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Abstract
We consider two-degree-of-freedom integrable Hamiltonian systems with
bifurcation diagrams containing swallowtail structures. The global properties
of the action coordinates in such systems together with the parallel transport
of the period lattice and corresponding quantum cells in the joint spectrum
are described in detail. The relation to the concept of bidromy which was
introduced in Sadovskiı́ and Zhilinskiı́ (2007 Ann. Phys. 322 164–200) is
discussed.

PACS number: 45.20.Jj

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Consider a Liouville integrable Hamiltonian system on a four-dimensional manifold N
with the symplectic form ω. The dynamics of the system is given by the Hamiltonian
function H : N → R which defines the Hamiltonian vector field XH through the relation
ω(XH , ·) = dH . Integrability means that there is a second function J : N → R which is an
integral of XH, i.e. XH (J ) = {J,H } = ω(XJ ,XH ) = 0, and such that H and J are almost
everywhere linearly independent. The latter condition means that the rank of the derivative
DF(x) of the integral map

F : N → R2 : x �→ F(x) = (H(x), J (x)) (1)

is maximal for almost all x ∈ N .
Let f ∈ R2 be an element of the image of F and consider the fiber F−1(f ). If DF(x)

has maximal rank for all x ∈ F−1(f ), f is a regular value; otherwise, it is critical. By the
Arnol’d–Liouville theorem, if f is a regular value, F−1(f ) is a smooth torus T2 or a union of
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such tori. This type of information is encoded in the bifurcation diagram BD; all the elements
of the image of F are depicted in the BD and for each value f ∈ image(F ) ⊆ R2, the BD
shows whether f is regular or critical, and the type of the fiber F−1(f ).

Denote by R ⊆ R2 a connected set of regular values of F. The preimage F−1(R) is a T2

fiber bundle over R. Smooth action-angle coordinates can be defined in any simply connected
subset of R. When R is not simply connected because, for example, there are critical values in
the interior of image(F ), it is possible that smooth action-angle coordinates cannot be defined
globally, i.e., in the entire R [1, 2]. The basic topological obstruction to the existence of global
actions is non-trivial monodromy of the T2 fiber bundle over R, see [2]. In quantum systems
non-trivial monodromy signifies the absence of good quantum numbers; for the general theory
and examples, see [3–5].

The existence of non-trivial monodromy can be detected by the parallel transport of a
basis of the first homology group H1(T2(f ), Z) of the regular fiber T2(f ) = F−1(f ) for
f ∈ R along a closed path � that lies entirely in R and is not homotopic to a point in R
[2]. The linear transformation M� ∈ GL(2, Z)3 that connects the initial and final bases of
H1(T2(f ), Z) is called the monodromy matrix and is the same for all homotopic paths � in R.
The system has non-trivial monodromy, and thus no global action-angle coordinates, when M
is not the identity matrix at least for one closed path �.

This standard notion of monodromy has been recently generalized to fractional
monodromy [6–12]. The main difference between standard and generalized monodromy
is that, in the latter, the path � crosses a line C of critical values of F that correspond to curled
tori, see [8]. Thus in fractional monodromy our interest is not restricted to the fibration of
the phase space over the set R of regular values of F but is extended to include also sets of
critical values of F. Furthermore, this leads naturally to the question of the behavior of the
action variables near the line C of critical values of F [11, 13].

Another generalized monodromy, called bidromy, was proposed in [14]. Bidromy was
introduced in the example of a three-degree-of-freedom (3-DOF) integrable Hamiltonian
system but its defining characteristics can be studied in 2-DOF systems with BD that contains
a swallowtail. The main motivation of our work is thus to study such systems, analyze the
qualitative properties of their fibration, study the properties of the action coordinates and
relate our results to the concept of bidromy. We make further comments on bidromy after we
describe the setting of our paper.

We would like to emphasize here that we adopt a ‘global’ point of view. Integrable
2-DOF Hamiltonian systems with bitori have been studied before, see for example [15–17].
Nevertheless, such studies are ‘local’ in the sense that they describe the neighborhood of a
single bitorus or the fibration of a single energy level set. Here we are interested on the
consequences of the whole one-parameter family of bitori on the qualitative properties of the
system. The assumption that the system has a swallowtail is from this point of view a ‘global’
assumption that describes how the one-parameter family of bitori is embedded in the complete
fibration.

This work is part of a research program that aims to understand the Lagrangian torus
fibration of the phase space of integrable Hamiltonian systems with codimension-1 hyperbolic
singularities. Note that both curled tori and bitori are codimension-1 hyperbolic periodic
orbits together with their stable and unstable manifolds. Such singular fibers form, in 2-DOF
systems, 1-parameter families that locally separate the phase space. For a long time it was
thought that such families formed impenetrable ‘walls’ and that it did not make sense to
connect the two parts of the phase space at each side of this ‘wall’. The introduction of

3 GL(2, Z) is the group of 2 × 2 integer matrices with the determinant ±1.
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Figure 1. (a) Schematic representation of the bifurcation diagram BD in the neighborhood U of
the two-component region, and (b) the unfolded bifurcation diagram BD.

Figure 2. The bitorus consists of two tori that are glued along a single circle. Dynamically, the
circle is a hyperbolic periodic orbit. The stable and unstable manifolds of this orbit coincide and
consist of two disconnected components. The closure of each of these components corresponds to
one of the two tori that are glued together to form the bitorus.

(This figure is in colour only in the electronic version)

fractional monodromy [6–9, 12, 13, 18, 19] and bidromy [14] shows that this is not the case,
and that it is possible to establish connections between the two parts of the phase space locally
separated by these ‘walls’ by the continuation of, in the classical case, homology cycles or, in
the quantum case, elementary cells through the ‘walls’. In the present work we describe in
detail the properties of the fibration for systems with bidromy. An outlook of further research
along these lines for more complicated arrangements of codimension-1 singularities is given
in section 4.

In this paper, we consider 2-DOF integrable Hamiltonian systems F = (H, J ) defined
on the symplectic manifold (N, ω), such that the image of F contains a neighborhood U, in
which

(i) the BD has the swallowtail structure depicted in figure 1(a) and
(ii) the flow of the Hamiltonian vector field XJ defines a free S1 action in F−1(U).

We describe now in detail the swallowtail structure depicted in figure 1(a). The open
(in U) set W of the swallowtail (dark gray in figure 1(a)) consists of regular values f of the
integral map F for which the preimage F−1(f ) is the disjoint union of two smooth tori T2.
We denote the two tori by T2

+(f ) and T2
−(f ). For points f on the thick black curve C (which

does not include the endpoints e1, e2), the preimage F−1(f ) is a bitorus biT2(f ), depicted in
figure 2. We can think of biT2(f ) as the tori T2

+(f ) and T2
−(f ) joined together along an XJ

orbit. At the dashed curve e0e1 the torus T2
−(f ) degenerates to a circle S1

−(f ) while the torus
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T2
+(f ) can be continued through the dashed curve. At the second dashed curve e0e2, it is T2

+(f )

that degenerates to a circle S1
+(f ) while T2

−(f ) can be continued through the corresponding
curve. Concrete examples of 2-DOF integrable Hamiltonian systems with such swallowtail
structure in their BD are given in section 3.

Remark 1. In the swallowtail structure, the number of connected components of the fibers
is not constant. Other integrable Hamiltonian systems have the same property but do not have
bidromy. For a simple example see the quadratic spherical pendulum [20]. For a similar
situation in a non-Hamiltonian context, see [21–23].

It is often useful to use, instead of the BD, the concept of the unfolded bifurcation diagram
BD where each point corresponds to exactly one connected component of the fibration, see
[7, 24]; compare also with the concept of a local bifurcation diagram [25].

Definition 1. The unfolded bifurcation diagram BD is a pathwise connected set together with
a continuous projection π : BD → BD such that for each f ∈ BD, the number of points in
π−1(f ) ⊂ BD is equal to the number of connected components of F−1(f ); thus, each point
f̄ ∈ BD corresponds to exactly one connected component of F−1(f ).

The unfolded bifurcation diagram BD for the swallowtail is depicted schematically in
figure 1(b). We denote by R̄ the set of points f̄ ∈ BD that lift to a smooth two-dimensional
torus T2(f̄ ) in phase space. For each f ∈ W , there are two points f̄

+ and f̄
− in BD such that

π(f̄
+
) = π(f̄

−
) = f and T2

±(f ) = F−1(f̄
±
). Thus, the set W ⊂ BD lifts under π−1 to two

sets W+,W− ⊂ BD.
Since XJ defines an S1 action in F−1(U), the function J is a globally defined action

variable4. Note that J and XJ are smooth on the whole BD including the set of critical values
of F. Furthermore R̄ is simply connected. Thus it is possible to define a second action variable
I in the entire R̄, i.e. in BD excluding C. We always choose I so that the Hamiltonian vector
fields XJ and XI form a basis of the period lattice [2], i.e. all other Hamiltonian vector fields
corresponding to actions can be expressed as integral combinations of XJ and XI. Furthermore,
J is special since it is globally defined and for this reason we keep it fixed in our considerations.
These two requirements in the choice of I imply that XI is defined up to a sign and an integer
multiple of XJ, i.e. if XI satisfies the above requirements, then so does ±XI + kXJ with k ∈ Z.
The only relevant question concerning I is whether its values at the two sides of C ‘match’
since as we show below it is only in this case that the corresponding homology cycle can be
continued through C. In order to facilitate the discussion, we define the following class of
paths on BD.

Definition 2. A C-crossing path is a path � : [0, 1] → BD that crosses C transversally at a
point c = �(tc) with tc ∈ (0, 1).

Consider a C-crossing path � and assume that for t < tc, �(t) �∈ W while for t > tc,
�(t) ∈ W . Then for t > tc, let �+(t) ∈ W+ and �−(t) ∈ W−, see figure 3.

Definition 3. The smooth action I defined on R̄ is good if

lim
t→t−c

I (�(t)) = lim
t→t+

c

�I (�(t)) := lim
t→t+

c

(I (�+(t)) + I (�−(t))),

for all C-crossing paths �.

4 By ‘global’ in this paper we refer to quantities defined in the whole of F−1(U).

4



J. Phys. A: Math. Theor. 43 (2010) 085216 K Efstathiou and D Sugny

Γ+

Γ−

Γ f∗

C

Figure 3. The path � splits into two parts �+ and �− in BD as it enters the double-component
region.

As we show in section 2, if I is a smooth action defined on R̄ then

lim
t→t−c

I (�(t)) − lim
t→t+

c

�I (�(t)) = kJ (�(tc)) + l,

for some k ∈ Z and l ∈ R that do not depend in any way on �(t). Therefore, I is good when
k = l = 0. But then note that for the action I ′ = I + kJ + l, we have

lim
t→t−c

I ′(�(t)) − lim
t→t+

c

�I ′(�(t)) = 0.

Thus we obtain the following result.

Theorem 1. Integrable two-degree-of-freedom Hamiltonian systems with a swallowtail have
a unique (up to a sign) good action I0 defined in a neighborhood of C which is open in R̄.

As we already mentioned, the original motivation for this work has been the paper [14] in
which the concept of bidromy was introduced. The integrable Hamiltonian system described
in section 3.2 is derived from the three-degree-of-freedom Hamiltonian system studied in [14].
Bidromy in [14] is found in the joint quantum spectrum of this 3-DOF system but it is also
described in terms of the parallel transport of homology cycles along a bipath. The BD of
this 3-DOF system contains a region of regular values f for which F−1(f ) consists of two
connected components T3, see [14] for more details. The essence of this structure is preserved
in the two-degree-of-freedom system studied in section 3.2, where we have the swallowtail
structure described above. We show that it is always possible to find a basis of an appropriate
subgroup of H1(T2(f ), Z) in which the transformation of the basis along a bipath is as trivial
as possible. In particular, one of the elements of the basis remains invariant while the second
one is doubled. An analogous result holds for the parallel transport of quantum cells in the
joint spectrum along the bipath. The existence of such homology basis and corresponding
quantum cell are the consequence of the existence of a unique good action in the system.

We give a brief overview of the paper. In section 2, we study action coordinates in the
neighborhood of the line of critical values C. Furthermore, we relate these action coordinates
to the parallel transport of homology cycles and quantum elementary cells, and to the notion
of the rotation number. In section 3, we study two examples of 2-DOF integrable Hamiltonian
systems with swallowtails. We describe in detail the parallel transport of quantum cells and
their continuation through C. In particular, the 2-DOF system studied in section 3.2 is the
reduction of the 3-DOF system studied in [14] and we use it in order to discuss in a simpler
context the results of [14] on bidromy. We conclude in section 4 with a discussion of our
results.

5



J. Phys. A: Math. Theor. 43 (2010) 085216 K Efstathiou and D Sugny
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(a)

γ(f̄+)

γ(f̄−)
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Figure 4. Intersection of the fibers F−1(f ) with the Poincaré surface of section �. (a) For
f = c ∈ C the intersection γc of F−1(c) with � is a figure-8 that consists of the two parts γ (c)+

and γ (c)−. (b) For f ∈ W near C the fiber F−1(f ) consists of two connected components T2
+(f )

and T2−(f ) with respective intersections with �, γ +(f ) and γ −(f ). (c) For f near C but outside
W the fiber F−1(f ) consists of a single connected component T2(f ) with intersection γ (f )

with �.

2. Action coordinates and parallel transport of homology cycles

In this section we consider systems with a swallowtail as described in section 1. We show the
existence of a unique good action in R̄ and we study the parallel transport of homology cycles
and their continuation through the curve C of bitori.

2.1. Local structure of the fibration and homology cycles near C

The structure of the fibration near C is most easily described if we consider a Poincaré section
� for the flow of XJ restricted to a level set J−1(j). Consider a C-crossing curve ft = �(t) for
t ∈ [0, 1] with constant value J = j along � such that f0 = �(0) �∈ W and f1 = �(1) ∈ W

(so � starts outside W , crosses C and ends inside W ), see figure 3.
Recall that points on C lift in phase space to bitori biT2. These can be viewed as two

topological tori T2 glued together along an XJ orbit or, alternatively, as the Cartesian product of
a figure-8 with a circle S1. The intersection of biT2 with the Poincaré section � is the figure-8
γ (c) depicted in figure 4(a). The whole fiber biT2 can be reconstructed by considering all XJ

orbits that start at points p ∈ γ (c) and come back to p after time 2π which implies that the
fiber biT2 is the product γ (c)×S1. For f in the double component region W , the fiber F−1(f )

consists of two smooth two-dimensional tori T2(f̄
+
) = F−1(f̄

+
) and T2(f̄

−
) = F−1(f̄

−
).

The intersection of each of the components T2(f̄
±
) with � is in this case a smooth circle

γ (f̄
±
), see figure 4(b). For f close to C but outside W the fiber F−1(f ) = F−1(f̄ ) is the

torus T2(f̄ ) and its intersection with � is the smooth circle γ (f̄ ), see figure 4(c). Thus as
t → t−c , we obtain on � a family of circles γ (f̄ t ) that approaches the figure-8 γ (c). On the
other hand, we have that as t → t+

c the families γ
(
f̄

+
t

)
and γ

(
f̄

−
t

)
approach γ (c)+ and γ (c)−,

respectively. This means that

lim
t→t+

c

γ
(
f̄

+
t

)
+ lim

t→t+
c

γ
(
f̄

−
t

) = γ (c)+ + γ (c)− = lim
t→t−c

γ (ft ).

We look now at the first homology group of connected components of fibers of F. For
all toric fibers T2(f̄ ) = F−1(f̄ ) with intersection γ (f̄ ) with � we can take as basis of
H1(T2(f̄ ), Z) the homology class g(f̄ ) of γ (f̄ ) and the homology class b(f̄ ) of any closed
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XJ orbit on T2. For biT2 = F−1(c), the first homology group H1(biT2, Z) is generated by
the homology class b(c) of any closed XJ orbit on biT2, and the homology classes g(c)+ and
g(c)− of γ (c)+ and γ (c)−, respectively. From the previous discussion on the behavior of the
intersections γ as t → tc, we conclude that

lim
t→t+

c

g
(
f̄

+
t

)
+ lim

t→t+
c

g
(
f̄

−
t

) = g(c)+ + g(c)− = lim
t→t−c

g(ft ). (2)

On the other hand, for the cycle b generated by the flow of XJ, we have that

lim
t→t+

c

b
(
f̄

+
t

) = lim
t→t+

c

b
(
f̄

−
t

) = lim
t→t−c

b(f̄ t ). (3)

Furthermore, we have the following result.

Lemma 1. Let V, V+ and V− be open neighborhoods in R̄\W , W+ and W−, respectively, so that
the boundary of each of these neighborhoods contains the same subset � of C. Let c ∈ �, and
consider a C-crossing path � with �(t) = ft such that f̄ 0 = �(0) ∈ V , f̄

+
1 = �+(1) ∈ W+,

f̄
−
1 = �−(1) ∈ W− and c = �(tc) for a unique tc ∈ (0, 1). Furthermore, let I, I+ and

I− be action coordinates defined in V, V+ and V−, respectively, and let g, g+ and g− be the
corresponding homology cycles generated by the Hamiltonian flows of these actions. Then we
have that

�g(c) := lim
t→t+

c

g+
(
f̄

+
t

)
+ lim

t→t+
c

g−
(
f̄

−
t

) − lim
t→t−c

g(f̄ t ) = 0, (4)

if and only if

�I (c) := lim
t→t+

c

I+
(
f̄

+
t

)
+ lim

t→t+
c

I−
(
f̄

−
t

) − lim
t→t−c

I (f̄ t ) = L, (5)

where the constant L ∈ R does not depend on the point c ∈ �.

Proof. The symplectic form ω is locally exact in a neighborhood of F−1(c), see [15], so
there is a 1-form ϑ such that locally ω = −dϑ . Then for the value I (f̄ ) of the action I and
the corresponding homology cycle g(f̄ ) on a fiber T2(f̄ ), we have that

I (f̄ ) = 1

2π

∫
g(f̄ )

ϑ + l,

where l ∈ R does not depend on f̄ ∈ V . A similar relation holds true for I+ and I− but with
l replaced by different constants l+ and l−. Thus by assuming (4) and integrating ϑ over the
homology cycles g, g+ and g−, we obtain (5).

For the opposite direction, suppose that (5) holds. Then �g(c) is in general an element
of the homology group H1(biT2(c), Z). Therefore,

�g(c) = k1g(c)+ + k2g(c)− + k3b(c),

for some k1, k2, k3 ∈ Z. Integrating ϑ over �g(c) and taking (5) into account we obtain that

k1I+(c) + k2I−(c) + k3J (c) = constant,

which is true only if k1 = k2 = k3 = 0. The latter implies (4). This concludes the proof. �

2.2. Parallel transport of homology cycles

In this section we review the most basic facts concerning the parallel transport of homology
cycles along (not necessarily closed) paths � in the unfolded set R̄ of regular values of the
integral map F.

The first homology group H1(T2(f̄ ), Z) of a regular fiber T2(f̄ ) is isomorphic to the
discrete space Z2. The fact that H1(T2(f̄ ), Z) is discrete implies that there is a unique notion

7
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of parallel transport of its elements [2]. If we consider two points f̄ 0 and f̄ 1 in R̄ and a path
� : [0, 1] → R̄ connecting these points, then parallel transport of homology cycles defines an
isomorphism M between H1(T2(f̄ 0), Z) and H1(T2(f̄ 1), Z). This isomorphism M depends
only on the homotopy class of �.

If we choose the bases (a(f̄ 0), b(f̄ 0)) and (a(f̄1), b(f̄1)) on T2(f̄0) and T2(f̄1)

respectively, then the matrix of M is, in general, an element of GL(2, Z). In cases, as in
ours, where the set R̄ is orientable it is always possible to choose a consistent orientation for
the bases (a(f̄ i), b(f̄ i)), i = 1, 2. In such a case, the matrix of M is an element of SL(2, Z).

Assume furthermore that, as in our case, the system has a globally defined smooth action
J. The flow of XJ generates a homology cycle b(f̄ ) on T2(f̄ ) and thus a smooth family of
homology cycles is defined over R̄. This implies that parallel transport of the homology cycle
b(f̄ 0) from f̄ 0 to f̄ 1 along any path � will give the cycle b(f̄ 1). Consider now on T2(f̄ 0)

a homology cycle a(f̄ 0) such that {a(f̄ 0), b(f̄ 0)} is a basis of H1(T2(f̄ 0), Z). The parallel
transport of a(f̄ 0) and b(f̄ 0) to f̄ 1 will give the homology cycles a′(f̄ 1) and b′(f̄ 1) that
are related to the basis {a(f̄ 1), b(f̄ 1)} (which has the same orientation as {a(f̄ 0), b(f̄ 0)}) of
H1(T2(f̄ 1), Z) through an element of SL(2, Z) as we mentioned before. But furthermore,
b′(f̄ 1) = b(f̄ 1) and this leaves as the only possibility that a′(f̄ 1) = a(f̄ 1) + kb(f̄ 1) for some
k ∈ Z. This implies that the matrix of the isomorphism M is(

1 k

0 1

)
.

We close this section with a few remarks on the orientation of the period lattice. It has
been remarked in [26] that the orientation of the base space R̄ of the fibration induces an
orientation on the fibers and consequently on the period lattice in the following way. Consider
a basis {e1, e2} of Tf̄ R̄ and the dual basis {α1, α2} of T ∗̄

f
R̄. Then the vector fields Xk, k = 1, 2,

given by ω(Xk,−) = αk define an orientation on the fiber T2(f̄ ) and its period lattice.
The vectors XJ and XH fix an orientation for all fibres T2(f̄ ), f̄ ∈ R̄. In the following,

we consider this orientation as positive. Let I be an action in our system such that XI together
with XJ form a basis of the period lattice at T2(f̄ ). Since I is locally a smooth function of H
and J, i.e. we can write I (x) = I (H(x), J (x)), we have that

XI = ∂I

∂J
XJ +

∂I

∂H
XH .

It follows that the basis {XJ ,XI } at f̄ is positively (negatively) oriented when ∂I/∂H(f̄ ) is
strictly positive (respectively negative).

2.3. Action coordinates

In this section we study the properties of the second global action I in R̄. We start by defining
local actions near C and then we study how these actions fit together to give an action on R̄.

In R̄ \ W we define a smooth action

A(f̄ ) = 1

2π

∫
γ (f̄ )

ϑ, (6)

where we have used the fact that ω is exact in a neighborhood of C, see [15], so there is locally
a 1-form ϑ such that −dϑ = ω. When N = R4 and ω = dq ∧ dp then ϑ = pdq. In W+ and
W−, we define the actions A+ and A−, respectively, given by

A±(f̄
±
) = 1

2π

∫
γ (f̄

±
)

ϑ. (7)

8
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From the definition of A, A+ and A− and from relation (2) we have

lim
t→t+

c

A+
(
f̄

+
t

)
+ lim

t→t+
c

A−
(
f̄

−
t

) = lim
t→t−c

A(f̄ t ). (8)

The actions A, A+ and A− are smooth univalued functions in their domain of definition.
Furthermore note that ∂A/∂H , ∂A±/∂H are either all strictly positive or all strictly negative
depending on the orientation of the integration paths γ , γ± and on whether the value of H
increases or decreases as we approach C from inside W .

Consider now a smooth action I defined on R̄. Such an action always exists since
R̄ is simply connected. Furthermore since the transformation (J,H) → (J, I ) is a
local diffeomorphism on R̄ we deduce that ∂I/∂H does not change sign. This means
that the basis (XI (x),XJ (x)) of TxT2(f ) has always the same orientation with respect
to the basis (XH (x),XJ (x)). Then, for any point f̄

′ ∈ R̄ \ (W+ ∪ W−), we have that
I (f̄

′
) = σ ′A(f̄

′
)+ k′J (f̄

′
)+ l′ with σ ′ = ±1 depending on the relative orientation of I and A,

k′ ∈ Z and l′ ∈ R. For f̄
± ∈ W± we have in the same way I (f̄

±
) = σ±A±(f̄

±
)+k±J (f̄

±
)+l±.

Since A, A+ and A− are consistently oriented we obtain that σ = σ+ = σ−.
From (8) and the previous discussion, we obtain that

lim
t→t+

c

I
(
f̄

+
t

) − k+ lim
t→t+

c

J
(
f̄

+
t

) − l+ + lim
t→t+

c

I
(
f̄

−
t

) − k− lim
t→t+

c

J
(
f̄

−
t

) − l−

= lim
t→t−c

I (f̄ t ) − lim
t→t−c

k′J (f̄ t ) − l′,

or, for I ′ = I + kJ + l,

lim
t→t+

c

I ′(f̄ +
t

)
+ lim

t→t+
c

I ′(f̄ −
t

) − lim
t→t−c

I ′(f̄ t ) = (k + k+ + k− − k′)J (c) + (l + l+ + l− − l′). (9)

The last equation (9) shows that by choosing k = k′ − k+ − k− and l = l′ − l+ − l−, we obtain
a unique (up to a sign) action I0 defined in R̄ such that

lim
t→t−c

I0(f̄ t ) = lim
t→t+

c

�I0(f̄ t ) := lim
t→t+

c

I0
(
f̄

+
t

)
+ lim

t→t+
c

I0
(
f̄

−
t

)
. (10)

Thus we have proved theorem 1.
We denote by g0(f̄ ) the homology cycle generated by the flow of XI0 on T2(f̄ ).

Equation (10) and lemma 1 imply that

lim
t→t+

c

g0
(
f̄

+
t

)
+ lim

t→t+
c

g0
(
f̄

−
t

) = lim
t→t−c

g0(f̄ t ). (11)

Furthermore, parallel transport of g0(f̄ 0) to any point f̄ 1 along a path � that lies entirely in R̄
gives the cycle g0(f̄ 1).

2.4. Parallel transport of homology cycles along a bipath and bidromy

In the system with BD shown in figure 1(a) there is no non-trivial closed path � in the set R̄.
This means that the standard monodromy of the system is trivial. In order to provide a global
characterization of the geometry of the fibration near C we, following [14], study the parallel
transport of homology cycles along a bipath on BD. Such a bipath is shown schematically in
figure 5. It consists of two paths that we denote by �1 and �2. The path �1 starts at the point
A and then crosses C at B. The path continues on W + and comes back to A. The part �2 starts
also at A, crosses C at B but then continues on W− before coming back to A.

We begin at A with the basis {2b(A), g0(A)} of an index 2 subgroup of H1
(
T2

A, Z
)
,

where the cycles b and g0 are the cycles generated by the flows of XJ and the good action XI,
respectively, as defined in section 2.1. As we approach the point B ∈ C the cycle g0 approaches
a limit that we denote by g0(B). At the other side of C (inside W ) we denote by g0(B

+) and

9
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A C
B

Γ1

Γ2

(a)

Γ

Γ1

Γ2

(b)

Figure 5. (a) The bipath consists of two paths �1 and �2 that start and end at the point A. Both
paths cross C at the point B and continue inside W . �1 lies on W+ while �2 lies on W−. Finally,
both paths end at A. (b) Depiction of the bipath in the unfolded bifurcation diagram.

g0(B
−) the limits of the homology cycles as we approach B ∈ C on W + and W−, respectively.

But recall from (11) that g0(B) = g0(B
−) + g0(B

+).
Then we parallel transport g0(B

+) along �1 back to A where it is mapped to g0(A). This
can be deduced from the definition of g0. We do the same with g0(B

−) which we parallel
transport along �2 back to A; this cycle is also mapped to g0(A).

The two b(A) cycles evolve in a simpler way. When we cross C each one of the cycles goes
to a distinct fiber. So one cycle b(B) goes to b(B+) and the other one goes to b(B−). Since the
cycle b is globally defined in a smooth way, when these cycles are parallel transported back to
A along �1 and �2, respectively, they are mapped to b(A).

Therefore, we started with homology cycles {2b(A), g0(A)} on the fiber T2
A and we ended

with two copies of the same fiber T2
A with the same homology cycles {b(A), g0(A)} on both of

them. The final step is to merge the two bases by adding cycles together to obtain the cycles
{2b(A), 2g0(A)}. Thus the parallel transport of homology cycles along the bipath in the way
described above gives the bidromy transformation

{2b(A), g0(A)} �→ {2b(A), 2g0(A)}. (12)

The matrix that connects the two sets of homology cycles is(
1 0
0 2

)
.

Remark 2. If we consider the initial basis {2b(A), gk(A) = g0(A) + kb(A)}, k ∈ Z, then by
applying transformation (12) we obtain that

{2b(A), gk(A)} �→ {2b(A), 2gk(A) − kb(A)},
which is given by the matrix(

1 0
− k

2 2

)
.

Note that this matrix has a fractional entry −k/2 for k odd. This is reminiscent of fractional
monodromy. The essential difference between fractional monodromy and bidromy is that in
the former case, the fractional entry cannot be removed by any change of basis5. Thus it is
5 They can however be removed by taking a suitable covering space [27].

10
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a characteristic property of fractional monodromy and it arises because of the ‘twist’ of the
curled tori [13]. On the other hand, in bidromy, it is possible to eliminate any non-diagonal
matrix entry by a change of basis.

Remark 3. When we cross C the cycle gk(B) = g0(B) + kb(B) can break into two parts in
several possible ways as g0(B

+) + k+b(B+) and g0(B
−) + k−b(B−) with k+ + k− = k. This is

also true for g0(B) which can break into g0(B
+) + k+b(B+) and g0(B

−) − k+b(B−). Parallel
transport of any such choice back to A and merging of the resulting cycles gives the same
result 2g0(A) + kb(A). This means that the operation of parallel transport along the bipath is
well defined. Note that only after considering both paths of the bipath, and merging the cycles
at A, the final result does not depend on the choice of splitting at B.

2.5. Construction of homology basis and the rotation number

Consider a point f̄ ∈ R̄ and denote by T2(f̄ ) the smooth two-dimensional fiber of F over
f̄ . We want to use the flows of XJ and XH in order to construct the representatives of two
homology cycles that will constitute a basis of the first homology group H1(T2(f̄ ), Z) � Z2.
Such cycle representatives can be generated by the flow of the vector fields that correspond to
action variables.

A second vector field XS on T2(f̄ ) that has a 2π period is constructed in the following
standard way, see [28]. Consider a point p ∈ T2(f̄ ) and the closed orbit γ1(f̄ ) of the vector
field XJ that starts at p. The first return time T (f ) is the time that it takes for an orbit of
the Hamiltonian vector field XH that starts at p to cross again γ1(f̄ ) at a point p′. A rotation
number (f ) is any t ∈ R such that p goes to p′ after time t along an orbit of XJ. Thus  is
defined only up to an arbitrary integer multiple of 2π . The functions  and T are constant on
T2(f̄ ), i.e. they do not depend on the choice of the initial point p, and they are locally smooth
functions of f̄ . Furthermore, T (f̄ ) is a globally smooth univalued function in R̄. The required
vector field of the second action can be defined as

XS = −(f̄ )

2π
XJ +

T (f̄ )

2π
XH . (13)

Note that if S is the action defined implicitly by the vector field XS then S + kJ , k ∈ Z is also
an action. This freedom in the choice of the action corresponds to the freedom in the choice
of the rotation number . Furthermore note that XS = ±XI0 + kSXJ , kS ∈ Z, where I0 is the
good action in R̄ constructed in section 2.3.

3. Two examples

In this section, we consider two examples of integrable Hamiltonian systems with a swallowtail.
The description of the swallowtail from the classical point of view has been completed in
section 2. Here, we focus on the quantum spectrum and, in particular, the parallel transport of
quantum cells along a bipath and their continuation through the curve C of the bitori.

3.1. A simple Hamiltonian swallowtail

We consider a Hamiltonian system on R2 × S1 × R with coordinates (q, p, φ, J ) and the
symplectic form ω = dq ∧ dp + dφ ∧ dJ . The Hamiltonian function is

H = 1
2p2 + 1

4q4 − 1
2q2 + Jq. (14)

11
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Figure 6. The bifurcation diagram BD of F for the canonical swallowtail system and the joint
quantum spectrum. The light gray area represents regular values (h, j) such that F−1(f ) consists
only of one component while the dark gray area represents the two-component region W . Points
of the quantum spectrum outside W are represented by black dots. Points on W+ are represented
by a black circle with a + sign inside and points on W− are represented by a white circle with a −
sign inside. The value of h̄ is 1/24.

Since J is an integral of motion for H, the system is Liouville integrable with integral map
F = (H, J ). By construction, J is a global action. A part of the BD of F is depicted in
figure 7 together with the joint quantum spectrum of the system.

The flow of XJ defines an S1 action on R2 × S1 × R given by

t, (q, p, φ, J ) �→ ϕt (q, p, φ, J ) = (q, p, φ + t, J ).

The algebra of S1-invariant polynomials is freely generated by (q, p, J ); therefore, for fixed
J = j the reduced space is R2 with coordinates (q, p). The reduced Hamiltonian is

Hj = 1
2p2 + 1

4q4 − 1
2q2 + jq. (15)

Thus we obtain a 1-DOF Hamiltonian system on R2 with potential Vj (q) = 1
4q4 − 1

2q2 + jq

that describes precisely the swallowtail catastrophe [29], see figure 6. By construction,
F−1(h, j) = H−1

j (h) × S1. Furthermore, note that the two-dimensional surface {φ = 0,

J = j} is a Poincaré surface �j in J−1(j) � R2×S1 which can be described by the coordinates
(q, p). Thus, Hj = H |�j

. This means that the representatives γ (f̄ ) of the homology cycles
g(f̄ ) for π(f̄ ) = (h, j), as defined in section 2.1, are the connected components of the level
sets H−1

j (h). In figure 8, we show level sets H−1
j (h) for j = 1/10, cf figure 4.

12
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1.0
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0.5

1.0

j

Figure 7. Following [29] we depict in the space (h, j, q) the surface Z defined by Vj (q) = h, where
Vj (q) = q4/4 − q2/2 + jq is the reduced potential in (15). The surface Z is projected to the (h, j)

plane where the discriminant locus of the equation Vj (q) = h is also depicted. This discriminant
locus is precisely the set of critical values of the integral map F = (H, J ) and geometrically it
corresponds to values of (h, j) for which the vertical line {(h, j, s), s ∈ R} is tangent to Z at a
point q0(h, j). The set (h, j, q0(j, h)) for (h, j) in the discriminant locus is depicted by the thick
black curve Z0 on the surface Z. The curve Z0 separates Z into two parts. Either one of these
parts (together with Z0) can represent the unfolded bifurcation diagram BD of the system (14) if
certain points are identified. In particular, we can recover the BD if we consider the upper part of
Z together with Z0 and then glue the piece e1e2 of the curve Z0 with the curve e′

1e2, cf figure 1(b).
Both of these two pieces project vertically to the part of the discriminant locus between the points
e1 and e2.

h < hc

h < hc

h > hc

h = hc

−1

−0.5

0

0.5

1

p

−2 −1 0 1 2
q

Figure 8. Level sets H−1
j (h) for j = 0.1 and different values of h. In the figure, hc ≈ 0.005 067 is

the value of the energy for which (hc, j) ∈ C. The corresponding level set H−1
j (hc) is represented

by the thick figure-8 curve. For h = −0.1 < hc the level curve H−1
j (h) consists of two connected

components, while for h = 0.1 > hc the corresponding level curve has a single component.

The value I0(f̄ ) of the good action on a fiber T2(f̄ ) that has an intersection γ (f̄ ) with
�j is

I0(f̄ ) = 1

2π

∮
γ (f̄ )

p dq.

Contour lines of I0 for values given by (k + 1/2)h̄ are shown in figure 9.
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Figure 9. Contours of the good action I0 in the simple swallowtail system. The values of I0 are
(k + 1/2)h̄ where h̄ = 1/24. We depict the value of k for several contours.

In section 2.4, we described in detail the parallel transport of homology cycles along a
bipath. Here we describe the parallel transport of quantum cells in the joint quantum spectrum
of the system. For a review of the relation between the basis of the first homology group and
quantum cells see appendix A.

In figure 10(a), we show the parallel transport of a quantum cell along a bipath. The
initial cell Q(A) (white filled in figure 10(a)) is spanned by the vectors {2�b(A), �g(A)}. The
vectors �b(A) and �g(A) are defined by the relations

�g(A) · ∇J (A) = �b(A) · ∇I (A) = h̄,

�g(A) · ∇I (A) = �b(A) · ∇J (A) = 0,

and they correspond to the homology cycles b(A) and g(A), respectively.
First, the cell Q(A) is parallel transported toward the point B at C. As the bipath crosses

C and enters W , the cell splits into two parts and at an interior point C of W we have the cell
Q(C+) on W+ and the cell Q(C−) on W−, see figure 10(b).

The continuation of the quantum cell through C is carried out in the following way. For the
given initial quantum cell Q(A) at the point A outside W (the initial white cell in our figures),
we find the corresponding homology cycles b(A) and g(A). Then we continue the homology
cycle g(A) through C up to points C+ ∈ W+ and C− ∈ W− that belong in the joint quantum
spectrum and we obtain two homology cycles g(C+) and g(C−). Then we can identify the
actions I+ and I− on W+ and W−, respectively, that generate g(C+) and g(C−). At the final
step, we define the corresponding quantum cells Q(C±) using the relations

�g(C±) · ∇J (C±) = �b(C±) · ∇I±(C±) = h̄,

�g(C±) · ∇I±(C±) = �b(C±) · ∇J (C±) = 0,

see appendix A. Using this approach we obtained the splitting of cells shown in figure 10.
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Figure 10. Parallel transport along a bipath and continuation of cells through C.

Remark 4. The continuation of the initial cell through C and the subsequent splitting are
not obvious when working solely with the joint spectrum. There are several reasons for this
difficulty. First, the joint spectrum gives a coarse grained picture of the geometry near C since
it misses structures smaller than h̄. Furthermore, this picture is distorted by the existence of
tunneling effects near the potential barrier at C. Such problems do not appear in the classical
description where we can distinguish fine details of the geometry. Thus we continue quantum
cells through C by using our detailed knowledge of the geometry of the classical system
near C.

After crossing C we continue the parallel transport of the cells Q(C±) along the two
parts of the bipath back to A. Thus we obtain two cells that we denote by Q(A)±. Each
of these, is spanned by the vectors {�b(A), �g(A)}. Finally, at A we merge these two cells by
adding together the vectors that span them. The result is the cell Q(A)′ spanned by the vectors
{2�b(A), 2�g(A)}. Thus the transformation in terms of cell-spanning vectors is

{2�b(A), �g(A)} �→ {2�b(A), 2�g(A)},
which is essentially identical to (12).

Remark 5. The homology basis {b(A), gk(A)} with gk(A) = g(A) + kb(A), k ∈ Z
corresponds to the quantum cell spanned by the vectors {�b(A), �gk(A)} where �gk(A) =
�g(A) − k�b(A)}. The transformation of the latter along the bipath is

{2�b(A), �gk(A)} �→ {2�b(A), 2�gk(A) + k�b(A)},
cf remark 2.
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Figure 11. Bifurcation diagram BD for the integral map F (18) and for � = 3 ·10−4 and y = 10−1.
The BD for a wide range of (h, j) values is shown on the right and a detail on the left. Points in
the light gray region lift to smooth tori T2. Points in the dark gray region lift to the disjoint union
of two tori T2. Points along the dashed curves lift to the disjoint union S1 ∪ T2. Points along the
thick curve lift to the bitori biT2.

3.2. The reduced 1:1:2 resonant system

In this section, we analyze a 2-DOF Hamiltonian system in R4 obtained by reduction of one
of the symmetries of the 3-DOF Hamiltonian system studied in [14]. The reduction procedure
is described in detail in appendix B. The Hamiltonian function is

H = (P1P2 + Q1Q2)
(
2� + P 2

2 + Q2
2

)1/2 − (
� + P 2

2 + Q2
2

)
+ 1

2 (1 + y)
(
� + P 2

2 + Q2
2

)2
, (16)

where � > 0 and y are real parameters. The Hamiltonian function (16) commutes with

J = 1
2

(
Q2

1 + Q2
2 + P 2

1 + P 2
2

)
. (17)

Thus H and J define a Liouville integrable Hamiltonian system with integral map F given by

F(Q,P ) = (H(Q,P ), J (Q,P )). (18)

For the computation of the bifurcation diagram BD of F (18), we used standard methods
described in [20, 28]. The result of the numerical computation is depicted in figure 11.

The most straightforward way to compute the good action I0 for this example is to reduce
the S1 action generated by the flow of XJ (which represents a 1:1 resonant oscillator) on R4.
The reduction of the 1:1 resonance is well known [28]. The reduced system is a 1-DOF
Hamiltonian system on the reduced space

Pj = {
(σ1, σ2, σ3) ∈ R3 : σ 2

1 + σ 2
2 + σ 2

3 = j 2} � S2
j ,

where σ1 = Q1Q2 + P1P2, σ2 = Q2P1 −Q1P2, σ3 = 1
2

(
Q2

1 + P 2
1 −Q2

2 −P 2
2

)
and J = j . We

introduce coordinates (z, φ) on S2
j with σ3 = z and (σ1, σ2) =

√
j 2 − z2(cos φ, sin φ). Then

the reduced symplectic form �j on Pj can be written as

�j = 1
2 dφ ∧ dz.
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A fiber T2(f̄ ) of the system is mapped to the reduced space Pj to a closed curve γ (f̄ ). Then
the good action I0 is given by

I0(f̄ ) = 1

2π

∮
γ (f̄ )

1

2
z dφ. (19)

The contour lines of the good action are depicted in figure 12.
In figure 13, we show the joint spectrum for the integral map F and the parallel transport

of two different double quantum cells along a bipath. For the parallel transport and the
continuation through the bitorus line C of the quantum cells, we use the same methods and
ideas described analytically in section 3.1.

In figure 13(a) we have chosen the same initial double quantum cell Q(A) as in the parallel
transport shown in figure 18 of [14]. The cell Q(A) is spanned by the vectors {2�b(A), �g′(A)}.
Just as in [14] we obtain after the parallel transport along the bipath the two quantum cells
Q(A)+ andQ(A)− spanned by the vectors {�b(A), �g′(A)} and {�b(A), �g′(A)+�b(A)}, respectively.
Finally we merge the two cells to obtain the final cellQ(A)′ spanned by {2�b(A), 2�g′(A)+�b(A)}.
This transformation of the initial cell Q(A) to the final cell Q(A)′ was observed in [14].

The parallel transport of a different choice of initial double cell Q(A) is shown in
figure 13(b). In this case, Q(A) is spanned by the vectors {2�b(A), �g(A)} where �b(A) and
�g(A) are the vectors that we obtain from considering the actions J and I with the latter being
the unique good action in this system. The final result is the cell Q(A)′ spanned by the vectors
{2�b(A), 2�g(A)}.
Remark 6. Note that our merging of the cells Q(A)+ and Q(A)− differs from the merging
in [14]. In [14] the cells are merged by using the fact that one of their sides is spanned by
the same vector �b(A). The side of the merged cell is also taken to be �b(A) and the vectors
for the second side �g′(A) and �g′(A) + �b(A) are added together. Thus in [14] the obtained
transformation is

{2�b(A), �g′(A)} �→ {�b(A), 2�g′(A) + �b(A)},
given by the matrix6(

1
2 0
1
2 2

)
.

We believe that the choice of merging in [14] is not correct. First, it cannot be generalized
to the case where there is no globally defined action. In such case the two final cells that
should be merged may not have a common side since �v1(A) itself may change after parallel
transport along the bipath. Second, it does not agree with the corresponding natural merging
of homology cycles defined in section 2.4.

3.3. Comparison of the two examples

We have seen that the two systems studied in sections 3.1 and 3.2 have the same qualitative
characteristics: they both have the same fibration (near the swallowtail), a unique good action
and the parallel transport of homology cycles or quantum cells gives exactly the same results
for the two systems. So it is surprising that the concept of bidromy was introduced in the much
more complicated example of the 3-DOF 1:1:2 resonant system. It is even more surprising that
it was believed that systems like the simple swallowtail of section 3.1 do not have bidromy.
So the natural question to be asked, is what distinguishes these two examples.

6 The off-diagonal element in the matrix written in equation (18) of [14] for the above transformation appears as 1.
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Figure 12. Contours of the good action I0 (19) for values h̄(k + 1/2) with k = 0, 1, 2, . . .. The
parameters used in the figure are y = 10−1, h̄ = 1.5×10−4, � = 2h̄. The contour lines are labeled
by the integer k.
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In figure 13, we note that the points of the spectrum that belong in W+ and W− are
arranged in almost parallel lines. This gives a very strong indication on how the initial (white)
quantum cell Q(A) in figure 13(a) can be continued through C and how it should be broken
into two cells. This is exactly what was done in [14]. On the other hand, it is not at all obvious
how to continue the initial cell through C in the simple swallowtail in figure 10. We have
solved this problem by looking at the behavior of homology cycles and taking advantage of
the correspondence between homology cycles and quantum cells.

The reason behind the observed differences in the joint spectra of the two systems is that
there is a significant quantitative difference between the reduced 1:1:2 resonant system and
the simple swallowtail. In particular, we have found numerically that the rotation number in
the reduced 1:1:2 resonant system satisfies the relation

(f̄
+
) − (f̄

−
) = 0 mod 2π, (20)

where π(f̄
+
) = π(f̄

−
) = f , while in the simple swallowtail we have

(f̄
+
) − (f̄

−
) = 2π

√
2 mod 2π. (21)

For both the reduced 1:1:2 resonant system and the simple swallowtail, we have that
T (f̄

+
) = T (f̄

−
).

Recall (see appendix A) that the quantum cell Q(f̄ ) is spanned by the vectors
�b(f̄ ) = h̄(0, ν(f̄ )) and �g(f̄ ) = h̄(1, ν(f̄ )(f̄ )), where ν(f̄ ) = 1/T (f̄ ). Note that for both
systems we have that �b(f̄

+
) = �b(f̄

−
). Moreover, for the reduced 1:1:2 system, we can choose

the branches of  in such a way that (f̄
+
) = (f̄

−
) and consequently �g(f̄

+
) = �g(f̄

−
).

This fact gives the parallel arrangement of the spectrum points in W for the reduced 1:1:2
system. In the simple swallowtail system we have that

�g(f̄
+
) − �g(f̄

−
) = h̄(0, 2πν(f̄ )(k +

√
2)), k ∈ Z,

which does not vanish for any k.

Remark 7. We have verified the validity of equations (20) and (21) only numerically. A
rigorous proof of these results based on the complex analytic methods introduced in [12] is
given in a forthcoming paper.

4. Discussion

Since [14], where bidromy was initially proposed, the 1:1:2 resonant system has been the only
relevant example. In this paper, we expand considerably this class of examples by showing
that all systems with a swallowtail structure are qualitatively the same. We have analyzed in
detail the properties of global action coordinates in systems with swallowtails and we proved
the existence of a unique good action. Furthermore, we have defined the continuation of
homology cycles and quantum cells through the curve C of critical values. Following [14]
we defined the bidromy transformation along a bipath and we showed that as a result of the
existence of a unique good action, there is a unique basis of the first homology group (or
correspondingly a unique quantum cell) for which the bidromy transformation is diagonal.

More importantly, this paper demonstrates that the analysis of integrable Hamiltonian
systems near a critical fiber is not sufficient to provide a complete understanding of the
system. For the latter we need to study the global effect of families of critical fibers. Such
families come in many different combinations and thus such a program can never be exhausted.
Nevertheless, some particular cases such as systems with families of curled tori that give rise to
fractional monodromy or systems with families of bitori like the swallowtail systems studied
here are worth studying since they appear in physical applications.
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Figure 13. Quantum spectrum of the system with Hamiltonian H (16) and parallel transport of quantum cells along a bipath. The parameters used are y = 10−1, h̄ = 1.5×10−4, � = 2h̄.
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More complicated examples can also be found in physical problems. For example in
[30], it is shown that the hydrogen atom in 1:2 resonance has typically a combination of a
swallowtail and two 1-parameter families of curled tori that are attached to the swallowtail,
see also [24]. Another example is provided by the HOCl molecule [31]. In this system a
1-parameter family of curled tori intersects a 1-parameter family of bitori giving rise to a more
complicated geometry and an intricate structure of the quantum spectrum. Such arrangements
of singular fibers can only be understood if we examine the whole set of singular fibers and
the way they are embedded in the Lagrangian fibration. The ultimate reward of this research
program will be the ability to describe completely the fibration of the phase space and the
structure of the joint spectrum in systems with very complicated arrangements of lines of
bitori, curled tori, pinched tori, etc in a simple way—ideally, by decomposing such systems
to simpler ‘building blocks’ from which we will then be able to reconstruct the complete
geometry of the fibration.
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Appendix A. Relation between rotation numbers, homology cycles and quantum cells

In order to relate the continuation of homology basis in previous sections to the parallel
transport of quantum elementary cells we give here the basic ideas of the correspondence.

Consider a K-DOF Liouville integrable Hamiltonian system in R2K with integral map
F = (F1, . . . , FK) and a neighborhood of R2K where smooth actions (I1, . . . , IK) can be
defined. According to the semiclassical EBK approximation quantum states correspond to
values of the actions of the form Ik = h̄(nk + μk) for k = 1, . . . , K where nk ∈ Z and μk is
a constant correction term related to the Maslov index. Thus, in the action space, quantum
states form a regular lattice. Mapping this lattice back to the integral space with coordinates
(F1, . . . , FK), we obtain a deformed lattice. Consider two adjacent points of the joint spectrum
along a line of constant action I. The line segment that connects these points approximates the
tangent to the curve I = const and the approximation becomes better as h̄ → 0. Denote by
〈n1, . . . , nK〉F the point P in the integral space such that Ik(P ) = h̄(nk + μk), k = 1, . . . , K .
Then define by �vk the vector from 〈n1, . . . , nk, . . . , nK〉F to 〈n1, . . . , nk + 1, . . . , nK〉F . The
vector �vk is tangent (in the limit h̄ → 0) to all the surfaces Ik′ = const for k′ �= k and thus
orthogonal to the gradient vectors

∇Ik′ =
(

∂Ik′

∂F1
, . . . ,

∂Ik′

∂FK

)
.

Moreover,

�vk · ∇Ik′ = h̄δkk′ . (A.1)

Consider now in the same neighborhood two sets of actions I = (I1, . . . , IK) and
I ′ = (I ′

1, . . . , I
′
K) that are related by⎛
⎜⎝

∇I ′
1

...

∇I ′
K

⎞
⎟⎠ = A

⎛
⎜⎝

∇I1

...

∇IK

⎞
⎟⎠ , (A.2)
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where A ∈ GL(K, Z). Then the vectors �v′
k defined by �v′

k∇I ′
k′ = h̄δkk′ are connected to �vk

through the relation⎛
⎜⎝

�v′
1
...

�v′
K

⎞
⎟⎠ = (A−1)t

⎛
⎜⎝

�v1

...

�vK

⎞
⎟⎠ . (A.3)

Also if we denote by XH the Hamiltonian vector field that corresponds to the function H,
we have that

XIk′ =
K∑

k=1

∂Ik′

∂Fk

XFk
, (A.4)

i.e. in the basis (XF1 , . . . , XFK
), the vector field XIk′ has the same components as the gradient

vector field ∇Ik′ . This implies that the vector fields XI ′
k′ are related to XIk

by⎛
⎜⎝

XI ′
1

...

XI ′
K

⎞
⎟⎠ = A

⎛
⎜⎝

XI1

...

XIK

⎞
⎟⎠ . (A.5)

Finally, the homology cycles gk and g′
k generated by the flows of the vector fields XIk

and
XI ′

k
respectively are related through⎛

⎜⎝
g′

1
...

g′
K

⎞
⎟⎠ = A

⎛
⎜⎝

g1

...

gK

⎞
⎟⎠ . (A.6)

In the specific case of a 2-DOF integrable system with the integral map F = (F1, F2)

where F2 = H is the Hamiltonian function and F1 = I1 = J is a globally defined action, the
vector field XI2 is given by

XI2 = −XF1 + T XF2 . (A.7)

Thus, ∇I2 = (−,T ) while ∇I1 = (1, 0). Using (A.1) we obtain that �v2 = h̄(0, 1/T ) and
�v1 = h̄(1,/T ). Note that �v2 has a constant direction and only its length changes but since
the first return time T is a globally smooth function and T �= 0, �v2 defines globally a smooth
vector field. On the other hand the slope of �v1 is determined by the ratio /T and since  is
in general a multivalued function so is �v1.

Furthermore, note that in 2-DOF systems if we have two homology bases {g1, g2} and
{g′

1, g
′
2} that are related through a matrix M ∈ SL(2, Z), then the corresponding vectors

{�v1, �v2} and {�v′
1, �v′

2} are related through (M−1)t but if we denote �g1 = �v2 and �g2 = −�v1 then
we obtain that (�g′

1, �g′
2)

t = M · (�g1, �g2)
t . Thus we associate the homology cycle gk, k = 1, 2,

to the vector �gk . Note that this association does not have an analog in more dimensions.

Appendix B. Reduction of the 1:1:2 resonant system to 2-DOF

The 3-DOF Hamiltonian studied in [14] is

H = S − R + 1
2 (1 + y)R2, (B.1)

where y is a real parameter. The functions S, R are invariants of the T2 group action generated
by the flows of the vector fields XN, XL of, respectively, the 1:1:2 resonance

N = 1
2

(
2p2

1 + p2
2 + p2

3 + 2q2
1 + q2

2 + q2
3

)
,
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and the angular momentum

L = p3q2 − p2q3.

In particular,

S = 1
2

(
2p1(p2q2 + p3q3) + q1

(
q2

2 + q2
3 − p2

2 − p2
3

))
,

R = 1
2

(
p2

2 + p2
3 + q2

2 + q2
3

)
.

There is one more invariant

T = 1
2

(
2q1(p2q2 + p3q3) − p1

(
q2

2 + q2
3 − p2

2 − p2
3

))
that does not appear in the following. In this section we reduce the Hamiltonian (B.1) to
2-DOF by reducing the S1 group action generated by the flow of XL.

B.1. Reduction to two degrees of freedom

The invariants of the flow of the Hamiltonian vector field XL are q1, p1 and

τ1 = 1
2

(
p2

2 + p2
3 + q2

2 + q2
3

)
,

τ2 = 1
2

(−p2
2 − p2

3 + q2
2 + q2

3

)
,

τ3 = p2q2 + p3q3,

L = p3q2 − p2q3.

The Hamiltonian H (B.1) becomes after fixing L = �

H = 1 + y

2

(
�2 + τ 2

2 + τ 2
3

) − τ1 + q1τ2 + p1τ3. (B.2)

Also

R = τ1,

and

N = p2
1 + q2

1 + τ1.

The syzygy is

�2 = τ 2
1 − τ 2

2 − τ 2
3 . (B.3)

The Hamiltonian (B.2) after substituting �2 from (B.3) simplifies to

H = −τ1 +
1 + y

2
τ 2

1 + q1τ2 + p1τ3. (B.4)

The Poisson brackets between the invariants are

{τ1, τ2} = −2τ3,

{τ2, τ3} = 2τ1,

{τ3, τ1} = −2τ2.
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B.2. Canonical coordinates

The reduced space for � �= 0 is diffeomorphic to R4 since it is the graph of the smooth function
(q1, p1, τ2, τ3) �→ τ1 = (

�2 + τ 2
2 + τ 2

3

)1/2
. Actually (q1, p1, τ2, τ3) is a global chart for

this manifold but (τ2, τ3) are not canonically conjugate. We introduce canonical coordinates
(Q1,Q2, P1, P2) using the following map which is a diffeomorphism for � > 0:

Q1 = q1,

P1 = p1,

Q2 = τ2f
1/2,

P2 = τ3f
1/2,

where

f =
(
τ 2

2 + τ 2
3 + �2

)1/2 − �

τ 2
2 + τ 2

3

.

Then

{Q2, P2} = 1.

The inverse of the above transformation is

q1 = Q1, p1 = P1, τ2 = Q2g
1/2, τ3 = P2g

1/2,

where

g = Q2
2 + P 2

2 + 2�.

In the canonical coordinates (Q1, P1,Q2, P2), we have

τ1 = � + P 2
2 + Q2

2.

The Hamiltonian H (B.4) becomes

H = (P1P2 + Q1Q2)
(
2� + P 2

2 + Q2
2

)1/2 − (
� + P 2

2 + Q2
2

)
+ 1

2 (1 + y)
(
� + P 2

2 + Q2
2

)2
, (B.5)

while N and R become

N = � + P 2
1 + P 2

2 + Q2
1 + Q2

2

and

R = � + P 2
2 + Q2

2.

References

[1] Nekhoroshev N N 1972 Action-angle variables and their generalizations. Trans. Moscow Math. Soc. 26 180–98
[2] Duistermaat J J 1980 On global action-angle coordinates Commun. Pure Appl. Math. 33 687–706
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