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Abstract—Data selection is a fundamental task in visualization because it serves as a pre-requisite to many follow-up interactions.
Efficient spatial selection in 3D point cloud datasets consisting of thousands or millions of particles can be particularly challenging.
We present two new techniques, TeddySelection and CloudLasso, that support the selection of subsets in large particle 3D datasets in
an interactive and visually intuitive manner. Specifically, we describe how to spatially select a subset of a 3D particle cloud by simply
encircling the target particles on screen using either the mouse or direct-touch input. Based on the drawn lasso, our techniques
automatically determine a bounding selection surface around the encircled particles based on their density. This kind of selection
technique can be applied to particle datasets in several application domains. TeddySelection and CloudLasso reduce, and in some
cases even eliminate, the need for complex multi-step selection processes involving Boolean operations. This was confirmed in a
formal, controlled user study in which we compared the more flexible CloudLasso technique to the standard cylinder-based selection
technique. This study showed that the former is consistently more efficient than the latter—in several cases the CloudLasso selection
time was half that of the corresponding cylinder-based selection.

Index Terms—3D interaction, spatial selection, direct-touch interaction.

1 INTRODUCTION

In scientific visualization, researchers are often interested in various
physical properties of objects/regions to analyze their structure and
context. To complete such analysis tasks it is essential to first select
the objects of interest from their environment. While this is reasonably
easy if one faces only a few objects which are also relatively large,
the selection becomes a challenge if the dataset consists of thousands
or millions of particles. While it is sometimes possible to filter parti-
cles according to some known data properties besides particle position,
this may not always be the case because such properties may not yet
be known or may not even exist. In such cases the only accessible
possibility may be the interactive spatial selection of subsets of the
particles by specifying a region in space in which the targeted parti-
cles are located. Therefore, interactive spatial selection is essential
for many visualization applications and domains. A spatial selection
also permits people to employ Boolean operations that involve several
selection regions. However, when dealing with data in a three-dimen-
sional domain, such a spatial selection often becomes a tedious mul-
ti-step process because it is difficult for people to specify the correct
enclosing 3D surface for the spatial region of interest.

Our goal was thus to design new structure-aware selection tech-
niques that facilitate the selection of multiple objects at a time by
specifying spatially which regions are important, without a compli-
cated multi-step process. A major design requirement for a new se-
lection technique is that it should be as easy to use as freeform lassos
for 2D particle selection or as raycasting-based methods for selecting
single objects in 3D. It is important to realize that raycasting based
techniques are unsuitable for our problem due to the impracticality of
selecting thousands of particles in a serial manner. Instead, we are
inspired by lasso-based methods such as Lucas and Bowman’s [21]
Tablet Freehand Lasso which selects 3D points within the lasso-speci-
fied generalized cylinder and we, therefore, refer to it as CylinderSe-
lection. Such techniques are better suited for the selection of a large
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number of particles but have to be combined with subsequent selec-
tions from different angles through Boolean operations.

To facilitate an easy and intuitive selection in 3D particle datasets
we present two new methods, TeddySelection and CloudLasso. For
both techniques, the interaction is based on a 2D lasso that the user
draws onto the 2D projection of the 3D space. The methods then
derive an appropriate 3D selection geometry, taking the full spatial
structure of the dataset into account. TeddySelection is inspired by
interaction techniques from sketch-based modeling [11]. Based on a
heuristic that takes into account the local particle density, the area en-
closed by the user-drawn 2D lasso is inflated and fitted to the region
of space that the user intended to select. CloudLasso uses the semi-
nal Marching Cubes method [20, 37] to identify and select the regions
inside the lasso where the density or the value of another scalar prop-
erty is above a threshold. Both our techniques can be employed not
only in traditional mouse-based interaction but are also, in particular,
suitable for direct-touch visualization environments. In fact, our work
was motivated by a direct need for an enhanced spatial selection mech-
anism using direct-touch input in the domain of astronomy for particle
data such as numerical simulations of the gravitational processes of
stars or galaxies. Nevertheless, the new techniques presented here are
applicable to any 3D point cloud dataset such as 3D scatter plots in
information visualizations or particle flow simulations in physics, and
can also be extended to allow selection based on other scalar properties
besides density. The created 3D selection surfaces can also be used in
an off-line process to enable the processing of datasets whose sizes do
not fit into main memory.

In the remainder of the paper we first review related work in Sec-
tion 2. Then, we describe our own selection techniques in detail:
TeddySelection in Section 3 and CloudLasso in Section 4. Next, we
present the results of a formal, controlled user study in Section 5 where
we compared CloudLasso to CylinderSelection. In Section 6 we com-
pare all three methods, discuss possible extensions of TeddySelection
and CloudLasso, and consider applications of these methods in general
visualization contexts. We conclude the paper in Section 7.

2 RELATED WORK

Several techniques for selecting objects in 2D environments have been
developed in the past. These include selections by clicking on the tar-
get (picking), brushing where users pass over several target objects,
spatial selections by clicking and dragging a lasso to create a selection
area, or selections based on property masks such as color. Two-dimen-
sional selection is considerably easier than selection in 3D because the
2D space is fully visible and accessible for interaction. Nevertheless,
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structure-aware selection that exploits the perceptual grouping of ob-
jects may outperform standard selection techniques even in 2D [6, 7].

For 3D data, raycasting selection techniques (e. g., [1, 18, 25, 36])
are common in virtual environments that range from desktop VR to
CAVEs; for true volumetric displays similar techniques are used [10].
Raycasting is frequently employed because it can be operated at a dis-
tance, is fast, and is easily understandable [21]. Cone selection [19]
is a related technique that selects the object whose location is closest
to the cone center. To improve accuracy, shadow cone selection [31]
selects groups of objects that lie within a cone projected from the inter-
acting hand for the period of the selection interaction. This means that
people need to move the input device to select a single object. While
techniques generally based on ray casting are efficient for selecting
single and large objects, they are less well suited for selecting small
or occluded objects in cluttered environments. Thus, de Haan et al.
designed IntenSelect [4] to assist users in selecting potentially moving
objects in occluded and cluttered VR environments. Here, a constantly
updated scoring function is calculated for all objects that fall within a
user-controlled, conic selection volume. While interacting, a bending
ray remains snapped to the highest ranking object to ease selection.
To address the selection of small objects, Kopper et al. [17] developed
SQUAD as a technique that is based on progressive refinement. 3D
streamlines or tracts can be selected by drawing a 3D lasso around the
objects of interest [15, 39] or using haptic input [13]. 3D picking also
relates to 3D selection and is possible, e. g., via raycasting for distinct
objects—even though object transparency may cause challenges with
respect to what object was intended to be selected [23]. Without dis-
tinct objects, however, more advanced techniques like WYSIWYP are
needed [33, 34], similar to our lasso-based selection.

Of course, there also exist techniques that enable 3D object selec-
tion based directly on a 3D position. Such techniques rely on rate
controls such as 3D mice, tracked input hardware such as gloves, or
non-wired 3D tracking such as Sixense’s TrueMotion. Although they
are easy to understand and manipulate, they are only feasible for ob-
ject selection within the user’s reach, unless combined with other non-
linear mapping interaction techniques like the Go-Go technique [26].

While all these selection techniques—both based on raycasting and
on direct 3D positions—are easy to understand and to operate, the
time necessary for completing a selection increases with the number
of targets. These methods are thus not suitable for datasets such as
particle clouds where huge amounts of tiny objects often need to be
selected. Selection-by-volume techniques like our own provide faster
and more effective selection in these situations due to less repetition
being necessary during the selection process. A related but sequen-
tial approach is taken by Elmqvist et al.’s [8] ScatterDice visualization
system which selects multi-dimensional data through successive lasso
selections in 2D scatterplots of the data. Ulinski et al. [32] use two-
handed techniques for selecting the data in a subset of space. The two
hands specify and manipulate a cuboidal selection volume. However,
this technique may also include undesired objects because the desired
structure in the 3D dataset typically does not have a cuboidal shape
[21]. A more flexible technique is the Tablet Freehand Lasso method
(CylinderSelection) by Lucas and Bowman [21] that lets people draw
a lasso on a tracked physical canvas to extend a conical selection shape
into the 3D space, as seen from the camera whose view is shown on
the canvas. While this approach may still require complex multi-step
Boolean operations to come to a final selection, it still serves as the
foundation of our work: the lasso lets us take the dataset’s 2D struc-
ture into account as visible in the projection. In our approach we sig-
nificantly improve the original idea by considering the data’s structure
along the view direction. In the same spirit, Owada et al. [24] intro-
duced Volume Catcher, a technique for unsegmented volume data that,
based on a 2D stroke, selects a region of interest by applying a segmen-
tation algorithm. Owada et al.’s technique, however, requires a pre-
cisely drawn stroke and is not directly applicable to particle datasets.

Our selection techniques target, in particular, applications in a
directly-manipulative context such as visualization exploration on
touch-sensitive displays. One reason for employing a direct-touch in-
put metaphor lies in its performance improvements over mouse inter-

(a) (b) (c)

Fig. 1. Problem with Teddy-like placement of a selection mesh in the 3D
data space: (a) lasso in the original view direction, drawn from a ‘top-
down’ view; (b) selection mesh after a 90° rotation, placed at constant
depth—the mesh does not wrap around the data; (c) depth adjusted
to local average particle depth—the mesh still does not properly wrap
around the data due to only being parameterized by the drawn lasso.

action, e. g., for target acquisition [16] and in form of more precise
control over motions on the visualization display [38]. In this context
also direct-touch interaction approaches with 3D environments play a
role for which we refer to the overview by Isenberg and Hancock [12].

3 TEDDYSELECTION

To facilitate a lasso-based selection in 3D particle datasets, we need
to find techniques that permit the creation of a 3D selection volume
from a shape drawn in 2D. For our first technique, TeddySelection, we
are thus inspired by Igarashi et al.’s [11] sketch-based Teddy modeling
approach which, based on users’ drawings of 3D shapes on a 2D sur-
face, constructs a 3D mesh from the sketches. Teddy first triangulates
the drawn shape and then extracts a spine in the triangulation’s center.
Then, the 2D shape is ‘inflated’ by determining the vertical depth of
vertices on the spine from their distance to the drawn shape. Wide
areas thus become fat, while narrow areas remain thin.

Relying on heuristics, we adjust the general Teddy approach to
adapt the created mesh to the actual structure of the particles in the
3D point cloud dataset. More specifically, our selection algorithm con-
sists of the following three main stages:

1. Input polygon triangulation: We compute a 2D triangulation be-
tween the spine and the drawn 2D outline, following [11].

2. Particle mapping to triangles: We determine which particles are
located inside the 2D selection polygon and map each of them to
their corresponding triangle in the triangulated mesh.

3. Construction of the selection mesh: We inflate the mesh by ad-
justing the vertices’ depth based on the particle distribution.

3.1 Input Polygon Triangulation
In the first step of our algorithm we follow Igarashi et al.’s [11] lead.
We first convert the user-drawn input lasso into a closed stroke by con-
necting its start and end points (Fig. 2(a)). If the input stroke self-
intersects we only consider its largest closed part, starting and end-
ing at the intersection. To remove noise from the input device, we
re-sample the input stroke with a uniform edge length before further
processing which later-on also ensures a regular mesh polygon. Next,
we determine the polygon’s spine and create a complete 2D triangular
mesh between the spine and the perimeter of the initial polygon.

3.2 Particle Mapping to Triangles
While the ‘inflating’ of the triangulated polygon in the original Teddy
algorithm [11] is parameterized based on the local width of the drawn
shape, we need to take both the location and distribution of the par-
ticles into account in this process. For this purpose we associate the
particles with the generated 2D triangulation. Therefore, we render
an ID-buffer of the triangulation and then check, for each particle’s
screen position, its association to a specific mesh triangle.

3.3 Construction of the Selection Mesh
In the final step we need to inflate the 2D mesh and position it into
the 3D space of the dataset. While Igarashi et al. [11] can simply
use one constant depth for the entire mesh, this does not work well
for structured datasets (see Fig. 1(b)). Also, a local adjustment of
the depth of the mesh does not produce satisfying results. We can
see in Fig. 1(c) that narrow regions still remain thin and wide regions
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screen

(a) Lasso is drawn on screen.

LF

(b) First-level binning to obtain LF.

(c) Second-level binning for one tri-
angle to obtain near & far planes.

(d) Near planes (green) for all trian-
gles.

(e) Internal (red) and external (black)
vertex inflation.

(f) Selection mesh inflation.

Fig. 2. Main steps of the TeddySelection algorithm.

become fat regardless of the particle distribution since the inflation
parametrization solely relies on the drawn shape (compare Fig. 1(a) to
Fig. 1(b)). Therefore, we perform a structural analysis by triangle of
the produced 2D mesh. Generally speaking, our goal is to identify the
closest and the furthest distance to the camera per triangle such that all
dense clusters associated to the triangle lie between these two points.
For this purpose we use a two-stage binning process to identify and
remove sparsely populated regions.

The first binning stage (Fig. 2(b)) examines the whole generalized
cone volume (i. e., only the part that is covered by the dataset) that is
specified by the 2D lasso selection and splits it, at regular intervals in
depth, into a certain number of bins (we use 100). We then calculate
the number of particles within each of these bins. Next we threshold
the bins and determine the closest and farthest bin with more than
a given number of particles per volume unit. The specific particle
number threshold depends on the dataset and can be adjusted. It is
important to note that bins have different volumes, with bins closer
to the viewer having a smaller volume. We call the section of the
generalized selection cone between the front of the closest non-empty
bin and the back of the farthest non-empty bin the lasso frustum (LF).

Then we perform a second binning (Fig. 2(c)), but this time by tri-
angle of the 2D mesh to extract the local 3D structure of the dataset.
Similar to the first binning, we split each generalized cone segment as
defined by a mesh triangle into a number of bins (we use 60) and lo-
cate the closest and farthest dense bin. A bin is considered to be dense
if its particle count is larger than a user-adjustable percentage of the
expected particle count (we use a default of 400%, i. e., 4× the density
average) if all particles were evenly distributed in the entire LF. This
results in a depth range per triangle that includes all large clusters of
particles between the front of the closest z f and the back of the farthest
zb non-empty bin. An illustration of this result is shown in Fig. 2(d).

We now employ this second-level binning information to inflate the
2D mesh. First, we need to determine the exact z-depth of each 2D
mesh vertex, both for the front and for the back part of the inflated
mesh. Here we need to distinguish between internal vertices (the ones
on the spine) and external vertices (the ones on the resampled sketched
lines). For inflating the internal vertices we examined two approaches:
using the average or using the most extreme ‘non-empty’ depth (front
or back) of all adjacent triangles for a vertex. We experimented with
both and found that both have advantages and disadvantages. By us-
ing the average depths of the adjacent triangles we obtain smoother

(a) (b) (c)

Fig. 3. Different dataset configurations (top), TeddySelections (middle),
and selections viewed from another angle (bottom).

3D shapes but introduce errors in the form of some smaller clusters no
longer being included in the selection volume due to the ‘contraction’
that happens because of the averaging. In contrast, the use of the most
extreme depth values of all adjacent triangles results in a 3D shape
that is not as smooth as the one based on averages but does ensure to
include smaller clusters. We thus inflate the selection shape by mov-
ing all internal vertices to the extreme depths, while for each external
vertex we average z f and zb of all its adjacent triangles to determine
its location (Fig. 2(e)). Finally, the vertices are connected, resulting
in a polygonal selection mesh that selects particles from the dataset
spatially (Fig. 2(f)). In order to produce a smoother polygonal mesh
we follow the original Teddy algorithm [11] and further subdivide fan
triangles (triangles that connect the spine and the outside edge) to pro-
duce a gradual transition between spine and outside edge.

3.4 Example Results
Fig. 3 shows examples of applying TeddySelection to two astronomi-
cal datasets, a galaxy collision simulation in Fig. 3(a) and an N-body
mass simulation in Fig. 3(b,c). The top row in Fig. 3 shows the dataset
before the selection, the middle row shows the selection applied for
this view, and the bottom row shows a different view of the selection to
illustrate how the TeddySelection takes the 3D structure of the dataset
into account. In Fig. 3(a) one of the galaxies was selected, resulting in
a flat disk selection shape. Fig. 3(b) shows the selection of an almost
spherical particle cluster. In the case of Fig. 3(c) it becomes clear after
rotating the dataset (bottom), that the particle cluster is elongated and
that the selection has taken this fact into account, creating a connected
selection shape from the front to the back of the cluster. Note that in
all cases the projection of the selection on screen is disk-shaped but
TeddySelection takes into account the 3D structure of the selection,
producing an appropriate selection geometry.

3.5 Performance
TeddySelection’s processing time depends on the size of the dataset,
the 2D size of the selection (number of triangles), and the particle
count in the first-level selection volume. The selection on a 3.16 GHz
Intel® Core™ 2 Duo CPU using a 1.6 ·105 particle dataset (Fig. 3(a))
takes 0.36 s. Selection from the 2.0 · 105 particle dataset for small
(Fig. 3(b)) and larger clusters (Fig. 3(c)) takes 0.17 s and 0.21 s, resp.

3.6 User Feedback on TeddySelection
Our work was motivated by a direct need for an enhanced selection
mechanism using direct-touch input in the domain of astronomy. To
elicit feedback on our technique from expert users we interviewed
three astronomers who regularly work with particle data such as numer-
ical simulations of the gravitational processes of stars or galaxies. We
demonstrated TeddySelection in individual sessions to the experts and
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discussed its benefits and drawbacks. We used both datasets shown
in Fig. 3 (galaxy collision and cosmological N-body simulation) and
asked the astronomers to experiment with the interactive selection.

For this purpose we presented the particle datasets on a 1920 × 1080
52′′ touch-sensitive display. Our interface allowed the experts to ex-
plore the data by navigating through the 3D space [38] and facilitated
fluid switching between navigation and selection.

Their feedback confirmed our motivation that spatial selections are
essential for analyzing datasets, especially when properties about a
subset of data such as the movement of stars in a particular region are
of importance to the analysis. The astronomers’ normal way of mak-
ing selections is to rotate the dataset to find a good view, and then to
use an unconstrained selection by means of a lasso or a selection rect-
angle. However, they reported that, generally, performing rotations to
get a good view is tedious for them. Therefore, they much appreciated
TeddySelection, commenting that our technique is helpful to find the
prominent subset in depth without having to consider the view direc-
tion much. Similarly, the experts found it easy to select tails or arms of
the collision galaxy dataset which was difficult to do previously. They
also noted that the direct-touch interaction using the technique made it
easy to draw precise lassos around the clusters of interest. As an addi-
tion they asked for a feature to make inverse selections (i. e., to select
everything but the sketched regions) which is not yet possible with our
prototype, but which can easily be included.

While the astronomers did not comment on further issues, TeddySe-
lection has three limitations. One is that TeddySelection does not work
well in generally sparse regions due to the noise contained therein. For
example, if one zooms into a dataset too much the particles become
sparsely distributed so that selections performed in such regions are
less predictable. However, in such situations the structure of the data
is less important so that cuboidal selections [32] work generally bet-
ter. A second limitation is that the chosen view direction can have an
effect if dense clusters lie visually behind the intended selection, and
because regions between dense clusters in the front and in the back are
always included. The need for structure in the data to constrain the
selection—the third limitation—also means that the TeddySelection
is not as useful in complex environments which contain many small,
evenly distributed clusters. While the last two limitations can be ad-
dressed by a small change in view direction or by Boolean combina-
tions of Freehand Lasso selections [21], the expert feedback indicated
that a technique that addresses these issues would be extremely useful.
We therefore discuss a new selection technique next that addresses the
latter two mentioned limitations.

4 CLOUDLASSO

Our second technique, CloudLasso, is based on the application of the
Marching Cubes (MC) algorithm [20, 37] to the identification of dense
parts of a particle dataset inside a user-drawn lasso; i. e., CloudLasso is
a lasso-constrained Marching Cubes method. The MC method allows
us to spatially select dense clusters within a lasso region individually
even if these lie visually one behind another—without including the
lower-density space in-between. To be able to apply the MC method,
however, we need to first compute a continuous scalar field approxi-
mating the particle density. Using the scalar field we can then select
the threshold for the intended selection. The CloudLasso algorithm,
therefore, comprises the following three main steps:

1. Density estimation: The particle density is estimated inside a
volume that contains all particles that project inside the lasso.

2. Volume selection: The subset of the volume where the density
exceeds a threshold is computed using Marching Cubes.

3. Threshold tuning: Interactively adjusting the density threshold.

4.1 Density Estimation
In the first step of CloudLasso, we convert the user-drawn input lasso L
(Fig. 4(a)) to a closed stroke, similar to TeddySelection, by connecting
its start and end points, re-sampling it to remove noise, and addressing
self-intersections. All subsequent computations and constructions in
the algorithm are, unless otherwise noted, carried out in the view coor-
dinate system. We, therefore, first transform all particle coordinates to

L

screen

(a) Lasso is drawn on screen.

LF

(b) First-level binning to obtain LF.

(c) Particle density is estimated on a
grid containing LF.

(d) The volume with density above
the threshold is computed using
Marching Cubes.

Fig. 4. Main steps of the CloudLasso selection algorithm.

view coordinates by applying the graphics system’s model-view trans-
formation, while preserving volumes and densities. Then we perform
the first-level binning stage as we have also used it for TeddySelection
to obtain the lasso frustum (Fig. 4(b)).

Next, we determine the minimal rectangular box B such that it com-
pletely encloses LF and that its edges are parallel to the view coordi-
nate axes. We construct a uniform rectangular grid G inside B such
that the latter is split into 218 cubes of equal volume (64 × 64 × 64;
Fig. 4(c)). Then, we apply a kernel density estimation method in order
to obtain a scalar density field from the particle data. Such methods ef-
fectively ‘smear’ each particle over a region and assign to each point in
space a scalar value that approximates the local particle density. In our
case, we compute a value for the scalar density field at each grid node
using the modified Breiman kernel density estimation method (MBE)
with a finite-support adaptive Epanechnikov kernel [9, 35]. Our reason
for choosing this particular method is that it was shown by Ferdosi et al.
[9] to be optimal with respect to speed and reliability when compared
to the k-nearest neighbors, adaptive Gaussian kernel, and Delaunay
tessellation field methods. Moreover, kernel methods (incl. Gaussian
kernel methods) have two practical advantages over other density esti-
mation methods. First, the Marching Cubes method that we use in later
steps requires a grid-based density estimation, and kernel methods al-
ways compute this information. Second, kernel methods compute a
continuous density field and, thus, are more suitable for usage in com-
bination with Marching Cubes. The main benefit of the Epanechnikov
kernel compared to Gaussian kernels, however, is its reduced computa-
tional effort: the number of grid points that have to be considered per
particle is limited due to the Epanechnikov kernel’s finite support.

We now give a brief description of the MBE method and we refer
to Ferdosi et al.’s paper [9] for more details. First, for each direction
k = x,y,z we compute a smoothing length as

`k = 2(P(80)
k −P(20)

k )/ logN,

where N is the number of particles in the rectangular box B that en-
closes LF and P(q)

j is the q-th percentile value for coordinate k. For

each data particle i at position r(i) and for each node n at position r(n)

we define the vector r(i;n), the k-th component of which is given by

r(i;n)k = (r(i)k − r(n)k )/`k.

Then, we compute the pilot density ρpilot(r(n)) at the node n as

ρpilot(r(n)) =
15

8πN
1

`x`y`z
∑

i
1− r(i;n) · r(i;n),
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(a) (b) (c) (d) (e)

Fig. 5. Interactive CloudLasso selection: (a)–(d) different dataset configurations (top), CloudLasso selection (middle), and the selection viewed
from another angle (bottom); (e) close-up of the selection in (d) with an interactively adjusted (higher) density threshold.

where only particles for which r(i;n) · r(i;n) ≤ 1 are considered in the
sum. In other words, the only contribution to ρpilot(r(n)) comes from
particles for which the node n is inside an ellipsoid with semi-axes `x,
`y, `z centered at the particle.

We compute the pilot density ρpilot(r(i)) at the position of the i-
th particle using multi-linear interpolation with respect to the nearby
nodes. Next, we define the particle-specific smoothing lengths `

(i)
k

with k = x,y,z for each particle i as

`
(i)
k = min{`k(m/ρpilot(i))1/3,10sk},

where m is the arithmetic mean of ρpilot(r(i)) over all particles in the
rectangular box B, and sk is the distance between adjacent grid points
in the k-th direction. Note that here we have introduced two modifica-
tions with respect to the standard method described by Ferdosi et al.
[9]. First, we employ the arithmetic mean of the pilot densities instead
of the geometric mean because the pilot density for a particle can often
be zero, which would lead to a zero geometric mean. Second, we in-
troduce a cut-off threshold for the value of `(i)k because particles with a
small pilot density define large corresponding ellipsoids with semi-ax-
es `(i)x , `(i)y , `(i)z and, thus, contribute to the final density of a large num-
ber of nodes. We found that due to this reason particles with large el-
lipsoids completely dominated the computational time and thus made
the density estimation unsuitable for interactive applications. Now, we
re-define the vectors r(i;n) as

r(i;n)k = (r(i)k − r(n)k )/`
(i)
k .

Finally, we compute the density ρ(r(n)) at the node n as

ρ(r(n)) =
15

8πN ∑
i

1

`
(i)
x `

(i)
y `

(i)
z

(1− r(i;n) · r(i;n)),

where only particles with r(i;n) · r(i;n) ≤ 1 are included in the sum.

4.2 Surface Extraction
To extract the selection shape surface based on the density estimation,
we start by computing the average density for nodes of the grid G that
lie inside LF and setting this average density as our initial selection
threshold ρ0. We could then naïvely apply the Marching Cubes algo-
rithm to G to compute the selection region with ρ ≥ ρ0. However, we
are actually interested in the region inside LF where ρ ≥ ρ0. There-
fore, we first compute for each node n of G its projection n′ on the
screen and the distance d(n′) of n′ from the lasso L. We define the
corresponding signed distance δ (n) as δ (n) = d(n′) if n′ is inside L
and as δ (n) = −d(n′) if n′ is outside L. This generalizes to arbitrary

points: r in view coordinates projects on screen inside L if and only
if δ (r) ≥ 0. Hence, the point r is simultaneously inside the region
ρ ≥ ρ0 and inside LF if

f (r) = min{ρ(r)−ρ0,δ (r)} ≥ 0.

Therefore, we apply the Marching Cubes method for the iso-surface
f (r) = 0 to obtain the bounding surface S of the required volume. The
surface S might consist of more than one disconnected component.
Furthermore, note that in order to ensure that the surface is closed we
pad G with a layer of outer nodes where the value of f is defined to be
-DBL_MAX. Also, after having constructed S, we mark particles inside
this selection shape as being selected.

4.3 Threshold Adjustment

In the previous step we automatically set the density threshold to ρ0.
In our experience this setting already yields good selections but adjust-
ing the threshold can improve the result. We thus provide means to
interactively adjust the threshold at runtime in the range [ρ0/16,16ρ0]
by mapping a linear parameter s ∈ [−4,4] to the threshold value us-
ing ρs = 2sρ0. When s is adjusted, we thus recompute the scalar
f (r) = min{ρ(r)−ρs,δ (r)} for all grid nodes and obtain the iso-sur-
face f (r) = 0 using Marching Cubes. It is important to note that we
only need to recompute f (r) in this case because ρ(r) and δ (r) remain
constant, therefore adjusting the threshold is computationally much
less expensive than the previous step and can be done interactively.

Furthermore, note that if ρs becomes smaller than the minimum
density inside LF then the whole LF is selected. This means that by
setting the threshold low enough the result of the CloudLasso method
becomes identical to that of CylinderSelection, i. e., lasso selection
using generalized cylinders. One could thus see CylinderSelection as
a special case of CloudLasso selection.

4.4 Example Results

Fig. 5 shows a collection of results we generated by applying the
CloudLasso to the same two datasets as discussed in Section 3.4 (col-
liding galaxies and cosmological N-body simulation). The top row
shows the dataset before the selection, the middle row shows the result
of selection applied for this view, and the bottom row shows a different
view of the selection to illustrate how CloudLasso takes the 3D struc-
ture of the dataset into account. In Fig. 5(a) a compact cluster was
selected with a circular lasso, however, after rotating the dataset (bot-
tom) we see that the galaxy’s compact disk was selected. In Fig. 5(b)
an initially visually similar Fig. 5(b, top) compact cluster was selected,
but this selection reflects the compact rounded shape of the cluster.
Fig. 5(c) shows again a visually similar case where the cluster and con-
sequently the selection also appear to be compact and rounded from
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Table 1. CloudLasso performance. Times are in seconds.

Selection Total Time Density
Estimation

Marching
Cubes

Fig. 5(a) 6.38 4.89 0.46
Fig. 5(b) 2.13 0.83 0.39
Fig. 5(c) 4.14 2.87 0.39
Fig. 5(d) 4.50 1.95 0.39
Fig. 5(e) 0.30 0 0.28

Fig. 6. A selection being performed using our direct-touch interface.

the initial view Fig. 5(c, top). However, after rotating the dataset (bot-
tom) we can see that the cluster is elongated and that CloudLasso has
taken this fact into account for the selection shape (including holes in
the selection where appropriate). Fig. 5(d) shows a more complex clus-
ter where the 3D structure of the ‘arms’ is captured. Fig. 5(e) shows
a close-up view of Fig. 5(d) after changing the density threshold. As
can be seen, only high density clusters remain selected.

4.5 Performance
The computationally most expensive part of CloudLasso is the density
estimation. The density estimation processing time increases with the
number of particles inside the rectangular box B. The processing time
also heavily depends on the distribution of the particles within B be-
cause, as outlined in Section 4.1, particles in sparse areas can dominate
the computation. After density estimation, the second-most expensive
part is the selection geometry construction with Marching Cubes.

We have measured the performance of CloudLasso on a 3.16 GHz
Intel® Core™ 2 Duo CPU for the selections shown in Fig. 5 and the
results are summarized in Table 1. While the time required for den-
sity estimation is currently in the order of a few seconds, it can easily
be parallelized using multiple parallel threads and cores (we discuss
further possible improvements in Section 6.1). Moreover, changing
the density threshold and recomputing the selection as in the selection
of Fig. 5(e) takes only little time since the density is not recomputed.
Thus, the technique is well suited for interactive applications.

5 USER STUDY

To understand the user performance of and satisfaction with our se-
lection technique we conducted a comparative quantitative evaluation
(Fig. 6). As the baseline we selected Lucas and Bowman’s Tablet Free-
hand Lasso (CylinderSelection) which, at this point, can be thought of
as the standard selection method for point-based datasets. Due to the
constraints of a controlled experiment we had to restrict ourselves to
compare it to only one of our own techniques: CloudLasso or Ted-
dySelection. We decided to use CloudLasso in the study because it is
more flexible than TeddySelection due to the included threshold adjust-
ment and the flexible construction of selection shapes in depth. Our
comparison was based on both speed and accuracy as well as partic-
ipants’ qualitative feedback for four tasks. Because CloudLasso is
capable of creating selection shapes based on the intended selection’s

(a) (b)

(c) (d)

Fig. 7. Four tasks: (a) five simple particle clusters, (b) two galaxies, (c)
cubic shell and central core, and (d) three intertwined figure-eight knots.

spatial structure we hypothesized that CloudLasso would outperform
CylinderSelection for all tasks based on speed. Due to the flexible
threshold-based adjustment of the selection possible with CloudLasso
we also hypothesized that it would be at least as accurate as Cylinder-
Selection. We further hypothesized that the CloudLasso would score
higher on questions related to how efficient participants perceived each
method to be and would be generally preferred.

5.1 Study Description
Participants. Twelve people (8 male, 4 female) participated in the
study. Eight participants were students from different disciplines and
four non-students. All of them had at least a Bachelor’s degree. Ten
participants reported prior experience with 3D computer games with
playing games up to three times per week, with four participants re-
porting at least weekly experience. Ages ranged from 24 to 33 years
(M = 28.75,SD = 3.3). Ten participants reported to be right-handed,
while the remaining 2 people reported to be ambidextrous.

Apparatus. The experiment was performed on a 52′′ LCD screen
with full HD resolution (1920 × 1080 pixels, 115.4 cm × 64.5 cm). The
display was equipped with a DViT overlay [28] from Smart Technolo-
gies, capable of recognizing two independent inputs. The display was
positioned so that its center was at a height of 1.47 m above the ground.

Tasks. Our study comprised four tasks. The dataset for each task
(Fig. 7) contained target particles (orange), interfering particles (blue),
and noise particles (light blue). Participants were always asked to se-
lect the orange target particles. To avoid measuring unnecessary time
spent on navigation we only provided trackball rotation. A selection
was activated through spring-loaded modes [2, 27] that allowed the par-
ticipants to adjust selections while keeping a ‘button’ pressed (Fig. 6);
otherwise the 2DOF input on the data was used for rotation. There
were three possible selection modes corresponding to three Boolean
operations (Fig. 6): union (+), intersection (∩), and subtraction (−).

Before the actual experiment, four additional practice tasks were
provided for participants to get accustomed to the selection techniques.
The dataset for each of these tasks consisted of a low density, cubic
volume of noise particles depicted in light blue and a higher density
volume of orange target particles with a simple geometric shape: a
sphere, a pyramid, a cylinder, and a torus.

The datasets used in the actual experiment are illustrated in Fig. 7.
These tasks were designed to have different features and were ordered
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by difficulty. Fig. 7(a) shows five randomly placed compact clusters of
particles with equal uniform densities inside a low density noise envi-
ronment, with one being set as the target cluster. Fig. 7(b) is a simula-
tion of two colliding galaxies which do not have uniform density. The
participants were required to select one of the two galaxies. Fig. 7(c)
shows a spherical, high-density core of target particles surrounded by
a medium-density, cubic shell of interfering particles. Both structures
are inside a low-density noise environment. Fig. 7(d) contains three
intertwined particle ‘strings,’ each one shaped as a figure-eight knot,
inside a low-density noise environment. Each ‘string’ had the same
uniform density and participants were asked to select one of them.

At the start of each trial, the data space was oriented in a defined
way (different orientations per trial). Participants were asked to finish
the selection goal, i. e., to select the orange particles as quickly and ac-
curately as possible. Participants thus needed to try their best to select,
if possible, all target particles but to avoid selecting interfering or noise
particles. They were asked in advance to find a balance between accu-
racy and speed and it was pointed out that a perfect selection was dif-
ficult or even impossible. We allowed participants to undo/redo the 5
most recent operations. Once participants felt that they accomplished
the selection goal or that they were not able to improve the result, they
could press a finish button to advance to the next trial. An additional
density threshold slider was provided for CloudLasso trials (Fig. 6).

Design. We used a repeated-measures design with the within-sub-
ject independent variable selection method (CylinderSelection, Cloud-
Lasso). Per method, each participant performed 4 tasks and per task
4 trials. For each trial we chose a unique dataset starting orientation.
Tasks were always performed in the same order and the presentation
order of the two methods was counterbalanced among participants.

In summary, the design consisted of 12 participants × 2 methods ×
4 tasks × 4 trials = 384 interactions in total. Participants moved from
training to experiment after they reported to be able to perform a selec-
tion with the presented technique. After the experiment, participants
were given a written questionnaire. They were asked to rate the usabil-
ity of the techniques on a seven-step Likert scale with respect to ease
of remembering, ease of use, efficiency, ease of drawing the lasso, and
whether it was working as expected. Also, participants were asked to
compare both techniques, comment on which technique they preferred
and why, and whether the techniques allowed them to select the data
as they desired. Finally, they filled in their demographic background
information and were asked to provide additional verbal feedback on
their experience of which the experimenters took notes.

5.2 Results
Completion times, errors, and selection volumes were recorded for
the analysis. The density field for the CloudLasso method was pre-
computed to compare only the real interaction times. With this opti-
mization, the processing times for computing the selected particles for
CylinderSelection and CloudLasso were both approximately the same
(in the order of 0.5s). Time and error in our experiment did not fol-
low a normal distribution. We thus used the non-parametric Wilcoxon
Signed Ranks test to analyze the data. The first block of trials was re-
moved from the analysis due to a strong learning effect being present
between blocks 1 and 2, across participants. Thus, we analyzed three
trial blocks per task and method for each participant. In addition, tri-
als were marked as outliers when each metric (time, error) was beyond
two standard deviations from the mean for a given task and method per
participant. Outliers were replaced with the closest value two standard
deviations from the mean for each participant according to standard
procedure. The datasets used in the different tasks differed in their
characteristics, so we analyzed the results of each task independently.

We used two different metrics from information retrieval to calcu-
late the error of our results [22]. To compute these scores we used the
response number of true positives (T P, correctly selected particles),
false positives (FP, incorrectly selected particles), false negatives (FN,
missing particles that had to be selected), and true negatives (T N, cor-
rectly unselected particles). From these, the precision (P)—the frac-
tion of target particles of all the retrieved particles—is calculated as:
P = T P/(T P+FP) and the recall (R)—the fraction of the target parti-
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Fig. 8. Mean completion times for the user study tasks. Error bars
represent 95% confidence intervals.

Table 2. Mean completion time (in seconds), mean F1, mean MCC, and
mean volume ratios for CloudLasso and CylinderSelection for the four
user study tasks together with the corresponding significance scores.

Clusters Galaxies Shell/CoreStrings

Mean Time (s)

CloudLasso 35.96 141.14 17.86 169.01
CylinderSelection 118.94 189.62 88.01 248.68

Z 3.06 1.41 3.06 2.28
p <.01 .16 <.01 .023

Mean F1

CloudLasso .9789 .9866 .9980 .7494
CylinderSelection .9759 .9855 .9960 .7303

Z 2.67 0.71 3.06 2.04
p <.01 .48 <.01 .041

Mean MCC

CloudLasso .9765 .9733 .9974 .6519
CylinderSelection .9731 .9712 .9948 .6305

Z 2.75 0.78 3.06 1.89
p <.01 .43 <.01 .06

Mean VS/VR

CloudLasso 1.244 4.055 1.327 1.852
CylinderSelection 1.303 5.855 1.360 2.691

Z 0.94 1.49 1.57 2.98
p .347 .14 .875 <.01

cles that were selected—is calculated as R = T P/(T P+FN).
The first metric, the F1 score, calculates the harmonic mean of pre-

cision and recall and is often used in information retrieval to measure
query classification performance. It is defined as F1 =P ·R/(P+R). A
value of 1 for the F1 score signifies a perfect result, while 0 is the worst
possible result. Since the F1 metric does not take the T N rate into ac-
count, we also used the Matthews correlation coefficient (MCC) as our
second error metric which is often used in machine learning to assess
the performance of a binary classifier. The MCC is calculated as:

MCC =
T P ·T N−FP ·FN√

(T P+FP)(T P+FN)(T N +FP)(T N +FN)
.

Finally, we use a third error metric: the ratio of the selection volume
and the target’s real volume VS/VR, with values closer to 1 being better.

The task completion time analysis showed a significant effect with
CloudLasso being significantly faster than CylinderSelection in all
tasks except the task of the galaxies (Fig. 8). Moreover, with the same
exception of the galaxies task and the string task for MCC, the F1 score
and the MCC score also showed statistically significant differences be-
tween the two methods, with CloudLasso being more accurate than
CylinderSelection. Table 2 shows the details of the statistical analysis.

Five clusters. Tests showed that CloudLasso was significantly
faster than CylinderSelection (36 s vs. 119 s). Moreover, the F1 and
MCC scores showed statistically significant differences between the
two methods, with CloudLasso being more accurate. While CloudLas-
so created smaller volumes, the VS/VR differences were not significant.
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In the post-session questionnaire the participants were asked to
choose the method they preferred for each task. All participants chose
CloudLasso over CylinderSelection on this dataset. They reported that
CloudLasso was easy and convenient to use and that they could always
get the right result (8×), was faster (8×), and used less steps (3×). In
fact, many participants finished the task with only one CloudLasso se-
lection step while, at the same time, getting more accurate results than
with CylinderSelection. Furthermore, CloudLasso did not require par-
ticipants to precisely draw a close lasso around the target particles.

Two colliding galaxies. While CloudLasso, on average, was faster
than CylinderSelection (141 s compared to 190 s) and more accurate
according to all error metrics, we did not observe a significant effect in
any of these measurements. In the post-session questionnaire, six par-
ticipants preferred CloudLasso, four favored CylinderSelection, while
the remaining two felt both methods were more or less the same.

A reason for these results may lay in the fact that this selection task
required participants to select particles with varying average density,
the density of the galaxy’s core being high while the arms have much
lower density. Because participants were asked to select the whole
galaxy, multi-step selections were necessary for both CloudLasso and
CylinderSelection. We had intentionally designed this task with these
characteristics because we hypothesized that it would be difficult for
CloudLasso to select the whole galaxy in one step because it sets a
density threshold based on the average density inside the lasso frus-
tum. This threshold can only be varied inside a finite range because
otherwise the interaction would become too imprecise. Since the aver-
age density in the galaxy is dominated by the very high density core,
setting the threshold to its minimum possible value is still not enough
to include the very low density arm edges. More than one selection
step is thus necessary with CloudLasso to select all parts of the galaxy.
CylinderSelection, in contrast, does not depend on the density distri-
bution and always selects or deselects all particles in the lasso frustum.
Therefore, CylinderSelection might have been more straightforward
for some of the participants who all saw this dataset for the first time.

Cubic shell and core. CloudLasso was both faster than CylinderSe-
lection (18 s vs. 88 s) and more accurate with respect to F1 and MCC,
with statistical significance. It also produced smaller volumes (smaller
VS/VR) but this difference was not statistically significant. This clear
advantage for CloudLasso is due to the fact that the noise and interfer-
ing particles with a low density did not create any problem for select-
ing the high-density core in the center. With CloudLasso, participants
could finish the selection task in just one step, while CylinderSelection
required several Boolean operations for satisfying results. We conse-
quently also received positive feedback about using CloudLasso for
this dataset in the post-session questionnaire: all participants preferred
CloudLasso over CylinderSelection. The main reason for this choice
as reported by participants was that CloudLasso was faster (7×), easier
to use (4×), more precise (2×), and needed less steps (2×).

Three figure-eight knot shaped particle strings. In this last task,
CloudLasso was also significantly faster than CylinderSelection (169 s
as opposed to 249 s) and significantly more accurate with respect to F1.
It also showed a trend to be significantly more accurate on MCC and
produced better (but not statistically significant) volume ratios.

We used this task at the end of the study because it is, by its very
design, impossible to complete perfectly. Nevertheless, after the first
CloudLasso selection step the selection already contained mostly tar-
get and interfering particles and not many noise particles. Thus, in sub-
sequent steps, participants only needed to deselect the interfering par-
ticles. With CylinderSelection, in contrast, participants had to spend
much time on ‘carving’ the particle strings. Many complained about
fatigue using CylinderSelection for this task. In the questionnaire,
eleven participants reported to prefer CloudLasso and one participant
had no preference. All felt that both techniques were hard to use with
this dataset, but also that the task was almost impossible with Cylin-
derSelection while they could get better results with CloudLasso.

Overall Preferences. Participants were asked to compare both tech-
niques in general. All of them named CloudLasso as their preferred
technique. As their main reasons they reported CloudLasso to be eas-
ier to use (5×), faster (4×), more efficient (3×), and more precise (2×).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 9. Comparison of CylinderSelection (left column), TeddySelection
(middle column), and CloudLasso (right column) in three different ex-
amples. From top to bottom: selection of a torus-shaped structure, a
concave hemispherical shell (i. e., an empty, thickly-walled bowl), and
two clusters from an astronomical N-body simulation. The three selec-
tions in each example are made from the same viewpoint with respect
to the particles and the result is viewed from roughly the same direction.

6 DISCUSSION

Based on the results from our study we now provide a comparing dis-
cussion between the three selection techniques mentioned in this paper,
mention application domains other than the ones used so far, and dis-
cuss a further processing of the selections made with our techniques.

6.1 Comparison of the Selection Techniques
The TeddySelection and CloudLasso techniques introduced in this
paper are two new spatial and structure-aware selection techniques.
While we had previously already briefly touched upon their merits and
limitations, we now provide an extended comparison between them
and also include the CylinderSelection technique in this discussion.

Both CloudLasso and TeddySelection are based on the same princi-
ple: a user-specified 2D lasso defines a region in space and particles in-
side this region are selected based on the particle cloud structure. Nev-
ertheless, this structure is taken into account in different ways by both
methods so their results typically differ. In contrast to our structure-
aware techniques, CylinderSelection starts with the same 2D lasso but
selects everything in the lasso frustum. Therefore, CylinderSelection
usually selects much more space than the desired target and several
Boolean operations are needed to achieve the intended selection, some-
thing that we saw confirmed in our user study. This property of Cylin-
derSelection is clearly visible in the examples shown in Fig. 9(a,d,g)
where, in all cases, the selection geometry is very large after one step
of the CylinderSelection method.

For roughly spherical shapes (not shown), both TeddySelection and
CloudLasso give similar results and both methods are equally suitable
because they deliver the intended selection in a single step. Neverthe-
less, even in such simple cases CloudLasso’s selection geometry is of-
ten smoother than that of TeddySelection due to CloudLasso’s density
approximation. Furthermore, CloudLasso is generally more flexible
than TeddySelection as the comparisons in Fig. 9 demonstrate.

In the selection of the torus and the hemispherical shell, CloudLasso
perfectly fits the intended target (Fig. 9(c,f)). On the other hand, Teddy-
Selection provides a closed geometry that approximates the intended
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(a) (b) (c)

Fig. 10. CloudLasso being applied to a 3D scatter plot; data from a sub-
set of the milliMillennium dataset [5] (showing the dimensions virial ra-
dius, R-I color, and low X-ray luminosity); (a) original 3D scatter plot, (b)
initial CloudLasso selection, (c) after interactive threshold adjustment.

selections better than CylinderSelection but also selects the hole in
the center of the torus (Fig. 9(b)) and the bowl’s cavity (Fig. 9(e)).
Finally, Fig. 9(h) shows that TeddySelection selects not only the two
clusters that lie behind each other but also the space in-between them.
CloudLasso addresses this issue and correctly selects only the clusters,
resulting in several disconnected parts (Fig. 9(i)).

6.2 Limitations
CloudLasso’s most important limitation is its performance. In our per-
formance analysis reported in Section 4.5 we found that a selection
typically required a few seconds. Results could vary, ranging from 2 s
to more than 6 s in a way that can be unpredictable for the user. The
main bottleneck is density estimation which can be addressed by par-
allelizing the respective computation as mentioned before. However,
in the future we also want to investigate a GPU implementation of the
kernel density estimation [3, 30] as well as of Marching Cubes. This
would also address the second performance bottleneck of CloudLasso
and take advantage of the fact that the data from the density estimation
would already be available in GPU memory.

Both TeddySelection and CloudLasso are based on a number of
parameter choices. For instance, TeddySelection uses two binning
stages to stabilize the structure detection or clusters along the cam-
era’s z-direction. While CloudLasso also needs several parameters,
most (e. g., the number of initial binning levels) do typically not have
to be adjusted for different datasets. In fact, CloudLasso automatically
adjusts to the density of an intended selection and provides a single
parameter to adjust how closely a selection wraps around a cluster.

6.3 Other Applications and Possible Modifications
Our motivation for this work and the examples we have shown in the
paper concern the selection of clusters in 3D astronomical particle
datasets. Nevertheless, our methods can easily be applied for efficient
selection in particle datasets that arise in other visualization domains
as well as for any grid-based numerical data. For example, we recently
applied CloudLasso as the selection technique in an application for the
analysis of abstract, high-dimensional data. In the application the pos-
sible n-dimensional subspaces of a high-dimensional dataset are au-
tomatically ranked in terms of predefined quality measures, based on
the number and prominence of clusters, to focus subsequent analysis
on the highest-ranked subspaces. Three-dimensional subspaces are vi-
sualized directly and for larger-dimensional subspaces their respective
three principal components are visualized. Based on such data or any
other three-dimensional scatter plot, CloudLasso can be used for spa-
tially selecting dense clusters as shown in Fig. 10. The selections can
then be further analyzed by means of brushing and linking.

So far we have only considered the selection of unstructured 3D
particle data. In many applications such as simulations of 3D flows and
medical imaging, however, it is common to have scalar data defined
on a 3D grid. We can easily modify CloudLasso for such datasets.
CloudLasso would need to select those grid points that project inside
the drawn lasso and where the value of the scalar quantity is above
an automatically or user-defined threshold. In this case we can avoid,
in fact, the density estimation step of CloudLasso since we already
know the value of the scalar data on a 3D grid. On the other hand,
in the visualization for such applications the region of interest may be

enclosed by a semi-transparent surface that the user wants to ignore but
that may otherwise interfere with the selection. In such cases Cloud-
Lasso should be combined by automated methods that can detect and
resolve such ambiguities (e. g., [23, 33, 34]).

Finally, CloudLasso is suitable for particle selection based on scalar
properties other than density. If a desired property is continuously
defined in space we can evaluate it on a regular 3D grid. We can thus
use Marching Cubes to select the spatial region where the target value
is above a given threshold as described in the previous paragraph.

6.4 Further Selection Processing
While our selection methods allow users to intuitively perform spatial
selections based on particle density, users sometimes need to modify
their current selections if they did not achieve their desired precision in
one step. This issue can easily be addressed by allowing Boolean oper-
ations with consecutively specified selection volumes. In this Boolean
processing we can also combine selection methods, so that some of
them are done with CloudLasso or TeddySelection, while others are
done with CylinderSelection. In fact, adding new selections works
best for CloudLasso or TeddySelection, while subtractions or set inter-
sections work most intuitively with CylinderSelection.

Moreover, particle datasets including the cosmological N-body sim-
ulation data we used as our examples often consist of tens of terabytes
of particle data, all of which rarely fits into the computer’s main mem-
ory. To enable selections for these situations we can perform our se-
lection specification based on a well-defined sample of the whole data
and then store the selection shapes along with the employed Boolean
operations in a selection pipeline. We can then apply this pipeline to
all particles of the large dataset in an off-line process.

7 CONCLUSION

We presented CloudLasso and TeddySelection—two spatial, structure-
aware selection techniques that can be applied to 3D particle cloud
datasets in a visualization context. These techniques only require that
users draw a lasso around the 2D projection of what they consider to be
important by means of 2DOF input such as a mouse/pen or a finger on
a direct-touch display (Fig. 6). With this input, our approaches allow
users to select whole regions of space in a single step without having
to rely on the selection of individual objects or having to refine a sin-
gle selection repeatedly. In TeddySelection we married a technique
from sketch-based modeling with generalized cone-based lasso selec-
tion and extended both to enable data selections that take 3D structural
information into account. In CloudLasso we combined density estima-
tion methods and a constrained version of Marching Cubes to uncover
and select the most prominent 3D structures along the lasso direction.

Our techniques allow people to perform complex spatial selections
in a wide range of applications and datasets, and the resulting selec-
tion shapes can be considered to be intuitive and efficient according to
the feedback from the user study and from our collaborating experts.
Both methods solve issues with current selection techniques employed
in data analysis tools, allow people to explore sub-regions of particle
datasets without requiring prior knowledge about the structures within
this data, and thus open up new ways for data exploration.

CloudLasso and TeddySelection are the first steps in the develop-
ment of structure-aware selection techniques for 3D particle datasets.
We are certain that further work can improve these methods and gen-
erate interesting new ideas. In this paper we have established the rele-
vance of such techniques for 3D particle selection and showed that they
are more efficient than the traditional selection techniques. We, thus,
contribute to the integration of interaction and visualization research
[14] with the goal of improving scientific data analysis workflows.
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