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a b s t r a c t

Almost all organisms show some kind of time periodicity in their behavior. In mammals, the neurons
of the suprachiasmatic nucleus form a biological clock regulating the activity–inactivity cycle of the
animal. The main question is how this clock is able to entrain to the natural 24 h light–dark cycle by
which it is stimulated. Such a system is usually modeled as a collection of mutually coupled two-state
(active–inactive) phase oscillators with an external stimulus (Zeitgeber). In this article however, we
investigate the entrainment of a single pacer cell to the ensemble of other pacer cells. Moreover the
stimulus of the ensemble is taken to be periodic. The pacer cell interacts with its environment by phase
delay at the end of its activity interval and phase advance at the end of its inactivity interval. We develop
a mathematical model for this system, naturally leading to a circle map depending on parameters like
the intrinsic period and phase delay and advance. The existence of resonance tongues in a circle map
shows that an individual pacer cell is able to synchronize with the ensemble. We furthermore show how
the parameters in the model can be related to biological observable quantities. Finally we give several
directions of further research.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

1.1. Setting of the problem

Rhythmic behavior is present in almost all organisms. Their
rhythms can be autonomous and usually they are externally
stimulated. One such stimulus is the 24 h natural light–dark
cycle which governs the activity–inactivity cycle of many animals
and plants. The latter is the most common Zeitgeber or periodic
stimulus, although an alternating high–low temperature cycle is
another example of a Zeitgeber. Aftermillions of years of evolution,
many organisms exhibit periodic behavior with a period near
24 h [1], even in conditions without information on the alternation
of light and darkness. How the almost-24 h intrinsic period of
the internal rhythm synchronizes with or entrains to an external
Zeitgeber is one of themajor questions in circadian biology; see [2,
3].

In mammals, the circadian clock resides in the suprachiasmatic
nucleus, a neuronal hypothalamic tissue residing just above the
optic chiasm. It consists of about 10000 interconnected neurons or
pacer cells [4–7]. In [8] a model appeared for explaining circadian
rhythms of the suprachiasmatic nucleus as a collection of so-called
two-state phase oscillators. We now know that there are more
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cell types contained in the suprachiasmatic nucleus; see [9–12].
Experiments in vitro with cells from the suprachiasmatic nucleus,
for example in [10,13], reveal that not all cells show periodic
activity. It is not completely clear whether or how these cells
contribute to entrainment. Therefore, in this article, we consider
a set of similar, but not equal, two-state pacer cells that can be
modeled as two-state phase oscillators. Moreover we restrict to an
investigation of entrainment of a single pacer cell to the ensemble
of other pacer cells. For simplicity we assume that the signal
provided by the other cells is periodic. The mathematical work is
inspired by earlier computational simulations of the interacting
network, which revealed that an ensemble of interacting pacers
has characteristics that are not present at the level of individual
cells. In particular, the ensemble can adjust the period of its rhythm
to the period of the signal to which it is exposed. The ensemble
continues to oscillate with about that period for a while, even if
the synchronizing signal is turned off. This phenomenon, which
shows robustness of the biological clock against perturbations of
the entraining signal, is functionally relevant even under normal
24 h routines. The current investigation shows how individual
cells synchronize to the ensemble. The biological clock as a whole
generates a smooth and rather sinusoidal signal, whereas single
pacer cells are known to generate electrical activity rhythms that
can hardly be considered continuous. Long intervals of silence are
followed by relatively short intervals inwhich action potentials are
generated. Although the discharge rate in these intervals varies,
we simplify this in our model by assuming that cells demonstrate
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two states: silence versus activity. Doing this, the dynamics of the
behavior of each cell is characterized by the timing of the state
transitions. The basis for our model of a single pacer cell is given
in [14,8] where the state of a pacer cell is determined by the phase
in its activity–inactivity cycle. Furthermore an external stimulus,
depending on its timing, has the effect of delaying the phase of
the oscillator in the active state and advancing the phase in the
inactive state. This model is used to explain the observation that
the activity–inactivity cycle of an organism closely follows the
period of a Zeitgeber like the 24 h light–dark cycle. Further details
of the model will be presented in Section 2.

The translation into a mathematical model closely follows
the biological model just described. The result is a system of
coupled oscillators with an external forcing. Despite certain
results, notably [15], the mathematical analysis of such systems is
notoriously hard. Therefore, in this article, we analyze a simpler
system, namely a single pacer cell subject to the net stimulus of
all other pacer cells and the external Zeitgeber. In this system
the singled out pacer cell does not stimulate the others: so for
simplicitywe assume asymmetric coupling. In physics this is called
the mean field approach. For the single pacer cell the sum of all
stimuli is now the Zeitgeber. The latter can be a periodic, quasi-
periodic or even more general function of time. But in this article
we restrict to a (non-constant) periodic Zeitgeberwhere the period
is an average or prevailing period in the natural light and dark
cycle or in the collective behavior of pacer cells in the environment.
Translating the biological model for a single pacer cell with a
periodic Zeitgeber into a mathematical model naturally leads to
a dynamical system consisting of a circle map. In future work
we will analyze more general Zeitgebers and systems with more
symmetric coupling.

In the literature there exist several models for biological clocks.
A common aspect of these models is that the biological clock is
considered as a collection of coupled oscillators. The assumptions
about the oscillators are the most variant part. A class of models
based on biochemical reactions of gene expression and products
thereof in neurons take the Goodwin oscillator (see [16,17] and
references therein) as a starting point. The original model [18]
leads to a three-dimensional system of ordinary differential
equations. The system contains parameters describing the reaction
kinematics and for a large set of parameter values there exists a
stable periodic orbit. Formodels includingmanymore biochemical
reactions see [19,20]. It follows from fairly general arguments [21]
that every periodically forced oscillator will show tongue shaped
regions of stability in the parameter plane of period versus
forcing strength. This phenomenon is inevitably observed for the
Goodwin oscillator. Moreover, there is numerical evidence (see for
example [17]) of synchronization in a large collection of Goodwin
oscillators. At the other end of the spectrum we find models that
are based on observed responses of living organisms to external
stimuli in general; see [22]. Our model, using a phase oscillator,
fits into this class by following [23] and in particular [14] for
light and dark stimuli. Here the assumption is that the observed
response of the organism is a reflection of the response of the
individual neurons, although we keep in mind that a collection of
interacting pacer cells may also show different behavior. The use
of phase oscillators to model biological periodic phenomena dates
back to at least 1967 [24]; see [25] for an overview. In between
these bottom-up and top-down approaches there are several other
models using oscillatory systems. However, these are not always
based on an underlying biological model, examples including the
periodically kicked oscillator in [26] and the van der Pol oscillator
in [27]. New in our approach is the combination of a two-state
phase oscillator and the interaction with the Zeitgeber through
phase delay at the end of the activity interval and phase advance
at the end of the inactivity interval. Also new is the relation of the
four parameters in the model (see Sections 2 and 3), via a circle
mapwith observable biological quantities, for example the range of
entrainment, and entrainment boundaries depending on the phase
delay and advance.

1.2. The main questions

Thus we study a model of a single pacer cell, stimulated by its
environment but not contributing to the collective behavior. For
such a situation the main questions that we wish to address are:

1. Can a single pacer cell synchronize with or entrain to a periodic
Zeitgeber?

2. If so, how does this depend on properties of the pacer cell?

To answer these questions we translate the biological model into
a mathematical model, in our case a dynamical system. In fact,
it will turn out that the biological model leads to a circle map.
This map depends on the parameters characterizing the pacer
cell. Typical dynamics of a circle map most relevant in view of
the questions above are dynamics of fixed points and dynamics
of periodic points. Fixed points correspond to entrainment of the
pacer cell which means that the sequence of onset times of the
activity interval has the same period as the Zeitgeber. Periodic
points correspond to synchronization meaning that there are an
integer number p of different times of onset of the activity interval
during another integer number q of periods of the Zeitgeber. Such
points are called p : q periodic points. In this vocabulary fixed
points are 1 : 1 periodic points; in other words entrainment
is a special kind of synchronization. Then the questions for the
single pacer cell are translated into the following questions for the
mathematical model.

1. Do stable fixed or periodic points exist for themapon the circle?
2. If so, for which domain in parameter space?

The first question can be answered affirmatively by the general
theory of circle maps. To answer the second question we need to
know more about the details of the circle map, and in particular
how it depends on the parameters characterizing the pacer cell.

1.3. A summary of the results

The analysis of the mathematical model for a single pacer
cell shows that synchronization occurs for certain values of the
parameters. Indeed, several phenomena of circadian behavior can
be explained by ourmodel. First of all there is a range of entrainment
allowing pacer cells with shorter and longer intrinsic periods to
entrain to the Zeitgeber. However, depending on the values of the
delay and advance parameters (see Section 2 for details), this range
of entrainment favors either longer or shorter intrinsic periods.
Similarly there are ranges of synchronization where the pacer cell
shows for example multiple activity intervals during one period of
the Zeitgeber; see Fig. 6. This means that only for a finite interval
of values of the intrinsic period, synchronization is possible, a
phenomenon which is confirmed by biological experiments and
observations; see [28,2,29,25,30–32,23,33–37]. Outside the ranges
of synchronization the model predicts quasi-periodic behavior of
the pacer cell, which is related to the biological phenomenon called
relative coordination. Furthermore, the model predicts that the
onset of an activity interval increases with the intrinsic period
of the pacer cell, which has been observed for many organisms;
see [29,28,38,37]. Thus in our model, the values of the parameters
can be related to biologically observable phenomena.



1518 D.G.M. Beersma et al. / Physica D 240 (2011) 1516–1527
Fig. 1. The phase θ as a function of t without (left) and with (right) the Zeitgeber. Suppose the phase θ is 0 at time tn; then the state of the cell is active for 0 ≤ θ < α and
inactive for α ≤ θ < τ . Without the Zeitgeber (left figure) this corresponds to the time intervals [tn, tn + α) and [tn + α, tn + τ). In the presence of a Zeitgeber the cell is
active in the time interval [tn, tn + α + εZ(tn + α)) and inactive in the time interval [tn + α + εZ(tn + α), tn+1), where tn+1 is defined implicitly; see the text.
2. The biological model

Our biological model is derived from [14]. Each pacer cell is
considered as a two-state phase oscillator, where the phase is
determined by a single variable θ taking values in [0, τ ]. This phase
is the resultant ofmany biochemical processes. In an isolated pacer
cell the phase increases in time with speed 1 until it reaches a
value τ ; then it jumps to zero and starts to increase again. The two
states of the pacer cell are characterized as follows. If the phase is
between zero and a value α < τ , the cell is in the active state, and
for the phase between α and τ , the cell is in the inactive state. Thus
an isolated pacer cell shows a periodic activity–inactivity cycle
with period τ . We call α the length of the intrinsic activity interval,
and τ is called the intrinsic period of the pacer cell. The values of α
and τ are properties of the individual cell.

A pacer cell responds to external stimuli. In our model the
response depends on the state of the cell. In the active state, an
external stimulus delays the phase and so the activity interval is
prolonged. Suppose that at t = tn the phase is zero. When the
cell is stimulated by a Zeitgeber Z , it remains active until time
tn + α + εZ , where ε is a small cell dependent parameter. We
incorporate this phase delay into the model by delaying the phase
once by an amount of εZ at time tn + α, so instantly θ becomes
θ − εZ . On the other hand, during the inactive state, an external
stimulus advances the phase and as a consequence the inactivity
interval is shortened. If at time t = tn+1 the phase of the cell is
below τ by an amount ηZ , and so θ + ηZ = τ , the cell becomes
active again; here η is another small cell dependent parameter.
Thus there is a phase advance of θ by an amount ηZ at time tn+1;
that is, instantly θ becomes θ + ηZ . Since the latter is equal to τ ,
the phase jumps to zero, and the cell is again in the active state;
see Fig. 1.

Our long-term goal is to model a collection of interacting pacer
cells subject to stimulation by a Zeitgeber, the external stimulus.
In our model the interaction of the pacer cells is by stimulation
via the average of the activity of other pacer cells; let us call this
an internal stimulus. The average may depend on spatial structure
of the collection of pacer cells, but for the moment we assume
that there is none. Thus the total stimulus that a pacer cell in
a collection experiences is a (weighted) sum of the internal and
external stimuli. However, whenwe translate our biological model
into a mathematical model we are confronted with the fact that a
mathematical analysis of coupled oscillators is difficult. Therefore
we make the following simplification, which is known in physics
as the mean field approach. In a collection of pacer cells we single
out one. This pacer cell experiences a stimulus which is the sum of
internal and external stimuli. For the pacer cell this sum of stimuli
will now be the Zeitgeber. However, the pacer cell singled out does
not contribute to the sum of stimuli.

In principle the Zeitgeber Z for the pacer cell singled out can
be any function of time. Here we will take it periodic, where
the period is for example an average of the observed periods of
the collection of pacer cells or an average period of an external
stimulus like the daily light and dark cycle. But we may also take a
much longer period tomodel seasonal effects. Since pacer cellsmay
have different values of ε, η, α and τ we are especially interested
in the domain in parameter space where synchronization occurs.

3. The mathematical model

The system described in Section 2 has a state which evolves
in time. This calls for a dynamical systems approach; as a general
reference see [39]. In order to adopt such an approach we have
to identify a state space and an evolution law. This means that
we should find one or more quantities describing the state of
the system, and then find an evolution law that uniquely defines
a future state once an initial state is given. Here we restrict to
deterministic dynamical systems; that is, we do not include noise
or some other kinds of random fluctuations. It will turn out that
we can define a discrete dynamical system on the circle. Using this
model we are able to answer some of the questions in Section 1 for
a single pacer cell with a Zeitgeber.
An isolated pacer cell. The model that we build is based on the
phase θ of the cell. First we consider the cell as a ‘free running’
oscillator, depending on the two parameters α and τ . Later on we
also include a periodic Zeitgeber with two additional parameters ε
and η governing the strength of the forcing.

Let θ : R → [0, τ ) be the phase of the cell given by

θ(t) =


t − tn, for t ∈ [tn, tn+1)
0, for t = tn+1,

where τ is the maximal value of θ . When θ reaches the value α,
with 0 < α < τ , the cell undergoes the transition from active to
inactive. Suppose at t = tn the phase θ is zero. The phase increases
with speed 1 until it reaches the maximal value τ ; then θ instantly
becomes zero again. This happens at time t = tn+1 = tn + τ . Thus
the period of the ‘free running’ oscillator is τ . The transition times
are tn = t0 + n τ and tn + α where the cell state changes from
inactive to active and fromactive to inactive respectively; see Fig. 1.

We will use the transition times tn in phase space R to define a
dynamical system whose evolution takes tn into tn+1. Without the
Zeitgeber we have a sequence tn = t0 + nτ as described above
depending on the parameters α (although trivially) and τ . Next we
include a Zeitgeber.
A single pacer cell with a periodic Zeitgeber. To model a non-isolated
pacer cell in a collection of other pacer cells with or without an
external stimulus, we consider a single pacer cell with a Zeitgeber
Z which is a function of time only. First we define the Zeitgeber Z .
Though non-essential, it is convenient to scale time such that the
period becomes 1 and scale the Zeitgeber such that it takes values
in [0, 1].
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Definition 1. The positive function Z : R → [0, 1] satisfies the
following:

(i) Z is differentiable,
(ii) Z is periodic with period 1.

In the presence of a Zeitgeber the phase θ again increases with
speed 1, starting at θ = 0 at t = tn, but when θ reaches the value
α it instantly drops back by an amount of εZ(tn + α). Then it again
increases with speed 1 until it reaches a value at t = tn+1 such that
θ(tn+1) + ηZ(tn+1) = τ . Note that tn+1 is implicitly defined. Thus
the phase θ of the cell is given by

θ(t) =

t − tn, for t ∈ [tn, tn + α)
t − tn − εZ(tn + α) for t ∈ [tn + α, tn+1)
0, for t = tn+1.

(1)

Besides the parameters α and τ we now also have ε and η. The
latter two give the ‘strength’ of the Zeitgeber. In order that the
model be consistent we impose the following conditions on the
parameters:

0 < α < τ, ε ≥ 0, η ≥ 0, α − ε > 0, α − ε + η < τ,

so that θ remains between 0 and τ .
The dynamical system. The state of the dynamical system that we
define is the transition time tn rather than the phase θ . Indeed
solving the equation

θ(t) + ηZ(t) = τ

or equivalently t − tn − εZ(tn + α) + ηZ(t) = τ (2)

for t , under conditions to be specified later, yields a unique solution
t = tn+1 once tn is given. Thus we may write tn+1 = Fµ(tn) for a
map Fµ : R → R depending on parameters µ = (ε, η, α, τ ).
However, it turns out that Fµ has the property Fµ(t+1) = Fµ(t)+1,
so Fµ is the lift of a circle map fµ : S1 → S1. This means that we
now have a dynamical system with phase space the circle S1 and
evolution law fµ. Conceptually it is easier to work with the circle
map fµ but for actual computationswe usually prefer the lift Fµ. Let
us summarize the result in the following proposition; for a proof
see the Appendix.

Proposition 2 (Circle Map and Lift). Let Z be as in Definition 1 and
define the function Uε : R → R as Uε(t) = t + εZ(t). Then the map
Fµ : R → R with

Fµ(t) = U−1
η (Uε(t + α) − α + τ) (3)

defines a parameter dependent differentiable dynamical system,
provided that Uη is invertible. The parameters are µ = (ε, η, α, τ ).
Furthermore, Fµ is the lift of a circle map fµ : S1 → S1 of degree 1,
given by

fµ(t) = U−1
η (Uε(t + α) − α + τ) mod 1. (4)

A circle map is a one-dimensional map just like an interval map.
The dynamics of the two have much in common; this feature is
most prominent when the circle map is studied via a lift. However,
because the circle is different from the interval, there are also
differences in dynamical behavior. For example non-degenerate
fixed points of a circle map come in pairs. See Fig. 2.

We now make a further distinction between two cases,
namely whether fµ is invertible (a diffeomorphism) or not (an
endomorphism). The difference between these cases is not only in
dynamical behavior but also because the second case has far richer
bifurcation scenarios. Essentially it boils down to both ε and η
being ‘sufficiently small’ or one of them not meeting this criterion.
However, there is a priori no reason to assume that either of them
is small.
Fig. 2. Phase portrait of the circle map fµ and graph of the lift Fµ . fµ has two fixed
points indicated by bullets. One is stable; the other is unstable, according to the
arrows. The lift Fµ is a map on the interval [0, 1] with Fµ(1) = Fµ(0) + 1; drawn
is Fµ − 1. t∗s (stable) and t∗u (unstable) satisfy Fµ(t) = t + 1. The Zeitgeber in this
example is Z(t) =

1
2 (1 + sin(2π t)).

(a) Fµ is the lift of a circle diffeomorphism. In this case Fµ is
differentiable and F−1

µ exists and is also differentiable. Both Uη

and Uε have to be invertible, which in turn means that ε and
η must be small enough; in particular, 1 + εZ ′(t) > 0 and
1 + ηZ ′(t) > 0 for all t .

(b) Fµ is the lift of a circle endomorphism. In this case Fµ is again
differentiable but F−1

µ does not necessarily exist. Now only Uη

has to be invertible, which means that only η has to be small
enough.

Remark 1. Here ε ‘small enough’ means that Uε is invertible,
for which we need that U ′

ε > 0. This depends on the specific
form of the Zeitgeber. For the standard Zeitgeber Z(t) =

1
2 (1 +

sin(2π t)), small enough means that ε < 1
π
. Thus the circle

map fµ is a diffeomorphism if both ε and η are smaller than 1
π
.

The standard Zeitgeber has no biological meaning; we only use
it as an illustration. Since every 1-periodic function has a Fourier
series containing sine and cosine terms, the standard Zeitgeber
can be regarded as the simplest non-trivial example of such a
function. �

Remark 2. If η is not small, but ε is small enough that Uε is
invertible, F−1

µ is the lift of a circle endomorphism, but Fµ is multi-
valued. This case is similar to case b with the roles of Fµ and
F−1
µ interchanged. However in the dynamical system defined with
F−1
µ , time is running backwards, so it describes the past rather
than the future. Mathematically this is not a problem, but the
biological interpretation could be problematic. One could force Fµ

to be single-valued by choosing the smallest solution for t = tn+1
of Eq. (2). Then Fµ again defines a dynamical system, though a
discontinuous one. �

Remark 3. If both ε and η are not small, Fµ and F−1
µ are multi-

valued. In this case we do not have a well-defined dynamical
system at all. But a construction similar to that in the previous
remark can be applied to define a possibly discontinuous
dynamical system. �

4. Analysis of the mathematical model

Here we restrict ourselves to the case where Fµ in Proposition 2
is the lift of a circle diffeomorphism fµ. In that case we can use
the rotation number which tells us howmuch on average an initial
point is rotated along the circle by fµ. It is a powerful tool in
determining whether fµ has fixed points or periodic points. The
existence of such points and their dependence on the parameters
µ is the main topic of this section. Stable fixed or periodic points
are the most relevant for our model and we will see how they lose
stability at certain bifurcations. For background on circle maps and
further references to the literature see [21,39–41].
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Fig. 3. Left: schematic picture of tongues and hairs, the main tongue emanating at 1, a p : q tongue at p/q and a hair at ω0 , on the ω-axis for the Arnol’d map Aω,λ . Right:
schematic phase portraits of the same family near and on the boundary of themain tongue. The rotation number as a function ofω for a fixed value λ = λ0 is shown in Fig. 4.
4.1. Special cases related to the Arnol’d map

We begin with an example, namely two special cases where
Fµ can be related to the lift of the Arnol’d or standard circle map
Aω,λ. Here we make a special choice for the Zeitgeber Z , namely
Z(t) =

1
2 (1 + sin(2π t)). The rotation number of the Arnol’d map,

depending on the parameters ω and λ, is well studied, so we have
quite some information on fixed and periodic points. The (lift of
the) Arnol’d map is defined as

Aω,λ(t) = t + ω + λ sin(2π t),

for t ∈ R and parameters λ, ω ∈ R. In Fig. 3 we indicate the
regions in the (ω, λ)-plane where the rotation number of Aω,λ is
constant. These regions are called tongues and the general theory of
circle diffeomorphisms tells us that for parameter values inside the
tongues the map has stable fixed or periodic points. On the tongue
boundaries we have saddle-node bifurcations of fixed points in the
main tongue or periodic points in the other tongues; see Fig. 3.

Recall that the lift of our circle map fµ is given by Fµ(t) =

U−1
η (Uε(t + α) − α + τ), where Uε(t) = t + εZ(t) and Z is the

periodic forcing. For a special choice of Z and parameters µ, Fµ is
transformed into the Arnol’d map by a change of coordinates. We
summarize this in the following lemma.

Lemma 3 (Conjugation to the Arnol’d Map). Let the periodic
Zeitgeber Z be given by Z(t) =

1
2 (1 + sin(2π t)); then:

1. the map F(ε,0,α,τ ) is conjugate to the Arnol’d map A
τ+

1
2 ε, 12 ε

, where
the conjugation is a rigid translation over α,

2. the map F−1
(0,η,α,τ ) is equal to the Arnol’d map A

−τ+
1
2 η, 12 η

.

Using F−1 in the second part of the lemma may seem unnatural
in the present context, but if ρ is the rotation number of F−1,
then 1 − ρ is the rotation number of F . Therefore the second part
yields information about the rotation number of F(0,η,α,τ ). Note that
the parameter transformation from parameters of F to those of A
does not involve α. Thus α does not play a role in the bifurcation
analysis of these two special cases. The proof of the lemma is
straightforward and therefore omitted.

To analyze these two special cases it suffices to consider the
Arnol’d map Aω,λ. Let us summarize the properties of the latter. If
λ = 0, the map reduces to a rigid rotation Aω,0 = Rω and therefore
the rotation number is ρ(Aω,0) = ρ(Rω) = ω. This is a degenerate
situation. But forλ ≠ 0 themap is no longer degenerate. Let us first
fix ω = ω0 and λ = λ0 ≠ 0 such that Aω0,λ0 has a rational rotation
number p

q . Then Aω0,λ0 has q-periodic points. If these points are
hyperbolic then there is an open neighborhood of (ω0, λ0) in the
parameter plane such that for all (ω, λ) in this neighborhood, Aω,λ

has rotation number p
q .

Let us now consider the line Lλ0 = {(ω, λ0) | λ0 ≠ 0, ω ∈

[
1
2 ,

3
2 )} in the parameter plane of the Arnol’d circle map. From

the arguments above it follows that this line segment contains
Fig. 4. Devil’s staircase: the graph of the rotation number ρ as a function of ω for
the Arnol’d map at a fixed value λ = λ0 . In the main tongue the rotation number is
equal to 1. Also see Fig. 3.

open intervals on which the rotation number of the map equals
p
q . These intervals have to shrink to points when λ0 tends to zero,
because the rotation number of Aω,0 equals ω. When we consider
the rotation number on the line segment Lλ0 as a function of ω,
its graph (see Fig. 4) is a so-called devil’s staircase; see [40,41] for
a definition. A further analysis shows that there are saddle-node
bifurcations of q-periodic points on the boundary of the intervals in
Lλ0 ; see [42]. Since the map Aω,λ is differentiable in the parameters
ω and λ there are differentiable pairs of saddle-node curves in the
(ω, λ)-parameter plane emanating from rational points on the line
segment L0. This forms the structure of tongues in the parameter
plane; see Fig. 3. The tongues where the rotation number is p

q are
called p : q-tongues and the tongue where the rotation number is
1 (or 0) is called themain tongue.

A rational rotation number p
q for the map Aω,λ is constant on

closed intervals on the line segment Lλ0 . But the complement of
the union of these closed intervals in Lλ0 is not empty; it contains
points where the rotation number is irrational. Again when λ0
tends to zero there are smooth curves with sufficiently irrational
rotation number ending in irrational points of L0. These curves are
sometimes called hairs. The (ω, λ)-parameter plane of the Arnol’d
circle map consists mainly of tongues and hairs; see Fig. 3. The
tongues and hairs fill a relatively large region in the parameter
plane; when we take a point (ω, λ) at random, there is a positive
probability that it belongs to a tongue, but there is a positive
probability as well that it lies on a hair.

4.2. A standard form for the circle diffeomorphism fµ

The purpose of this section is to show that there is a standard
form for every circle diffeomorphism. The Arnol’dmap for example
already is in this form. Identifying the standard form for the map
fµ allows us to conclude that it has a tongues-and-hairs structure
in a certain parameter plane for every 1-periodic Zeitgeber. Thus
the standard form mainly serves a theoretical purpose; for actual
computations it is far more advantageous to use the expression in
Eq. (3) for the lift of fµ.
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Theorem4belowshows that every liftC of a differentiable circle
map of degree 1 can be written in the following form:

C(t) = t + P(t),

where P is a 1-periodic function. We assume that P is non-zero
and non-constant. The Fourier coefficients of P may be considered
as parameters. Let ⟨P⟩ denote the average of P . Set ω = ⟨P⟩ and
P0 = P − ⟨P⟩. Then ω is the constant term of the Fourier series of
P and P0 has zero average. Consequently λ = max[0,1] |P0| is non-
zero and we may set P01 =

1
λ
P0. Finally we may write

Cω,λ(t) = t + ω + λP01(t). (5)

If we now interpretω and λ as parameters, then there is a tongues-
and-hairs structure in the (ω, λ)-plane. Note that we recover the
Arnol’d map by setting P01(t) = sin(2π t). In the more general
family of Eq. (5) the tonguesmay have a richer structure than those
of the Arnol’d map. For example there may be more saddle-node
curves inside a tongue, as we will see in the next section. For a
detailed description of such phenomena see [43].

Recall that Fµ(t) = U−1
η (Uε(t + α) − α + τ), where Uε(t) =

t + εZ(t) is a lift of the circle diffeomorphism fµ. First we give a
standard form for the map Fµ.

Theorem 4 (Standard Form). Suppose that η is small enough that
U−1

η exists. Let ν = (σ , β, α, τ ) be new coordinates in parameter
space with ε = σ cosβ and η = σ sinβ . Then there are smooth
functions ω and λ of the parameters ν with ω(ν)|σ=0 = τ , λ(ν) = σ

and a 1-periodic smooth function Rν with zero average, smoothly
depending on parameters ν , such that

Fµ(ν)(t) = t + ω(ν) + λ(ν)Rν(t).

The theorem shows that after a transformation of parameters, Fµ

takes the standard form of a circle map. In particular we have the
result that there is a tongues-and-hairs structure in the (τ , σ )-
plane, for each value of β ∈ [0, π

2 ) and each value of α ∈ [0, τ ).
The function R depends on the Zeitgeber Z , but also on all

parameters ν. The latter will appear in the coefficients of the
Fourier series of R.

Remark 4. Setting η = 0 in µ = (ε, η, α, τ ) corresponds to
setting β = 0 in ν = (σ , β, α, τ ). Let ⟨Z⟩ =

 1
0 Z(t) dt be the

average of Z; then we have

F(ε,0,α,τ ) = t + τ + εZ(t + α)

= t + τ + ε⟨Z⟩ + ε(Z(t + α) − ⟨Z⟩).

If we also take Z(t) =
1
2 (1 + sin(2π t)) we recover the result of

Lemma 3. �

Remark 5. We expect that for most values of β the tongues in the
(τ , σ )-parameter plane are non-degenerate, that is they intersect
transversely at the vertices. We even expect this for Z(t) =

1
2 (1 +

sin(2π t)), since in the standard form of F , Rν will have a Fourier
series rather than a Fourier polynomial. Also see [43]. �

Let us now look at the position of themain tongue.We assume that
the Zeitgeber has the following Fourier series:

Z(t) = c0 + c1 sin(2π t) +

−
k>1

ck sin(2π(kt + γk)), (6)

with coefficients ck ∈ R and γk ∈ [0, 1]. Note that by a time shift
we can always achieve that γ1 = 0. Then we have the next result.
Proposition 5 (Boundaries of the Main Tongue). Let the Zeitgeber be
as in Eq. (6); then the boundaries of the main tongue of the map Fµ(ν)

are given by

τ± = 1 − σ [c0(cos β − sin β) ∓ c1

1 − cos(2απ) sin(2β)]

+ O(σ 2). (7)

For our standard example of a Zeitgeber Z(t) =
1
2 (1 + sin(2π t)),

the boundaries of the main tongue are given by Eq. (7) with c0 =

c1 =
1
2 and without the O(σ 2) term because all other coefficients

are equal to zero.

4.3. Fixed points of the diffeomorphism fµ

Existence of stable fixed points of the circle diffeomorphism fµ
is one of the main questions. Recall that such points correspond
to entrainment in the biological model. Therefore we take a closer
look at such points. From the previous sections we know that fixed
points exist for parameter values in the main tongue. They are
easily characterized as follows: t = t∗ is a fixed point of fµ if
fµ(t∗) = t∗. However, as noted before, for practical computations
it is more convenient to use a lift Fµ of fµ. Using the notation from
Proposition 2 a point t = t∗ is a fixed point of fµ if

Fµ(t∗) = t∗ + 1,

which is equivalent to

Uε(t∗ + α) − α + τ = Uη(t∗ + 1). (8)

Even if ε and η are small enough that Uε and Uη are invertible,
this equation has several solution branches. Therefore we cannot
solve (8) explicitly for t∗. Since we are mostly interested in the
dependence of t∗ on τ we shall content ourselves with

τ = Uη(t∗) − Uε(t∗ + α) + α + 1. (9)

Thus for fixed values of ε, η and α we obtain τ as a function of t∗.
Now that we have characterized the fixed points of fµ, let us

determine their stability. The fixed point t = t∗ is stable if
|F ′

µ(t∗)| < 1. After a short computation we find that

F ′

µ(t∗) =
U ′

ε(t
∗
+ α)

U ′
η(t∗)

. (10)

FromEqs. (9) and (10)we almost immediately obtain an alternative
characterization of stability of the fixed point t∗. Two examples of
application of the following lemma are given in Fig. 5.

Lemma 6 (Stability). On solution branches of Eq. (8), the fixed point
t∗ is stable or unstable when t∗ as a function of τ is increasing or
decreasing.

Let us again consider our standard Zeitgeber Z(t) =
1
2 (1 +

sin(2π t)). For fixed ε, η and α there are two values t∗1 and t∗2 for
which |F ′

µ(t∗i )| = 1 and |F ′
µ(t∗)| < 1 if t∗ ∈ [t∗1 , t

∗

2 ]. We recover
the boundaries of themain tongue by setting τi = Uη(t∗i )−Uε(t∗i +

α) + α + 1; then a stable and an unstable fixed point of the map
fµ exist for τ on the interval [τ1, τ2]. Motivated by this example
one could conjecture that for every 1-periodic Zeitgeber with only
two extrema in one period there are precisely two fixed points
for parameter values in the main tongue. This turns out to be true
when an extra condition is imposed.

Proposition 7 (Number of Fixed Points). Let Z be a 1-periodic
Zeitgeberwith onemaximumand oneminimumon the interval (0, 1).
Then the circle map fµ has precisely two fixed points for parameter
values in the main tongue if (Z ′′)2 − Z ′

· Z ′′′ does not change sign.
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Fig. 5. Fixed points t∗ of the map fµ as a function of τ . The solid curve represents a stable fixed point, the dashed curve an unstable one. At parameter values
τ = τi there are saddle-node bifurcations; also see Fig. 3. Parameters ε, η and α are fixed. Left: the Zeitgeber is Z(t) =

1
2 (1 + sin(2π t)). Right: the Zeitgeber is

Z(t) =
3
10 (2 + sin(2π t) + cos(4π t)).
Fig. 6. Tongues for the Arnol’d map Aω,λ in the (ω, λ)-plane. The algorithm for
computing the pictures is based on the rotation number. The latter is defined for
sufficiently small values of λ only. Therefore the tongue boundaries in the picture
are not well defined for large values of λ. The effect of this phenomenon is even
more visible in the following picture.

For our standard example of a Zeitgeber Z(t) =
1
2 (1 + sin(2π t)),

the quantity (Z ′′)2 − Z ′
· Z ′′′ is equal to 1. The Zeitgeber Z(t) =

2
5 (

4
3 + sin(2π t) +

1
3 sin(4π t)) also has two extrema, but the

quantity (Z ′′)2−Z ′
·Z ′′′ changes sign on [0, 1]. See the Appendix for

further implications. With a general periodic Zeitgeber there may
be more than one stable fixed point for parameter values in the
main tongue. This occurs in general when the Fourier series of the
Zeitgeber contains more than just one term like in our standard
example. Let us look at a Zeitgeber with the following Fourier
polynomial: Z(t) =

3
10 (2 + sin(2π t) + cos(4π t)); then there

are four solutions of |F ′
µ(t∗i )| = 1. Let us sort them such that

τi = Uη(t∗i ) − Uε(t∗i + α) + α + 1 increases with i. Then for fixed
values of ε, η andα there are atmost four fixed points of fµ for each
τ ∈ [τ1, τ4]. We represent the results graphically in Fig. 5.

4.4. Examples of tongues and hairs for different Zeitgebers

Here we collect some examples of tongues-and-hairs figures
showing differences from and similarities with the prototype
figure of tongues in the Arnol’d circle map. Therefore we start with
the latter; see Fig. 6. In this family the tongues are fixed, but in
our family fµ, the tongues in the (τ , σ )-plane still depend on the
values of β and α. Moreover they also depend on the Zeitgeber. In
order to keep the number of pictures limitedwe only show tongues
for two different Zeitgebers; see Figs. 7 and 8. As is to be expected
from the existence of a standard form (see Section 4.2), the pictures
are qualitatively the same—that is, near the τ -axis or ω-axis in the
Arnol’dmap. Thewidth and the growth of thewidth of the tongues
depend on parameters in the map. This is shown in Fig. 9, in the
next section, where its biological relevance is discussed.

5. Discussion

The main results of analyzing our model for a pacer cell with a
periodic Zeitgeber are:
Fig. 7. Tongues for the circle map fµ in the (τ , σ )-plane, with standard Zeitgeber
Z(t) =

1
2 (1 + sin(2π t)). The values of the parameters µ = (ε, η, α, τ ) are

ε = σ cos β , η = σ sin β with β =
π
3 and α = 0.3.

Fig. 8. Tongues for the circle map fµ in the (τ , σ )-plane, with Zeitgeber Z(t) =
3
10 (2 + sin(2π t) + cos(4π t)). The parameter values are as in Fig. 7.

1. there is a finite range of entrainment, namely the 1:1 tongue,
2. there are finite ranges of synchronization in the more general

p : q tongues,
3. the boundaries of the range of entrainment dependon thephase

delay and advance parameters in the model,
4. outside the tongues the pacer cell shows quasi-periodic

behavior, known as relative coordination in circadian biology,
5. the phase of entrainment, or onset of activity interval, depends

on the intrinsic period of the pacer cell.

In the following sections we will discuss these matters in
more detail. Let us remark that ranges of synchronization and
entrainment apply to the intrinsic period, while the period of
the Zeitgeber is kept fixed. From a biological point of view it
seems more natural to keep the intrinsic period fixed and vary the
period of the Zeitgeber. However, it is not hard to see that these
viewpoints are in fact equivalent.

5.1. The model

As explained in Section 2 our long-term goal is to study a
collection of interacting pacer cells with a Zeitgeber acting as
an external stimulus. However, there are serious difficulties in
the analysis of the mathematical model that is induced by this
biological model; again see Section 2. Therefore we consider a
simpler system of a single pacer cell that experiences stimuli from
other pacer cells as well as external sources. We regard the sum of
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Fig. 9. Left: the main tongue of the circle map fν , where ν = (σ , β, α, τ ) with α = 0.3 and β = β0 fixed. For σ = σ0 the range of entrainment is the width of the tongue
at σ = σ0 , namely the interval (τ−, τ+). Right: the range of entrainment (τ−, τ+) for fixed σ = σ0 and β varying in (0, π

2 ). The parameter β determines the ratio of ε and η

since ε = σ cosβ and η = σ sinβ .
all such stimuli as the Zeitgeber for the single pacer cell. The latter,
in this simplification, does not stimulate the other pacer cells. In
physics this is known as the mean field approach. Our analysis
first focuses on periodic Zeitgebers. Under these conditions we
naturally obtain a dynamical system consisting of a circle map for
this biological model. The heart of the mathematical model is the
circle map fµ that yields, once t0 is given, a sequence of relative
times tn corresponding to the beginning of an activity interval of
the pacer cell. The sequence t0, t1 = fµ(t0), t2 = fµ(t1), . . . is called
the itinerary of t0. In this setting, time is relative to the period T of
the periodic Zeitgeber that acts as a stimulus to the pacer cell. It is
convenient to use T as a unit of time; that is,we scale time such that
T = 1. The circle map fµ depends on parameters µ = (ε, η, α, τ ),
where τ is the intrinsic period of the pacer cell, measured in the
time unit T = 1. Furthermore ε and η determine the phase delay
and phase advance, and α determines the length of the intrinsic
activity interval; see Section 2 for an explanation of these terms.

5.2. Dynamics

In the description of the dynamical behavior of the map fµ
there is a difference between fµ being invertible (diffeomorphic)
and not being invertible. We mainly restrict to the invertible case.
Furthermore we restrict to typical dynamics; see [39] for a precise
definition. In the present case this comprises fixed points, periodic
points and quasi-periodic points. Note that the itinerary of the
latter consists of an infinite sequence.

The simplest kind of dynamics is a fixed point of fµ, which
means that the activity interval of the pacer cell always starts at
the same relative time. The existence of such points implies the
possibility of entrainment. The next simplest kind of dynamics is a
periodic point of fµ. This means that there is a t0 such that in the
sequence t0, t1 = fµ(t0), . . . , tq = fµ(tq−1) the last point tq is again
equal to t0 for some fixed q. In general these q onsets of activity
occur in p periods of the Zeitgeber. We call this synchronization of
thepacer cell, a generalization of entrainment. Theperiodic point t0
is called p : qperiodic. The last kind of typical dynamics for themap
fµ is quasi-periodicity. The point t0 is quasi-periodic if the itinerary
of t0 densely fills the circle or interval [0, 1] depending on howwe
represent the map.

The kind of dynamics that the map fµ exhibits depends on the
values of the parameters. All this is nicely organized in parameter
space in wedge shaped regions called tongues, one for each pair
(p, q); see Fig. 3. However, here we need the restriction that fµ is
invertible. For parameter values in the (p, q) tongue, the typical
dynamics of fµ is p : q-periodicity. A special role is played by the
tongue for (p, q) = (1, 1), called the main tongue. Fixed points
are the typical dynamics of fµ for parameter values in the main
tongue. At the boundaries of the tongues, the map fµ has a saddle-
node bifurcation; see Section 4.1. For parameter values outside the
tongues the dynamics of the map is quasi-periodic; this occurs on
hairs in the (τ , σ )-parameter plane. If fµ is not invertible, tongues
still exist but generally overlap, so coexistence of periodic points
with different periods becomes possible.

5.3. Entrainment

For parameter values in the main tongue, the tongue with
(p, q) = (1, 1), the map fµ has fixed points. There are at least
two such points; of these, one is stable and the other is unstable.
The stable one corresponds to entrainment of the pacer cell. Let us
discuss the shape of the main tongue in some more detail to find
the parameter values for which entrainment occurs.

The parameter space is four dimensional and in it tongue
boundaries are hyper-surfaces. The situation becomes simpler if
we do not use coordinates (ε, η, α, τ ) but (σ , β, α, τ ) with ε =

σ cosβ and η = σ sinβ . Then σ satisfies σ 2
= ε2

+ η2 and
measures how strongly the Zeitgeber stimulates the pacer cell,
while β determines the ratio of ε and η. In these coordinates in
parameter space the boundaries of the main tongue are given by
Eq. (7). As we can see from the standard form in Theorem 4, the
main parameters are τ and σ . In the (τ , σ )-plane we find the
tongues (see Fig. 9) whose detailed shape depends on α and β .
The range of entrainment is given by the interval (τ−, τ+), with τ±

given in equation Eq. (7), when other parameters are kept fixed.
There are many biological experiments/observations supporting
the existence of bounded ranges of entrainment; see [3]. In practice
one cannot vary the intrinsic period τ of the pacer cell. But varying
the period of the Zeitgeber T at a fixed value of τ is equivalent
to varying τ and fixing T in the model; see [29,38,35]. However,
biological evidence exists that the intrinsic period varies among
individual pacer cells while they can still entrain to a Zeitgeber
with a 24 h period; see [44,9,45,33,11].

In Section 4.3 on fixed points of the map fµ we noted that
the position of stable fixed points is an increasing function of the
intrinsic period τ . This has been observed by various authors (for
example see [28,46]) and for particular organisms by Aschoff [2],
Aschoff and Pohl [29], Daan and Pittendrigh [23], and Roenneberg
and Merrow [38]. In Fig. 10 we show data from [38] essentially
giving the relative onset times of the activity interval as a function
of the intrinsic period for several mutants of the fungusNeurospora
crassa.

Both the position and the length of the interval (τ−, τ+) depend
on α and β . As we see from Fig. 9 the range of entrainment is
in general not centered at τ = 1. Here β is the most important
parameter. If β < π

4 or equivalently ε > η, then the phase delay
is larger than the phase advance and the range of entrainment is
shifted towards intrinsic periods τ smaller than the period T of
the Zeitgeber. If β > π

4 , the range of entrainment is shifted in
the direction of intrinsic periods τ larger than the period T of the
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Fig. 10. Relative times of onset of activity interval for four mutants of Neurospora
crassa. The genetic types are indicated by markers; see [38] for an explanation of
frq1, frq+, frq7 and frq9 and 10.

Zeitgeber. The model has two extreme cases. One is for β = 0 or
equivalently η = 0 (only phase delay), where only pacer cells with
intrinsic period τ less than the period T of the Zeitgeber can be
entrained. The other one is for β =

π
2 or equivalently ε = 0 (only

phase advance), where τ must be larger than T for entrainment to
occur. A phenomenon related to this skewness has been observed
for several nocturnal rodents [23] where a decreasing center of the
range of entrainment corresponds to increasing phase delay and
decreasing phase advance.

As mentioned before, in the main tongue, the map fµ has at
least a pair of fixed points, one stable and one unstable. However
more pairsmay exist, leading to curves of saddle-node bifurcations
inside the main tongue; see Fig. 5. Thus upon varying τ , a fixed
point may lose its stability and the system then jumps to another
stable fixed point. As long as parameter values remain in the main
tongue this is the only possibility. Another possibility is to keep
the parametersµ fixed but vary a parameter in the Zeitgeber. For a
biological example possibly related to such a mechanism, see [47].

5.4. Synchronization

Apart from entrainment, themodel also shows the possibility of
the more general phenomenon called synchronization. This occurs
for parameter values in the p : q tongues in the (τ , σ )-plane.
Then the circle map fµ has a q-periodic orbit consisting of points
t0, t1, . . . , tq−1 indicating the beginnings of q activity intervals of
the pacer cell in p periods of the Zeitgeber. In the p : q tongues
we have the same phenomena as in the main tongue; the only
difference is that they apply to periodic points instead of fixed
points.

There is an example of a 2:1 periodic point: the fungus
Neurospora sp has one activity interval in two periods of the
Zeitgeber; see [31]. Here the Zeitgeber is a temperature stimulus.

5.5. No synchronization

For parameter values outside the tongues the circle map
has quasi-periodic orbits. This corresponds to quasi-periodic
occurrence of activity intervals of the pacer cell. In practice such
behavior may be hard to distinguish from periodic behavior with
a long period. In circadian biology, such loss of entrainment often
leads to a phenomenon called relative coordination. An example of
such behavior is provided by the daily activity of chaffinch which
shows an alternation of seemingly entrained and free running
behaviors [2].
5.6. Future directions

There are several ways to generalize or extend the current
model for a single pacer cell with a periodic Zeitgeber. We first
concentrate on the biological model of Section 2 in view of our
future goal of describing a collection of interacting pacer cells,
stimulated by a Zeitgeber.

Single pacer cell, circle map. In the present analysis we restricted to
the case where the map fµ is a circle diffeomorphism (invertible
map). Then the (τ , σ )-plane is divided into tongues with well-
definedperiodic dynamics andhairswith quasi-periodic dynamics.
This only occurs when the stimulus of the Zeitgeber on the pacer
cell is relatively weak. Allowing a stronger stimulus, the map fµ
becomes an endomorphism (non-invertible map) with far richer
bifurcation scenarios; see for example [43]. However, it is not
clear whether the subtleties of the endomorphism case are in
accordancewith the coarseness of the underlying biologicalmodel.
Therefore we restrict to the simplest properties of each model.

Single pacer cell, torusmap. Thus it seemsmore fruitful to generalize
in another direction and consider a quasi-periodic Zeitgeber.
This will lead to a torus map instead of a circle map. Such a
generalization is also more relevant for our aim of studying a
collection of pacer cells, by first considering a single cell with an
asymmetric interactionwith its environment. The latter stimulates
the pacer cell, but not vice versa.

Collection of pacer cells, no interaction. In a model for a collection of
pacer cells we can already use the results for a single cell. As a first
model let us assume that the cells are stimulated by an external
periodic Zeitgeber but do not interact. Although biologically not
particularly relevant, it is a step in gradually sophisticating the
model. Furthermore suppose that there aren cells, characterizedby
parameter values (εi, ηi, αi, τi) in themain tongue for i = 1, . . . , n.
That is, we apply the current single pacer cell model for each cell.
Then the collection will be entrained to the Zeitgeber, although
each cell has its own onset time and length of activity interval. The
collective behavior, though, will be periodic.

Collection of pacer cells, with interaction. We conjecture that, start-
ing with the previous model, for a sufficiently weak interaction
there will still be entrainment. Nevertheless it will be interesting
to consider a model for interacting pacer cells without a Zeitgeber
as well. Here we may take the pacer cells nearly identical in the
sense of the previous paragraph. However there is biological evi-
dence that there are different kinds of pacer cells [9–11]. In further
extensions one could again include a periodic Zeitgeber. Since in
a model for a collection of pacer cells the Zeitgeber acts solely as
an external stimulus, it seems most natural to restrict to periodic
Zeitgebers. However we may wish to include both daily and sea-
sonal variations. This would imply that the period of the Zeitgeber
is a year. Another possibility is to stick to Zeitgebers with a 24 h
period and use methods for slowly varying parameters to include
seasonal changes.

Non-periodic pacer cells. As mentioned before (see Section 1),
there is experimental evidence that not all pacer cells, or more
precisely cells from the suprachiasmatic nucleus, show periodic
behavior. Despite that, they may still contribute to entrainment
to a periodic Zeitgeber. This is again a different aspect not present
in the current model. One direction is to consider pacer cells that
can bemodeled as quasi-periodic or evenmore general oscillators.
Another direction is to model each as a system with an a priori
stationary state that may undergo a Hopf bifurcation when the
strength of the interaction with the Zeitgeber increases. In the
former, entrainment can possibly only be realized approximately,
but in the latter, entrainment, in a strict sense, is still conceivable.
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Fig. 11. Period doublings and halvings for the map fµ with Zeitgeber Z(t) =

3+ sin(2π t)+ 2 cos(4π t). Shown are the positions of periodic points as a function
of the intrinsic period τ . The parameter values are α = 0.5, ε = 0.4 and η = 0.17.

6. Conclusion

The current model has been used to explain many properties of
the mammalian circadian behavior [14]. In addition, we provided
the mathematical basis using the current model of at least
five phenomena that are characteristic of circadian behavior
in general: (1) finite range of entrainment; (2) existence of
multiple activity bouts per cycle (p : q tongues); (3) relative
coordination or cycleswith extremely long periods (quasi-periodic
orbits); (4) relationship of the phase of entrainment to the
period of the Zeitgeber; (5) asymmetry in the observed period
and the phase delay and phase advance components of phase
response curves. Aside from these, we also now have a set
of four directly observable parameters to look at more closely
in biological systems. Most experiments in the past have only
searched for genes and proteins responsible for the intrinsic period
τ . However, circadian clocks are also characterized by their phase
response curves which in the simple pacer model are defined
with only three more basic parameters α, ε, η. We think that an
important predictive value of the current work is our discovery
of the mathematical relationships between these four parameters
and their contribution to various aspects of entrainment. Now,
one direction that biologists should pursue is to do extensive
experimentation to search in the complex biochemical system for
molecular components which could be responsible for the phase
delay and phase advance parameters ε and η, respectively, as
well as the intrinsic activity length α. Finally, one may say that
the model is too simple to capture the entire phase response
characteristics of whole organisms, or even of a single pacer
cell. The PRC used must be rather realistic for an individual
pacemaker cell, at least if our assumption that the behavior can
be characterized by two states (electrical activity versus rest)
is correct. The result of the interactions between the various
pacemaker cells and their response to light will eventually lead
to the known PRCs of the ensemble, in which phase delays occur
at the end of the photoperiod and advances at the beginning.
However, we must emphasize that even this very simple model
with only four parameters already captures those characteristics
mentioned above, that is, we did not use a more realistic phase
response curve [23] to simulate those characteristics. Properties
that we can see in the model such as hysteresis (see Fig. 5) and
period-halving and period-doubling cascades (see Fig. 11) remain
to be seen in experiments at the behavioral and lower levels.
The underlying biochemical network that produces these four
parameters may just be details that are not really necessary in
understanding entrainment of circadian rhythms itself, but have
important roles in other aspects of the biological system such as
energy expenditure and adaptation to changes in environment [1].
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Appendix A. Bifurcations

The tongues in the (σ , τ )-parameter plane are determined
by saddle-node bifurcations. But there may also be other
bifurcations even when the map fµ is a diffeomorphism, in other
words invertible. The reason is that we have many parameters.
Considering α as a relatively inaccessible parameter and keeping
it fixed we may still vary σ , τ and β . Then we have three-
dimensional tongues in (σ , τ , β)-parameter space. It is an almost
straightforward consequence of Proposition 7 that there are curves
of pitchfork bifurcations in this three-dimensional parameter
space, emanating from rational points on the τ -axis.

Corollary 8 (Pitchfork Bifurcation). Let Z be a 1-periodic Zeitgeber.
If (Z ′′)2 − Z ′

· Z ′′′ has a simple zero, then parameter values exist for
which fµ has a pitchfork bifurcation.

Proof. From the proof of Proposition 7 we see that the number of
solution branches of Eq. (8) does change if Z ′′(t)2 − Z ′(t) · Z ′′′(t)
has a simple zero. �

However, β may be considered as an inaccessible parameter as
well. But the Zeitgeber may also depend on a parameter. We may
in particular view seasonal change, which is slow compared to the
24 h period, as parameter dependence. The quantity (Z ′′)2 −Z ′

·Z ′′′

may change sign depending on this parameter, so we find again
pitchfork bifurcations.

If the map fµ is not a diffeomorphism (not invertible) then
there are numerous other bifurcations; see [43]. This happens
for relatively large values of σ . On varying τ for fixed values
of the other parameters in the main tongue, one generally finds
a number of period doublings followed by the same number of
period halvings (or in opposite order). The reason is that there are
curves of period doublings in the (τ , σ )-parameter planewith local
minima, considered as functions of τ , that are transversely crossed.
For more details we refer the reader again to [43]. An example of
this phenomenon is shown in Fig. 11.

Appendix B. Proofs

Proof of Proposition 2. The main point we have to show is that
Eq. (2) can be solved uniquely with respect to t . Using the
expression for θ in (1) we obtain after some rearranging

tn+1 + ηZ(tn+1) = tn + α + εZ(tn + α) − α + τ . (11)

Since Z is 1-periodic, Uε has the property Uε(t + 1) = Uε(t) + 1,
for all t . Then the equation for tn+1 reads

Uη(tn+1) = Uε(tn + α) − α + τ .

Introducing the operator Tα which takes a function f into Tα f =

T−α◦f ◦Tα where Tα is just a translation overα, that is Tα(t) = t+α,
we can write the equation for tn+1 as

Uη(tn+1) = TαUε(tn) + τ . (12)

Solvability of (12) depends on the value of η. If η is small enough,
Uη is invertible and we write

tn+1 = Fµ(tn) = U−1
η (TαUε(tn) + τ).

Then Fµ is a differentiable map with the property Fµ(t + 1) =

Fµ(t)+1, whichmeans that Fµ is the lift of a circle map of degree 1.
Note that Fµ depends on the parameters µ = (ε, η, α, τ ). �
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Proof of Theorem 4. A consequence of Fµ(t + 1) = Fµ(t) + 1 is
that Fµ(t) − t is 1-periodic; thus there is a 1-periodic C∞ function
Pν such that Fµ(t) = t + Pν(t). Pν has a Fourier series so we may
split off the constant term andwewrite Pν(t) = ω(ν)+Qν(t)with
ω(ν) =

 1
0 Pν(t) dt; then ω is a C∞ function of ν. Furthermore

Qν(t) = Pν(t) − ω(ν) so Qν is a 1-periodic C∞ function with 1
0 Qν(t)dt = 0. So far, Fµ(t) = t+ω(ν)+Qν(t). Forσ = 0wehave

Fµ(t) = t + τ , so ω(0, β, α, τ ) = τ and Q(0,β,α,τ )(t) = 0. Using
the division property of C∞ functions, a 1-periodic, C∞ function
Rν exists such that Qν(t) = σRν(t). Finally F(σ cos β,σ sin β,α,τ )(t) =

t + ω(ν) + σRν(t). �

Proof of Proposition 5. Recall that µ = (ε, η, α, τ ) and ν =

(σ , β, α, τ ) with ε = σ cosβ and η = σ sinβ . Then for small
σ and assuming that 1 − τ = O(σ ) we get

Fµ(ν) = U−η(Uε(t + α) − α + τ) + O(σ 2)

= t + τ + εZ(t + α) − ηZ(t + τ) + O(σ 2)

= t + τ + εZ(t + α) − ηZ(t) + O(σ 2).

The Zeitgeber Z has the following Fourier series: Z(t) = c0 +

c1 sin(2π t) +
∑

k>1 ck sin(2π(kt + γk)). After a near identity
transformation followed by a time shift, we obtain that Fµ(ν) is
equivalent to

Gµ(ν)(t) = t + τ + (ε − η)c0 + εc1 sin(2π(t + α))

− ηc1 sin(2π t) + O(σ 2).

It almost immediately follows that the boundaries of the main
tongue of G and thus of F are as stated in the lemma. �

Proof of Proposition 7. The number of fixed points may change if
the number of solution branches of Eq. (8), Uε(t + α) − α + τ =

Uη(t + 1), changes. This is equivalent to a changing number of
extrema of τ = Uη(t)−Uε(t +α)+α+1. Using Uε(t) = t +εZ(t)
we get τ = ηZ(t)−εZ(t+α)+α+1. Thus the number of extrema
of τ changes at parameter values for which
ηZ ′(t) − εZ ′(t + α) = 0
ηZ ′′(t) − εZ ′′(t + α) = 0.

This equation has trivial solutions for ε and η only if Z ′(t) · Z ′′(t +

α) − Z ′(t + α) · Z ′′(t) ≠ 0. We rewrite this as

Z ′(t)
Z ′′(t)

≠
Z ′(t + α)

Z ′′(t + α)
.

This inequality holds if h(t) =
Z ′(t)
Z ′′(t) is injective. Therefore a

sufficient condition is that h′ does not change sign. From

h′(t) =
Z ′′(t)2 − Z ′(t) · Z ′′′(t)

Z ′′(t)2

the result follows. �
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