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Abstract: The uncovering of the role of monodromy in integrable Hamiltonian fibra-
tions has been one of the major advances in the study of integrable Hamiltonian systems
in the past few decades: on one hand monodromy turned out to be the most fundamen-
tal obstruction to the existence of global action-angle coordinates while, on the other
hand, it provided the correct classical analogue for the interpretation of the structure of
quantum joint spectra. Fractional monodromy is a generalization of the concept of mo-
nodromy: instead of restricting our attention to the toric part of the fibration we extend
our scope to also consider singular fibres. In this paper we analyze fractional monodr-
omy for n1:(−n2) resonant Hamiltonian systems with n1, n2 coprime natural numbers.
We consider, in particular, systems that for n1, n2 > 1 contain one-parameter families
of singular fibres which are ‘curled tori’. We simplify the geometry of the fibration by
passing to an appropriate branched covering. In the branched covering the curled tori
and their neighborhood become untwisted thus simplifying the geometry of the fibra-
tion: we essentially obtain the same type of generalized monodromy independently of
n1, n2. Fractional monodromy is then recovered by pushing the results obtained in the
branched covering back to the original system.

1. Introduction

In this paper we consider Liouville integrable Hamiltonian systems defined by a
smooth Hamiltonian function H on the phase space R4 with canonical coordinates
(q1, q2, p1, p2). The second, also smooth, integral of motion J is assumed to generate
an S1 symmetry action. The integral map

F : R4 → R2 : p �→ F(p) = (J (p), H(p)) (1)

encodes the dynamics and the geometry of our systems. F defines a fibration of R4

which we call integrable Hamiltonian fibration.
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The complete understanding of the integrable Hamiltonian fibration is one of the
central problems in the modern theory of Hamiltonian systems [3,11,16]. The most
fundamental fact in this direction is the Arnol’d-Liouville theorem [1,2]. Recall that a
value f ∈ R2 of F is regular if DFp is submersive for all

p ∈ F−1( f ) = {p ∈ R4 : F(p) = f },
and f is critical if this condition fails at some p ∈ F−1( f ). We denote by R the set of
regular values of F . The Arnol’d-Liouville theorem tells us that if f ∈ R and if the fibre
F−1( f ) is compact then it is a smooth two dimensional torus T2 or the disjoint union
of such tori. In fact, FR = F |F−1(R) defines a T2 fibre bundle. If, on the other hand,
f is a critical value of F then the fibre F−1( f ) has at least one connected component
that is not a smooth T2. This connected component is either a lower dimensional torus
(S1 or point) or a singular set. If F is polynomial this singular set is a singular algebraic
variety. Furthermore, the Arnol’d-Liouville theorem tells us that R is open in R2 and
that if f ∈ R then there is an open neighborhood U ⊆ R of f where local action-angle
coordinates can be defined.

1.1. Standard monodromy. After this basic classification of the fibres of F we can ask
what is the global geometry of the integrable Hamiltonian fibration. The monodromy of
the regular part FR of this fibration gives the first insights and a partial answer to our
question. If the monodromy is non-trivial then the bundle FR is non-trivial.1 Duistermaat
[16] was the first to highlight the importance of monodromy to integrable Hamiltonian
systems from the point of view of the existence of global smooth action-angle coordi-
nates: if the monodromy is non-trivial then such coordinates do not exist.

Let us briefly describe the concept of monodromy as it applies to our context. Con-
sider a regular value f ∈ R of F and a piecewise smooth closed path Γ : [0, 1] → R
in the set of regular values of F that starts and ends at f = Γ (0) = Γ (1). Assume
that the fibre F−1( f ) is connected, so it is a smooth T2. The fact that image(Γ ) ⊂ R
implies that the number of connected components of F−1(Γ (t)) remains constant for
t ∈ [0, 1] so all fibres along Γ are T2. Let (a, b) be a basis of the homology group
H1(F−1( f )) � Z2. Since the first homology group of regular fibres is a discrete set
there is a unique notion of parallel transport of homology cycles along Γ which defines
an automorphism of H1(F−1( f )). This automorphism is the same for all paths in the
homotopy class [Γ ] of Γ . Thus one defines on the first fundamental group π1(R; f ) the
monodromy map

μ : π1(R; f )→ Aut(H1(F
−1( f ))),

that maps each homotopy class of closed paths in R to the corresponding automorphism.
The matrix of μ([Γ ]) is called the monodromy matrix along Γ and in general is an ele-
ment of GL(2,Z). An integrable system has non-trivial monodromy if μ is not trivial,
that is, if there is a homotopy class [Γ ] for which μ([Γ ]) is not the identity. In other
words, if the parallel transport of the initial basis (a, b) along the closed path Γ gives a
basis (a′, b′) 	= (a, b) of H1(F−1( f )) then F has non-trivial monodromy.

We emphasize that the idea of characterizing an aspect of the global geometry of
the integrable Hamiltonian fibration by the parallel transport of homology cycles along
a closed path is, with appropriate modifications, central to the concept of fractional
monodromy and to our approach in the present paper.

1 The inverse of this statement is not true; monodromy is not the only obstruction to the triviality of FR.
All such obstructions are classified in [16,26] but we will not discuss these here.
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Fig. 1. Single-pinched torus

There are several examples of Hamiltonian systems with non-trivial monodromy and
thus no global action coordinates, see [11,13–15,17,23,34,35]. One sufficient condition
for a system to have non-trivial monodromy is the existence of focus-focus singularities.
Consider a critical value c of F such that the fibre F−1(c) is a k-pinched torus, i.e., it
contains k > 0 focus-focus singularities and no other critical points of F , see Fig. 1. In
this case the critical value c is isolated in the image of F , i.e., there is an open neigh-
borhood of c that contains no other critical values of F . Then the geometric monodromy
theorem [33,36] states that if Γ is a closed path in R that encircles once the critical value
c then the monodromy matrix μ([Γ ]) is conjugate in GL(2,Z) to(

1 0
k 1

)
∈ SL(2,Z).

This result highlights the central role that critical fibres play for the global geometry
of the fibration and it shows that standard monodromy, although a global aspect of the
fibration, has essentially local origins.

1.2. Fractional monodromy. If instead of pinched tori we consider critical fibres F−1(c)
with critical points p where rank DFp = 1 then the situation becomes very different
compared to standard monodromy. Such critical fibres are not isolated but generically
appear in one-parameter families. When p is a hyperbolic singularity then such families
locally separate the phase space. It follows that in this case there is a curve C of critical
values in the image of F that locally separates R, i.e., if c is a critical value on C then
there is an open neighborhood U of c such that U\C consists of two disjoint parts of
regular values of F separated by C. The geometry of the integrable Hamiltonian fibra-
tion in the neighborhood of one such critical value has been studied in [3,10,37]. But
in order to understand the role of the whole one-parameter family for the geometry of
the integrable Hamiltonian fibration we must consider not only the neighborhood of one
critical value but also how the complete family is embedded in phase space. In other
words, and unlike the case of pinched tori where we need only local assumptions in
order to make statements about the global geometry, here global assumptions about the
one-parameter family become essential [5].

The first system studied from this point of view is an 1:(−2) resonant system [19,29,
30]. In this system the Hamiltonian H is chosen so that it has the integral

J = 1

2
(p2

1 + q2
1 )− (p2

2 + q2
2 ),

and so that the integral map F = (J, H) has an one-parameter family C− of critical
values (Fig. 2(a)) where each fibre F−1(c), c ∈ C− is a curled torus, see Fig. 2(b).2 The

2 Dynamically, a curled torus is a hyperbolic periodic orbit with reflection, together with its coinciding
stable and unstable manifolds. Geometrically, the curled torus can be seen as a cylinder over a Fig. 8 such that
the bottom and top sides of the cylinder are glued together by giving a half-twist to one of them.
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Fig. 2. (a) Schematic bifurcation diagram of the 1:(−2) resonant system. (b) Curled torus

global assumption that we mentioned before corresponds here to the fact that C− has
an endpoint c∗, see Fig. 2(a), and thus separates R locally but not globally. The conse-
quence of this is that we can take a closed path Γ in the image of F that goes around
c∗ crossing C− exactly once. Following the same approach as for standard monodromy
[11] we can consider the parallel transport along Γ of a basis of the first homology group
H1(F−1( j, h)), where ( j, h) is a regular value of F = (J, H). The very surprising fact,
first understood intuitively by Zhilinskií, and then proved in [30], is that such parallel
transport at the level of homology3 is actually possible even though Γ goes through a
point c ∈ C− that corresponds to a singular fibre of F . More precisely in [30] it is shown
that only homology cycles in an index-2 subgroup H( j, h) of the first homology group
H1(F−1( j, h)) can be parallel transported along Γ . Furthermore, for a particular choice
of basis (a, b) of H1(F−1( j, h)) the subgroup H( j, h) is spanned over Z by (2a, b) and
the result of the parallel transport of the latter basis along Γ is (2a − b, b). Expressed
in the basis (2a, b) the resulting automorphism of H( j, h) is given by the matrix

(
1 0
1 1

)
.

This property is strongly reminiscent of standard monodromy except for the fact that
we have to restrict our attention to the subgroup H( j, h) of the first homology group
H1(F−1( j, h)). The name fractional monodromy is due to the fact that the matrix of
the resulting automorphism when formally expressed in terms of the basis (a, b) of
H1(F−1( j, h)) is given by the matrix

(
1 0
1
2 1

)
.

We emphasize the formal character of the latter expression, due to the fact that the cycle
a cannot be parallel transported along Γ .

3 The notion of parallel transport of homology cycles used in the proof of standard monodromy has to
be generalized in order to take into account that a homology cycle might ‘break into two parts’ when going
through C−. We discuss in §6 how to define parallel transport in this case.
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Fig. 3. (a) Schematic picture of the bifurcation diagram for n1:(−n2) resonant systems as studied in [27,32].
The curves of critical values C− and C+ join at the point c∗. (b) The situation shown in (a) is highly degenerate
for n1, n2 ≥ 3 and small perturbations can split each of the curves C− and C+ into more than one curve of
critical values such that regular values between these new curves lift to the union of disjoint smooth tori in
phase space. This new situation is schematically shown in (b) where the sets of critical values can be found
inside a zone S

Fig. 4. Representation of a 2:5-curled torus. (a) A single ‘petal’ (thick curve) is rotated by angle 1
5 (2π) to

form a ‘rose’ with 5 ‘petals’. (b) A cylinder with finite height is constructed over the ‘rose’. (c) The upper
side of the cylinder is rotated clockwise by 2

5 (2π). (d) The upper and lower sides are glued together

Fractional monodromy was soon thereafter studied in n1 : (−n2) resonant systems
[27,31,32] for n1, n2 coprime natural numbers with n1 < n2. In such systems the
Hamiltonian H has, in suitable coordinates, the integral

J = n1

2
(p2

1 + q2
1 )−

n2

2
(p2

2 + q2
2 ). (2)

The flow of X J induces in R4 a resonant n1:(−n2) action described in detail in §3.1.
For the specific choices of H used in [27,32] the integral map F = (J, H) has one
curve of critical values C− that ends at a point c∗ when n1 = 1, or two curves of critical
values, C− and C+ that join at a point c∗ when n1 ≥ 2, see Fig. 3. For f ∈ C− the fibre
F−1( j, h) is a n1:n2-curled torus and for f ∈ C+ the fibre F−1( j, h) is a n2:n1-curled
torus.

A m:n curled torus is most intuitively described in the following way, see Fig. 4. Start
with a single ‘petal’ on a plane, i.e., with a circle which is smooth everywhere except a
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single singular point. Then construct a ‘rose’ by joining n copies of the single ‘petal’ at
the singular point, where each copy of the ‘petal’ is rotated by angle 2π/n relative to the
previous one, see Fig. 4(a). Now consider a (finite height) cylinder over the ‘rose’, see
Fig. 4(b). Glue the upper and lower sides of the cylinder after twisting the upper side by
an angle 2π(m/n) in the clockwise direction, see Fig. 4(c). The resulting gadget, shown
in Fig. 4(d), is a m:n-curled torus.

We now come back to probing the global geometry of the integrable Hamiltonian
fibration through the parallel transport of homology cycles. Just as we did for 1:(−2)
resonant systems we here consider a closed path Γ that goes around c∗ and crosses the
curves of critical values C− and C+ exactly once (the latter only in the case n1 ≥ 2), see
Fig. 3. Then there is a basis (n1n2a, b) of an index-n1n2 subgroup H( j, h) of the first
homology group H1(F−1( j, h)) which after parallel transport along Γ comes back to
(n1n2a − b, b) [27,32]. Thus in the basis (n1n2a, b) the monodromy matrix reads(

1 0
1 1

)
,

and formally in the basis (a, b) of H1(F−1( j, h)) the matrix becomes(
1 0
1

n1n2
1

)
.

The situation described so far is highly degenerate when n1,2 ≥ 3. In these cases a
generic integrable perturbation of H that commutes with J breaks up the curves C+ and
C− of curled tori and leaves in their place a much more complicated arrangement of
critical and regular fibres that occupy a ‘strip’ S of small width. This situation has been
studied by Nekhoroshev who introduced the notion of fuzzy fractional monodromy and
showed that removing the degeneracy does not affect fractional monodromy [27,28].
In this paper we show that the precise structure of the critical sets is irrelevant to the
existence of fractional monodromy.

More precisely, we prove fractional monodromy for a very general class Fn1:n2 of
n1:(−n2) resonant systems, see Definition 1 in §3.2. The class L of paths Γ around the
origin is made precise in Definition 2. In particular, we use the idea of branched coverings
to prove the following result extending previous work on fractional monodromy.

Theorem 1 (Fractional monodromy). Consider a n1:(−n2) resonant system F = (J, H)
where H ∈ Fn1:n2 and a closed path Γ ∈ L with Γ (0) = ( j, h). Then there is an index-
n1n2 subgroup H( j, h) of H1(F−1( j, h)) such that

(i) only homology cycles in H( j, h) can be parallel transported along Γ ,
(ii) the parallel transport of homology cycles in H( j, h) alongΓ is unique and it induces

an automorphism μ on H( j, h),
(iii) if (a( j, h), b( j, h)) is an ordered basis of H1(F−1( j, h)), where b( j, h) is the

homology cycle represented by an integral curve of X J on F−1( j, h) and a( j, h)
is otherwise arbitrary, then (n1n2a( j, h), b( j, h)) is an ordered basis for H( j, h)
and in this basis the automorphsim μ is written as(

1 0
1 1

)
,

or formally in the basis (a( j, h), b( j, h)) as(
1 0
1

n1n2
1

)
.
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1.3. Covering maps. The idea of simplifying the study of a dynamical system by pass-
ing to an appropriate covering space has been widely used and has proved to be very
fruitful. For example, covering maps have been used in the study of Riemann surfaces,
in algebraic topology, and also in dynamical systems. We mention here the study of
subharmonic bifurcations of periodic and quasiperiodic tori [4,6–9]. In the context of
integrable Hamiltonian fibrations it has been already noted in [10,37] that when the S1

action has Z2 isotropy at a hyperbolic critical point p then the S1 action becomes free
by passing to a suitable double covering. Note that the situation of an S1 action with Z2
isotropy at a hyperbolic critical point p here corresponds to a 1:2 curled torus.

The ‘twist’ of the curled tori that exist in the n1:(−n2) resonant systems considered in
this paper complicates the geometry, not only of the critical fibres themselves, but also of
nearby regular fibres. Thus it is natural to pass to an appropriate covering space in order
to locally ‘untwist’ the geometry of the fibration and simplify its study. Furthermore,
computations in the covering space related to the parallel transport of homology cycles
are considerably simpler than similar computations in the original space.

We discuss now briefly how our covering map ρ, to be introduced in §4.1, simplifies
the study of fractional monodromy. The map ρ : C2 → C2 is a (n1n2)-fold branched
covering; here we identify R4 � C2. The n1:(−n2) resonant S1 action becomes 1:(−1)
resonant in the covering space and is thus free in C2\{0}. Using ρ we pull back the inte-
grable Hamiltonian fibration of our n1:(−n2) resonant systems to the covering space.
Each fibre F−1( j, h) lifts to a fibre F̃−1( j, h) in the covering space. Provided that the
1:(−1) resonant S1 action on F̃−1( j, h) is free, that is F̃−1( j, h) does not contain the
origin 0 ∈ C2, we have the following description of F̃−1( j, h). The intersection of
F̃−1( j, h) with a suitably chosen Poincaré surface of section is a one-dimensional set
λ̃( j, h) which typically is a disjoint union of smooth circles. Furthermore, λ̃( j, h) can
be seen as a global section for the restriction of the free 1:(−1) resonant S1 action on
F̃−1( j, h). Thus F̃−1( j, h) is diffeomorphic to λ̃( j, h)× S1.

If, in particular, F̃−1( j, h) � T2 which implies that λ̃( j, h) � S1 (or if we restrict
our attention to a T2 component of F̃−1( j, h)) then a basis of the homology group
H1(F̃−1( j, h)) � Z2 is given by two cycles: the first cycle is represented by λ̃( j, h)
while the second cycle is represented by an orbit of the S1 action. This very simple
description of a basis of H1(F̃−1( j, h)) permits one to easily compute the parallel trans-
port of homology cycles in the covering space.

The deck group D � Zn1n2 of ρ here plays an important role. All objects that are
lifted through ρ to the covering space are either invariant or equivariant with respect to
the action of D. This in particular allows the use of D in order to simplify the study
of the fibres and their homology in the covering space, but also in order to transfer the
results from the covering back to the original space.

Note finally that the covering map does not trivialize the whole fibration. Indeed
the parallel transport of homology cycles in the covering space is not trivial and is
reminiscent of standard monodromy, see Proposition 2.

1.4. Overview of the paper. In this paper we prove fractional monodromy for a large
class of Hamiltonian functions H that commute with the n1:(−n2) resonant oscillator
J in Eq. (2). The class of Hamiltonian functions that we consider is defined in §3.2 and
it includes as special cases all systems considered in [12,19,22,27–30,32].

We give a short overview. In §2 we give specific examples of resonant systems
with standard or fractional monodromy emphasizing their common properties. In §3
we describe in detail the setup for Theorem 1. In particular, in §3.1 we present some
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common properties of n1:(−n2) resonant systems focusing on the choice of Poincaré
surfaces of section and the isotropy of the induced S1 action on the phase space and on
these surfaces; in §3.2 we precisely define the class of Hamiltonians for which we prove
the existence of standard or fractional monodromy; and in §3.3 we define the class of
closed paths along which we consider monodromy. In the rest of the paper we set up
the methods for proving Theorem 1. In §4 we define the branched covering used for the
proof and study the properties of the lift of the fibration to the covering space, including
the parallel transport of homology cycles in the covering space. In §5 we show how the
covering map acts on the homology of individual fibres. In §6 we define a generalized
parallel transport of homology cycles that can be applied to our systems. We compute
the parallel transport of homology cycles in the covering space and then push the results
back to the original space to obtain the parallel transport there. In §7 we combine the
previously obtained results to give the proof of Theorem 1. Finally, in §8 we further
discuss our approach and results.

2. Examples

In this section we give a few examples of n1:(−n2) resonant Hamiltonian systems with
standard or fractional monodromy. Most of these examples have already appeared in the
literature and we use them here in order to motivate and explain our choices in §3.2.

2.1. Hamiltonian systems. We consider n1:(−n2) resonant systems described by a Ham-
iltonian of the form

H = δR + Im(zn2
1 zn1

2 ) + εRs, (3)

where R = n1
2 |z1|2 + n2

2 |z2|2, and 2s > n1 + n2 in order to ensure compactness of the
fibres. Here zk = qk + ipk , for k = 1, 2. We consider in particular the following cases:

(i) 1:(−1) resonant system, n1 = 1, n2 = 1, s = 2, δ = 0.
(ii) 1:(−2) resonant system, n1 = 1, n2 = 2, s = 2, δ = 0.

(iii) 2:(−5) resonant system, n1 = 2, n2 = 5, s = 4, δ = 0.
(iv) 3:(−5) resonant system, n1 = 3, n2 = 5, s = 5, δ = 0.
(v) Detuned 3:(−5) resonant system, n1 = 3, n2 = 5, s = 5, δ = 2/100.

The parameter ε is a scaling parameter and does not qualitatively affect the geometry of
the system.

Note that for the first four systems with δ = 0 the geometry near the origin is deter-
mined by the term of order n1 + n2. In the last case the geometry near the origin is
described by the term δR but in a slightly larger neighborhood of the origin the terms
of order n1 + n2 become again important and as we show later the two 3:(−5) resonant
systems have the same type of fractional monodromy although the two fibrations are
not equivalent. In the following we refer to the systems (i) and (ii), where n1 = 1, as
lower order resonances and to the rest of the systems where n1 > 1 as higher order
resonances.

2.2. Restriction to a Poincaré section. Consider in phase space the Poincaré surface of
section

Σ+
0 = {(q, p) ∈ J−1(0) : p1 = 0, q1 ≥ 0},

and define onΣ+
0 coordinates (x, y) = (q2, p2). Recall that J , given in (2), describes the

n1:(−n2) resonant oscillator. Denote by H+
0 the restriction of H onΣ+

0 and by λ+(0, h)
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the h-level set of H+
0 . We describe here the common features of the level sets λ+(0, h)

for the examples given in §2.1. These features will turn out to play a crucial role in the
subsequent discussion of fractional monodromy in the more general setting.

In all cases we find that there is a range of values h for which the level set λ+(0, h) is a
smooth circle with winding number4 equal to 1 and Zn1 symmetry and another range of
values h for which λ+(0, h) consists of n1 smooth circles, each with winding number 0.

Recall that on Σ+
0 we have Arg(z1) = 0, thus z1 = |z1|, and we use coordinates

z = z2 ∈ C; in the following we write z = x + iy. Thus from (3) we obtain that the
restriction of H to Σ+

0 is

H+
0 = δR0 +

(
n2
n1

) n2
2
(x2 + y2)

n2
2 Im[(x + iy)n1 ] + εRs

0,

where R0 = n2(x2 + y2).
In Fig. 5 we show the level sets λ+(0, h) for different values of h for the resonant

systems described by the Hamiltonian functions (3). Starting with the 1:(−1) and 1:(−2)
resonant systems (Fig. 5(a) and Fig. 5(b) respectively), both having n1 = 1, we observe
that the level set λ+(0, h) is always a smooth circle. For h > 0 the circle has winding
number 1 with respect to the origin, while for h < 0 it has winding number 0.

For the rest of the systems where n1 > 1 the situation is different. The level set
λ+(0, h) for 2:(−5) and 3:(−5) resonant systems is for h > 0 a circle with winding
number 1. At h = 0 the level set goes through the origin and it is no longer a manifold
since the origin has non-trivial isotropy Zn1 . For h < 0 the level set breaks into n1 pieces
(2 and 3 respectively for the 2:(−5) and 3:(−5) systems). These pieces are mapped to
each other by the Zn1 action on Σ+

0 . Recall that the level set λ+(0, h) is the intersection
with Σ+

0 of the fibre F−1(0, h). In all cases shown until now, when h 	= 0 the fibre
F−1(0, h) is a T2. This means that the n1 pieces of λ+(0, h) for h < 0 are intersections
of the same T2 with Σ+

0 .
Finally, for the detuned 3:(−5) system shown in Fig. 5(e) we observe that for h > hc,

where hc � 0.015304 the level set λ+(0, h) is a circle with winding number 1 and Z3
symmetry, while for h < 0 it consists of 3 circles with winding number 0 that are
mapped to each other by the Z3 action. For 0 < h < hc the fibre F−1(0, h) consists
of two connected components which are both T2. The corresponding level set λ+(0, h)
consists of a circle with winding number 1 that comes from one T2 and 3 circles with
winding number 0 that come from the second T2.

2.3. Bifurcation diagrams. In Fig. 6 we show the bifurcation diagrams of the examples
of resonant systems given in §2.1. Note that in all cases the origin c∗ is a critical value
of the integral map F = (J, H) and the corresponding fibre F−1(c∗) is singular. Other
critical values are represented by solid curves and regular values by different shades of
gray. The white region represents values outside the image of F .

The sets C+ and C− appearing in these bifurcation diagrams are defined by Eq. (8) in
§3.1. They can consist either of critical or regular values of F depending on the values
of n1 and n2. In particular, they always correspond to critical values for higher order
resonances. When C+ or C− consist of regular values they are depicted by a dashed curve
in Fig. 6. Note that in all bifurcation diagrams the set C = C− ∪ {c∗} ∪ C+ separates

4 By the winding number of a circle we mean the winding number of a closed oriented path that starts at
a point on the circle and proceeds counterclockwise until it reaches the initial point. Furthermore, in what
follows we consider only the winding number with respect to the origin and we will refer to that as simply the
winding number of the curve.
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the image of F into two parts, one above C and one below C. When n1 > 1, which
also implies n2 > 1, both C+ and C− are sets of critical values of F . Therefore, it is
impossible to have a continuous path that goes from a regular value below C to a regular
value above C without going through a critical value of F . When n1 = 1 but n2 > 1,
then C− is still a set of critical values, but C+ is, in our examples, a set of regular values
of F and thus the set R of regular values of F is connected. Finally, if n1 = n2 = 1 then
both C+ and C− are sets of regular values of F .

In the examples of higher order resonances, 2:(−5), 3:(−5), and detuned 3:(−5),
we mark in Fig. 6 regions S+, S− and S. In the interior of such regions each reg-
ular value corresponds to a fibre that consists of two disjoint T2, while the bound-
ary of these regions is formed by critical values of F . In particular, C+ forms the
lower part of the boundary of S+, C− forms the lower part of the boundary of S−,
and both C+ and C−, together with {c∗} form the lower part of the boundary of
S.

Recall from §2.2 that in all these examples there is a range of values of h, and in
particular a value hupper > 0, for which the level set λ+(0, hupper) is a smooth circle
with winding number 1 and Zn1 symmetry and, similarly, a value hlower < 0 for which
λ+(0, hlower) consists of n1 smooth circles, each with winding number 0. In the bifur-
cation diagrams we mark by Dupper (respectively Dlower) the maximal connected set
of regular values that lies above (respectively below) C and contains hupper (respec-
tively hlower). We also denote D = Dupper ∪ Dlower. Note that for higher order reso-
nances Dupper and Dlower are always separated by critical values of F . For the lower
order resonances 1:(−1) and 1:(−2) the regions Dupper and Dlower are separated by
the set C which contains also regular values. In this case we distinguish Dupper and
Dlower because the level sets λ±( j, h) in these regions have different winding num-
bers. Finally, note that in these cases of lower order resonances we have that D′ :=
D ∪ (∂D ∩ R) = R.

2.4. Monodromy. We now describe the monodromy in our examples, cf. Theorem 1.
The 1:(−1) resonant system has only one focus-focus point at the origin and it thus has
standard monodromy, see also [18,29,30]. The 1:(−2) resonant system has been stud-
ied in [12,19,29,30,32] where it was shown to have fractional monodromy. Resonant
2:(−5) and 3:(−5) systems have been studied in [32] in a degenerate case and in [27] in
the non-degenerate case presented here. The case of the detuned 3:(−5) resonant system
has not been studied in the literature, although the methods of [27] can be extended also
to this case.

In all cases we have the following description of monodromy. Consider any
closed path Γ that goes once around the origin and starts and ends at a regu-
lar value ( j, h) of F with ( j, h) ∈ D′ := D ∪ (∂D ∩ R). Recall here that in
the 1:(−1) and 1:(−2) cases we have D′ = R, while in the higher order reso-
nances an inspection of the bifurcation diagrams shows that ∂D ∩ R = ∅ and thus
D′ = D. Furthermore, in all cases we assume that Γ crosses the j = 0 axis
only at points inside D. Then there is a basis (a( j, h), b( j, h)) of H1(F−1( j, h))
and a subgroup H( j, h) spanned over Z by (n1n2a( j, h), b( j, h)) such that only
homology cycles in H( j, h) can be parallel transported along Γ and such parallel
transport induces an automorphism of H( j, h). The automorphism is written in this
basis as (

1 0
1 1

)
,
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and in the basis (a( j, h), b( j, h)) of H1(F−1( j, h)) as(
1 0
1

n1n2
1

)
.

Note that in the 1:(−1) resonant case H( j, h) = H1(F−1( j, h)) thus the system has
standard monodromy. In all other cases the system has fractional monodromy and its
type is determined by n1n2.

3. Definitions

We consider an integrable Hamiltonian 2-DOF system on R4 with canonical coordinates
(q1, q2, p1, p2), given by a smooth Hamiltonian function H which Poisson commutes
with the n1:(−n2) resonant oscillator J in Eq. (2). We assume that n1, n2 are coprime
integers with 1 ≤ n1 ≤ n2; we allow in particular the case of 1:(−1) resonance. We first
give some general facts about Hamiltonians that commute with the n1:(−n2) resonant
oscillator, define suitable Poincaré surfaces of section for the flow of X J , and study
the corresponding Poincaré maps. Then we specify, in §3.2, the class of Hamiltonian
functions H and, in §3.3, the class of closed paths for which we prove Theorem 1 on
fractional monodromy.

3.1. Poincaré surfaces of section. We identify R4 and C2 by the assignment zk =
qk + ipk , k = 1, 2. In suitable coordinates (z1, z2) the resonant oscillator J is written as

J = n1

2
|z1|2 − n2

2
|z2|2. (4)

The flow ϕt
J of the Hamiltonian vector field X J on C2 defines the S1 action

t, (z1, z2) �→ ϕt
J (z1, z2) = (z1 exp(in1t), z2 exp(−in2t)). (5)

The S1 action (5) has trivial isotropy whenever z1 	= 0 and z2 	= 0; it has Zn1 isotropy
when z2 = 0, and Zn2 isotropy when z1 = 0. The origin 0 ∈ C2 is a fixed point of the
S1 action.

On the level set J−1( j) consider the two-dimensional Poincaré section given by

Σ+
j = {(z1, z2) ∈ J−1( j) : Arg(z1) = 0 or z1 = 0}, for j ≥ 0,

and

Σ−j = {(z1, z2) ∈ J−1( j) : Arg(z2) = 0 or z2 = 0}, for j ≤ 0.

Note that separately each one of the families Σ+
j and Σ−j depends continuously on j

but the whole family of surfaces of section is discontinuous at j = 0 where we have two
distinct surfaces Σ+

0 and Σ−0 .

Remark 1. The same family Σ±j of Poincaré sections was first used for n1:(−n2) reso-
nant systems in [28].

For j 	= 0, the surfaces Σ±j are smooth manifolds diffeomorphic to the complex

plane C. The surfacesΣ±0 are half-cones and are thus only homeomorphic to C. There-
fore all surfaces of section can be described using the coordinates z ∈ C. In particular,
for Σ+

j we let z = z2, while for Σ−j we let z = z1. The corresponding inclusion maps
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ι±j : Σ±j → C2 : z �→ (z1, z2) = ι±j (z)

are smooth for j 	= 0 and continuous for j = 0.
The n1:(−n2) resonant S1 action (5) on C2 induces the action of the cyclic group

Zn± on Σ±j . Specifically, the flow ϕt
J of X J in J−1( j) defines the Poincaré maps

Π±j : Σ±j → Σ±j given by

Π±j (z) = ϕ2π/n±
J (ι±j (z)),

where we let n+ = n1, n− = n2, and here 2π/n± is the first return time for all points on
Σ±j (except for 0 ∈ Σ±0 which is an equilibrium of X J ). Equation (5) then gives that

Π±j (z) = z exp(∓2π im±/n±), (6)

where on Σ+
j we have m+ = n2, n+ = n1 while on Σ−j we have m− = n1, n− = n2.

Note that since the Hamiltonian function H on C2 commutes with J , then H◦ϕt
J = H

and thus the restriction H±j of H on Σ±j satisfies

H±j ◦Π±j = H±j . (7)

Equation (7), together with the fact that m± and n± are coprime, implies that H±j is a

Zn± invariant function where the action of the cyclic group Zn± on Σ±j is given by

Zn± ×Σ±j → Σ±j : (k, z) �→ z exp(2π ik/n±).

Note that 0 ∈ Σ±j is a fixed point of the Zn± action and thus has non-trivial isotropy for

n± > 1. Comparing definitions one sees that the point 0 ∈ Σ±j is the intersection with

Σ±j of an orbit of the S1 action with the same non-trivial isotropy Zn± .

Denote by λ±( j, h) the level set (H±j )−1(h) on Σ±j . It follows from the preceding
discussion that such level sets are Zn± invariant. Furthermore, in the interior of the image
of F , denoted by image(F)◦, define the sets

C+ = {( j, h) ∈ image(F)◦ : j > 0, h = H+
j (0)},

C− = {( j, h) ∈ image(F)◦ : j < 0, h = H−j (0)},
(8)

that is, if ( j, h) ∈ C± then the level set λ±( j, h) contains the origin on Σ±j . For

n− = n2 > 1 the Zn− action on Σ−j , j < 0, has non-trivial isotropy at the origin.
This implies that in this case the level set λ−( j, h), and thus also the corresponding fibre
F−1( j, h), is not a smooth manifold and furthermore, that C− is a set of critical values
of F . The same is true for C+ whenever n+ = n1 > 1 but note that in this case we also
have n− = n2 > 1, so when n1 > 1 both C+ and C− are sets of critical values of F .
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(a)

Σ+
0

λ+(0, hupper)

Σ+
0

λ+(0, hlower)

(b)

Σ+
0

λ+(0, hupper)

Σ+
0

λ+(0, hlower)

Fig. 7. Schematic representation of level sets λ+(0, hupper) and λ+(0, hlower) for the Hamiltonian system in
Fn1:n2 . (a) 1:(−n2) resonant system. (b) 2:(−n2) resonant system. Note that in the Poincaré sectionΣ+

0 only
the value of n1 is important and that for n1 = 1 both level sets λ+(0, hupper) and λ+(0, hlower) consist of a
single connected component but with different winding numbers

3.2. Hamiltonian functions. We now define the class of Hamiltonian systems to be con-
sidered in this paper. Recall that all the examples described in §2 share some common
characteristics. In particular, in all cases there is a regular value (0, hupper) of F for which
the corresponding level set λ+(0, hupper) is a single smooth circle with winding number
1 and a regular value (0, hlower) for which the corresponding level set λ+(0, hlower) con-
sists of n1 smooth circles with winding number 0. The following definition is motivated
by these examples and is further illustrated in Fig. 7 for the cases of 1:(−n2) and 2:(−n2)

systems.

Definition 1 (Hamiltonian functions). The set Fn1:n2 consists of those C∞ Hamiltonian
functions H : C2 → R that satisfy the following:

(i) H Poisson commutes with the n1:(−n2) resonance J in Eq. (4).
(ii) For any j the critical points of H±j on Σ±j are isolated.
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(iii) H+
0 has regular values hlower, hupper ∈ R with hlower < H(0) < hupper or hupper <

H(0) < hlower, where H(0) is the value of H at the origin 0 ∈ C4 and is equal to
the value of H+

0 at the origin of Σ+
0 , such that:

(a) the level set λ+(0, hupper) := (H+
0 )
−1(hupper) is a smooth circle with winding

number 1, and
(b) the level set λ+(0, hlower) := (H+

0 )
−1(hlower) consists of n1 smooth circles and

each one of these circles has winding number 0.

The first thing to note about Definition 1 is that since H Poisson commutes with J
there is an induced Zn1 action on Σ+

0 that leaves H+
0 invariant, see §3.1. This implies

that λ+(0, hupper) is Zn1 invariant while the n1 circles that constitute λ+(0, hlower) are
mapped to each other by this Zn1 action. Furthermore note that by subtracting H(0)
from H and by possibly changing the sign of H we can always arrange so that hlower <

H(0) = 0 < hupper. Thus from now on we assume without any loss of generality that
our H has this property.

Remark 2. Although the level set λ+(0, hlower) consists of more than one component
when n1 > 1, the corresponding fibre F−1(0, hlower) consists of one single component,
i.e., it is a smooth T2. This can be seen in the examples of §2.2 and it will be proved in
§5.1. Furthermore, F−1(0, hupper) is also a T2.

Let Dlower be the largest open connected subset of the set R of regular values of F
such that (0, hlower) ∈ Dlower and all points ( j, h) ∈ Dlower satisfy h < H±j (0). Simi-
larly, let Dupper be the largest open connected subset of R such that (0, hupper) ∈ Dupper

and all points ( j, h) ∈ Dupper satisfy h > H±j (0). Note that Dlower and Dupper are not
empty. Finally, let D = Dlower ∪ Dupper.

Remark 3. The conditions h < H±j (0) for Dlower and h > H±j (0) for Dupper ensures

that the level sets λ±( j, h) do not contain 0 ∈ Σ±j for any ( j, h) ∈ Dlower. This in
particular means that the winding number of the level sets λ±( j, h) with respect to the
origin is well defined and constant in each open set Dlower and Dupper. Furthermore,
these conditions will ensure that the lift of any regular fibre F−1( j, h) for ( j, h) ∈ D to
the covering space is also a regular fibre.

3.3. Closed paths. We now define the class of closed paths to be considered for the
parallel transport of homology cycles, see also Fig. 8.

Definition 2 (Closed Paths). Given H ∈ Fn1:n2 we define the set L of closed smooth
paths Γ : [0, 1] → image(F)◦\{c∗} : s �→ Γ (s) = (Γ j (s), Γh(s)) which satisfy the
following:

(i) Γ (0) = Γ (1) = ( j, h) ∈ D′ := D ∪ (∂D ∩ R).
(ii) Γ has winding number 1 with respect to the origin c∗ = (0, 0).

(iii) Γ crosses the axis j = 0 only at points that belong in D.
(iv) For all s ∈ (0, 1) and all points p ∈ F−1(Γ (s)) the transversality condition

Γ ′h(s) d J (p)− Γ ′j (s) d H(p) 	= 0 is satisfied.

(v) There is a smooth path ΓF : [0, 1] → R4 in phase space such that ΓF covers Γ ,
that is, F(ΓF (s)) = Γ (s) for all s ∈ [0, 1].
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Dupper

Dlower

h

j
c∗

Γ

Γ

Fig. 8. The path Γ has winding number 1 with respect to the origin and crosses the axis j = 0 only at points
that belong in D, cf. Fig. 13

Note that the transversality condition (iv) is automatically satisfied whenever p is a
regular point of F . SinceΓ does not go through the point c∗ the case d J (p) = d H(p) =
0, possible only at p = 0, is avoided. Finally, in the case that p is a rank-1 critical point
of F , condition (iv) implies that whenever Γ crosses a one-parameter family of critical
values of F , it does so transversally.

Remark 4. The path Γ is chosen so that its starting and ending point ( j, h) is in the set
D′ := D∪ (∂D∩R). Note that each fibre F−1( j, h) for ( j, h) ∈ D = Dupper ∪Dlower is
diffeomorphic to a single T2. This follows from the definition of Dupper and Dlower and
from the fact that each of F−1(0, hupper) and F−1(0, hlower) is a T2, see Remark 2. This
means that if we consider a path Γ with ‘initial’ point ( j, h) ∈ D then the ‘initial’ fibre
F−1( j, h) is a T2. For higher order resonances with 1 < n1 < n2 we have that D′ = D.
This follows from the fact that points in ∂D are, by definition, either critical values of
F or points in C = C− ∪ {c∗} ∪ C+. Since for 1 < n1 < n2 all points in C are critical
values of F , all points in ∂D are also critical values of F , implying that ∂D ∩ R = ∅
and thus D′ = D. Thus considering D′ instead of D does not add anything in this case.
Nevertheless, in the case of lower order resonances there may be regular values in ∂D
and, as the examples in §2 show, it is possible that these regular values lie in the common
boundary of Dupper and Dlower. Therefore, in this case the set ∂D ∩ R ‘bridges the gap’
between Dupper and Dlower and D′ is the maximally connected set of regular values that
contains both (0, hupper) and (0, hlower). Thus for all resonances we have that each fibre
F−1( j, h) for ( j, h) ∈ D′ is diffeomorphic to a single T2 and furthermore there are
paths in R that connect ( j, h) to one or both of (0, hupper) and (0, hlower).

Remark 5. Condition (v) in Definition 2 ensures that by moving along Γ in the image
of F it is possible to find a corresponding path in phase space that connects the fibres
of F along Γ . This may not be always the case. Consider for example the bifurcation
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diagram related to a Hamiltonian swallowtail [20,21] and a path Γ that enters and then
exits the two-component region by crossing different curves of elliptic critical values.
In this case there is no continuous path in phase space that covers Γ .

Remark 6. Conditions (iv) and (v) in Definition 2 taken together imply that ΓF (s) is not
a critical point of F for any s ∈ (0, 1) or, alternatively, that if ΓF (s) is a critical point of
F then Γ cannot be transversal to the corresponding curve of critical values. In order to
see this we compute from F(ΓF (s)) = Γ (s) that

Γ ′j (s) = d J (ΓF (s))Γ
′
F (s), Γ ′h(s) = d H(ΓF (s))Γ

′
F (s).

If ΓF (s) were a critical point of F , with d H(ΓF (s)) = κd J (ΓF (s)), then we would
have Γ ′h(s) = κΓ ′j (s) and

Γ ′h(s) d J (ΓF (s))− Γ ′j (s) d H(ΓF (s)) = (κΓ ′j (s)) d J (ΓF (s))− Γ ′j (s) (κ d J (ΓF (s)))

= 0,

therefore condition (iv) in Definition 2 would be violated.

Having given the precise definitions of the class of n1:(−n2) resonant systems Fn1:n2

and closed paths L we proceed in the following sections with the proof of Theorem 1.

4. The Branched Covering Map and Geometry in the Covering Space

In this section we introduce a branched covering map that locally trivializes the geometry
of the fibres of the system and we study its properties in detail.

4.1. Definition and basic properties of the branched covering map. We consider the
branched covering map

ρ : C2 → C2 : (w1, w2) �→ (z1, z2) = (wn1
1 , w

n2
2 ). (9)

The map ρ has degree

deg ρ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n1n2, for w1w2 	= 0,
n1, for w2 = 0, w1 	= 0,
n2, for w1 = 0, w2 	= 0,
1, for w1 = w2 = 0.

The n1:(−n2) resonant S1 action (5) defined by the flow of X J lifts to the covering
space to the 1:(−1) resonant S1 action

t, (w1, w2) �→ ϕ̃t
J (w1, w2) = (w1 exp(it), w2 exp(−it)), (10)

which makes the diagram

C2
ϕ̃t

J−−−−→ C2

ρ

⏐⏐� ⏐⏐�ρ
C2 −−−−→

ϕt
J

C2

(11)

commute.
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Proceeding just like in §3.1 we define a Poincaré section in J̃−1( j), where J̃ is the
lift of J to the covering space, i.e.,

J̃ (w1, w2) = J (wn1
1 , w

n2
2 ) =

n1

2
|w1|2n1 − n2

2
|w2|2n2 .

Specifically, in the covering space we define the families of Poincaré sections

Σ̃+
j = {(w1, w2) ∈ J̃−1( j) : Arg(w1) = 0 or w1 = 0}, for j ≥ 0,

and

Σ̃−j = {(w1, w2) ∈ J̃−1( j) : Arg(w2) = 0 or w2 = 0}, for j ≤ 0.

We describe all surfaces of section with coordinates w ∈ C where w = w2 for Σ̃+
j and

w = w1 for Σ̃−j . The corresponding inclusions are denoted by ι̃±j : Σ̃±j → C2.

The restriction ρ±j of the map ρ in (9) to Σ̃±j is a degree m± covering map, where
m+ = n2 and m− = n1, and is given by

ρ±j : Σ̃±j → Σ±j : w �→ z = wm± . (12)

Denote by H̃ = ρ∗H the lift through ρ of the Hamiltonian function H , i.e.,

H̃(w1, w2) = H(wn1
1 , w

n2
2 ).

Then the restriction H̃±j = H̃ |Σ̃±j satisfies

H̃±j (w) = H±j (w
m±) = H±j (ρ

±
j (w)). (13)

Consider the action on Σ̃±j of the cyclic group ZN , N = n1n2 = m±n±, which is given
by

ZN × Σ̃±j → Σ̃±j : (k, w) �→ w exp(2π ik/N ).

The function H̃±j is invariant under this ZN action. Indeed, using that H±j is Zn± invari-
ant, see §3.1, we compute that

H̃±j (w exp(2π i/N )) = H±j (w
m± exp(2π i/n±)) = H±j (w

m±) = H̃±j (w).

Thus we find that the level sets λ̃±( j, h) := (H̃±j )−1(h) of H̃±j on Σ̃±j are ZN invariant.
Furthermore, Eq. (13) implies that

λ̃±( j, h) = (ρ±j )−1λ±( j, h). (14)

The deck group of the covering map ρ is

D = {(w1, w2) �→ Ak1,k2(w1, w2) : k1 = 0, . . . , n1 − 1, k2 = 0, . . . , n2 − 1},
where

Ak1,k2(w1, w2) = (w1 exp(2π ik1/n1), w2 exp(2π ik2/n2)).
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Thus

D = Zn1 ⊕ Zn2 � ZN ,

where N = n1n2. A function on the covering space is D invariant if and only if it is
the pull-back by ρ of a function in the original space. This implies in particular that the
fibres F̃−1( j, h) are D invariant.

The relation of the ZN action on Σ̃±j to the action of the deck group D on C2 is the

following. Suppose that (w1, w2) ∈ J̃−1( j) ⊂ C2. Then there is a map p̃±j : J̃−1( j)→
Σ̃±j that sends (w1, w2) to the point w ∈ Σ̃±j where the S1 orbit of ϕ̃t

J passing through

(w1, w2) intersects Σ̃±j . One can see Σ̃±j as the orbit space of the S1 action in J̃−1( j)

and p̃±j as the corresponding reduction map. Let

Bk = [w �→ w exp(2π ik/N )] ∈ ZN .

Then for Ak1,k2 in the deck group D we have that

p̃±j ◦ Ak1,k2 ◦ ι̃±j = Bk1n2+k2n1 . (15)

4.2. The pull back of the integrable Hamiltonian fibration to the covering space. In this
section we consider the lifted fibres F̃−1( j, h), where F̃ := ρ∗F = ( J̃ , H̃) and their
relationship to the level sets λ̃±( j, h) of H̃±j .

Note that the S1 action ϕ̃t
J preserves the fibres of F̃ . Indeed, if L : C2 → R is

any ϕt
J invariant function in the original space then L̃ = ρ∗L is ϕ̃t

J invariant, since
L̃ ◦ ϕ̃t

J = L ◦ρ ◦ ϕ̃t
J = L ◦ϕt

J ◦ρ = L ◦ρ = L̃ . We now have the following fundamental
result.

Lemma 1 (Product structure of lifted fibres). If a fibre F̃−1( j, h) does not contain the
origin in C2 then it is diffeomorphic to λ̃±( j, h)× S1, where λ̃±( j, h) = (H̃±j )−1(h) =
F̃−1( j, h) ∩ Σ̃±j .

Proof. We show that the map

Φ : λ̃±( j, h)× S1 → F̃−1( j, h) : (w, t) �→ ϕ̃t
J (ι̃
±
j (w)) = (w1 exp(it), w2 exp(−it)),

(16)

where (w1, w2) = ι̃±j (w), is a diffeomorphism. Recall that ι̃±j : Σ̃±j → C2 is the

inclusion map. Since the S1 action ϕ̃t
J preserves the fibres F̃−1( j, h) the map Φ is well

defined, i.e., Φ(w, t) ∈ F̃−1( j, h).
Φ is smooth, injective, and onto F̃−1( j, h). We show this for j ≥ 0, i.e., for level

sets λ̃+( j, h) on Σ+
j , the case j ≤ 0 being similar. If (w′1, w′2) ∈ F̃−1( j, h) then

there are unique t = Arg(w′1) ∈ [0, 2π) and w = w′2w′1/|w′1| ∈ λ̃+( j, h) for which
(w′1, w′2) = ϕ̃t

J (ι̃
+
j (w)) ∈ Σ̃+

j . The expressions for t and w are well defined since for

j > 0 and for j = 0, but away from the origin in C2 we have |w′1| > 0. These expressions
show that Φ−1 is smooth. ��
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Remark 7. Lemma 1 implies that the fibre F̃−1( j, h) has as many connected compo-
nents as the connected components of λ̃±( j, h). Compare this with the situation in the
original space where λ±( j, h) for ( j, h) ∈ Dlower has n± connected components (with
n± possibly larger than 1) but these are the intersections with Σ±j of a connected fibre

F−1( j, h) � T2.

We now relate the geometry of the level sets λ±( j, h) to the geometry of the corre-
sponding level sets λ̃±( j, h). Our aim for the moment is to determine the properties of the
level sets λ̃±( j, h) for ( j, h) ∈ D = Dlower ∪Dupper from the properties of λ+(0, hlower)

and λ+(0, hupper) given in Definition 1. In Fig. 9 we illustrate our results for the specific
cases 1:(−2) and 2:(−5).

We will need the following result that relates the regularity of values of F to the
regularity of values of F̃ . Recall that we denote by R the set of regular values of F and
the sets C± are defined in (8).

Lemma 2 (Regularity of values of F̃). Points ( j, h) ∈ R\(C− ∪C+) are regular values
of F̃ . If N = n1n2 	= 1 then points ( j, h) ∈ C− ∪ C+ are critical values of F̃ even if
they are regular values of F. Critical values of F are also critical values of F̃ .

Proof. Since F̃ = F ◦ ρ, if ( j, h) is a critical value of F it must also be a critical value
of F̃ .

Assume now that ( j, h) is a regular value of F , that is, rank DF(p′) = 2 for all
p′ ∈ F−1( j, h). If p ∈ F̃−1( j, h) then ρ(p) ∈ F−1( j, h) and

DF̃(p) = DF(ρ(p)) Dρ(p),

where Dρ(p) can be computed using Eq. (9). Note that if Dρ(p) has full rank then
rank DF̃(p) = rank DF(ρ(p)) = 2. We find that Dρ(p) with p = (w1, w2) ∈ C2

has full rank if w1w2 	= 0. The latter is true for all points p ∈ F̃−1( j, h) with ( j, h) ∈
R\(C+ ∪ C−). Therefore such ( j, h) are regular values of F̃ .

Finally, consider the case where n1n2 	= 1. In this case ( j, h) ∈ C− are critical
values of F and thus also critical values of F̃ . If n1 > 1 the same is true for ( j, h) ∈ C+.
Therefore we are only left to consider values ( j, h) ∈ C+ in the case n1 = 1. Note that
if ( j, h) ∈ C+ then there is a point p = (w1, 0) ∈ C2 such that F̃(p) = ( j, h). Then a
direct computation shows that

DF̃(p) =
(
∂ J/∂q1 ∂ J/∂p1 0 0
∂H/∂q1 ∂H/∂p1 0 0

)
,

where the partial derivatives are evaluated at ρ(p) = (w1, 0). Evaluating the Poisson
bracket {J, H}(ρ(p)) = 0 gives

∂ J

∂q1

∂H

∂p1
− ∂H

∂q1

∂ J

∂p1
= 0.

Therefore rank DF̃(p) ≤ 1 and p is a critical point of F̃ . ��
Remark 8. Lemma 2 shows that for N 	= 1 the set of regular values of F̃ is always
separated by the set C = C− ∪ {c∗} ∪ C+ into at least two disjoint components. This is
the reason we have defined Dupper and Dlower as connected components of regular values
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Fig. 9. Schematic representation of level sets λ̃±( j, h) for ( j, h) ∈ D. (a) 1:(−2) resonant system. (b) 2:(−5)
resonant system
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of F above and below the set C: even though the topology of F−1( j, h)may not change
when crossing C this is not in general true for the topology of F̃−1( j, h). For N = 1
(which implies n1 = n2 = 1) it is not necessary to define the sets Dupper and Dlower but
we can treat the whole set of regular values together. Nevertheless we want to treat all
resonances in a uniform way and for this reason we work also in the case N = 1 with
the sets Dupper and Dlower.

Lemma 3 (Topology of λ̃±( j, h)). For ( j, h) ∈ Dupper the level sets λ̃±( j, h) are smooth
ZN invariant circles with winding number 1. For ( j, h) ∈ Dlower the level sets λ̃±( j, h)
are the disjoint union of N smooth circles with winding number 0 that are mapped to
each other by the ZN action.

Proof. Starting with Dupper we observe that since λ+(0, hupper) on Σ+
0 is a circle with

winding number 1 it follows from Eqs. (14) and (12) that λ̃+(0, hupper) on Σ̃+
0 is also a

circle with winding number 1. From Lemma 1 and the fact that λ̃+(0, hupper) � S1 we
infer that F̃−1(0, hupper) � T2. Since Dupper is a connected set of regular values of F ,
Lemma 2 shows that it is also a connected set of regular values of F̃ . Therefore all fibres
F̃−1( j, h) for ( j, h) ∈ Dupper are diffeomorphic to F̃−1(0, hupper) and thus they are T2.
Using again Lemma 1 we deduce that λ̃±( j, h) � S1. By the definition of Dupper, see
§3.2, none of the level sets λ̃±( j, h) for ( j, h) ∈ Dupper goes through 0 ∈ Σ̃±j and thus

they all have the same winding number as λ̃+(0, hupper) which is 1.
For Dlower we observe that since λ+(0, hlower) onΣ+

0 consists of n+ = n1 circles with
winding number 0 it follows that λ̃+(0, hlower) on Σ̃+

0 consists of N = m+n+ = n1n2
circles with winding number 0. For ( j, h) ∈ Dlower, using a similar argument as for
Dupper, we find that the fibre F̃−1( j, h) is diffeomorphic to F̃−1(0, hlower) which is
the union of N disjoint T2. Thus λ̃±( j, h) consists of N disjoint circles and again an
argument similar to the case ( j, h) ∈ Dupper shows that their winding number is 0. ��

We denote by λ̃±( j, h)(k) with k = 1, . . . , K the connected components of λ̃±( j, h).
Note that for ( j, h) ∈ Dupper we have K = 1, while for ( j, h) ∈ Dlower we have K = N .
Similarly, we denote by F̃−1( j, h)(k) � λ̃±( j, h)(k) × S1 with k = 1, . . . , K the corre-
sponding connected components of F̃−1( j, h). Lemma 1 implies that for each connected
component F̃−1( j, h)(k) there is a diffeomorphism

Φ±j,h;k : T2 → F̃−1( j, h)(k) : (s, t) �→ Φ±j,h;k(s, t) = ϕ̃t
J (ι̃
±
j (ζ(s))), (17)

where ζ : S1 → λ̃±( j, h)(k) is a parameterization of the level set λ̃±( j, h)(k). In par-
ticular for ( j, h) ∈ Dupper the parameterization ζ is chosen so that ζ(s + 2π/N ) =
ζ(s) exp(2π i/N ). When K = 1 we often drop the index k from our notation.

Remark 9. Using Eq. (14) we can also determine the properties of the level sets λ±( j, h)
in the original space. We will not need these properties further and for this reason we
only describe them briefly here. For ( j, h) ∈ Dupper each level set λ±( j, h) is a circle
with winding number 1 and Zn± symmetry. For ( j, h) ∈ Dlower each level set λ±( j, h)
consists of n± circles with winding number 0 and the whole level set is Zn± invariant.
In Fig. 10 we illustrate these properties for the specific cases 1:(−2) and 2:(−5).
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Fig. 10. Schematic representation of level sets λ±( j, h) for ( j, h) ∈ D = Dlower∪Dupper . (a) 1:(−2) resonant
systems. (b) 2:(−5) resonant systems
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4.3. Homology of fibres in the covering space. We now turn our attention to the first
homology group H1(F̃−1( j, h)). For ( j, h) ∈ D the fibre F̃−1( j, h) consists of K con-
nected components F̃−1( j, h)(k) with k = 1, . . . , K . Recall that K = 1 for ( j, h) ∈
Dupper and K = N for ( j, h) ∈ Dlower. Thus

H1(F̃
−1( j, h)) �

K⊕
k=1

H1(F̃
−1( j, h)(k)) �

K⊕
k=1

Z2. (18)

We now want to fix a basis for each H1(F̃−1( j, h)(k)). For each k = 1, . . . , K we
define the ordered basis (g̃±( j, h)(k), b̃±( j, h)(k)) by

g̃±( j, h)(k) = [s �→ Φ±j,h;k(s, 0)], b̃±( j, h)(k) = [t �→ Φ±j,h;k(0, t)], (19)

where [s �→ γ (s)] denotes the homology cycle represented by the closed path γ . By
construction, each cycle g̃±( j, h)(k) corresponds to the level set λ̃±( j, h)(k) on the sur-
face of section Σ̃±j traversed in a counterclockwise direction. Furthermore, each cycle

b̃±( j, h)(k) is generated by the S1 action (10) on the component F̃−1( j, h)(k). Finally,
we define

g̃±( j, h) =
K∑

k=1

g̃±( j, h)(k). (20)

For ( j, h) ∈ Dupper, g̃±( j, h) = g̃±( j, h)(1).
Note that for j = 0 there are two cycles g̃+(0, h)(k) and g̃−(0, h)(k) and two cycles

b̃+(0, h)(k) and b̃−(0, h)(k) on each component F̃−1(0, h)(k). We aim to find the relation
between these cycles.

Lemma 4. On F̃−1(0, h)(k) we have

g̃−(0, h)(k) =
{

g̃+(0, h)(k) + b̃+(0, h)(k), for (0, h) ∈ Dupper,

g̃+(0, h)(k), for (0, h) ∈ Dlower,

and

b̃−(0, h)(k) = b̃+(0, h)(k).

Because of the last lemma from now on we write b̃( j, h)(k) instead of b̃±( j, h)(k).

Proof. Fixing the component F̃−1(0, h)(k) we temporarily simplify notation to g̃± =
g̃±(0, h)(k) and b̃± = b̃±(0, h)(k). The cycles b̃+ and b̃− are generated by the S1 action
and lie on the same connected component. Therefore these cycles are homologous. We
give now a proof of the relation between the cycles g̃+ and g̃−. From the same proof we
recover the fact about b̃+ and b̃− being homologous.

Consider a parameterization ζ + of λ̃+(0, h)(k) given by

ζ +(s) = R2(s) exp(iθ(s)),
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where θ : S1 → S1 is a map whose degree d is the winding number of λ̃+(0, h)(k). This
means that d = 1 for (0, h) ∈ Dupper and d = 0 for (0, h) ∈ Dlower. Then, applying Eq.
(17), we obtain the parameterization

Φ+ : T2 → F̃−1(0, h)(k) : (s, t) �→ (R1(s) exp(it), R2(s) exp(i(θ(s)− t))) ,

where we used the fact that ι̃+0(ζ
+(s)) has the form (R1(s), R2(s) exp(iθ(s))) with

R1(s) > 0. It follows from the expression for Φ+ that the set λ̃−(0, h)(k) =
F̃−1(0, h)(k) ∩ Σ̃−0 , where Arg(w2) = 0, is given by t = θ(s) and can therefore be
parameterized as

ι̃−0 (ζ
−(s)) = (R1(s) exp(iθ(s)), R2(s)) .

Then, applying again Eq. (17), we obtain an alternative parameterization for F̃−1(0, h)(k)

given by

Φ− : T2 → F̃−1(0, h)(k) : (s, t) �→ (R1(s) exp(i(θ(s) + t), R2(s) exp(−it)) .

The diffeomorphisms Φ+ and Φ− are related by

Φ− = Φ+ ◦ ψ,
where

ψ : T2 → T2 : (s, t) �→ ψ(s, t) = (s, t + θ(s))

is a diffeomorphism on T2.
Let (c1, c2) be the standard ordered basis of H1(T2) � Z2. Then, by definition, we

have that g̃± = Φ±∗ c1 and b̃± = Φ±∗ c2. Furthermore, ψ∗c1 = c1 + deg(θ) c2, where
deg(θ) is the degree of the map θ , and ψ∗c2 = c2. Thus we obtain

g̃− = Φ−∗ c1 = Φ+∗ψ∗c1 = Φ+∗ (c1 + deg(θ) c2) = g̃+ + deg(θ) b̃+,

and

b̃− = Φ−∗ c2 = Φ+∗ψ∗c2 = Φ+∗ c2 = b̃+.

��

5. Fibres and Homology in the Original Space

In this section we study the action of the covering map on the homology groups of
individual fibres and determine bases for the homology groups of fibres in the original
space. Consider the restriction of the covering map ρ to the fibre F̃−1( j, h), that is,

ρ j,h : F̃−1( j, h)→ F−1( j, h).

Then in this section we prove the following result concerning the basis of H1(F−1( j, h))
for ( j, h) ∈ D. Recall that we denote by b( j, h) the homology cycle on F−1( j, h) � T2

which is represented by any closed orbit of the S1 action.

Proposition 1. The homology group H1(F−1( j, h)) for ( j, h) ∈ D is spanned over Z
by an ordered basis (a±( j, h), b( j, h)) for which we have that

(ρ j,h)∗g̃±( j, h) = Na±( j, h) + Mb( j, h), and (ρ j,h)∗b̃(k)( j, h) = b( j, h)

for k = 1, . . . , K .

Here, N = n1n2 and M ∈ Z is determined in the course of the proof.

In the rest of this section we give the proof of Proposition 1.
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5.1. The action of the covering map on individual fibres. Consider a fibre F̃−1( j, h) in
the covering space, where ( j, h) ∈ D. Recall that if ( j, h) ∈ Dupper then F̃−1( j, h) � T2

and that if ( j, h) ∈ Dlower then F̃−1( j, h) is the union of N disjoint T2 and the action of
the deck group D maps each connected component to another one. The last fact follows
from Eq. (15) that intertwines the action of D with the ZN action on the surface of section
Σ̃±j and the fact that the latter action maps each connected component of λ̃±( j, h) to
another one.

The fibre F−1( j, h) in the original space is the image under the covering map ρ of
the fibre F̃−1( j, h). Since D is a subset of the set R of regular values of F we conclude
using the Arnol’d-Liouville theorem that F−1( j, h) is a T2 or a disjoint union of T2. For
( j, h) ∈ Dupper we immediately find that F−1( j, h) � T2, since F̃−1( j, h) � T2 andρ is
continuous. For ( j, h) ∈ Dlower each T2 component F̃−1( j, h)(k) of F̃−1( j, h) is mapped
under ρ to the same set. Therefore for all k = 1, . . . , N we have that ρ(F̃−1( j, h)(k)) =
F−1( j, h) and the latter is again a T2.

We now study in more detail the action of the covering map on individual fibres.
Specifically, we want to find a diffeomorphism Ψ±j,h;k : T2 → F−1( j, h) and a map

r±j,h;k : T2 → T2 such that the diagram

T2
Φ±j,h;k−−−−→ F̃−1( j, h)(k)

r±j,h;k
⏐⏐� ⏐⏐�ρ j,h;k

T2 −−−−→
Ψ±j,h;k

F−1( j, h)

(21)

commutes. Here Φ±j,h;k : T2 → F̃−1( j, h)(k) is the diffeomorphism given in Eq. (17)

and ρ j,h;k : F̃−1( j, h)(k)→ F−1( j, h) is the restriction of ρ to F̃−1( j, h)(k). Our main
interest here is determining r±j,h;k , since then it becomes trivial to study the relation
between homology cycles in the covering space and the original space. The two cases
( j, h) ∈ Dlower and ( j, h) ∈ Dupper are different and we treat them separately.

5.1.1. The case ( j, h) ∈ Dlower. Recall that in this case the fibre F̃−1( j, h) consists of
N connected components F̃−1( j, h)(k) with k = 1, . . . , N and each such component
is diffeomorphic to T2. We have that ρ j,h;k(F̃−1( j, h)(k)) = F−1( j, h) and the map
ρ j,h;k is injective since the N points in the covering space that are mapped under ρ to
the same point belong to the N different connected components of F̃−1( j, h). Finally,
ρ j,h;k is smooth and its inverse ρ−1

j,h;k : F−1( j, h) → F̃−1( j, h)(k) is also smooth.
Therefore ρ j,h;k is a diffeomorphism. Then the diagram (21) can be made commutative
by choosing r±j,h;k to be the identity map on T2 and Ψ±j,h;k = ρ j,h;k ◦Φ±j,h;k .

5.1.2. The case ( j, h) ∈ Dupper. Consider the action of the deck group D on F̃−1( j, h).
Recall that for Ak1,k2 ∈ D we have that

Ak1,k2(w1, w2) = (w1 exp(2π ik1/n1), w2 exp(2π ik2/n2)).

The action of D on F̃−1( j, h) induces through Φ±j,h an action of D on T2 given by

A′k1,k2
= (Φ±j,h)−1 ◦ Ak1,k2 ◦Φ±j,h,
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and which we compute to be

A′k1,k2
(s, t) =

(
s + 2π

(
k1

n1
+

k2

n2

)
, t ± 2π

k±
n±

)
,

where, in analogy with n±, we define k+ = k1 and k− = k2. Then T2/D � T2 and the
required map r±j,h is the reduction map of the discrete action of D on T2. In particular,

giving coordinates (u, v) on T2/D � T2 the map r±j,h is given by

(u, v) = r±j,h(s, t) = (m±(s ∓ t), n±t). (22)

Note that r±j,h is an N -fold covering map. The map Ψ±j,h : T2/D → F̃−1( j, h)/D

induced by Φ±j,h is then a diffeomorphism and since F̃−1( j, h)/D � F−1( j, h) the

diffeomorphism Ψ±j,h is the required diffeomorphism. The corresponding commutative
diagram is

T2
Φ±j,h−−−−→ F̃−1( j, h)

r±j,h
⏐⏐� ⏐⏐�ρ j,h

T2/D � T2 −−−−→
Ψ±j,h

F−1( j, h) � F̃−1( j, h)/D

(23)

5.2. Bases of the homology groups and the action of the covering map on homology.
Recall that for each F̃−1( j, h)(k) � T2 in the covering space we have defined ordered
bases (g̃±( j, h)(k), b̃( j, h)(k)) of H1(F̃−1( j, h)(k)) � Z2 given by

g̃±( j, h)(k) = [s �→ Φ±j,h;k(s, 0)], b̃( j, h)(k) = [t �→ Φ±j,h;k(0, t)],

where Φ±j,h;k is a parameterization of F̃−1( j, h)(k). Denote by c1 = [s �→ (s, 0)] and

c2 = [t �→ (0, t)] the two standard basis cycles of H1(T2). Then

g̃±( j, h)(k) = (Φ±j,h;k)∗c1, b̃( j, h)(k) = (Φ±j,h;k)∗c2.

It follows from the commutative diagram (11) that the cycle b̃( j, h)(k) on F̃−1( j, h)(k)

is mapped under (ρ j,h;k)∗ to the cycle b( j, h) generated by the X J flow on F−1( j, h).
We want to construct an ordered basis of H1(F−1( j, h)) where the second element in
the basis is the cycle b( j, h). We discuss again separately the cases ( j, h) ∈ Dlower and
( j, h) ∈ Dupper.

5.2.1. The case ( j, h) ∈ Dlower. Here r±j,h;k is the identity and Ψ±j,h;k = ρ j,h;k ◦Φ±j,h;k .

Since Ψ±j,h;k is a diffeomorphism, the cycles (Ψ±j,h;k)∗ci , i = 1, 2, form a basis of

H1(F−1( j, h)). Furthermore, we have

(Ψ±j,h;k)∗c1 = (ρ j,h;k)∗g̃±( j, h)(k), (Ψ±j,h;k)∗c2 = (ρ j,h;k)∗b̃( j, h)(k) = b( j, h).
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Fig. 11. Schematic representation of fibres F−1( j, h) for f = ( j, h) ∈ Dlower and n1 = 2, n2 = 5. The
upper and lower boundaries of the cylinders should be identified. At the left side j < 0. A basis of the first
homology group is provided by the cycles a−( j, h) and b( j, h) shown here. The cycle b( j, h) is represented
by the black curves that start at the upper side of the cylinder and end at the lower side. We have to take all 5
such curves in order to obtain a closed curve. At the right side j > 0. Here the cycle b( j, h) is represented
by the two black curves that start at the lower side of the cylinder and end at the upper side. Note that in both
cases the fibre is a single T2

Thus we have for ( j, h) ∈ Dlower the ordered basis (a±( j, h), b( j, h)) of H1(F−1( j, h)),
where

a±( j, h) = (ρ j,h;k)∗g̃±( j, h)(k),

see also Fig. 11. Note that

(ρ j,h)∗g̃±( j, h) =
N∑

k=1

(ρ j,h;k)∗g̃±( j, h)(k) = Na±( j, h).

5.2.2. The case ( j, h) ∈ Dupper. In this case, using Eq. (22), we find that

b( j, h) = (ρ j,h)∗b̃( j, h) = (ρ j,h)∗(Φ±j,h)∗c2 = (Ψ±j,h)∗(r±j,h)∗c2

= (Ψ±j,h)∗(∓m±c1 + n±c2) = ∓m±e±1 ( j, h) + n±e±2 ( j, h),

where e±i ( j, h) := (Ψ±j,h)∗ci for i = 1, 2, and the two cycles e±1 ( j, h) and e±2 ( j, h)

give a basis of H1(F−1( j, h)), see Fig. 12. An ordered basis (a±( j, h), b( j, h)) of
H1(F−1( j, h)) can then be obtained from (e±1 ( j, h), e±2 ( j, h)) if there is a matrix A ∈
SL(2,Z) such that

(
a±( j, h)
b( j, h)

)
= A

(
e±1 ( j, h)

e±2 ( j, h)

)
=

(
�1 �2
∓m± n±

) (
e±1 ( j, h)

e±2 ( j, h)

)
.
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Fig. 12. Schematic representation of a torus F−1( j, h) for f ∈ Dupper for the specific choice n1 = 2, n2 = 5.
The upper and lower boundaries of the cylinders should be identified. At the left side j < 0. A basis of the first
homology group is provided by the cycles e−1 ( j, h) and e−2 ( j, h) shown here. The cycle b( j, h) is represented
by the thin black curves that start at the upper side of the cylinder and end at the lower side while winding by
2/5 of a full circle around the cylinder. We have to take all 5 such curves in order to obtain a closed curve so
we obtain that in this case b( j, h) = 2e−1 ( j, h) + 5e−2 ( j, h). At the right side j > 0. Here the cycle b( j, h) is
represented by the two thin black curves that start at the lower side of the cylinder and end at the upper side
after winding by two and a half circles around the cylinder. Here b( j, h) = −5e+

1 ( j, h) + 2e+
2 ( j, h). In both

cases b( j, h) = ∓m±e±1 ( j, h) + n±e±2 ( j, h)

Since m±, n± are coprime, it is always possible to find �1, �2 ∈ Z such that det A =
n±�1 ± m±�2 = 1, so A ∈ SL(2,Z). Finally note that

(ρ j,h)∗g̃±( j, h)= (ρ j,h)∗(Φ±j,h)∗c1= (Ψ±j,h)∗(r±j,h)∗c1= (Ψ±j,h)∗m±c1=m±e±1 ( j, h).

Thus we find

(ρ j,h)∗g̃±( j, h) = m±(n±a±( j, h)− �2b( j, h)) = Na±( j, h) + Mb( j, h), (24)

where N = m±n± = n1n2 and M = −�2m±.

6. Parallel Transport of Homology Cycles

The standard notion of parallel transport of homology cycles in [11,16] applies to the
situation where the path Γ is in the set R of regular values of F . In this section we give a
definition of parallel transport of homology cycles which generalizes the standard notion
of parallel transport to cases where Γ goes through critical values of F . Furthermore,
we compute the parallel transport of homology cycles in the covering space and we push
these results down to the original space.

6.1. Definition of parallel transport. We first recall and then reformulate the standard
notion of parallel transport. Assume that ( j0, h0) ∈ R and that F−1( j0, h0) � T2. This
implies that if Γ is a path in R that starts at ( j0, h0) and ends at a regular value ( j1, h1)
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then for all points ( j, h) along Γ the fibre F−1( j, h) is also diffeomorphic to T2. Focus-
ing on the homology groups H1(F−1( j, h)) � Z2 we find over the image of Γ a smooth
bundle with discrete fibre Z2. Given a cycle α0 ∈ H1(F−1( j0, h0)) the path Γ lifts to
a unique path with initial point α0 in the Z2 bundle. Then the parallel transport of α0
along Γ is the endpoint α1 ∈ H1(F−1( j1, h1)) of the lifted path. For further details see
[16,26].

For any path Γ : [0, 1] → image(F) we define the set

MΓ = {(p, s) ∈ R4 × [0, 1] : F(p) = Γ (s)}. (25)

Let M0 = {(p, 0) ∈ R4 × [0, 1] : F(p) = Γ (0)} � F−1(Γ (0)) and similarly
M1 = {(p, 1) ∈ R4 × [0, 1] : F(p) = Γ (1)} � F−1(Γ (1)). Finally, consider the
corresponding inclusions j : M0 → MΓ and i : M1 → MΓ .

If Γ is a path in R then MΓ is diffeomorphic to [0, 1] × T2 and the corresponding
bundle of homology groups is diffeomorphic to [0, 1] ×Z2. Furthermore M0 � T2 and
M1 � T2. Given an isomorphism H1(M0) � Z2 the parallel transport along Γ fixes
the corresponding isomorphism H1(M1) � Z2. Also whenever α0 ∈ H1(M0) is parallel
transported to α1 ∈ H1(M1) it means that α0 and α1 are homologous in MΓ . Thus in
the case where Γ is in R we can define α1 as the parallel transport of α0 if these are
homologous in MΓ .

After the description of the parallel transport of homology cycles along paths Γ in R
we now generalize the notion of parallel transport of homology cycles to paths Γ that
go through critical values of F . Note that in this case MΓ is no longer diffeomorphic to
[0, 1] × T2 and the corresponding bundle of homology groups is not diffeomorphic to
[0, 1] × Z2.

Definition 3 (Parallel transport of homology cycles). Given a path Γ : [0, 1] →
image(F) we say that the homology cycle α1 ∈ H1(M1) is a parallel transport along
Γ of the homology cycle α0 ∈ H1(M0) if α0 and α1 are homologous as cycles in MΓ ,
that is, if j∗α0 = i∗α1 ∈ H1(MΓ ).

Note that ∂MΓ = M0 �M1 and thus H1(∂MΓ ) = H1(M0)⊕ H1(M1). Consider the
long exact sequence

· · · −→ H2(MΓ , ∂MΓ )
∂∗−→ H1(∂MΓ ) −→ H1(MΓ ) −→ · · · ,

where ∂∗ is the corresponding connecting homomorphism, see [25]. Since α0 and α1 are
homologous in MΓ the element (α0, α1) of H1(∂MΓ ) belongs in the kernel of the inclu-
sion map H1(∂MΓ )→ H1(MΓ ) and thus there is a relative cycle C ∈ H2(MΓ , ∂MΓ )

such that ∂∗C = (α0, α1). Therefore each parallel transport from α0 to α1 can be asso-
ciated to the image under ∂∗ of a relative cycle in H2(MΓ , ∂MΓ ).

Definition 4 (Parallel transport group). The parallel transport group along the path
Γ for the fibration F is the subgroup of H1(∂MΓ ) = H1(M0)⊕ H1(M1) given by

PT(F, Γ ) = ∂∗(H2(MΓ , ∂MΓ )).

Thus the cycle α1 is a parallel transport along Γ of the cycle α0 if and only if
(α0, α1) ∈ PT(F, Γ ).
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Remark 10 (On the uniqueness of parallel transport). Note that when Γ goes through
critical values of F then the parallel transport of homology cycles may not be unique.
One example where this occurs is given in [21]. In that case, the path Γ goes through
a curve of critical values of F that in phase space lift to bitori (the cartesian product of
a Fig. 8 and a circle). Nevertheless, for our systems we show that the parallel transport
along closed paths Γ ∈ L is unique, see Theorem 1 and §7.1.

We close this section with two remarks concerning the relation of the parallel trans-
port of homology cycles as given by Definition 3 to other approaches that have appeared
in the literature.

Remark 11 (The parallel transport as cobordism). Definition 3 of parallel transport of
homology cycles is a refinement of a closely related notion from [22]. In [22] the cycle
α1 is the parallel transport of α0 along Γ if these cycles can be realized as 1-dimensional
manifolds that are cobordant. It is implied in [22] that the cobordism lies, not in MΓ but,
in F−1(image(Γ )). The approach of [22] and our definition coincide whenever MΓ and
F−1(image(Γ )) are diffeomorphic, and all elements of H2(MΓ , ∂MΓ ) can be realized
as embedded 2-dimensional submanifolds of MΓ . The latter is true whenever MΓ is a
three dimensional topological manifold, see [24, Lemma 3.6].

Remark 12 (Admissible deformations of homotopy classes). Nekhoroshev in [27] uses
the notion of admissible deformations of homotopy classes instead of the parallel trans-
port of homology cycles. Such deformations include, for example, the breaking of a
single closed curve to several closed curves, or the vanishing of closed curves. Note that
in the case of paths in R, where the first homology group and the fundamental group of
each fibre are always isomorphic it makes no difference whether we consider homoto-
py classes or homology cycles. Furthermore, as it has been clarified in [22], fractional
monodromy is properly described in the context of homology groups.

6.2. The covering map and parallel transport. The following result shows that it is pos-
sible to compute the parallel transport of homology cycles in the covering space and
then use the covering map to compute the corresponding parallel transport in the original
space.

Lemma 5 (Commutation of the covering map and parallel transport). Consider a cycle
α0 ∈ H1(M0) and assume that there is a cycle α̃0 ∈ H1(M̃0) such that (ρ0)∗α̃0 = α0.
Let α̃1 ∈ H1(M̃1) be the parallel transport in the covering space of α̃0 along Γ . Then
α1 := (ρ1)∗α̃1 is the parallel transport in the original space of α0 along Γ .

Proof. Let ı̃s : M̃s → M̃Γ be the standard inclusion in the covering space and is :
Ms → MΓ the corresponding inclusion in the original space. Thus for p ∈ M̃s we have
that

(ρ ◦ ı̃s)(p) = ρ(p) = (is ◦ ρs)(p).

Thus we obtain

ρ∗ ◦ (ı̃s)∗ = (is)∗ ◦ (ρs)∗,

and the following diagram commutes:
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H1(M̃0)
(ı̃0)∗−−−−→ H1(M̃Γ )

(ı̃1)∗←−−−− H1(M̃1)

(ρ0)∗
⏐⏐� ρ∗

⏐⏐� (ρ1)∗
⏐⏐�

H1(M0) −−−−→
(i0)∗

H1(MΓ ) ←−−−−
(i1)∗

H1(M1)

Now take α0 ∈ H1(M0) and let α̃0 be a homology cycle in H1(M̃0) such that
(ρ0)∗α̃0 = α0. Let α̃1 ∈ H1(M̃1) be the parallel transport of α̃0 along Γ . This means
that (ı̃1)∗α̃1 = (ı̃0)∗α̃0. Let α1 = (ρ1)∗α̃1. Then

(i1)∗α1 = (i1)∗(ρ1)∗α̃1 = ρ∗(ı̃1)∗α̃1 = ρ∗(ı̃0)∗α̃0 = (i0)∗(ρ0)∗α̃0 = (i0)∗α0,

and thus α1 is a parallel transport along Γ of α0. ��

6.3. Computation of the parallel transport of homology cycles in the covering space.
We consider the parallel transport along a closed path Γ of homology cycles in the
covering space. Our main result is the following.

Proposition 2 (Transport along a closed path in the covering space). Consider a closed
path Γ ∈ L, see Definition 2, with the restriction that ( j, h) := Γ (0) = Γ (1) ∈ D.
Consider also the cycles

b̃( j, h)(k) for 1 ≤ k ≤ K , and g̃±( j, h) =
K∑

k=1

g̃±( j, h)(k),

where K is the number of connected components of F̃−1( j, h). Then, for any k′ and k′′
with 1 ≤ k′, k′′ ≤ K , we have that(

b̃( j, h)(k), b̃( j, h)(k
′)
)
∈ PT(F̃, Γ ), and

(
g̃±( j, h), g̃±( j, h)− b̃( j, h)(k

′′)
)
∈ PT(F̃, Γ ),

where PT(F̃, Γ ) is the parallel transport group along Γ for F̃ .

Remark 13. In the case ( j, h) ∈ Dupper, where K = 1, Proposition 2 reads that the cycles
b̃( j, h) and g̃±( j, h)− b̃( j, h) are parallel transports along Γ of the cycles b̃( j, h) and
g̃±( j, h) respectively. In the case ( j, h) ∈ Dlower, where K = N , we have to take into
account that two cycles b̃( j, h)(k) and b̃( j, h)(k

′) with k 	= k′ are not homologous in
the fibre F̃−1( j, h) but they are homologous in M̃Γ since, as we show in Lemma 6, all
boundary components of M̃Γ belong to the same connected component of M̃Γ . This
further implies that for ( j, h) ∈ Dlower the parallel transport of homology cycles along
Γ in the covering space is not unique, cf. Remark 10. This situation does not arise in
the original space where, as we show in §7.1, parallel transport along Γ is unique.

Before giving the proof of Proposition 2 we prove the following result asserting that
the boundary components M̃0 and M̃1 are connected in M̃Γ even though they may be
disconnected when considered in isolation.

Lemma 6 (On the boundary components of M̃Γ ). The boundary components M̃0 and M̃1

of M̃Γ for the closed path Γ of Proposition 2 belong to the same connected component
M̃c
Γ of M̃Γ .
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Proof. Recall from Definition 2 that for the path Γ there exists a smooth path ΓF :
[0, 1] → C2 � R4 such that F(ΓF (s)) = Γ (s). Consider now the lift of ΓF through
the branched covering map ρ. Note that if a point p ∈ C2 belongs in the branching
locus of ρ then, for n1 > 1, it is also a critical point of F . Recall also from Remark 6
that ΓF cannot contain any critical points of F . Therefore we conclude that ΓF does
not go through the branching locus of ρ for n1 > 1. For n1 = 1 it may occur that
branching points of ρ are regular points of F . In this case, ΓF can still be chosen so
that it avoids going through the branching locus of ρ. If, for example, we are given a
path ΓF that goes through a branching point then the path can be smoothly deformed
in order to avoid such points, while at the same time continuing to satisfy the relation
F(ΓF (s)) = Γ (s). The fact that ΓF can always be chosen so that it does not go through
a branching point implies that for each s ∈ [0, 1] the preimage ρ−1(ΓF (s)) consists of
N = n1n2 distinct points and since ρ is a local homeomorphism away from the preimage
of the branching locus it follows that there exist N continuous paths Γ̃ (k)F , k = 1, . . . , N

in the covering space such that ρ(Γ̃ (k)F (s)) = ΓF (s) for all k = 1, . . . , N . In particular,

for Γ (s) ∈ Dlower the points Γ̃ (k)F (s) belong to the N distinct connected components

of F̃−1(Γ (s)) while for Γ (s) ∈ Dupper the points Γ̃ (k)F (s) belong to the only connected
component of F̃−1(Γ (s)).

Assume now that Γ (0) = Γ (1) ∈ Dlower. This means that each of M̃0 and M̃1
is the disjoint union of N two-dimensional tori. Denote the connected components of
M̃0 and M̃1 by M̃ (k)

0 and M̃ (k)
1 respectively with k = 1, . . . , N . Consider now points

p0 ∈ M̃ (k0)
0 and p1 ∈ M̃ (k1)

1 . Then we can construct a path in M̃Γ connecting p0 to

p1 in the following way. First connect p0 to Γ̃ (k0)
F (0) with a path on the two-dimen-

sional torus M̃ (k0)
0 . Then follow the path Γ̃ (k0)

F until it reaches the point Γ̃ (k0)
F (s′) such

that Γ (s′) ∈ Dupper. Consequently on M̃s′ , which is a single T2, connect Γ̃ (k0)
F (s′) to

Γ̃
(k1)
F (s′). Then follow the path Γ̃ (k1)

F until the point Γ̃ (k1)
F (1) ∈ M̃ (k1)

1 . Finally, connect

Γ̃
(k1)
F (1) to p1. The crucial part of the argument is that the path Γ goes through Dupper,

where M̃s � F̃−1(Γ (s)) � T2 is connected. In a similar way one can show that all
components M̃ (k)

0 , k = 1, . . . , N belong to the same connected component of M̃Γ and

that the same is true for M̃ (k)
1 , k = 1, . . . , N . Furthermore, if Γ (0) = Γ (1) ∈ Dupper a

similar argument shows that M̃0 and M̃1 (each diffeomorphic to T2) belong to the same
connected component of M̃Γ .

We denote by M̃c
Γ the connected component of M̃Γ that contains M̃0 and M̃1. The

sets M̃0 and M̃1 form the boundary of M̃Γ and since they both belong to the connected
component M̃c

Γ they also form the boundary of the latter. ��

Proof (Proposition 2). Consider first a path Γ ′, not necessarily closed, that starts at a
point ( j0, h0) and ends at a point ( j1, h1). Recall that, according to Definition 3, a cycle
α1 ∈ H1(F̃−1( j1, h1)) is the parallel transport alongΓ ′ of a cycleα0 ∈ H1(F̃−1( j0, h0))

if α1 and α0 are homologous in

M̃Γ ′ = {(p, s) ∈ C2 × [0, 1] : F̃(p) = Γ ′(s)}.
If F̃−1( j0, h0)

(k0) and F̃−1( j1, h1)
(k1) belong to the same connected component of

M̃Γ ′ then there is a continuous path c : [0, 1] → C2 such that c(s) ∈ F̃−1(Γ ′(s)) for
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Dupper

Dlower

Γ(0) ≡ Γ(1)

h

j

Fig. 13. An example of the decomposition of a path Γ . The components of Γ represented by solid curves
correspond to types (iv) and (v) and are thus the only components that give a non-trivial contribution to the
homology cycle g̃±. The dotted curves represent paths of type (i) and (ii). The dashed curves represent paths
of type (iii)

all s ∈ [0, 1] and c(0) ∈ F̃−1( j0, h0)
(k0) while c(1) ∈ F̃−1( j1, h1)

(k1). The set

C = {(ϕ̃t
J (c(s)), s) : s ∈ [0, 1], t ∈ [0, 2π ]}

is a cylinder in M̃Γ ′ and represents a 2-chain [C] with boundary ∂[C] = b̃( j1, h1)
(k1)−

b̃( j0, h0)
(k0).

Considering now the closed path Γ of Proposition 2 recall from Lemma 6 that all
boundary components of M̃Γ belong in the same connected component M̃c

Γ of M̃Γ . This
implies that for any choice of k and k′ in {1, . . . , K } there is a 2-chain [C] in M̃Γ with
boundary ∂[C] = b̃( j, h)(k

′)− b̃( j, h)(k), and thus b̃( j, h)(k
′) is the parallel transport of

b̃( j, h)(k) along Γ .
We now turn our attention to the parallel transport of the homology cycles g̃±( j, h) =∑K

k=1 g̃±( j, h)(k). Note first that we can decompose Γ as the sum of successive paths
Γ = Γ1 + Γ2 + · · · + Γ�, where each Γi , i = 1, . . . , � is of one of the following types,
see also Fig. 13:

(i) along Γi we have j ≥ 0 and both Γi (0) and Γi (1) are in D,
(ii) along Γi we have j ≤ 0 and both Γi (0) and Γi (1) are in D,

(iii) Γi is a path in Dlower and it crosses the j = 0 axis exactly once,
(iv) Γi is a path in Dupper and it crosses the j = 0 axis exactly once from j > 0 to

j < 0,
(v) Γi is a path in Dupper and it crosses the j = 0 axis exactly once from j < 0 to

j > 0.

Since the winding number of Γ around the origin is 1, if the number of paths of type
(iv) is �′ then the number of paths of type (v) is �′ − 1.
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We study the parallel transport of g̃±( j, h) for each one of these types of paths sep-
arately. In particular, we show that for each type of path Γi we can make the following
statement concerning the parallel transport. In the following list the numbering indicates
the type of the path Γi :

(i) (g̃+( j0, h0), g̃+( j1, h1)) ∈ PT(F̃, Γi ),
(ii) (g̃−( j0, h0), g̃−( j1, h1)) ∈ PT(F̃, Γi ),

(iii) (g̃∓( j0, h0), g̃±( j1, h1)) ∈ PT(F̃, Γi ),
(iv) (g̃+( j0, h0), g̃−( j1, h1)− b̃( j1, h1)) ∈ PT(F̃, Γi ),
(v) (g̃−( j0, h0), g̃+( j1, h1) + b̃( j1, h1)) ∈ PT(F̃, Γi ).

Consider first a path Γ ′ of type (i) from ( j0, h0) to ( j1, h1). The two dimensional
subset

C = {(w1, w2, t) ∈ M̃Γ ′ : Arg(w1) = 0}
of M̃Γ ′ represents a 2-chain [C] with ∂[C] = g̃+( j1, h1) − g̃+( j0, h0). Thus the cycle
g̃+( j1, h1) is a parallel transport along Γ ′ of the cycle g̃+( j0, h0). The same argument
shows that the cycle g̃−( j1, h1) is the parallel transport along a path Γ ′ type (ii) of the
cycle g̃−( j0, h0). The results for paths of type (iii), (iv), and (v) follow directly from
Lemma 4.

Then the proposition follows from the parallel transports for each Γi and the fact
that there is one more path of type (iv) than paths of type (v) that make up the complete
path Γ . ��

6.4. Computation of the parallel transport of homology cycles in the original space.
We consider here the parallel transport along a closed path Γ as given by Definition
2 and we show that the cycle b( j, h) is a parallel transport of itself along Γ , while
Na±( j, h)− b( j, h) is a parallel transport along Γ of Na±( j, h).

Proposition 3 (Transport along a closed path in the original space). Consider a closed
path Γ ∈ L, see Definition 2. Consider also the cycles Na±( j, h) and b( j, h). Then we
have that

(b( j, h), b( j, h)) ∈ PT(F, Γ ), and
(
Na±( j, h), Na±( j, h)− b( j, h)

) ∈ PT(F, Γ ),

where PT(F, Γ ) is the parallel transport group along Γ for F.

Proof. Recall that for paths Γ ∈ L we have that ( j, h) := Γ (0) = Γ (1) ∈ D∪(R∩∂D)
but Proposition 2 can be applied only for paths Γ for which ( j, h) ∈ D. For this reason
and in order to be able to apply Proposition 2 we consider first the case where ( j, h) ∈ D.
In this case the cycle b̃( j, h)(k1) is the parallel transport along Γ of b̃( j, h)(k0), where
1 ≤ k0, k1 ≤ K . Since (ρ j,h)∗b̃( j, h)(k) = b( j, h) for all k ∈ {1, . . . , K } we con-
clude using Lemma 5 that b( j, h) is a parallel transport of itself along Γ . The cycle
g̃±( j, h) − b̃( j, h)(k) with 1 ≤ k ≤ K is the parallel transport along Γ of g̃±( j, h).
Using again Lemma 5 we obtain that the cycle

(ρ j,h)∗(g̃±( j, h)− b̃( j, h)(k)) = (ρ j,h)∗g̃±( j, h)− b( j, h),

is the parallel transport along Γ of the cycle (ρ j,h)∗g̃±( j, h).
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Recall from §5.2 that

(ρ j,h)∗g̃±( j, h) = Na±( j, h) + Mb( j, h),

where M = −�m± for ( j, h) ∈ Dupper and M = 0 for ( j, h) ∈ Dlower. Since the cycles
Na±( j, h)+ (M−1)b( j, h) and b( j, h) are the parallel transports along Γ of the cycles
Na±( j, h) + Mb( j, h) and b( j, h) respectively, we conclude that Na±( j, h)− b( j, h)
is the parallel transport along Γ of Na±( j, h).

Consider now the case where ( j, h) ∈ R ∩ ∂D. This means that ( j, h) belongs in at
least one of ∂Dupper or ∂Dlower. Assume here for concreteness that ( j, h) ∈ R∩∂Dupper.
Then since ( j, h) ∈ R there is an open set U ⊂ R with ( j, h) ∈ U . Given an arbi-
trary ( j ′, h′) ∈ Dupper ∩ U and the basis (a±( j ′, h′), b( j ′, h′)) of H1(F−1( j ′, h′))
there is a unique parallel transport of this basis to all points in U . Thus for ( j, h) ∈
R∩ ∂Dupper it is possible to define the basis (a±( j, h), b( j, h)) as the parallel transport
of (a±( j ′, h′), b( j ′, h′)) along a path Γ0 in (Dupper ∩U )∪{( j, h)} that connects ( j ′, h′)
to ( j, h). Then the path Γ that starts and ends at ( j, h) ∈ R∩ ∂D can be decomposed as
Γ = −Γ0 +Γ ′ +Γ0 with the path Γ ′ joining ( j ′, h′) ∈ Dupper to itself and Γ ′ ∈ L. Thus
Na±( j ′, h′)− b( j ′, h′) is the parallel transport along Γ ′ of Na±( j ′, h′) and since par-
allel transport along ±Γ0 is trivial we conclude that Na±( j, h)− b( j, h) is the parallel
transport along Γ of Na±( j, h). ��

7. Proof of Theorem 1

Proposition 3 gives the parallel transport of homology cycles in the index-N subgroup
H( j, h) of H1(F−1( j, h)) spanned over Z by the cycles Na± and b, that is, the com-
putational part (iii) of Theorem 1. We now show that the parallel transport of cycles
in H( j, h) is unique and that only cycles in H( j, h) can be parallel transported along
Γ . This completes the proof of Theorem 1. Thus the parallel transport along Γ gives
a well-defined automorphism of the index-N subgroup H( j, h) of the full homology
group H1(F−1( j, h)). In the basis (Na±( j, h), b( j, h)) of H( j, h) this automorphism
is given by the matrix (

1 0
1 1

)
.

7.1. Uniqueness of parallel transport along Γ . As we have mentioned in §6.1 the par-
allel transport of homology cycles along a path Γ may not be unique. We show here that
this situation does not occur in our problem.

Recall that if α1 ∈ H1(F−1(Γ (1))) is a parallel transport along Γ of α0 ∈
H1(F−1(Γ (0))) then there is a relative cycle C ∈ H2(MΓ , ∂MΓ ) such that

∂∗C = (α0, α1),

where ∂∗ is the connecting homomorphism in the long exact sequence

· · · −→ H2(MΓ , ∂MΓ )
∂∗−→ H1(∂MΓ ) −→ H1(MΓ ) −→ · · · .

For our specific Γ we have that ∂MΓ = T2 ∪ T2 and thus H1(∂MΓ ) = Z2 ⊕ Z2.
Furthermore, because of the transversality condition (iv) in Definition 2 the set MΓ is
here a 3-dimensional compact orientable smooth manifold. Then the rank of the image
of H2(MΓ , ∂MΓ ) under ∂∗, i.e., the rank of PT(F, Γ ), is half of the rank of H1(∂MΓ ),
see [24, Lemma 3.5]. Thus
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rank PT(F, Γ ) = 2.

Furthermore since PT(F, Γ ) is a subgroup of the free abelian group Z2⊕Z2, PT(F, Γ )
is also free abelian and thus PT(F, Γ ) � Z⊕ Z.

It follows from Proposition 3 that W1 = (Na, Na − b) and W2 = (b, b) belong in
PT(F, Γ ); here we write a := a±( j, h) and b := b( j, h). Then W1 and W2 are linearly
independent over Z since if k1W1 + k2W2 = (0, 0), then

(k1 Na + k2b, k1 Na + (k1 + k2)b) = (0, 0),

which implies k1 = k2 = 0. Thus W1 and W2 span a rank-2 subgroup of PT(F, Γ ).
In order to show that parallel transport along Γ is unique we have to show that

PT(F, Γ ) does not contain any elements of the form (0, c) with c 	= 0. Assume for a
contradiction that (0, c) ∈ PT(F, Γ ). Then, since W1 and W2 span a rank-2 subgroup
of PT(F, Γ ), there are �, k1, k2 ∈ Z with � 	= 0 such that �(0, c) = k1W1 + k2W2. This
implies k1 = k2 = 0 and thus also � = 0.

7.2. Only cycles in H( j, h) can be parallel transported along Γ . In order to complete
the proof of Theorem 1 we need to show that only cycles in H( j, h) can be parallel trans-
ported along Γ . In order to see this, consider a cycle γ ∈ H1(F−1( j, h))\H( j, h) and
assume that there is a cycle γ ′ ∈ H1(F−1( j, h)) such that γ ′ is the parallel transport of
γ along Γ . Then γ = k1a±( j, h) + k2b( j, h), where k1, k2 ∈ Z and k1 is not an integer
multiple of N . The cycle Nγ = Nk1a±( j, h)+Nk2b( j, h) belongs in H( j, h) and is thus
parallel transported to Nk1a( j, h)−k1b( j, h)+ Nk2b( j, h) = Nγ −k1b( j, h). Further-
more, since γ is parallel transported to γ ′ we deduce that Nγ is parallel transported to
Nγ ′. Since parallel transport alongΓ is unique we conclude that N (γ−γ ′) = k1b( j, h).
This implies that k1 is an integer multiple of N which contradicts our initial assumption.

8. Discussion

We proved the existence of fractional monodromy in n1:(−n2) resonant systems by
passing to an appropriate covering space. This allowed us to study the parallel transport
of homology cycles in the covering space without the complications presented by the
‘twisting’ of the fibres in the original space.

Our method of proof of standard and fractional monodromy has a particularly geo-
metric character. In this respect it is very close to the approach of [27–30] and uses some
of the same techniques, such as the choice of appropriate surfaces of section, that were
first used in these earlier works.

One remarkable feature of the present approach is that the conclusions do not depend
on the detailed knowledge of the structure of the critical sets of the integral map F .
Indeed in this paper we have only studied the regular fibres in the sets Dupper and Dlower
and ignored the critical fibres existing between these regular fibres. It is the n1:(−n2)

resonant action that ‘forces’ the geometry of the fibration. Note in particular that both in
the original and in the covering space it is possible to have several different critical sets
but we always obtain the same kind of parallel transport and the same type of standard
or fractional monodromy.

This clearly shows that our results are persistent for perturbations that commute with
the resonant n1:(−n2) oscillator. Furthermore, our approach and results firmly establish
that standard and fractional monodromy are purely geometric properties of this system
that nevertheless can be approached from a dynamical point of view as earlier work
[5,12,19,31,32] has shown.
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A complete understanding of the absolutely essential properties of a dynamical sys-
tem that lead to fractional monodromy is still missing. Such understanding will prove
to be fundamental for generalizing the notion of fractional monodromy to non-Hamilto-
nian, e.g. non-holonomic, contexts. The simplification of the study of the geometry by
passing to a covering space and the resulting improved understanding of the geometry
is one of the first steps toward such goal.
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32. Sugny, D., Mardešić, P., Pelletier, M., Jebrane, A., Jauslin, H.R.: Fractional Hamiltonian monodromy

from a Gauss-Manin monodromy. J. Math. Phys. 49, 042701–35 (2008)
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