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Abstract
In this paper we investigate the global geometry associated with cusp singular
points of two-degree of freedom completely integrable systems. It typically
happens that such singular points appear in couples, connected by a curve
of hyperbolic singular points. We show that such a couple gives rise to two
possible topological types as base of the integrable torus bundle, that we call
pleat and flap. When the topological type is a flap, the system can have non-
trivial monodromy, and this is equivalent to the existence in phase space of a
lens space compatible with the singular Lagrangian foliation associated to the
completely integrable system.
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1. Introduction

1.1. Setup: completely integrable systems, singularities and unfolded momentum domain

A two-degree of freedom completely integrable Hamiltonian system is a map f = (f1, f2),
from a four-dimensional symplectic manifold M to R2, with compact level sets, and whose
components f1 and f2 Poisson commute [1, 8]. We will assume throughout the paper, that the
manifold M and the function f are real analytic. It is well known, see [1], that the regular
level sets of such maps are disjoint unions of smooth 2-tori T 2 and thus form a T 2 bundle in
phase space. Furthermore, it is possible to define an affine variety A, a map f̃ : M → A, and
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(a) (b)

Figure 1. Singular fibres: (a) cuspidal torus and (b) bitorus. The dashed lines represent the
singularities of the fibres. These singularities are critical points of f .

a projection π : A → R2, such that the regular level sets of f̃ are the connected components
of the level sets of f and f = π ◦ f̃ , that is, the following diagram commutes, see [18].

M
f̃

!!

f

""
A π

!! R2

The affine variety A is called the unfolded momentum domain, and is a covering π : A → R2

of the momentum domain—the image of f —branched along the critical values of f . If x is
an attained regular value of f , then there is a neighbourhood U of x such that, above U , the
variety A is a stack of open sets diffeomorphic to U , with as many components as those of
f −1(x). The sets in such stacks join above the critical values of f according to rules that
depend on the type of critical value. Thus the non-trivial topology of the unfolded momentum
domain, and the geometry of the torus bundle, are due to the presence of singularities of the
completely integrable system, see [7, 8].

1.2. Cusp singularities

The singularity we plan to investigate is called a cusp singularity. Cusp singularities were
originally studied by the Russian mathematical school [5, 20–24], and were later revisited for
investigations in semiclassical analysis [3] and in relation to the geometrical phenomenon of
bidromy [4]. If p is a cusp singular point of f and c = f (p) is the corresponding cusp critical
value, then the fibre C = f −1(c) is a cuspidal torus. The cuspidal torus can be described as
the product of a topological circle that has exactly one cusp singularity and a smooth circle,
see figure 1(a). The set of cusp singular points on C forms a smooth circle.

From a cusp critical value c there originate two curves of critical values of f , one of elliptic
and one of hyperbolic type, see figure 2(a). The f -preimage of each hyperbolic critical value
is a bitorus, depicted in figure 1(b), while the f -preimage of each elliptic critical value consists
of two disjoint components—a smooth circle S1 and a smooth torus T 2. The two curves of
critical values originating from c separate an open neighbourhood U of c in two regions of
regular values. For each regular value v in the lighter shaded region R1 of figure 2(a) the fibre
f −1(v) is a smooth torus. On the other hand, the fibre above each regular value in the darker
shaded region R2 is the disjoint union of two smooth tori.

The topology of the unfolded momentum domain A in the π -preimage π−1(U) of the
neighbourhood U of the cusp singularity c is depicted in figure 2(b). Since fibres over elliptic
critical values and regular values in R2 consist of two disjoint components we conclude that
the π -preimage of such values are two disjoint points in A, and in particular that A is two-
sheeted over such values. Moreover, the π -preimage of an elliptic critical value consists of a
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(a) (b)

Figure 2. (a) The local bifurcation diagram of a cusp singularity and (b) its associated unfolded
momentum domain. The two-component region is represented by the darker gray shade.

regular (interior) point of A corresponding to a smooth T 2 and a singular (boundary) point of
A corresponding to a smooth S1. The sheet of π−1(R2) that contains those singular points of
A will be called the local flap of c and denoted by F . The other sheet of π−1(R2) together with
the π -preimage of R1 will be called the local base of c, and denoted by B. The intersection
F̄ ∩ B̄ of the closures of these sets forms the curve " that contains the cuspidal critical value
c and the family of hyperbolic critical values connected to c. The regular component of the
boundary of F will be called free boundary.

1.3. The problem and our results

The way such a local picture contributes to the global bifurcation diagram of f is a complicated
combinatorial problem, but there are two typical situations that often appear in applications
and that we plan to discuss here. Cusp singularities often occur in pairs and, in such an event,
are typically joined either through their curve of elliptic critical values, like in the Clebsh
system [25], Manakov’s top [27], the Sretenskii system [26] and the Rubanovskii system [28],
or through their curve of hyperbolic critical values which is the case we investigate in this
paper.

In section 3 we show that in this second case the corresponding unfolded momentum
domain can be of two different topological types, represented in figure 3, that we call pleat
and flap. Unfolded momentum domains with flap topology appeared in the physics literature
in association with supercritical Hopf bifurcations [13] and with the phenomenon of island
monodromy [13, 14], while unfolded momentum domains with pleat topology are related to
Hamiltonian swallowtails [12, 19].

The different topologies arise from the two different ways in which the local unfolded
momentum domain near the two cusps can be glued together. Furthermore, the two cases can
be analytically distinguished by comparing the sign of a third derivative at the cusp critical
points. It turns out that the topology of the fibration of the phase space defined by f is uniquely
determined if the unfolded momentum domain has pleat topology, see [12], while in the case
of flap topology, the geometry of the fibration is more complicated. In section 4 we confirm
the fact that flap topologies can give rise to both trivial and non-trivial monodromy (this fact
has been discussed on examples in [4]), and we link this fact to the existence of a lens space
L(k, 1), compatible with the fibration, whose characterizing k is precisely the monodromy.
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(a) (b)

Figure 3. Two examples of unfoldings of bifurcation diagrams. The two unfolded momentum
domain pictured are what we call (a) pleat and (b) flap. Thick lines (both solid and dashed)
represent critical values. Solid thick lines represent the image of elliptic singularities while dashed
thick lines represent the image of hyperbolic singularities.

2. Cusp singularities

2.1. Analytic structure of cusp singularities

As stated in the introduction, we plan to describe the topology and the algebraic topology
associated to couples of cusp singularities appearing in the theory of completely integrable
systems. We begin by giving the definition of cusp singularities. To this effect we briefly
recall that, given a two-degree of freedom completely integrable system, the critical points are
the points p in M such that the differential Dfp has a rank less than two. Critical values are
images of critical points. At a critical point, it is possible to define the quadratic differential
D2fp, that is a quadratic form on the kernel of the differential Dfp with values in the co-kernel
of Dfp [6]. Observe that whenever p is a critical point of rank 1, then the quadratic differential
is a quadratic form from R3 to R. Moreover, the Poisson commutation of the components of
f implies that there is always a vector in the kernel of D2fp, which hence has rank at most
two. The non-degenerate cases, when rank (D2fp) = 2, can be separated into those in which
D2fp has signature (0, +, +) or (0, −, −), which correspond to elliptic singularities, or those
in which D2fp has signature (0, +, −),which correspond to hyperbolic singularities [8]. The
simplest degenerate case, in which the quadratic differential has rank 1, is known as a cusp
singularity [3].

Definition 1. Given an integrable system f = (f1, f2), a cusp singularity is a point p in the
phase space such that the differential Dfp has rank 1, the quadratic differential D2fp has rank
1, and there exists a vector v ∈ kerD2fp such that v3f &= 0 (with v3f we mean the third
derivative of f along the tangent vector v at p).

What kind of singular fibres surround a cusp singularity? The local answer to this question
can be obtained by means of a local normal form of the function f , see also [9].

Proposition 2. If p is a cusp singularity of f then there is a neighbourhood U of p and (non-
symplectic) coordinates q1, p1, q2, p2 in U so that the restriction of the integrable fibration
associated to f is locally given by the map flocal : (q1, p1, q2, p2) '→ (q1, q1p2 + q2

2 + p3
2).

Proof. Since rank Dfp = 1 we can apply Caratheodory’s theorem to obtain the symplectic
coordinates q1, p1, q2, p2 with f1 = q1 and f2 = f2(q1, q2, p2). Then f can be
brought to the form flocal through coordinate transformations of the form (q1, q2, p2) '→
(φ(q1), ψ1(q1; q2, p2), ψ2(q1; q2, p2)) and coordinate transformations in the image of f , see
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Figure 4. From left to right: intersections of the cuspidal torus, the bitorus and the disjoint union
of a torus and a circle with the p1 = 0 plane in a neighbourhood of the cusp singular point to form
respectively a cuspidal set, a bitoric set and an elliptic set, see figure 5, left panel. In the elliptic
case the critical points lie on an isolated line that intersects the p1-plane in a point.

[15] (theorem V.5.4). Furthermore, the rescaling p1 '→ p1/φ
′(q1) ensures that {q1, p1} = 1.

Finally, note that {q1, q2} = {q1, p2} = 0. !

2.2. Local structure at a cusp singularity

It follows from proposition 2 that the set of critical points of f in the neighbourhood U of
the cusp singularity p is parametrized by (µ, λ) '→ (−3λ2, µ, 0, λ) with (µ, λ) defined in an
open neighbourhood of 0. Therefore the set of critical points in U is a smooth manifold. The
image of these critical points under f give the critical values of f in the neighbourhood f (U)

of f (p) which are parametrized by cλ : λ '→ (−3λ2, −2λ3) and form a cusp. Assuming that
no other critical points exist in the saturation of U by fibres of f we conclude that cλ describes
the full set of critical values in f (U). We denote by Cλ the preimage in phase space of cλ.
The intersections Cλ ∩ U are defined in coordinates q1, p1, q2, p2 by the equations

q1 = −3λ2, −3λ2p2 + q2
2 + p3

2 = −2λ3.

Thus, for λ = 0 the set Cλ ∩ U is the cuspidal set q1 = 0, q2
2 = −p3

2; for λ < 0 it is a bitoric
set; and for λ > 0 it is an elliptic set. These sets are represented in figure 4, and they trivially
extend in the p1 direction.

Remark. Note that there are two cusps in different spaces. In the phase space, the local critical
fibre C0 ∩ U is the product of a cusp with an open interval. In the image of f the family of
critical values cλ is also a cusp.

2.3. Semi-local structure at a cusp singularity

A precise statement can be made concerning not only the topology of each level set Cλ, but
also the structure of the Lagrangian fibration defined by f in a saturated neighbourhood of a
cusp singular point.

Proposition 3. Consider a cusp singular point p of f and assume that a saturated
neighbourhood of p contains no critical points of f other than those connected by the flows of
X1, X2 to the singularities given by flocal of proposition 2. Then a saturated neighbourhood of
p is topologically the direct product of S1 with a three-dimensional fibred space. The latter is
obtained from the local fibration given by flocal by glueing together the two endpoints of each
non-compact level set (see figure 5). A saturated neighbourhood of a hyperbolic singular point



3414 K Efstathiou and A Giacobbe

Figure 5. A Poincaré surface of a section for the vector field X1 with level sets of the function
f1 (horizontal planes) and the function f2. The fibres of f that contain this set are topologically
compact. This fact is pictorially represented by adding the intervals that connect endpoints of the
same component. The section in this picture is cross-multiplied with S1. The subset associated to
f1 > 0 is that whose vertical component is above the singular point. The lighter figure-of-eight
curve corresponds to a bitorus.

in the one-parametric family arising from the cusp singularity is topologically homeomorphic
to the portion of the previous foliation with f1 > 0.

Proof. Since f is assumed to be a proper map, its fibres are compact. One can always choose
a function f1 for which df1 and thus X1 does not vanish at p. Hence, the cusp singularity
p belongs to a one-dimensional manifold of singularities of the same type which, due to
compactness, must be a circle. The function f1 is hence non-critical on this circle, and thus
also in a neighbourhood of the circle. Using the Hamiltonian flows of f1 and f2 we conclude
that df1 is never zero in a saturated neighbourhood of p.

Consider now a three-dimensional local surface of section & of X1 at p (in the local non-
symplectic coordinates is & = {p1 = 0} and X1 = ∂p1 ). The local expression of proposition 2
implies that the level sets of the components of f in & are those depicted in the left panel of
figure 5. The common level sets of f possess an orientation, given by the projection along X1

of the vector field X2.
The Poincaré map φ from & to itself defined by the flow of X1 preserves each stratum,

where here a stratum is a connected component of the intersection of an R2 orbit spanned by
the flows of X1, X2 with the local Poincaré surface of section &. In the case of the cuspidal
level set the local strata are three, the fixed point p and the two open intervals that at one side
end at p. In the case of bitoric sets the local strata are 4, the degenerate point, the two open
intervals that at one side end at the degenerate point and the loop with both sides ending at
the degenerate point. The preservation of each of these strata does not follow directly from
conservation of f2 but relies also on the preservation of X2 (since it commutes with X1) and
on the continuous dependence of solutions on initial conditions. Letting &′ be the subset of
points of & whose image under the Poincaré map φ still belongs to &, one can observe that
&̃′, the saturation of &′ under the flow of X1, being isomorphic to the gluing of B × [0, 1]
with B a 3-ball, along the boundaries B × {0} and B × {1}, retracts to a circle which we can
choose to be the circle of cusp singularities.
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Every point x ∈ &′ belongs to a unique cycle γx composed of the flow of X1 up to the
first return time and the interval connecting x to φ(x) in the stratum. The cycle γx depends
continuously on the point x, because of smoothness of the flow of X1 and smooth dependence
of the image of the Poincaré map. Observe that the cycle γx is simply continuous, but it
possibly is non-differentiable at two points. As x approaches p the cycle γx approaches
the cycle of cuspidal critical points through p. Let ϑ be a canonical 1-form defined in
&̃′ (such 1-form exists because the topology of the space is S1 times a three-dimensional
ball), the function J (x) = 1

2π

∫
γx

ϑ can be extended to a saturated neighbourhood of the
cuspidal point by using the fact that it is constant along the level sets of f , and is the
Hamiltonian of a circle action in such neighbourhood with no isotropy. The existence of
such a circle action in a saturated neighbourhood of cuspidal tori and bitori can also be found
in [11].

Reducing such neighbourhood under the circle action XJ and using the reduced flow of
X2 one obtains a space whose topology and whose structure of f level sets is the one of the
left panel of figure 5 glued to the space of the right panel of figure 5. Reconstruction of the S1

action gives a manifold isomorphic to &′×S1. In fact &̃′ could be isomorphic to the quotient of
&′ ×S1 under a finite group action fixing the cusp singularity, but the structure of the foliation
near such singularity forces such group to be at most Z2, while this latter possibility can be
discarded because of the preservation of X2.

The description of the local structure at hyperbolic singular points near the cusp singular
points is included in the previous discussion. It will not change as the hyperbolic singularity
moves to neighbouring hyperbolic singular points because the local description of hyperbolic
singularities does not allow a change of the isotropy. !

A consequence of this description is that the cuspidal set belongs to a cuspidal torus, that
is a non-smooth T 2 which contains a circle of singular points and whose intersection with
a plane transverse to this circle is locally a cusp, while the elliptic set belongs to a level set
isomorphic to the disjoint union of a circle S1 with a regular two torus T 2, and finally the
bitoric set belongs to a bitorus, see [17].

2.4. Homology cycles and their parallel transport in a neighbourhood of a cusp singularity

Given the description of a saturated neighbourhood of a cusp singularity as a direct product it is
possible to give a full description of the homology cycles on fibres in such a neighbourhood and
their parallel transport between different fibres. In order to facilitate the discussion we depict
in figure 6 the intersections of fibres in the neighbourhood of the cusp with a Poincaré surface
of section. The full fibre is then reconstructed as the direct product of these intersections with
S1, where this S1 is provided by the circle action defined in the saturated neighbourhood of
the cusp, see proposition 3.

The regular fibres of f̃ are smooth two-dimensional tori T 2 and their first homology group,
which is isomorphic to Z2, is generated by two cycles. One cycle, which we call α̃, can be
chosen as associated to the circle action, and is supported by the circle S1 taking part in the
direct product. This cycle is well defined on all fibres. For regular fibres that project under f̃

outside the flap, the second cycle is denoted by β̃ and is supported by the intersection of the
regular fibre with the Poincaré section as shown in figure 6. For regular fibres that project under
f̃ inside the flap, the second cycle is denoted by γ̃ and is again supported by the intersection
of the regular fibre with the Poincaré section.

The cuspidal torus C0 also has a first homology group which is isomorphic to Z2, and is
generated by two cycles that we denote by a and b. The cycle a is again associated with the
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Figure 6. Homology cycles for fibres in a neighbourhood of a cusp singularity. Here the
intersections of fibres with the Poincaré surface of section & are shown and the homology cycles
supported by these intersections are marked. Singular level sets (bitorus, cuspidal torus) are drawn
with thicker lines. For each fibre the corresponding projection to the base space of the fibration is
shown. Note that in the leftmost panel, the two components denoted by β̃ and γ̃ inside the bitorus
project under f to the same point in the interior of the cusp, although they project under f̃ to
different points in the unfolded momentum domain: γ̃ projects under f̃ inside the flap while β̃
projects outside the flap, see figure 2.

circle action and is parallel transported to α̃. The cycle b is supported by the intersection of
the cuspidal torus with the Poincaré section shown in figure 6.

The bitori (denoted by Cλ with λ < 0 in the local analytic description of section 2.2) have
a first homology group which is isomorphic to Z3, and is generated by three cycles α, β, γ . The
cycle α can be chosen to be the cycle associated to the circle action. The set of regular points
of a bitorus has two connected components; calling each of the closures of such components
the lobe of a bitorus, the above analysis shows that, when approaching the cuspidal torus (C0

in the local description), one of the lobes of the bitori shrinks onto the circle of singular points
of the cuspidal torus. We call that lobe a (local) vanishing lobe. Given these names, we can
choose the cycle β to be represented by a circle that lies in the non-vanishing lobe and choose
the cycle γ to be represented by a circle that lies in the vanishing lobe. The cycle γ can be
chosen so that it is cobordant to 0 in the cuspidal torus C0.

The description of cycles in terms of curves on the Poincaré surface of section allows
one to determine a cobordism relation among such cycles (sometimes referred to as parallel
transport). Along a path that joins a regular fibre in the local base B to the f -image of the
cuspidal torus C0, the cycles β̃ are cobordant to b while the cycles γ̃ are cobordant to zero.
Furthermore, along a path that joins a regular fibre in B to a bitorus on the curve " of hyperbolic
and cusp critical values, the cycle β̃ is cobordant to β with a cobordism that projects to an
interval ending in " from the flap side, while it is cobordant to β + γ with a cobordism that
projects to an interval ending in " from the other side. Given the description of a saturated
neighbourhood of a cusp singularity as a direct product, it is possible to give a full description
of the homology cycles on fibres in such a neighbourhood and their parallel transport between
different fibres (the reason for dealing with the first homology group and not the first homotopy
group is discussed in [10]).

3. Pleats and flaps

3.1. Two possible topologies of the unfolded momentum domain

We can now focus on the problem of pairs of cuspidal singularities that we described in the
introduction. Let us assume to be given a two-degree of freedom completely integrable system
with a line segment " of critical values, parametrized by [0, 1] * s '→ cs ∈ R2, so that
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the endpoints c0 and c1 are cusp critical values while the interior points cs for s in ]0, 1[ are
hyperbolic critical values. As already recalled, the level sets Cs = f −1(cs) for s in {0, 1} are
cuspidal tori, while the level sets Cs = f −1(cs) for s in ]0, 1[ are bitori [2, 8, 11].

As s approaches 0 or 1 one lobe of the bitorus Cs vanishes. In this setup, only two possible
things can happen: either the lobe that vanishes when approaching the cuspidal torus C0 is the
same that vanishes when approaching the cuspidal torus C1, or not.

The topology of the unfolded momentum domain can be deduced from this description in
the following way: consider the local unfolded momentum domain—depicted in figure 2—of
a saturated neighbourhood of each cusp critical value c0 and c1. The topology of the unfolded
momentum domain in a neighbourhood of the hyperbolic line " is obtained by glueing together
these two local unfolded momentum domains. Each of the local unfolded momentum domains
has a local flap F0, F1 and a local base B0, B1, each containing the critical values c0 and c1

respectively. The local flaps must be on the same side of the hyperbolic line, because the regular
values whose preimage has two components must match. Recalling that the free boundary is
the regular part of the boundary of the local flap, we observe that there are once again two
possibilities for glueing: either the free boundary of F0 is glued to the free boundary of F1 and
the boundary of B0 to the boundary of B1, or the free boundary of F0 is glued to the boundary
of B1 and the free boundary of F1 is glued to the boundary of B0. The first case corresponds to
the flap topology around " while the second case to the pleat topology (see figure 3). Recalling
that the vanishing lobe corresponds to fibres in the local flap we conclude that in the case of
the flap topology it is the same lobe that vanishes at the two ends of " while in the case of the
cusp topology one lobe vanishes at one end and the other lobe vanishes at the other end. Thus
we have the following result.

Proposition 4. In a two-degree of freedom completely integrable Hamiltonian system with
a line segment " of critical values, so that the endpoints are cusp critical values while the
interior points are hyperbolic critical values, the unfolded momentum domain A in an open
neighbourhood of " can have one of the following two topological types: the pleat topology as
in figure 3(a), or the flap topology as in figure 3(b).

3.2. Associated analytic description

The argument given above has an analytic counterpart, that can be also used to discriminate
one case from the other. Denote by ds , s ∈ [0, 1] any smooth 1-parameter family of singular
points with ds ∈ Cs for each s ∈ [0, 1]. At the cusp singularities d0 and d1, the completely
integrable system f has rank 1 and its quadratic differential D2f is a quadratic form defined in
R3 and taking values in R with a two-dimensional null-space. From the cusp singular value,
a thread of rank 1 singularities ds , s ∈]0, 1[ of hyperbolic type departs, at which the quadratic
differential of f has signature (0, +, −).

In the local normal form coordinates q1, p1, q2, p2 introduced for d0 in proposition 2, the
vector field ∂p2 points in the direction of the vanishing lobe and is in the negative space of the
quadratic differential of f . Prolonging such vector field to a vector field V defined along the
line of hyperbolic critical points ds so that V (ds) belongs to the negative space of the quadratic
differential D2fds

for every s in ]0, 1[, one can approach the other cusp singular point d1. In a
neighbourhood of d1, it is possible to introduce using proposition 2 local adapted coordinates
x1, y1, x2, y2 satisfying the same conditions as coordinates q1, p1, q2, p2. In such coordinates,
the completely integrable system is given by two functions f = (x1, x1y2 + x2

2 + y3
2).

The shrinking lobes of the bitori Cs , when s is close to one, are those in the y2 positive
plane. The vector V (ds) must be in the negative space of the quadratic differential of f , and
it belongs either to the same component of ∂y2 or to the other component. This discriminates
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the two cases. In particular, the first case corresponds to the flap topology while the second
case to the pleat topology.

3.3. Circle action in a saturated neighbourhood of a hyperbolic line.

One fact that we will find useful can be easily deduced from the literature [11]. Whatever the
topology of the unfolded momentum domain may be, one can always find a neighbourhood V

of the curve " such that the saturated neighbourhood f −1(V ) of the hyperbolic singularities
admits a unique Hamiltonian S1 action

Proposition 5. A saturated neighbourhood of " admits a unique Hamiltonian circle action.

Proof. Theorem 1.2 in [11], rephrased in our case, states that in a neighbourhood of an orbit
of dimension 1 which is not of non-degenerate elliptic type and which belongs to a level set
of f which is at most two-dimensional, admits a unique circle action. Since hyperbolic and
cusp singular points of the integrable system at hand satisfy the assumptions of the theorem,
it follows that every point cs , for s in [0, 1], has a neighbourhood whose preimage admits a
unique Hamiltonian circle action. The statement follows from the uniqueness of these circle
actions. !

4. Flaps and monodromy

4.1. Description of a saturated neighbourhood of a flap: the appearance of lens spaces

Let us assume, from now on, to be in the case in which the unfolded momentum domain has
flap topology, and let " be the line we described in section 3.1. For a point cs ∈ "◦ the preimage
f −1(cs) is a bitorus—a singular set that consists of two non-smooth tori T 2 transversally joined
along a circle S1. For a point cs ∈ ∂" the preimage f −1(cs) is a cuspidal torus where the cusp
points form a S1. Thus for all cs ∈ " there is in the fibre f −1(cs) a distinguished S1 which is
the set of critical points of f in Cs = f −1(cs). This implies that the set O of critical points of
f in L = f −1(") is a cylinder S1 × I , where I = [0, 1].

Furthermore, the preimage L = f −1(") is a singular set in M . Consider a point cs that
moves along ". When s belongs to ]0, 1[ the fibre f −1(cs) consists of two lobes, but when
either s = 0 or s = 1 one of the lobes—the same for both cases—shrinks to the singular S1

of the cuspidal torus, while the other lobe becomes the cuspidal torus. Thus the set L can be
described as the union of the set V of vanishing lobes, and the set S of non-vanishing lobes,
with V ∩ S = O.

The set S of non-vanishing lobes is a T 2 bundle over the contractible line ". Therefore, S

is homeomorphic to T 2 × I . We now investigate the structure of V . Consider a decomposition
of " in two closed sets "1 and "2 such that "1 ∩ "2 = {c}, with c ∈ "◦. Then the sets V1 and
V2 of vanishing lobes over "1 and "2 respectively are both homeomorphic to a solid torus and
V = V1 ∪V2 while V1 ∩V2 is homeomorphic to T 2. It follows that the set of vanishing lobes V

is a lens space L(p, q) [16] constructed by glueing V1 and V2 along their common T 2 boundary
with a homeomorphism h : ∂V1 → ∂V2. The existence of the one-parameter family of circles
O that connects the central circle of V1 to the central circle of V2 shows that the lens space is
L(k, 1) with k ∈ N (in our definitions 0 ∈ N, and when k = 0 then L(0, 1) = S2 × S1). Note
that the latter follows also from the existence on V of a S1 action without fixed points. This
argument proves the following result.
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Proposition 6. The preimage f −1(") consists of the set of vanishing lobes which is a
topological lens space L(k, 1) with k ∈ N and the set of non-vanishing lobes which is
homeomorphic to T 2 × I . The two sets are joined along the cylinder O = S1 × I of critical
points of f .

4.2. Monodromy around a flap

In this section we describe the role of monodromy in completely integrable systems whose
unfolded momentum domains have flap topology. Recall that in this case there is in the
unfolded momentum domain A, a line " of hyperbolic and cuspidal critical values. The set
" separates A into two parts: the flap F , and B = A \ F . Both F and B are open in A and
their common boundary is ". The fundamental group π1(B) contains a path encircling "; the
monodromy of the torus bundle along that path can hence be non-trivial.

Proposition 7. Consider a two-degree of freedom completely integrable Hamiltonian system
f with a line segment " of critical values, so that the endpoints are cusp critical values while
the interior points are hyperbolic critical values, and such that the unfolded momentum domain
A in an open neighbourhood of " has the flap topology. Then the type of lens space L(k, 1)

topologically embedded in f −1(") determines the monodromy index k of the torus bundle along
a path surrounding " up to a sign determined by the choice of orientations.

Proof. Recalling the discussion of section 2.3, each bitorus Cs , with s ∈]0, 1[, has first
homology group which is isomorphic to Z3 and is generated by three cycles α, β, γ . The
cycle α is associated with the circle action. The cycle β lies in the non-vanishing lobe
TS = Cs ∩ S , T 2 and together with α gives a basis for H1(TS) , Z2. The cycle γ lies
in the vanishing lobe TV = Cs ∩ V , T 2 and together with α gives a basis for H1(TV ) , Z2.
Since the closure of the vanishing lobes is a lens space L(k, 1), the cycle γ can be chosen so
that it is cobordant to 0 in the cuspidal torus C0 and is hence cobordant to kα in the cuspidal
torus C1.

Consider now a covering of the hyperbolic line consisting of the neighbourhoods
U0, . . . , Un, with U0 a neighbourhood of c0 and Un a neighbourhood of c1 small enough
so that the structure of the foliation above them is that described in proposition 3. Note that Ui

for i &= 0, n is separated by " to two regions: one that contains points in the double component
region and that we denote by U−

i and the rest that we denote by U+
i .

In all Ui , i = 0, . . . , n, one can choose a basis αi , βi , γi for the bitori so that βi belongs to
the non-vanishing lobes, γi belongs to the vanishing lobes, and αi is defined by the S1 action.

Furthermore, a basis α̃i , β̃i for regular tori over Ui , i &= 0, n, is defined in the following
way. The cycle α̃i is always defined by the S1 action and is thus parallel transported to αi

along any path that ends at a bitorus. For regular values in U+
i , we define β̃i as the cycle that

is parallel transported to βi + γi along a path in U+
i ∪ "i where "i = " ∩ Ui . For regular values

in U−
i , we define β̃i as the cycle that is parallel transported to βi along a path in U−

i ∪ "i .
For U0 and Un we make the same choices as described in section 2.4. In particular, we

choose the cycles γ0, γn to be parallel transported along a path in " to the zero cycle in the
corresponding cuspidal tori C0 and C1 respectively. Recall that in U0 the cycle β̃0 defined on a
regular torus is parallel transported to β0 + γ0 from one side of " and to β0 from the other side.

In the overlappingU+
0 ∩U+

1 , the cycles α̃0, β̃0 can be expressed respectively as α̃1, β̃1+λ+
01α̃1,

while in the overlapping U−
0 ∩ U−

1 we have that α̃0, β̃0 can be expressed respectively as α̃1,
β̃1 + λ−

01α̃1. On the other hand, also the cycles α0, β0, γ0 can be expressed respectively as α1,
a01β1 + b01γ1 + λ01α1, c01β1 + d01γ1 + µ01α1 in "0 ∩ "1. The cobordism relation of cycles in
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the regular fibres with cycles in the singular fibre forces the identities

β1 + γ1 + λ+
01α1 = (a01 + c01)β1 + (d01 + b01)γ1 + (λ01 + µ01)α1,

β1 + λ−
01α1 = a01β1 + b01γ1 + λ01α1.

(1)

It follows that a01 = 1 = d01, b01 = 0 = c01, λ+
01 = λ01 + µ01 and λ−

01 = λ01. Proceeding
with this process up to Un, one can prove that the parallel transport of the cycle β̃0 around the
hyperbolic line gives β̃0 + (µ01 + · · · + µ(n−1)n)̃α0.

One just needs to recall that the cycle γ0, which is parallel transported to the zero cycle in
the cuspidal torus C0, is also parallel transported along " to the cycle γn +(µ01 +· · ·+µ(n−1)n)αn

in the bitori close to the cuspidal torus C1, with γn also homologous to zero. Being a lens
space L(k, 1), it follows that µ01 + · · · + µ(n−1)n = k, and this concludes the proof. !

Remark. Denote by F0 and F1 the two local boundaries of elliptic critical points of F .
Consider a closed segment [0, 1] * t '→ γ (t) ∈ F with endpoints γ (0) ∈ F0 and γ (1) ∈ F1

and with γ (]0, 1[) ⊂ F ◦. The preimages f −1(γ ([0, 1/2])) and f −1(γ ([1/2, 1])) are also
solid tori, and the preimage f −1(γ ([0, 1])) is the topological space obtained by glueing the
two solid tori along their boundaries according to an automorphism of T 2. It follows that this
too is a lens space L(p, q). Also in this case, the existence of a circle action without fixed
points implies that we are dealing with lens spaces of type L(k, 1). Moreover, all the lens
spaces obtained so far up to the singular one are isomorphic.

Remark. Proposition 7 concerns the absolute monodromy around the line ", as we do not
take into account in our arguments the orientations of the path in the momentum domain and
of homology cycles on the fibres. Nevertheless, we expect that arguments like those in [29]
can prove that oriented monodromy carries a sign which is positive, provided that positive
orientations are chosen for the path and for the homology cycles. The lens space L(k, 1)

does not carry a sign since L(k, 1) is isomorphic to L(−k, 1). Therefore, the possibility that
monodromy carries a sign implies a restriction on the possible embedding of the lens space in
the fibration.

4.3. Existence and uniqueness

This subsection is based on the suggestions of an anonymous referee concerning the application
to the present problem of Fomenko’s theory on Lagrangian foliations [8]. We owe to the referee
most of the ideas and techniques that are briefly outlined here. Our proposition 7 indicates
that to every two-degree of freedom completely integrable system with a flap topology one can
associate a natural number but does not prove that all natural numbers can be obtained, nor
that such a natural number uniquely determines the topology of a semiglobal neighbourhood
of the line " of hyperbolic singularities.

The bijection between k ∈ N and the topology of semiglobal neighbourhoods of the
hyperbolic line " can be proven by a glueing argument (proposed by the referee). The topology
of a saturated neighbourhood U of the cusp singularity has been described accurately in
section 2. A semiglobal neighbourhood of the hyperbolic line must be the glueing of two
such neighbourhoods U1, U2 along the preimage of an interval that transversally intersects the
line of hyperbolic singularities. Such preimage is S1 times a thick figure-of-eight open set. It
turns out that, under an appropriate choice of the reference cycles of the fibres, such glueing
is uniquely defined up to a matrix that is a 2 × 2 matrix of the form

(1 k
0 1

)
. This proves that

there exist at least semiglobal models for this topological setup, and that the number k uniquely
determines the topology.
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We are left with the question of whether, for every natural k, there exists a completely
integrable system with a flap, possessing monodromy k around the line of hyperbolic
singularities. A model with k = 0 can be found in [4], while models with k = 1 are the
easiest to find (see e.g. [13]). An example with k = 2, can be given in the phase space T ∗S2,
choosing H = x2 + (y2

1 +y2
2 +y2

3 )(y2
1 +y2

2 +y2
3 −3) as Hamiltonian and the angular momentum

J = x1y2 − x2y1 as other commuting function. We are not aware of any such examples with
k " 3, but for k up to 4 it is presumably possible to construct examples in S2 × S2 (where
we can produce a second example with k = 2). For higher k, examples should be found in
appropriate connected sums of CP 2, by appropriately deforming their structure of almost toric
manifolds [30].
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