
between the classical QZE system and the Euler top on
the basis of the discussed results �Robnik, 1981, 1982;
Robnik and Schrüfer, 1985� on the regularized and nor-
malized QZE Hamiltonian. This rotator analogy was
thoroughly analyzed and exploited by Farrelly and
Krantzman �1991�, Farrelly and Milligan �1992�, Farrelly
et al. �1992�, and Krantzman et al. �1992� and extended
subsequently to nonaxial, i.e., Pauliean, symmetry of
Gourlay et al. �1993�.75 Extension to k− :k+ resonances
other than 1:1 is detailed in Sec. IV.D.2.e. Unfortunately,
the singularity of the mapping that leads to the explicit
rotator analogy went unnoticed at the time. This incom-
pleteness propagated into later important work on gen-
eral field configurations �von Milczewski et al., 1994a,
1994b, 1997a, 1997b; Uzer and Farrelly, 1995; von Milc-
zewski and Uzer, 1997a, 1997b� where a systematic at-
tempt was made to understand the family of the regular
T3 tori of these systems. Because the singularity and the
underlying singular fiber that plays a central role in the
global geometry of the respective toric fibration were
ignored, the description of the family could not be com-
pleted until Cushman and Sadovskií �2000�.

6. KS regularization and applications

The initial quantum-mechanical description of the hy-
drogen atom and its perturbations �Pauli, 1926;
Schrödinger, 1926; Fock, 1935; Bargmann, 1936� was
based on the three-dimensional Hamiltonian �2� and so

70For this reason, we prefer to speak of the rotator analogy
instead of dynamical symmetry so�3�; we reserve the latter ter-
minology for Lie symmetries with free action on the phase
space.

71More generally, we may interpret this remark of Farrelly
and Milligan �1992� as referring to the problem of quantizing
systems with singular phase spaces �cf. Vū NgIc �2000� and
Colin de Verdière and Vū NgIc �2003��.

72We see in Delos et al. �1983a, 1983b, 1984� the distant ori-
gins of the trajectory-based analysis, used later to study the
chaotic dynamics at large field amplitudes for which any “in-
convenient” �global and local� integrability was presumed to
be destroyed.

73To assess geometric limitations of such descriptions, con-
sider the m=0 restricted � fields �B0 and A2 systems� study by
Braun and Solov’ev �1984b� �see footnote 57� and Cushman
and Sadovskií �2000, Sec. 5.6�. We see that the doubly pinched
torus T�2�

2 �Sec. II.C.3� in A2 appears in Braun and Solov’ev
�1984b� and Braun �1993� as a specific “quasibarrier” singular-
ity of the m=0 effective potential, while the bitorus Tbi

2 in B0 is
a different “barrier” separating rotational and vibrational
motions.

74See footnote 70.
75These studies are in many ways direct predecessors of our

later computations Sadovskií et al. �1996�, Sadovskií and Zhil-
inskií �1998�, and Cushman and Sadovskií �2000�.
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was the work by Solov’ev �1981, 1982, 1983� and Herrick
�1982�. At the same time, the virtues of regularizing the
1/r singularity of the Kepler-Coulomb potential in Eq.
�2� began to become acknowledged.76 In the absence of
the exact axial symmetry, the Hamiltonian �2� can be
regularized following the Kustaanheimo-Stiefel �KS�
method.77 Surveying mathematical aspects of this trans-
formation, its different formulations �e.g., using quater-
nions, Clifford algebras, etc.� and generalizations would
make a subject of specialized review. We remain focused
on applications in quantum and classical analysis of our
system.

Chen �1980, 1982� used the quantum KS transforma-
tion to relate quantum hydrogen atom and quantum iso-
tropic four-dimensional oscillator. This relation was fur-
ther detailed by Kibler and Negadi �1983a, 1983b,
1984a�, Chen and Kibler �1985� and Chen �1987� with
particular attention paid to eigenbases �Kibler et al.,
1985; Cahill, 1990; Campigotto and Smirnov, 1991� and
applications to the analysis of perturbations �Kibler and
Negadi, 1984b�. However, the latter were analyzed using
matrix perturbation theory and only for small n �Chen,
1983, 1984� and no connection to the second-order nor-
malized Hamiltonian H2 was established �cf. Delande
and Gay �1984� and Robnik and Schrüfer �1985��.

Remaining within the quantum context, we point out
that the so-called dilated semiparabolic coordinates,78

�1 =
1

&

r + Q1, �2 =

1

&

r − Q1, � = tan−1 y

x
,

used extensively79 for numerical calculations and for the
realization of the SO�4,2� dynamical group are nothing
but specific polar coordinates on the KS configuration
space R4. Indeed, from Eq. �18�, we find

�1 =

2

&

q1

2 + q4
2, �2 =


2

&

q2

2 + q3
2,

and, furthermore, we can show that �=�1+�2, where

�1 = tan−1 q4

q1
, �1 = tan−1 q3

q2
.

In the original KS coordinates in Eq. �18� and for � in
Eq. �20� equal to 0, the first component of the angular
momentum is

L1 = q1p4 − q4p1 + q2p3 − q3p2.

So it follows that ��1 ,�1 ,�2 ,�2� are polar coordinates on
R4 which respect the S1 symmetries generated by the

Hamiltonian flows of the vector fields X� and XL1
�which

are rotations of two planes �q1 ,q4� and �q2 ,q3�� and, fur-
thermore, � is the angle conjugate to L1, while ��=�1
−�2 is the vanishing angle �since the symmetry associ-
ated with � is the strict symmetry of the KS map�. There-
fore, quantum computations using dilated semiparabolic
coordinates �see footnote 79� give examples of general-
ized spectral calculus within the KS framework.

Note also that the semiparabolic coordinates � are
used in the Levi-Cività transformation of systems with
axial symmetry �for example, of Robnik and Schrüfer
�1985��. The above expressions of � in terms of KS coor-
dinates q give a starting point for an explicit comparison
�see also Cordani �2000, 2003�, Cordani and Merlini
�2001�, and Celletti �2006��. One finds that in both cases
time is rescaled by r �times a constant�. In other words,
the actual regularization step precedes either transfor-
mation as done in Sec. IV.A.1.

The Hamiltonian H2 was obtained by Kuwata et al.
�1990� using the classical KS transformation. The ap-
proach was used extensively later by Farrelly et al.
�1992� for parallel fields and by Gourlay et al. �1993� for
orthogonal fields, where the KS transformation is essen-
tial. This thread of work leads directly to Sadovskií et al.
�1996�, Sadovskií and Zhilinskií �1998�, Cushman and
Sadovskií �2000�, Efstathiou, Cushman, and Sadovskií
�2004�, and Efstathiou, Sadovskií, and Zhilinskií �2007�
and the techniques discussed in Sec. IV.A. Note also that
the classical four-oscillator analogy and its perturbations
were studied by Kummer �1996�.

7. Other regularization and normal form techniques

The KS method is not the only one to regularize and
normalize a perturbed Kepler system with the Hamil-
tonian �2�, although, arguably, it is the most straightfor-
ward one. A discussion of various regularization tech-
niques, their variants, and their relation can be found in
Cushman �1992�, Cordani �2003�, and Celletti �2006�. Of
these, the most important alternative is Moser’s ap-
proach �Moser, 1970a, 1970b; Kummer, 1982; Guillemin
and Sternberg, 1990� and the related constrained nor-
malization techniques of van der Meer �1986�, van der
Meer and Cushman �1986�, and Cushman and Sanders
�1989�.80

The Lie series algorithm for normalizing near elliptic
equilibria was detailed by Deprit �1969� and Henrard
�1970� independently from the earlier work of Gröbner
�1960, 1967�. Deprit himself turned later to normaliza-
tion in terms of Delaunay angles �Coffey et al., 1987�
that are traditionally used for Keplerian systems in as-
tronomy. We discussed implementations of this ap-
proach �Deprit et al., 1996; Salas et al., 1998� in Sec.
VIII.C.2.

Some mostly local geometric analysis and normaliza-
tion can equally be accomplished in the angle-action co-

76See Reinhardt and Farrelly �1982�, Johnson et al. �1983�,
and Robnik and Schrüfer �1985�.

77See Kustaanheimo �1964�, Kustaanheimo and Stiefel �1965�,
Stiefel �1970�, and Stiefel and Scheifele �1971� and Sec. IV.A.1.

78Compare Eq. �1� in Delande and Gay �1984� and Eq. �2� in
Main et al. �1998� with notation Q= �z ,x ,y�T and dilatation &
= �−2E�−1/4.

79See Delande and Gay �1984, 1986, 1991�, Wiebusch et al.
�1989�, Iu et al. �1991�, Main and Wunner �1992, 1994�, and
Main et al. �1998�.

80See an early application by Cushman and van der Meer
�1987� which treated an astronomical equivalent of the or-
thogonal fields system of Cushman and Sadovskií �2000�.
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ordinates in Eqs. �53� and �54�. Note that in the 1:1 case,
which is the only one studied in this context in the lit-
erature, definitions in Sec. IV.D.2.e become

� = �1 − �3 − �2 + �4 and � = �n − �m��cos  ,

where � and  can be related to Delaunay angles. All
such coordinates have special definition domains similar
to that of polar coordinates or one-oscillator action-
angle variables. They can be used for an algorithmic nor-
malization similar to that in Deprit �1969�,81 but, as
shown in Sec. VIII.C.2, they are masking proper singu-
larities of the system and its monodromy through their
own distorted geometry.

Recent work of Schleif and Delos �2007, 2008� dem-
onstrated the difficulties of working in polarlike coordi-
nates without regularization. This study continued ear-
lier work82 and may be considered essentially as the
approach of Pauli �1926� and Solov’ev �1981, 1982� ap-
plied to arbitrary field orientations. Knowing before-
hand where and what to look for, Schleif and Delos
�2008� uncovered monodromy where their predecessors,
who used similar techniques, have not seen it. So the
particular value of their study is in its explicit relation to
the preceding body of work.

8. Studies of parametric families, classification, and
bifurcations

Parametric families of quantum states or of dynami-
cally invariant sets of the classical system arise naturally
in our problem. Already in the early work,83 plots of
m=0 quantum levels and extrema of the effective poten-
tial �see footnote 72� as a function of field configuration
became standard without relating the extrema to the ac-
tual invariant sets. For perpendicular fields, Flöthmann
et al. �1994� considered the most basic one-parameter
family, that of four Keplerian S1 RE �or Kepler ellipses�,
the “bones” of the n shell �Sec. V.A.2�. Sadovskií and
Zhilinskií �1998� completed the analysis by showing ex-
plicitly the relation between these RE and the four equi-
libria of the first normal form on S2�S2.

In early attempts84 to classify individual regular tori,
physicists did not characterize fully all critical fibers, i.e.,
no complete BD was given. So the unstable Keplerian
RE, the corresponding singular fiber, and their EM im-
age were not considered; neither were the tori con-

nected. Furthermore, the k− :k+ resonances were not
properly acknowledged until Karasev and Novikova
�2005�.

Michel and Zhilinskií �2001a� introduced the param-
eter space in Fig. 2 and gave the general topological
classification of perturbations of the hydrogen atom by
considering reduced Hamiltonian H as a function on the
orbit space O �cf. Sec. III.A�. They reconstructed fami-
lies of regular and singular fibers which differ qualita-
tively for qualitatively different perturbations.85 No con-
nections between regular fibers were established and,
therefore, no monodromy was considered.

Cushman and Sadovskií �2000� uncovered mono-
dromy and classified all orthogonal field systems �strata
A2 and B0 in Table II�. Their classification was
extended86 later to all nearly orthogonal systems. Finally
the zone concept of Efstathiou, Sadovskií, and Zhilinskií
�2007� provided the basis to complete the classification
of all perturbations, the original program of Pauli �1926�.

A one-parameter family of all quantum states within
one n shell was studied for parallel fields by Sadovskií et
al. �1996�, a predecessor of Michel and Zhilinskií
�2001a�. At the first �linear� order of the second reduced
energy correction �36� such a family is shown in Fig. 28
where low-order resonances show up as characteristic
“gaps” in the spectral density. At d=1/2, when one of
the frequencies �± vanishes, we observe the structure
characteristic of the dynamical symmetry su�2��su�2�
which Sadovskií et al. �1996� called collapsed. This gave a
first clear indication of the existence of k− :k+ resonances
and close near-resonant systems which Efstathiou, Sa-
dovskií, and Zhilinskií �2007� called zones. About the
same time, Lutwak et al. �1997� considered the adiabatic
evolution of subfamilies of an n-shell and used it to
populate the so-called circular states87 which are not ac-

81See, e.g., Meyer and Hall �1992�.
82See Delos et al. �1983a, 1983b, 1984�, Noid et al. �1983�, and

Waterland et al. �1987� and discussion in Sec. VIII.C.5.
83Notably Braun and Solov’ev �1984b� �see footnote 72� and

Cacciani, Luckoenig, et al. �1988� �see footnote 58�.
84For orthogonal systems see von Milczewski and Uzer

�1997a, 1997b�, von Milczewski et al. �1997c�, and Cushman
and Sadovskií �2000, Sec. 5�. General configurations were con-
sidered by Main et al. �1998� and later by Berglund and Uzer
�2001�. Usual problems of traditional polarlike coordinates
made analyzing critical fibers and uncovering k− :k+ resonances
difficult.

85This is equivalent to our BD-based classification and is an
application of the general program of Bolsinov and Fomenko
�2004�.

86See Efstathiou, Sadovskií, and Zhilinskií �2007�, Schleif and
Delos �2007, 2008�, and Efstathiou et al. �2009�. The initiation
of the study of the 1:1 zone should be attributed to Schleif,
who did quantum computations for nearly orthogonal systems
with Delos and discovered the A1,1 systems. Schleif and Delos
�2007� shared their observations with Sadovskií in 2006.

87Elliptic or circular states are states close to the respective
stable Keplerian RE of the 1:1 system with maximal absolute
value of momentum 
= ±n �see Delande and Gay �1988�, Gay
et al. �1989�, Brecha et al. �1993�, Germann et al. �1995�, Lut-
wak et al. �1997�, Kristensen et al. �1998�, and Suno et al.
�1999��. Typically, to produce a circular state, a 
=0 state is
populated spectroscopically and an adiabatic change of field
parameters equivalent to our a2 and/or d is used to bring the
energies of Keplerian RE with 
=0 and ±n together. One ob-
tains correlation diagrams similar to Fig. 1 of Sadovskií et al.
�1996� and Figs. 1 and 3 of Lutwak et al. �1997�; note in Fig. 5
of the latter study a tentative energy-momentum diagram for �

fields near the S limit. At close energies, additional small per-
turbations cause population shifting. For other resonances,
analogous states with 
= ± �k−+k+�n /2 have never been
considered.
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cessible directly to dipole absorption transitions from
low-lying states with small 
 due to prohibitive selection
rules. The renewed interest in such studies for systems
with monodromy, such as systems of type A1 or A2, may
be due to the suggestion of Delos et al. �2008� to mani-
fest monodromy in a physical process.

Back on the more local scale, transitions between dif-
ferent dynamical strata involve various bifurcations of
individual S1 and T2 RE �Sec. III.B and Fig. 16�. These
have been studied extensively88 as bifurcations of the
features of the second reduced effective potentials �see
footnote 72�. However, because they occur at the singu-
larity, bifurcations of the m=0 Keplerian S1 RE89 cannot
be analyzed adequately that way, and this remained
widely unknown. As conjectured by Cushman and Sa-
dovskií �2000� �Sec. III.E� and later demonstrated by Ef-
stathiou, Cushman, and Sadovskií �2004� and Efstathiou
�2005�, these bifurcations are irreducibly four-
dimensional phenomena known as Hamiltonian Hopf
bifurcations90 that involve a CH equilibrium and should
be analyzed on S2�S2. Furthermore, to remove degen-
eracies remaining in the local second-order approxima-
tion for perpendicular fields, Efstathiou, Cushman, and
Sadovskií �2004� had to go to the fourth order.

D. Monodromy

Any reasonably complete review of Hamiltonian
monodromy is a matter of a specialized paper. The key
references are given in Sec. II. We mention additionally

the place of Hamiltonian monodromy within the larger
domain of mathematics, notably that of complex alge-
braic geometry and singularity theory. Monodromy is
used to classify elliptic fibrations which in the real case91

correspond to singular fibrations of compact four-
dimensional symplectic manifolds whose regular fibers
are two-tori. With regard to the local framework of the
singularity theory,92 Hamiltonian monodromy in the ba-
sic case of a nondegenerated FF equilibrium becomes
equivalent to the Picard-Lefschetz93 monodromy of the
Morse singularity A1 after proper identification of the
far ends of the regular fibers that turns them into tori.94

From this perspective, the work of Nekhoroshev �1969,
1972� and later of Duistermaat �1980� was coherent with
contemporary developments in other domains. A num-
ber of other leading mathematicians, including Bolsinov
and Fomenko, Lerman and Umanskií, worked in the
1980s on the general topological theory of integrable
systems. Beginning with the description of typical con-
stant energy level sets, they focused naturally on Bott

88See Deprit et al. �1996�, Salas et al. �1998�, and Salas and
Lanchares �1998� �see footnote 59� and Farrelly et al. �1992�,
Gourlay et al. �1993�, and von Milczewski and Uzer �1997a�
�see footnote 41� discussed in Secs. VIII.C.2 and VIII.C.5,
respectively.

89For example, at &= 1
5 and 1 in Cacciani, Luckoenig, et al.

�1988� �see footnote 58�.
90See van der Meer �1985� and Duistermaat �1998� for a gen-

eral introduction.

91Classification of elliptic fibrations and their singular fibers
was given in the early 1960s by Kodaira �Barth et al., 1984, p.
150�. Though all of them have formal Hamiltonian counter-
parts, concrete physical realizations are known only for a few
simplest types. Understanding these systems from a physicist’s
perspective is a fascinating project.

92See introductory chapters of Arnol’d et al. �1984, 1993�,
Arnol’d, Gusein-Zade, and Varchenko �1988�, and Żoładek
�2006�.

93Solomon Lefschetz �1884–1972�, an American mathemati-
cian, introduced monodromy in geometry and topology in the
1930s following the ideas and results of Charles Emile Picard
�1856–1941�, professor at the École Centrale in Paris and a
known French mathematician.

94The relation between the Hamiltonian and Picard-Lefschetz
monodromy was discussed in a number of papers �see, e.g.,
Audin �2002�, Bates and Cushman �2005�, and Bates and Cush-
man �2007��.
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FIG. 28. �Color online� Quantum spectrum �fine solid lines� for n=20 and classical equilibrium energies �bold lines� for N=n+1 of
the linear second reduced Hamiltonian �E�1� �a� and �b� in Eq. �36� and the scaled Hamiltonian H̃1=�E�1�
1+�2 �c� on S2�S2 as a
function of configuration parameters for � fields �a� d� �0,1 /2� and �b� and �c� �� �0,1� with d=� / �1+�2�. Energies are scaled by
Ns /2; vertical bars mark several low-order resonances. Fine differences between �c� and the results of Sadovskií et al. �1996, Fig.
1�, are due to the higher-order term �E�2�.
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singularities95 and came to recognize the importance of
connections and of the FF singularity which results in
monodromy96 by the mid-1990s. Presently, Duistermaat’s
monodromy is regarded as their principal concept.97

There was a number of examples of simple mechani-
cal systems with monodromy, notably �a� the spherical
pendulum �Cushman, 1983� used by Duistermaat �1980�
and its quadratic deformations �Bates and Zou, 1993;
Cushman and Bates, 1995; Efstathiou, 2005�; �b� the
“Mexican hat” or the “champagne bottle” potential
�Bates, 1991�, its simplified billiard analog �Delos et al.,
2008�, and a more abstract 1 : �−1� resonance system
�Nekhoroshev et al., 2002, 2006�; �c� the Lagrange top
�Cushman and Bates, 1997� to which Sadovskií and Zhi-
linskií �1999� added �d� systems of coupled “spins.” We
also mention the 1: �−2� �Nekhoroshev et al., 2006� and
higher-order �Nekhoroshev, 2007, 2008; Giacobbe, 2008;
Sugny et al., 2008�, resonance oscillator systems that ex-
hibit fractional monodromy, as well as situations without
global S1 symmetry �Efstathiou et al., 2003; Efstathiou
and Sadovskií, 2004�.

By 2000, due to Cushman, monodromy has made its
way in real physical systems.98 For most of the examples
above, a concrete physical analog system was found: �a�
floppy triatomic molecules �Joyeux et al., 2003; Ef-
stathiou, Joyeux, and Sadovskií, 2004�; �b� rotating qua-
silinear molecules such as H2O �Child et al., 1999; Zobov
et al., 2005� and others �Winnewisser et al., 2006� and
trapped Bose-Einstein condensate �Waalkens, 2002�; �c�
rotating molecules in external electric field �Kozin and
Roberts, 2003; Arango et al., 2004, 2005� and Ezra; and
of course �d� systems considered in this review. This list
is by no means exhaustive. Important systems with more
complex three-dimensional BD, such as the H2

+ molecu-
lar ion �Waalkens et al., 2003, 2004� and the 2:1:1 Fermi
resonance in the CO2 molecule �Cushman et al., 2004�99

must be added to it.

E. Similar systems

There is a number of model integrable Hamiltonian
systems with properties similar to those of the normal-
ized perturbations of the hydrogen atom discussed here.

However, our system is the first real physical example
where we observe such nontrivial topologically different
fibrations of the phase space for the integrable approxi-
mation.

Thus exactly the same qualitative kinds A1, A1,1, A2,
and B1 of systems with monodromy and the B0 system
can be modeled in a family of spherical pendula with
quadratic potentials �Efstathiou, 2005�, which can be
considered as deformations of the usual spherical pen-
dulum with linear gravitational potential �Cushman and
Bates, 1997; Efstathiou and Sadovskií, 2005�. Recently it
was shown by Sugny et al. �2009� that description of the
polarization exchange of counterpropagating intense la-
ser beams in a nonlinear media reduces to a Hamil-
tonian system on S2�S2, where points of the two-
spheres represent polarization vectors of the beams. In
this system, it is possible to reproduce experimentally all
the above qualitative types.

Other systems on the same �reduced� phase space S2

�S2 �see Sec. IV� have been analyzed before. Sadovskií
and Zhilinskií �1999� and recently Hansen et al. �2007�
studied monodromy of a system of coupled angular mo-
menta. Davison and Dullin �2007� and Davison et al.
�2007� obtained similar results for the geodesic flow on
four-dimensional ellipsoids. Comparison to this latter
system is particularly interesting. It is an integrable sys-
tem on S2�S2, which is otherwise known as Manakov
top �Sinitsyn and Zhilinskií, 2007� and which has gener-
ally no momentum �and, obviously, no global action-
angle variables�. Similar to that of the Euler top, its
Hamiltonian H is a homogeneous quadratic polynomial
in the components of angular momenta x and y. In the
particular case when H has S1 symmetry and �x�= �y� �cf.
Sec. IV of Davison and Dullin �2007��, we come to our
1:1 systems.

A general Manakov top is a more complicated system
on S2�S2 which possesses a HH singularity. Unfolding
its EM image �Sinitsyn and Zhilinskií, 2007� may require
further development of the concepts in Sec. II.C.4. To
those looking for realistic physical examples of the HH
singularities �Dullin and Vū NgIc, 2007�, it may come as
a disappointment that our system is unsuitable. In order
to produce such fibers, the perturbing fields should be
nonhomogeneous, axial symmetry must be broken, and
the linear �E�1� part should be made insignificant. An
atomic realization of such system does not seem
straightforward.

IX. CONCLUSION AND PERSPECTIVES

Completing this survey, the most general observation
is that of the gradually developing hierarchical complex-
ity of our system. Several times it seemed that nothing
could have been further learned about it, and each time
the truth was that nothing new could indeed be found
without new techniques. As a result Klein’s100 skepticism

95In this context singular fibers that continue in parameter
such as energy h; an ubiquitous example are bitori Tbi

2 .
96See Lerman and Umanskií �1994a, 1994b, 1994c, 1995�,

Matveev �1996�, and Nguyên Tiên �1997, 2002�.
97Thus Bolsinov and Fomenko �2004� introduced a special

elaborate construction of “marked loop molecule” that is es-
sentially our regular torus bundle over � �the “loop molecule”�
with a connection �the “mark”�.

98Applications of monodromy in atomic and molecular phys-
ics were first discussed at the workshop Nonlinear Dynamics
and Spectra, organized by Mark Roberts at the Mathematics
Institute of Warwick University, U.K., March 18–21, 1997. Dis-
cussions were initiated by Child and Zhilinskií �see Zhilinskií
2005�.

99See also Dullin et al. �2004�, Giacobbe et al. �2004�, Sanrey
et al. �2006�, and Sadovskií and Zhilinskií �2007�.

100Felix Christian Klein �1849–1925�, a leading German
mathematician.
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about the limited practical value of the abstract theory
of Hamiltonian dynamical systems, made infamous by
Arnol’d �1989�, can be repeated here with regard to the
modern global theories of integrable systems.101

The idea of describing an individual state within a
family of all possible states of the system and the latter
as a member in the parametric family of systems is in-
trinsic to physics. This idea is the reason why physicists
value global actions and respective quantum numbers
and why action-angle variables, an intrinsically local
concept, have become overexploited. Modern math-
ematical theories come to our rescue when global ac-
tions are either complicated functions or simply do not
exist. As we have seen this happens quite regularly in
our system.

We went through the main stages of the analysis of
systems with the Hamiltonian �2�: linear study initiated
by Pauli �1926�, second normalized Hamiltonian ��E in
our notation� of Solov’ev �1981, 1982, 1983�, Grozdanov
and Solov’ev �1982�, and Herrick �1982�, complete joint
spectra of parametric families of n-shell systems �e.g.,
Sadovskií et al. �1996�, Michel and Zhilinskií �2001a�,
and others�, global analysis of the integrable approxima-
tion started by Cushman and Sadovskií �1999, 2000�, and
the respective dynamical stratification of the parameter
space by Efstathiou, Sadovskií, and Zhilinskií �2007�.
Each time facts, which were �or could have been� known
previously, �re�appeared in a new light. This happened
with the second-order integrable approximation, which
was given a “new life” by Cushman and Sadovskií �1999,
2000�, resonances �Efstathiou, Sadovskií, and Zhilinskií,
2007�, and deformation of the known structures �see
footnote 86�.

Each time the new results came belated. Thus one had
to wait 55 years after Pauli �1926� to compute a “simple”
second average and another 20 years to come up with
correct complete images of the EM map. The only es-
sentially new mathematical idea used by Cushman and
Sadovskií �1999, 2000�, who constructed these images,
was that of the global connection between different
states �different tori� of the system which resulted in the
discovery of monodromy. Similarly, the importance of
resonances in the linear �Pauliean� approximation went
unacknowledged for too long. They could have been no-
ticed right after Pauli �1926�, but instead, despite early
indications by Sadovskií et al. �1996� and later by
Karasev and Novikova �2005�, it took time �Efstathiou,
Sadovskií, and Zhilinskií, 2007� to understand their true
significance. Finally, general reduction of the Pauliean
symmetry and the analysis of the whole 1:1 zone was
accessible already to Cushman and Sadovskií �1999,
2000� but only came seven years later �see footnote 86�.

One can argue as to the reasons of such slow advance.
These are, essentially, of three kinds: motivation, tech-
niques, and ideas. Possibilities of experimental investiga-
tion of the quadratic Zeeman splittings stimulated the

second-order theories of the 1980s. Later the interest in
integrable approximations diminished due to the obvi-
ous interest in the chaotic regime. Certainly, modern
regularization and normalization techniques, reduction
of symmetries, and invariant theory, all combined with
computer algebra, become indispensable. New math-
ematics plays the central role in the present stage of the
analysis.

It may be tempting to think that now, some 80 years
after Pauli �1926�, we have a complete understanding of
the family of classical systems with the Hamiltonian �2�
and its quantum analogs. Our progress is substantial: we
do have a general framework for a meaningful classifi-
cation of all these systems, and we do have a global
detailed understanding of an important three-parameter
subfamily of them, the 1:1 zone. However, higher-order
resonance zones remain essentially unknown. We do not
have meaningful estimates of their widths, neither do we
know much about their dynamical stratification which
promises to be quite complex. Even within the 1:1 zone,
we have left out certain small regions of complex struc-
tures that require higher-order approximations and we
did not analyze fully the related bifurcation phenomena.
The effects of nonintegrability and the limits of our
analysis should be investigated further.

Finally, it seems that our current advanced state of
theoretical understanding of these systems may give mo-
tivation to other fields. What significance do all these
complex collective structures of tori and of correspond-
ing eigenstates have to physics? How can we “observe”
monodromy? The answer is unclear, but the collective
behavior of several states seems to be the key element
�Delos et al., 2008�. The ultimate reward for this review
will be the involvement of the broader physics commu-
nity in solving these questions.

LIST OF SYMBOLS
BD bifurcation diagram for EM
BDn constant n section of the BD,

i.e., the bifurcation diagram for
EMn

E�X ,Y� first normalized energy �see
Eqs. �32��

EM energy-momentum map �N ,

 ,H�

EMn energy-momentum map �
 ,H�
for fixed value N=n

F= �Fb ,Fe ,0� electric field
G= �G ,0 ,0� magnetic field
H3D, E Hamiltonian in physical space

and its value
HKS Kustaanheimo-Stiefel trans-

formed Hamiltonian �see Eq.
�21��

H̄KS first normalized Kustaanheimo-
Stiefel Hamiltonian �see Eqs.
�30��

H, h the Hamiltonian function on
Pn,m and its value. H is defined

101See Nguyên Tiên �1996, 2003�, Cushman and Bates �1997�,
Symington �2003�, and Bolsinov and Fomenko �2004�.
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as the nontrivial part of �E, i.e.,
it does not contain the terms of
�E that depend only on n ,m
and are thus constant on Pn,m
�see Eq. �56��.

N, n Keplerian integral and its value
�see Eq. �22��

Pn,m second reduced phase space
�see Sec. IV.D.2.c�; N, 
 are
constant on Pn,m with values
n ,m, respectively

S2�S2 phase space for the first nor-
malized and reduced system
defined by E �see Sec. IV.A�

T�1�
2 , T�2�

2 , T�1/2�
2 , Tbi

2 singly pinched torus, doubly
pinched torus, curled torus, and
bitorus, respectively �see Figs. 7
and 8�

�X ,Y�
= �X1 ,X2 ,X3 ,Y1 ,Y2 ,Y3� coordinates in space R6�S2

�S2 �see Eq. �28��
XF the Hamiltonian vector field of

function F
a2, d constant s fields parametriza-

tion �see Eq. �4b��
g, fe, fb n-scaled field amplitudes �see

Eq. �3��
g̃, f̃e, f̃b 	 scaled field amplitudes �see

Eq. �5��
ns the product of n and s plays the

role of “small” perturbation pa-
rameter in the 1:1 resonance
zone

s= �g2+ fe
2+ fb

2�1/2 combined field strength
�x ,y�
= �x1 ,x2 ,x3 ,y1 ,y2 ,y3� symmetry adapted coordinates

in R6�S2�S2 obtained from
�X ,Y� through linear transfor-
mation �34� �see Sec. IV.C�

�E first normalized and reduced
energy correction function �see
Eqs. �32��

�E�1�, �E�2� first- and second-order terms in
the first normalized energy cor-
rection function �E �see Eqs.
�33� and �9� and Table III�

�E second normalized and reduced
energy correction function �see
Eqs. �36�, �37�, and �55� and
Table IV�

�E�1�, �E�2� first- and second-order terms in
the second normalized energy
correction function �E �see Eq.
�36� and Table IV�

	 �−8E�1/2

� Kustaanheimo-Stiefel integral,
its value is 0 �see Eq. �20��


, m second integral �momentum�

and its value �see Eq. �13��
�, �1, �2, �3, �4 invariants �together with 
� of

the k− :k+ resonant S1 action on
S2�S2 �see Eq. �46��. The in-
variants �, �1, and �2 serve as
coordinates on R3�Pn,m �see
Sec. IV.D.2.a�.

�+, �− frequencies on S2�S2 �see Eq.
�10��
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Cushman, R. H., and S. Vū NgIc, 2002, “Sign of the mono-
dromy for Liouville integrable systems,” Ann. Henri Poin-
care 3, 883–894.

Cushman, R. H., and B. I. Zhilinskií, 2002, “Monodromy of a
two degrees of freedom Liouville integrable system with
many focus-focus singular points,” J. Phys. A 35, L415–L419.

Davison, C. M., and H. R. Dullin, 2007, “Geodesic flow on
three-dimensional ellipsoids with equal semi-axes,” Regular
Chaotic Dyn. 12, 172–197.

Davison, C. M., H. R. Dullin, and A. V. Bolsinov, 2007, “Geo-
desics on the ellipsoid and monodromy,” J. Geom. Phys. 57,
2437–2454.

Delande, D., and J. C. Gay, 1984, “Group theory applied to
the hydrogen atom in a strong magnetic field—Derivation of
the effective diamagnetic Hamiltonian,” J. Phys. B 17, L335–
L340.

Delande, D., and J. C. Gay, 1986, “The hydrogen atom in a
magnetic field—Spectrum from the Coulomb dynamic group
approach,” J. Phys. B 19, L173–L178.

Delande, D., and J. C. Gay, 1988, “A new method for produc-

ing circular Rydberg states,” Europhys. Lett. 5, 303–308.
Delande, D., and J. C. Gay, 1991, “Supersymmetric factoriza-

tion for Rydberg atoms in parallel electric and magnetic
fields,” Phys. Rev. Lett. 66, 3237–3240.

Delos, J. B., G. Dhont, D. A. Sadovskií, and B. I. Zhilinskií,
2008, “Dynamical manifestation of Hamiltonian mono-
dromy,” Europhys. Lett. 83, 24003.

Delos, J. B., G. Dhont, D. A. Sadovskií, and B. I. Zhilinskií,
2009, “Dynamical manifestations of Hamiltonian mono-
dromy,” Ann. Phys. 324, 1953–1982.

Delos, J. B., S. K. Knudson, and D. W. Noid, 1983a, “High
Rydberg states of an atom in a strong magnetic field,” Phys.
Rev. Lett. 50, 579–583.

Delos, J. B., S. K. Knudson, and D. W. Noid, 1983b, “Highly
excited states of a hydrogen atom in a strong magnetic field,”
Phys. Rev. A 28, 7–21.

Delos, J. B., S. K. Knudson, and D. W. Noid, 1984, “Trajecto-
ries of an atomic electron in a magnetic field,” Phys. Rev. A
30, 1208–1218.

Delzant, T., 1988, “Periodic Hamiltonians and convex images
of momentum mapping,” Bull. Soc. Math. France 116, 315–
339.

Demkov, Y. N., B. S. Monozon, and V. N. Ostrovskií, 1969,
“Energy levels of the hydrogen atom in crossed electric and
magnetic fields,” Zh. Eksp. Teor. Fiz. 57, 1431–1434 �Sov.
Phys. JETP 30, 775–776 �1970��.

Deprit, A., 1969, “Canonical transformations depending on a
small parameter,” Celest. Mech. 1, 12–30.

Deprit, A., J. Henrard, J. F. Price, and A. Rom, 1969,
“Birkhoff’s normalization,” Celest. Mech. 1, 222–251.

Deprit, A., V. Lanchares, M. Inarrea, J. P. Salas, and J. D.
Sierra, 1996, “Teardrop bifurcation for Rydberg atoms in par-
allel electric and magnetic fields,” Phys. Rev. A 54, 3885–
3893.

Duistermaat, J. J., 1980, “On global action-angle coordinates,”
Commun. Pure Appl. Math. 33, 687–706.

Duistermaat, J. J., 1998, “The monodromy in the Hamiltonian
Hopf bifurcation,” ZAMP 49, 156–161.

Duistermaat, J. J., and G. J. Heckman, 1982, “On the variation
in the cohomology of the symplectic form of the reduced
phase space,” Invent. Math. 69, 259–268.

Dullin, H., A. Giacobbe, and R. Cushman, 2004, “Monodromy
in the resonant swing spring,” Physica D 190, 15–37.
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