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The monodromy of torus bundles associated with completely integrable systems
can be computed using geometric techniques (constructing homology cycles) or
analytic arguments (computing discontinuities of abelian integrals). In this article,
we give a general approach to the computation of monodromy that resembles the
analytical one, reducing the problem to the computation of residues of polar 1-forms.
We apply our technique to three celebrated examples of systems with monodromy
(the champagne bottle, the spherical pendulum, the hydrogen atom) and to the case
of non-degenerate focus-focus singularities, re-obtaining the classical results. An
advantage of this approach is that the residue-like formula can be shown to be local in
a neighborhood of a singularity, hence allowing the definition of monodromy also in
the case of non-compact fibers. This idea has been introduced in the literature under
the name of scattering monodromy. We prove the coincidence of the two definitions
with the monodromy of an appropriately chosen compactification. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4975215]

I. INTRODUCTION

A Liouville-Arnold integrable system is a map F (called the map of integrals of motion or
integral map) from a 2n-dimensional symplectic manifold M to Rn such that the components Fj,
j = 1, . . . ,n, of F Poisson commute. Let R denote a connected component of the set of regular
values of F andM denote a connected component of the preimage F−1(R). Assuming that the level
sets of F are compact, the Liouville-Arnold theorem1 states that F :M → R is a Tn-bundle over
R. If R is not simply connected, then the Tn-bundle F |Γ over a simple closed path Γ in R may
have non-trivial monodromy. Equivalently, there are no smooth action variables throughout R.9,18

In n = 2 degree of freedom systems with a circle action, monodromy can be identified with an
integer number. If the number n of degrees of freedom is larger than 2, then R could possibly have
non-trivial second cohomology. In that case, the Liouville-Arnold integrable system could have
global action variables but have non-trivial Chern class or, equivalently, no corresponding global
angle variables which together with the action variables give a symplectic chart.9,18

Non-trivial monodromy has been shown to exist in several integrable Hamiltonian systems
such as the spherical pendulum,6,9 the champagne bottle,3 and the hydrogen atom in crossed electric
and magnetic fields.8 In the mid-1990s, it was realized that a common property of these systems
was the existence of isolated, focus-focus, critical values in the image of F. The presence of such
focus-focus critical values causes a non-trivial fundamental group, π1(R), and it turns out that the
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corresponding T2 bundle F |Γ over a path Γ in R encircling the critical value has non-trivial mon-
odromy.15,16,22 This result, now referred to as the geometric monodromy theorem, has been further
generalized to the non-Hamiltonian context.7,23

In this paper, we focus on 2 degree of freedom systems where F = (H, J) are smooth. The
function H is the Hamiltonian of a Hamiltonian vector field XH , while J is the momentum of
a Hamiltonian S1 action whose infinitesimal action is XJ. Establishing the non-triviality of mon-
odromy along a closed path Γ in such systems is often done through the study of the variation
of the rotation number along Γ. We give the definition of the rotation number in Section II,
see Definition 4, where we discuss in detail how the non-trivial variation of the rotation number
along Γ is equivalent to the non-trivial monodromy of the T2 bundle over Γ. We only note here
that the definition of the rotation number is based on a geometric construction but its compu-
tation is typically done through the evaluation of an (abelian) integral and the investigation of
its dependence upon the values (h, j) of the integrals of motion. Moreover, the variation of the
rotation number has been used to describe fractional monodromy13,20 and to define scattering
monodromy.4

In the present work, we relate the proofs of the non-triviality of monodromy based on the varia-
tion of the rotation number to a more geometric approach. In particular, we formalize an analytical
computation of the rotation number through the notion of rotation 1-form (Definition 10), a closed
1-form whose integral over a suitably defined orbit-segment of XH gives the rotation number up to
a term which we prove to be unimportant for the variation. Moreover, we show that the variation
is independent of the choice of the rotation 1-form provided that the latter satisfies a transversality
condition (Definition 16).

It turns out that a rotation 1-form cannot be defined in the whole phase-space, but it must
necessarily be singular on a subset, whose points we call poles. Such a subset is essential for
the non-triviality of monodromy. In all examples known to the authors, the set of poles is a
2-dimensional submanifold intersecting F−1(Γ) at a finite number of XJ-orbits, cf. Section III. The
main result in this article is the following theorem relating the analytic computation of the variation
of the rotation number to the geometry of the set of poles of the rotation 1-form.

Theorem 1. Consider a two-degree of freedom integrable Hamiltonian system F, such that the
fibers of F are compact and connected. Consider a closed path Γ in the set of regular values of F
and assume that there is a neighborhood U of F−1(Γ) where F is invariant under a Hamiltonian S1

action generated by a momentum J. Let ϑ be a rotation 1-form for the vector field XJ, transversal
to F, and let Π be its polar locus, which we assume to be two-dimensional. Further, assume that Γ
transversally intersects F(Π) at a finite number of values vi. Then the poles of the rotation 1-form
in F−1(Γ) are a disjoint union of a finite number of XJ-orbits S1pi j ∈ F−1(vi), which we call polar
orbits, and the monodromy number k along Γ, see Eq. (3), is given by

k =
1

2π


i j


δi j

ϑ, (1)

where δi j is a loop in F−1(Γ) surrounding S1pi j with appropriate orientation, see Figure 1.

Remark 2. Theorem 1 applies to any torus bundle, provided that a Hamiltonian circle action,
leaving F invariant, is defined in a neighborhood of the torus bundle. The theorem reduces the
problem of computing the variation of the rotation number to that of integrating the rotation 1-form
ϑ along closed paths encircling the poles of ϑ. A method for constructing the rotation 1-form ϑ
is given in Lemma 14. The integrals 1

2π


δi j
ϑ are real analogs of residues for the rotation 1-form

around its set of poles. This is strongly reminiscent of the complex analytic approach of Ref. 20,
where the variation of the rotation number is expressed as the integral around the pole(s) of a
meromorphic 1-form.

The local form of an integrable Hamiltonian system in a neighborhood of a focus-focus critical
point allows to apply Theorem 1 and obtain the following well known fact.
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FIG. 1. The fibration F above Γ. The circle Γ and the fibers F−1(v)≃T2 are unfolded for easier presentation. Polar orbits
S1pi j and integration loops δi j are shown for fibers F−1(vi), see Theorem 1. The fiber F−1(Γ(0))= F−1(Γ(1)) is represented
by the dark gray surfaces. One should pay attention to that the identification of F−1(Γ(0)) and F−1(Γ(1)) is not the one implied
by this unfolded representation of F−1(Γ) when the monodromy is non-trivial. To highlight this we draw a representative of
a homology cycle δ on F−1(Γ(0)) and a possible representative of the same cycle on F−1(Γ(1)).

Corollary 3. Let p be a focus-focus critical point of F and Γ a simple closed path in the set of
regular values of F such that p is the only critical point in F−1(D), where D is the set bounded by Γ.
Then the monodromy number along Γ is k = −1.

The main contribution of this paper does not lie in the computation of the monodromy, but
in the systematic approach to monodromy through the variation of the rotation number and the
expression of the latter as the integral of a rotation 1-form. More specifically, the monodromy
number is given by the sum of the integral of the rotation 1-form along the cycles δi j described in
Theorem 1. Applying this approach to the case of focus-focus points yields as a consequence that
the Hamiltonian monodromy relies only on the local structure of the foliation in a neighborhood
of such points (cf. similar local approaches in Refs. 19 and 21). We preferred to present here the
method in the easiest case of single focus-focus points and plan to apply it to more complicated
cases, where additional difficulties appear, in a forthcoming work. In particular, we plan to deal with
cases of non-isolated singularities such as the (m : n)-resonance case. In such general cases, more
complicated contribution given by the Picard-Lefschetz formula can appear.

Understanding how monodromy is locally determined in the case of single focus-focus points
permits a generalization of the notion of monodromy to completely integrable Hamiltonian systems
having not necessarily compact fibers, avoiding the, frequently artificial, compactification of the
fibers by adding suitable higher order terms to the Hamiltonian. We compare our local approach
to monodromy based on the rotation 1-form to the notion of scattering monodromy introduced
in Ref. 4. We show that the two concepts are similar, and we highlight the role played by the
identification of incoming and outgoing asymptotic directions in scattering monodromy.

The plan of the paper is as follows. In Section II we give the definition of the rotation number
and describe how the non-triviality of its variation is related to the non-triviality of monodromy.
Then, we introduce rotation 1-forms and we show how they can be used to determine the variation
of the rotation number. In Section III we give several examples of rotation 1-forms in specific exam-
ples of integrable Hamiltonian systems. In Section IV we study focus-focus singularities and show
that the variation of the rotation number can be computed through the variation of an appropriate
integral of a locally defined rotation 1-form. In Section V we define monodromy for non-compact fi-
brations and relate our results to scattering monodromy. We draw conclusions and give perspectives
in Section VI.

II. MONODROMY AND ROTATION NUMBER

As stated in the Introduction, in this work we restrict our attention to 2 degree of freedom
integrable systems (n = 2) under the very typical hypothesis that one of the integrals of motion is a
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function J which is the momentum of a circle action S1 ×M → M, (t,p) → t · p, with t ∈ [0,2π]
(where M is possibly an open subset of the phase space). The other integral of motion is an
S1-invariant function H typically called Hamiltonian or energy of the system. For this reason, the
map F = (H, J) is often called the energy-momentum map.

Consider a closed path Γ in the set R of regular values of F and the T2-bundle F−1(Γ) F→ Γ.
The monodromy of the T2-bundle is an automorphism of H1(F−1(v)) ≃ Z2 for any v in the image
of Γ. Fixing a basis of H1(F−1(v)), monodromy is then characterized by a matrix M ∈ SL(2,Z).
On each fiber F−1(v), v ∈ R, the existence of the S1-action gives a globally defined generator γJ of
H1(F−1(v)). In a basis {γJ, γ} of H1(F−1(v)), the monodromy matrix has the form

M = *
,

1 k
0 1

+
-
, k ∈ Z.

The number k is called the monodromy number and completely determines the topology of the

T2-bundle F−1(Γ) F→ Γ. Therefore, the computation of monodromy boils down to the computation of
the value of k.

In this section, we review the computation of monodromy through the variation of the rotation
number. We first recall the definition of the rotation number and how it can be used to construct
local action coordinates.

A. Rotation number and its variation

In our setting, the momentum J of the S1-action can be taken as an action coordinate I1 for the
system. A second action coordinate can be constructed in the following way, see Figure 2. Consider
a point p in a regular fiber F−1(v) ≃ T2 and let S1 p be the closed orbit of XJ going through p. The
orbit γH(p) of XH starting at p will cross again S1p at a point p′ after a time T(p), called the first
return time, giving a smooth function T : F−1(R) → R.

Definition 4. The rotation number Θ(p) is the minimal positive time it takes to flow with XJ

from p to p′.

The rotation number is a function defined inM and takes values in [0,2π). With our definition,
Θ is smooth outside its zero level-setZ = { p ∈ M | Θ(p) = 0 } but is possibly discontinuous atZ.
The setZ is typically a union of codimension-1 surfaces inM and the function Θ can possibly tend
smoothly to zero from one side and smoothly to 2π from the other.

Both, the first return time and the rotation number, are invariant under the flows of XJ and XH ,
and hence are constant on the connected components of the level sets of F. It follows that they are
the pull-back via F of functions defined on R. With a little abuse of notation, we will denote the
rotation number and the first return time with the same name may they be defined inM or in R. The
vector field defined as

XI2 =
1

2π
(−ΘXJ + T XH) (2)

FIG. 2. The orbit segment γH(p) on a torus F−1(v). The cycle δH(p) is defined by adding to γH(p) the curve −γJ,Θ(v)(p)
from p′ to p along S1p.
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can be shown to be Hamiltonian and 2π-periodic.6,9 It is hence associated with the second action
coordinate I2 wherever the function Θ is smooth, that is, outside the set F(Z) ⊂ R. Note that
one can locally define a smooth action coordinate I2 also at Z by adding, in a subset of the
local neighborhood, an appropriate integer multiple of 2π to Θ so as to obtain a locally smooth
function.

One of the most important singularities of the map F, the focus-focus singularity, consists of
an isolated point p̄ that is mapped by F onto a point v̄ which is a puncture in R. In this case, the
zero-setZ of Θ locally consists of curves converging to v̄ , typically spiraling around v̄ .11 Consider-
ing a path Γ that surrounds such a singular value, one can add the jumps of Θ across such curves and
obtain an integer multiple of 2π.

Remark 5. Instead of the rotation number Θ we could have used the rotation angle Θ, a
circle-valued function obtained by composing Θ with the projection from R to R/2πZ. The map Θ
can be shown to be smooth, while Θ can have first-kind discontinuities with jump equal to ±2π.

The integer obtained by adding up the discontinuities of Θ along Γ, and dividing by 2π, reveals
the non-triviality of the T2-bundle over Γ. It is connected to the non-existence of global action
coordinates and we call it the variation of Θ along Γ. We formalize the notion of the variation of an
R-valued function along Γ as follows.

Definition 6. Let g : Γ ≃ S1 → R be a function with a finite number of discontinuities p1, . . . ,pk
∈ Γ, whose jumps across the discontinuities are, respectively, the real numbers

d j = lim
ε→0+

�
g(pj + ε) − g(pj − ε)� , j = 1, . . . , k .

The variation of g along Γ is then defined as

VarΓ g = −

j

d j .

Example 7. Consider the function g : S1 → R given by g(θ) = π + θ(mod 2π) with θ ∈ [0,2π)
parameterizing S1. Then g is discontinuous at θ = π and the discontinuity jump is −2π. Therefore
VarS1g = 2π.

Example 8. Consider any step function g : S1 → R. Then the discontinuity jumps must cancel
so that g(0) = limθ→2π− g(θ), assuming that g is continuous at 0. Therefore VarS1g = 0.

Note that XI2 + k XI1, k ∈ Z, also represents a periodic Hamiltonian vector field associated with
the second action coordinate I2 + kI1. Therefore, a variation of the rotation number by −2kπ over Γ
implies a change of the corresponding action vector field by kI1. Furthermore, since action vector
fields generate a basis of the homology group H1(F−1(v)) we conclude that, going along Γ, an
initial cycle γ2 generated by XI2 is transported to the final cycle γ2 + kγJ and therefore we have a
non-trivial monodromy matrix. This comparison shows that the variation

VarΓΘ = −2kπ (3)

measures the monodromy number k and hence the non-triviality of the T2-bundle over Γ.

Remark 9. Another way to obtain such integer is to consider the function Θ|Γ : Γ → S1 that,
being a map from a circle to itself, can possibly have a non-zero degree which is precisely the
variation of Θ along Γ.

B. Rotation 1-forms

In applications, the rotation number Θ and its variation VarΓΘ are typically computed by inte-
grating a closed 1-form ϑ along the orbit γH . We formalize here this approach and clarify certain
technical aspects of this computation.
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Definition 10. A rotation 1-form is a 1-form ϑ, defined in an S1 invariant subsetM ′ ofM, such
that ϑ is closed and ϑ(XJ) = 1. Points in the set Π =M \M ′ are called poles and Π is called the
polar set of ϑ.

The condition ϑ(XJ) = 1 ensures that the integral of ϑ measures the natural time along the flow
of XJ when integrated along its orbits. Hence, one can use it to define a local angle coordinate
along the orbits of XJ. Moreover, the conditions in the definition imply that LXJ

ϑ = d(ϑ(XJ)) +
dϑ(XJ,−) = 0. The latter relation ensures that ϑ(XH) is an XJ-invariant function, and therefore it
descends to a function in the reduced space M =M ′/S1.

The polar set Π plays a central role in this work. For this reason, we give the geometric intuition
for the necessity of introducing Π and discuss its role and its properties. We first prove the following
result partially characterizingM ′.

Lemma 11. Let XJ be the generator of an S1 action which is free outside fixed points and
denote byM0 the set of fixed points of the action. Consider the principal circle bundle defined by
the flow of XJ onM \M0. Then Π is such that the restriction of the circle bundle toM ′ =M \ Π
defines a trivial principal circle bundle. Moreover, ϑ is a connection 1-form for the trivial circle
bundle defined inM ′.

Proof. Since the rotation 1-form ϑ satisfies ϑ(XJ) = 1 and LXJ
ϑ = 0, it is a connection 1-form

for the principal circle bundle defined by the flow of XJ on M ′. Moreover, the condition dϑ = 0
implies that the curvature 2-form for the corresponding circle bundle is trivial and ensures the
triviality of the bundle. Therefore, a rotation 1-form ϑ can be only defined on a setM ′ so that the
restriction of the principal circle bundle toM ′ gives a trivial bundle. �

Lemma 12. If p̄ is a fixed point of the S1 action induced by XJ then a rotation 1-form ϑ defined
in a neighbourhood U of p̄ must have a non-empty polar set Π with p̄ ∈ Π. Moreover, if the S1

action is free in U \ {p̄} then Π ∩U must contain a two-dimensional manifold.

Proof. The rotation 1-form ϑ cannot be defined at p̄ since XJ(p̄) = 0 but ϑ(XJ)(p) = 1 when-
ever ϑ is defined. Therefore p̄ ∈ Π. Let now p be a point in an S1-invariant open ball B ∋ p̄ at which
ϑ is defined. By invariance under the flow of XJ, the form ϑ is defined in all points of the orbit
S1 p through p. Since ϑ(XJ) = 1, we have that


S1 p ϑ = 2π. If π1(B \ Π) were trivial, then there

would exist a disk ∆ in B \ Π, bounded by the orbit S1 p, and then we would get the contradiction
2π =


S1 p ϑ =


∆

dϑ = 0. Therefore, π1(B \ Π) must be non-trivial and hence Π must contain a
nonempty manifold passing through p̄. The non-triviality of π1(B \ Π) excludes simple possibilities
of Π being contained in a manifold of dimension 0 and 1. �

Note that Lemma 12 does not exclude the possibility that Π contains a manifold of dimension 3.
We now consider under what conditions a rotation 1-form can be defined and how it can be

constructed. We start with the following result.

Lemma 13. Suppose that the flow of XJ defines a trivial principal circle bundle in M ′. Then
there exists a rotation 1-form ϑ without poles inM ′.

Proof. Let s :M ′/S1 → M ′ be a smooth section for the bundle. Define an angle u inM ′ as the
time it takes for the flow of XJ to move from the image of the section s to a point p. Then the 1-form
ϑ = du can be shown to satisfy the requirements of Definition 10. The triviality of the principal
bundle ensures that this 1-form is well defined and has no poles. �

Then the idea for constructing a rotation 1-form is that given an S1 action in M, we can
obtain a trivial principal circle bundle by taking out a large enough set (which includes the points
with non-trivial isotropy) so that in the remaining part we have a trivial principal circle bundle.
Moreover, we have the following result.

Lemma 14. GivenM as above, there always exists a set Π, finite union of submanifolds of M
of codimension at least 1, outside of which a rotation 1-form exists.
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Proof. From the theory of CW complexes, one can always assume thatM admits a stratifica-
tion of submanifolds of different codimensions and a unique (contractible, open, and dense) cell of
maximal dimension. The rotation 1-form can always be defined on the cell of maximal dimension
since the corresponding principal circle bundle is trivial. �

Example 15. Let p̄ be a fixed point of the circle action possibly defined in a neighborhood of p̄
and free except at p̄. Then the circle action can be locally linearized as (z, w) → (eitz,e±itw), where
(z, w) ∈ C2. In particular, the resulting principal circle bundle is isomorphic (up to orientation) to the
Hopf fibration and is therefore non-trivial. This means that a rotation 1-form defined in a punctured
neighborhood of a fixed point of the circle action must necessarily have a non-empty set of poles Π
and the latter should have dimension at least 2. Assume that we take away the plane Π = {z = 0}. A
bundle section is given by

(ρ1 B |z |2, ρ2 B |w |2, χ + iψ B z̄w) → (z, w) = (√ρ1, (χ + iψ)/√ρ1).
Then u = Arg(z) and ϑ = du = Im(z̄ dz/|z |2), or

ϑ =
x dy − y dx

x2 + y2 ,

where z = x + iy .

In what follows we assume that Π is a two-dimensional manifold, which is smooth outside
fixed points of the S1 action. This is a reasonable assumption given that the polar set Π of the
rotation 1-form ϑ is a two-dimensional smooth manifold in all examples known to the authors,
cf. Section III.

We make use of the following transversality notion.

Definition 16. A rotation 1-form ϑ with a two-dimensional manifold of poles Π is transversal
to F if F |Π has rank 1 outside fixed points of the S1 action.

Note that the rank of F |Π cannot equal 2 since both F and Π are XJ invariant.

Lemma 17. Consider a rotation 1-form ϑ transversal to F, let Πr = Π \ {fixed points of the S1

action}, and assume that the circle action is free outside fixed points. Then F(Πr) is a smooth open
one-dimensional manifold and for each v ∈ F(Πr) the intersection F−1(v) ∩ Πr consists of a finite
number of S1 orbits.

Proof. By our assumptions on Π, Πr is a smooth two-dimensional manifold. Since the S1

action is free on Πr , the reduced Πr/S
1 is a one-dimensional manifold. By transversality to F, F |Πr

is of rank 1, which implies that it reduces to a map f of rank 1 on Πr/S
1. Therefore, the map f is an

immersion and it follows that its image f (Πr/S
1) = F(Πr) is smooth one-dimensional.

For each v ∈ F(Πr), by transversality, F−1(v) ∩ Πr is one-dimensional. From S1-invariance of
F and Πr , F−1(v) ∩ Πr is a union of S1 orbits. There is a finite number of them by transversality
of ϑ. �

Note that the manifold of poles Π is well defined within the disk D above which a circle action
is well defined. Of course, if as in many examples the action is global, then the manifold of poles Π
is defined globally.

C. Variation of the rotation number and rotation 1-forms

Let v ∈ R, and let p ∈ F−1(v) ⊂ M. As in the definition of the rotation number let S1p be the
XJ orbit through p and γH(p) the segment of the orbit of XH on F−1(v) starting from p and flowing
until it meets S1p at a point p′. We call δH(p) the closed curve which is the result of joining γH(p)
with the curve −γJ,Θ(v)(p). The latter is obtained by flowing along XJ from p′ for time −Θ(v), that
is, until closing at p (Fig. 2).
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The integration of ϑ along the paths γH(p) and δH(p) does not depend on the choice of the
point p in the fiber F−1(v). Therefore, for v ∈ R we define

Φ(v) =

γH (p)

ϑ, (4)

where p is any point in F−1(v). Note that Φ is not defined and may not be extended by continuity
whenever F−1(v) intersects Π.

Lemma 18. The following facts hold

(a) Let Γ be a closed path in the set of regular values R which transversally intersects F(Π). Then

VarΓΦ = VarΓΘ,

where Θ is the rotation number and Φ is given by Eq. (4).
(b) Let v ∈ R. Then Φ(v) = Θ(v) (mod 2π) if and only if there exists a cycle δ ∈ H1(F−1(v)),

independent of the cycle defined by the XJ-orbit, such that

δ ϑ = 0.

Proof. (a) Consider the representative of δH that goes from p to p′ along γH and then from p′

to p along the flow of XJ for time −Θ. By construction, such a path is γH − γJ,Θ, where γJ,Θ is the
time-Θ orbit of XJ from p to p′. Then

δH

ϑ =


γH

ϑ −

γJ,Θ

ϑ = Φ − Θ,

where we used that Θ =

γJ,Θ

ϑ, since ϑ(XJ) = 1. Therefore,

Θ = Φ −

δH

ϑ. (5)

Parameterize Γ by Γ : [0,2π] → R : s → Γ(s). The function s →

δH (p(s)) ϑ is locally constant

along Γ since ϑ is a closed 1-form and the initial points p(s) for the construction of the cycles
δH(p(s)) can be chosen so that these cycles form a cylinder. When δH(p(s)) meets a pole of ϑ then
δH (p(s)) ϑ is not defined and the function s →


δH (p(s)) ϑ has a discontinuity which, because of the

local constancy, must be a jump discontinuity. Therefore, s →

δH (p(s)) ϑ is a step function. The

rotation number Θ also only has jump discontinuities and these two facts, together with Eq. (5),
imply that Φ(Γ(s)) also has only jump discontinuities along Γ. Therefore, using that all functions
involved only have jump discontinuities, we obtain

VarΓΘ = VarΓΦ − VarΓ


δH

ϑ.

Since

δH
ϑ is a step function, we have VarΓ


δH
ϑ = 0, cf. Example 8. Therefore,

VarΓΘ = VarΓΦ.

(b) Suppose that there exists a cycle δ which is independent of γJ,2π and satisfies

δ ϑ = 0. The

cycle δH can be written as δH = k1δ + k2γJ,2π with k1, k2 ∈ Z and k1 , 0. Therefore,
δH

ϑ = k2


γJ,2π

ϑ = 2πk2,

and Eq. (5) gives Θ − Φ = 0 (mod 2π). In the opposite direction, we have that Θ − Φ = 0 (mod 2π)
implies, using Eq. (5), that


δH
ϑ = 2πk for some k ∈ Z. Then the cycle δ = δH − kγJ,2π satisfies

δ ϑ = 0. �

Remark 19. There may be fibers F−1(v) for v ∈ R such that F−1(v) ∩ Π , ∅. Thus Φ =

γH

ϑ

and

δH
ϑ are not defined on these fibers. Nevertheless, Θ is always defined (by construction) and,

therefore, the difference Φ −

δH
ϑ extends to a well-defined function on such fibers.
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FIG. 3. The fibration F above Γ using the same representation as in Figure 1. The torus K is represented by the lower, light
gray, face and consequently also by the opposite upper face. The cylinder C of XH orbits starting at σ(Γ) is represented by
the dark gray surface. The dashed lines represent the section σ(Γ). The upper side of C is also drawn with a thicker line on
the lower face. Note that the lines marked by γH represent the same XH orbit on F−1(Γ(0))= F−1(Γ(1)). C intersects the
polar set Π at a finite number of isolated points pi j, cf. Figure 1. The cycles δi j around pi j are defined on C .

Remark 20. Lemma 18 shows that VarΓΦ is independent of the choice of the rotation 1-form
ϑ and always equals VarΓΘ. This means that we can choose ϑ in such a way so as to simplify the
computation of the variation, even if it does not give the correct value for the rotation number Θ on
each fiber.

D. Proof of the main theorem 1

To prove Theorem 1, consider a section σ : Γ → F−1(Γ) of the T2 bundle over Γ and the
2-torus K = {S1σ(v) : v ∈ Γ}. Then consider the cylinder C made up of orbit segments γH(σ(v))
of XH as v moves along Γ, see Figure 3. Specifically, the orbit segment γH(σ(v)) of XH starts at
p = σ(v) and ends at the first point p′ ∈ S1p ⊂ K where the orbit intersects S1p. This construction
defines the map χ : σ(Γ) → K sending p to p′. In terms of homology classes in H1(K,Z), we have
χ(σ(Γ)) = σ(Γ) + ℓ [S1] for some ℓ ∈ Z. Here [S1] is the homology class represented by any XJ

orbit of period 2π.
Parameterize Γ by s ∈ [0,1] with s increasing along the traversing direction of Γ and parame-

terize each orbit segment γH(σ(v)) by t ∈ [0,1] with t increasing along the flow of XH . Then C is
parameterized by (s, t) ∈ [0,1] × [0,1] and such a choice fixes an orientation on C.

Since ϑ is closed, Stokes’ theorem gives that

∂C ϑ equals the sum of the integral of ϑ along

positively oriented cycles δi j encircling the poles of ϑ on C,
∂C

ϑ =

i j


δi j

ϑ.

The boundary of C is ∂C = −χ(σ(Γ)) + σ(Γ), therefore
∂C

ϑ = −

χ(σ(Γ))

ϑ +


σ(Γ)

ϑ = −ℓ

S1
ϑ = −2ℓπ.

Moreover, the variation of Φ along Γ is given by

VarΓΦ = −

i j


δi j

ϑ,

giving

VarΓΦ = 2ℓπ.
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Recall from Equation (3) that the monodromy number k equals − 1
2πVarΓΘ. By Lemma 18, we then

have that

k = − 1
2π

VarΓΘ = −
1

2π
VarΓΦ = −ℓ =

1
2π


i j


δi j

ϑ.

This concludes the proof of Theorem 1.

III. EXAMPLES

In this section, we apply the concepts introduced in Section II to three specific examples: the
champagne bottle, the spherical pendulum, and a system on the symplectic manifold S2 × S2.

A. The champagne bottle

The champagne bottle consists of a particle in the plane R2 which moves under the influence of
a conservative force whose potential energy is

V (q1,q2) = (q2
1 + q2

2)2 − (q2
1 + q2

2).
The phase space of this system is the cotangent bundle of R2, diffeomorphic to R4, with the
canonical symplectic structure ω = dp1 ∧ dq1 + dp2 ∧ dq2. The Hamiltonian function is H(q,p) =
1
2 (p2

1 + p2
2) + V (q1,q2).

This system admits the integral of motion J = q1p2 − q2p1. The function J is the momentum
of the 1 : (−1) oscillator that rotates clockwise in the (q1,q2)-plane and counterclockwise in the
(p1,p2)-plane. Its infinitesimal action is the vector field XJ = q2∂q1 − q1∂q2 − p2∂p1 + p1∂p2.

This system admits the global rotation 1-form

ϑ =
q1dq2 − q2dq1

q2
1 + q2

2

,

whose polar set Π is the plane q1 = q2 = 0. The transversality condition of Definition 16 is easily
verified. In fact, the intersection of Π with the critical fiber is only the critical point (0,0,0,0),
and the energy-momentum map F = (H, J) restricted to Π is the function (p1,p2) → ((p2

1 + p2
2)/2,0)

which has rank 1 at all points of the plane except the critical point. The projection of Π in the
energy-momentum domain is the H positive semi-axis, see Figure 4.

To compute monodromy by applying Theorem 1, consider a closed path Γ that encircles the
origin in a counterclockwise direction and transversally crosses F(Π) = {(h, j), j = 0, h ≥ 0} at a
point (ε,0). Then Γ is locally parameterized by (h, j) = (g(s),−s) with g(0) = ε. The polar orbit
P = F−1(ε,0) ∩ Π is given by p2

1 + p2
2 = 2ε and q2

1 + q2
2 = 0. A tubular neighborhood U of P, con-

tained in F−1(Γ), admits a chart (q1,q2, θ), where θ = arg(p1 + ip2) ∈ S1 while (q1,q2) lie in a small
disk V containing the origin in R2. Taking V (and subsequently U) sufficiently small and using

FIG. 4. The energy-momentum domain for the three examples in Section III. The isolated points correspond to focus-focus
singularities, the dashed lines are the projection of the domain of Π, the manifold of poles of the chosen rotation 1-form.
For the spherical pendulum (middle panel), the two lines are both along the H -axis; they have been drawn slightly shifted to
make them both visible.
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the transversality condition, the cylinder C of orbits of XH defined in the proof of Theorem 1,
Section II D, intersects U along a disk that can be parameterized by (q1,q2) and P is represented by
q1 = q2 = 0. We have to determine the orientation of the chart (q1,q2) with respect to the orientation
used in the proof of Theorem 1. The latter is defined by (s, t), where s is an increasing parameter
along Γ and t is time. Then we need to check the determinant

D =

���������

∂q1

∂s
∂q1

∂s
∂q1

∂t
∂q1

∂t

���������

= p2
∂q1

∂s
− p1

∂q1

∂s
,

which we can evaluate at q1 = q2 = 0. Since ∂qj/∂t = q̇j = pj, we find

−1 =
dj
ds
= D +

(
q1
∂p2

∂s
− q2

∂p1

∂s

)
.

Evaluating the last relation at q1 = q2 = 0, gives D = −1. This implies that a cycle δ, which is
positively oriented on C, is negatively oriented in the (q1,q2)-plane and therefore

k =
1

2π


δ

ϑ = −1.

B. The spherical pendulum

The spherical pendulum is a Hamiltonian system in the cotangent bundle of the sphere T∗S2.
This manifold can be symplectically embedded in the cotangent bundle of R3, that is diffeomorphic
to R6 with canonical coordinates qi,pi, i = 1,2,3. In these coordinates, the Hamiltonian of the
system is the restriction to T∗S2 = {(q,p) | ∥q∥2 = 1,q · p = 0} of the function H(q,p) = 1

2 |p|2 + q3.
This Hamiltonian commutes with the function J = q1p2 − q2p1. This system admits the global
rotation 1-form

ϑ =
q1dq2 − q2dq1

q2
1 + q2

2

.

In this case, the poles of the rotation 1-form are the points satisfying the two equations
q1 = q2 = 0, that form the two planes

Π± = {(0,0,±1,p1,p2,0) | p1,p2 ∈ R}.
The restriction of the energy-momentum map F = (H, J) to the two planes is the function (p1,p2) →
( 1

2 (p2
1 + p2

2) ± 1,0), which has rank 1 at all points except the poles (defined by p1 = p2 = 0), which
are singular points for the system. The image of this map, that is F(Π), consists of two rays, subsets
of the H-axis (see Figure 4).

To compute monodromy in this example, we follow the same argument as for the champagne
bottle, Section III A. The main difference is that now Γ intersects F(Π) at two distinct points and
F−1(Γ) contains three polar orbits. Consider a closed path Γ that encircles the focus-focus value
(h, j) = (1,0) in a counterclockwise direction and transversally crosses F(Π) = {(h, j), j = 0, h ≥
−1} at the points (1 ± ε,0), ε > 0. When Γ crosses F(Π) at (1 + ε,0), it is locally parameterized
by (h, j) = (g(s),−s) with g(0) = 1 + ε. There are two polar orbits P± on F−1(1 + ε,0), given by
p2

1 + p2
2 = 2(1 + ε ∓ 1), p3 = 0, and q2

1 + q2
2 = 0, q3 = ±1. Each polar orbit P± admits a tubular neigh-

borhood U±, contained in F−1(Γ). Each U± admits a chart (q1,q2, θ), where θ = arg(p1 + ip2) ∈ S1.
Taking U± sufficiently small and using the transversality condition, the cylinder C of orbits of XH ,
intersects each of U± along a disk that can be parameterized by (q1,q2) and P± is represented by
q1 = q2 = 0. For the orientation, we check the determinant

D =

���������

∂q1

∂s
∂q1

∂s
∂q1

∂t
∂q1

∂t

���������

= p2
∂q1

∂s
− p1

∂q1

∂s
,
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which we can evaluate at q1 = q2 = 0. We further have

−1 =
dj
ds
= D +

(
q1
∂p2

∂s
− q2

∂p1

∂s

)
,

which, evaluated at q1 = q2 = 0, gives D = −1. This implies that the cycles δ± should be negatively
oriented in the (q1,q2)-plane and therefore 

δ±
ϑ = −2π.

The polar orbit P0 on F−1(1 − ε,0) is given by p2
1 + p2

2 = 2(2 − ε), p3 = 0, and q2
1 + q2

2 = 0, q3 = −1.
Working as above, we find D = dj/ds = 1, therefore

δ0

ϑ = 2π.

In conclusion,

k =
1

2π

(
δ0

ϑ +


δ+

ϑ +


δ−
ϑ

)
= −1.

Note, in particular, that the polar orbits P0 and P− that belong to F(Π+) are bounded away from the
focus-focus point (0,0,1,0,0,0) as ε goes to zero and their contributions to the monodromy number
cancel out. This means that only the polar orbit P+ which approaches the focus-focus point as ε goes
to zero contributes to monodromy. We show that monodromy is locally determined in Section IV.

The argument we give here for the spherical pendulum, works in exactly the same way for more
general systems of the form H(q,p) = 1

2 |p|2 + V (q3) on T∗S2, provided that the path Γ lies in the set
of regular values of F and it transversally intersects F(Π) which is a subset of the H-axis. In partic-
ular, this includes the case where the system does not have a focus-focus singularity but, instead, a
more complicated arrangement of critical values forming an “island,” see Ref. 12 [Chapter 4].

C. The hydrogen atom in crossed fields

After the first reduction, the hydrogen atom in crossed electric and magnetic fields turns into
a Hamiltonian system defined in S2 × S2 that can be embedded into the manifold R3 × R3 endowed
with the Poisson structure coming from the Lie algebra so(3) (that is {xi, x j} = 

k εi, j,kxk and
{yi, y j} = 

k εi, j,k yk, where εi, j,k is the signature of the permutation 1 → i, 2 → j 3 → k). The
phase space S2 × S2 is a symplectic leaf of this space.

The Hamiltonian function for this system is H = ax3 + by3 + H2, with H2 a function of degree
two or higher in the variables depending on the parameters a,b (see Ref. 12 [Chapter 3] for a detailed
description). This system can be normalized so as to admit an invariance under the Poisson action of
J = x3 + y3, that induces a simultaneous clockwise rotation in the two copies of R3 about the x3 and
y3 axes, respectively. In this case, regardless of the choice of H2, a global rotation 1-form is

ϑ =
x1dx2 − x2dx1

x2
1 + x2

2

,

and its poles correspond to two submanifolds Π± = (0,0,±1) × S2.
Theorem 1 applies. We illustrate the application considering a toy model with H = ax3 +

x1y2 − x2y1. The restriction of the function F = (H, J) to Π± is the function (±a,±1 + y3), which
has rank 1 and projects onto two horizontal lines connecting each focus-focus critical value to the
elliptic-elliptic critical value at the same height (see Figure 4). The addition of the term by3 to H or
the choice of a different H2 term would deform this picture but leave it qualitatively the same (as
long as the quadratic part does not cause a bifurcation of the system).

To apply Theorem 1, consider a closed path Γ that encircles both focus-focus values in a
counterclockwise direction and transversally crosses F(Π) at the points ±(a, ε). Near each point
±(a, ε) the path Γ is locally parameterized by (h, j) = (±s, g±(s)) with g±(0) = ±ε. The polar or-
bits P± on F−1(±(a, ε)) are given by y2

1 + y
2
2 = and x2

1 + x2
2 = 0, x3 = ±1. Tubular neighborhoods
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U± of P±, contained in F−1(Γ), admit charts (x1, x2, θ) where θ = arg(y1 + iy2) ∈ S1. Taking U±
sufficiently small and using the transversality condition, the cylinder C of orbits of XH defined
in the proof of Theorem 1, Section II D, intersects U± along disks that can be parameterized by
(q1,q2) and P± are represented by q1 = q2 = 0. We have to determine the orientation of the charts
(q1,q2) with respect to the orientation used in the proof of Theorem 1. Then we need to check the
determinant

D =

���������

∂x1

∂s
∂x2

∂s
∂x1

∂t
∂x2

∂t

���������

= (∓y2)∂x1

∂s
− (∓y1)∂x2

∂s
,

which is being evaluated at x1 = x2 = 0. We further have

±1 =
dh
ds
= ∓D.

Therefore, in both cases D = −1 and we get

k =
1

2π

(
δ+

ϑ +


δ−
ϑ

)
= −2.

IV. LOCAL MONODROMY

We now concentrate on a point p̄ ∈ M that is a focus-focus singularity.5,22 Such singularities
are isolated, rank-zero, singularities of F. This implies that XJ(p̄) = XH(p̄) = 0. Moreover, we as-
sume that the fiber containing p̄ is a singly pinched torus, that is, the only critical point on this fiber
is p̄. Under these assumptions, we show that the main theorem, Theorem 1, can be applied locally to
determine the monodromy number k near v̄ = F(p̄). In particular, we show that k can be determined
by restricting our attention to a non-saturated neighborhood of p̄. We then make a specific choice of
the rotation 1-form and we use it to compute that k = −1.

A. Local fibration and its complement

Let us consider the fibration induced by F in a neighborhood of a focus-focus point p̄ of a 2
degree of freedom Hamiltonian system. Let v̄ = F(p̄) and denote by ρ the reduction map of the
Hamiltonian S1-action induced by the flow of XJ. Finally, let f :M/S1 → R2 denote the reduced
energy-momentum map, satisfying F = f ◦ ρ. We assume that the fiber F−1(v̄) is a singly pinched
torus, which has a saturated neighborhood that contains no other critical points. Then F−1(v̄) \ {p̄}
is homeomorphic to S1 × (0,1).

Remark 21. Note that in order to simplify the exposition, we consider here only the case where
F−1(v̄) contains exactly one focus-focus point. Nevertheless, our approach easily generalizes to the
case where F−1(v̄) contains more than one focus-focus point.

The fibration induced by f onto a neighborhood of v̄ can be decomposed in two parts: a
local part defined in a neighborhood B of ρ(p̄) and a part defined in its complement M \ B whereM =M/S1. We call the first part “local” and, with some abuse in terminology, we call the last
part “global.” In these regions, the foliation induced by f has the simple structure described in the
following proposition, see Figure 5.

Proposition 22. Assume that p̄ is a possibly degenerate focus-focus point and v̄ = F(p̄). Then
there exists an open neighborhood B of ρ(p̄) and an open neighborhood D of v̄ such that

(a) the fibration f −1(D) ∩ ∂B f
−→ D is isomorphic to D × ({pt} ⊔ {pt}) pr1−→ D, where pr1 denotes

the projection to the first component;

(b) the fibration f −1(D) \ B f
−→ D is isomorphic to D × [0,1] pr1−→ D;

(c) the fibration f −1(D∗) ∩ cl(B) f
−→ D∗ is isomorphic to D∗ × [0,1] pr1−→ D∗, where D∗ = D \ {v̄}.



022902-14 Efstathiou et al. J. Math. Phys. 58, 022902 (2017)

FIG. 5. The reduced fibration given by f , see Proposition 22. The dotted curves represent regular reduced fibres while the
solid curve going through the point ρ(p̄) represents the reduced pinched torus f −1(v̄).

Proof. (a) Since F−1(v̄) \ {p̄} is homeomorphic to a cylinder, its S1 reduction, f −1(v̄) \ {ρ(p̄)}
gives an interval (0,1) whose endpoints meet at ρ(p̄). Moreover, because all objects involved are
smooth we have that f −1(v̄) \ {ρ(p̄)} is a smooth curve in the reduced space. This implies that for
any sufficiently small ball B around ρ(p̄), the fiber f −1(v̄) intersects ∂B transversally at exactly two
points. Since f is smooth we conclude that for a sufficiently small disk D containing v̄ , all fibers
f −1(v) for v ∈ D also intersect ∂B transversally at two points.

(b) Furthermore, for any v ∈ D∗ = D \ {v̄} we have that f −1(v) is diffeomorphic to S1, while
as we saw earlier f −1(v̄) is homeomorphic to S1 but smooth outside ρ(p̄). This implies that for any
v ∈ D, f −1(v) \ B is diffeomorphic to the interval [0,1] and since D is contractible, f −1(D) \ B is
isomorphic to D × [0,1].

(c) Finally, f −1(D∗) ∩ cl(B) is an orientable fibration with a contractible fiber [0,1] over the
punctured disk D∗. Therefore, it is isomorphic to D∗ × [0,1]. The orientability can be explic-
itly demonstrated by considering the basis ∇h, ∇ j, Xh where f = (h, j) and Xh(ρ(p)) = Dρ(p)
XH(p). �

The fibration described in Proposition 22 is the projection on M of a fibration of higher dimen-
sion defined by the energy-momentum map F in the phase space M. Also in this case, the fibers
projecting onto a neighborhood of v̄ can be decomposed in a local part and in a global part, and their
geometry remains simple.

Proposition 23. There exists an S1-invariant open neighborhood B of the focus-focus point p̄
and an open neighborhood D of v̄ such that

(a) the fibration F−1(D) ∩ ∂B
F−→ D is isomorphic to D × (S1 ⊔ S1) pr1−→ D;

(b) the fibration F−1(D) \ B
F−→ D is isomorphic to D × Cyl

pr1−→ D, where Cyl is the cylinder
S1 × [0,1];

(c) the fibration F−1(D∗) ∩ cl(B) F−→ D∗ is isomorphic to D∗ × Cyl
pr1−→ D∗, where D∗ = D \ {v̄}.

Proposition 24. If the rotation 1-form ϑ is transversal to F then B and D can be chosen so that
(F−1(D) ∩ ∂B) ∩ Π = ∅.

Proof. Recall that p̄, being a fixed point of the S1 action, is a pole of ϑ. The transversality
condition ensures that we can find a sufficiently small ball B such that F−1(v̄) ∩ B contains no other
poles of ϑ. Then F−1(D) ∩ ∂B also contains no poles for a sufficiently small disk D ∋ v̄ . �
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B. Local variation and monodromy

Consider the fiber F−1(v) for v sufficiently close to v̄ and recall from Proposition 23 that
F−1(v) ∩ ∂B is the disjoint union of two S1 orbits S− ⊔ S+. We make the convention that the flow
of XH in F−1(v) ∩ B ≃ Cyl sends points on S− to S+. For any point p ∈ F−1(v) ∩ B, let γrel

H (p) be
the part of the orbit of XH in B that goes through p. Such a curve joins a point p− ∈ S− to a point
p+ ∈ S+. Define

Φrel(v) =

γrel
H
(p)
ϑ, (6)

where ϑ is a rotation 1-form defined in B \ Π but not necessarily defined globally. In typical situa-
tions, ϑ is the restriction of a global rotation 1-form ϑ to a neighborhood of the focus-focus point
p̄. We further assume that ϑ is transversal to F. Note that Φrel(v) does not depend on the choice of
p ∈ F−1(v).

Proposition 25. The variation VarΓΦrel is equal to −2kπ, where k ∈ Z is the monodromy num-
ber of the torus bundle F−1(Γ).

Proof. Let F−1(D) ∩ ∂B = A− ∪ A+, where both A+ and A− are isomorphic to the solid torus
D × S1. Choose a section σ+ : D → A+ and for each point v ∈ D consider the orbit of XH through
p = σ+(v). Such an orbit intersects A− for the first time at a point q. We denote the orbit segment
from p to q along the flow of XH by γglob

H . This construction defines a section σ− : D → A− as the
map that sends v to q, see Figure 6. The triviality of the cylinder bundle F−1(D) \ B → D ensures
that σ− is well defined. We denote by [S1] the generator of H1(A±,Z) which can be represented
by an orbit of the S1 action; we have


[S1] ϑ = 2π. Consider now a simple closed path Γ in D

surrounding the origin. In general, σ±(Γ) is homologous in A± to ℓ±[S1] with ℓ± ∈ Z. Because σ+(Γ)
bounds the disk σ+(D) we have ℓ+ = 0 and because of the triviality of the cylinder bundle over D
we further have ℓ− = 0.

For each point v ∈ Γ follow the flow of XH from σ−(v) until it reaches A+ for the first time. This
defines a map ψ : σ−(Γ) → A+ sending q to p′ = ψ(σ−(v)). Recall that γrel

H is the orbit segment from
q to p′ along the flow of XH . Consider the cylinder C made up of orbits γrel

H as v moves along Γ.

FIG. 6. Schematic representation of the solid tori A+ and A− in the proof of Proposition 25.
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Stokes’ theorem gives that

∂C ϑ equals the sum of integrals around cycles δi j surrounding the poles

of ϑ on C. The latter sum gives −VarΓΦrel, while ∂C = −ψ(σ−(Γ)) + σ−(Γ). Therefore

VarΓΦrel =


ψ(σ−(Γ))

ϑ −

σ−(Γ)

ϑ.

Moreover, ψ(σ−(Γ)) is homologous in A+ to ℓ[S1] for some ℓ ∈ Z. Therefore, since A+ and A−
contain no poles (Proposition 24), we have

VarΓΦrel = 2π(ℓ − ℓ−) = 2ℓπ.

From the definition of the rotation number, it follows that

ψ(σ−(v)) = ϕΘ(v)J (σ+(v)),
where ϕt

J is the time-t flow of XJ. The last relation implies that VarΓΘ = 2π(ℓ − ℓ+) = 2ℓπ. There-
fore, k = −ℓ is the monodromy number and we obtain VarΓΦrel = VarΓΘ = 2ℓπ = −2kπ thus
concluding the proof. �

Remark 26. If the rotation 1-form can be extended over a saturated neighborhood of the singu-
lar fiber, then we can define, in analogy with Φrel, the non-local part of Φ given by

Φglob(v) =

γ

glob
H

(p)
ϑ.

Clearly, Φ = Φrel + Φglob. Proposition 25 implies that VarΓΦglob = 0. Therefore any contribution
to VarΓΦ from poles of ϑ away from p̄ must cancel out. Recall that this situation occurs in the
spherical pendulum, see Section III B.

C. Computation of the local variation

In Sec. IV B we established that VarΓΦrel = −2kπ, where k is the monodromy number for the
T2 bundle over Γ. In this section, we make a specific choice of rotation 1-form near a focus-focus
singular point and compute that VarΓΦrel = 2π, thus obtaining k = −1.

It is known14,17 that up to using J and possibly replacing H with a function of H, J (oper-
ation that does not change the fibration given by F), one can assume that in a neighborhood V
of a focus-focus singular point p̄ the functions H, J are, in appropriately chosen local symplectic
coordinates, the functions

H = q1q2 − p1p2 and J =
1
2
(q2

1 + p2
1) −

1
2
(q2

2 + p2
2) (7)

with the standard symplectic structure dp1 ∧ dq1 + dp2 ∧ dq2. It can be shown that this is equivalent
to the well-studied A1 singularity.2

We restrict our attention to an open ball

B = {(q1,p1,q2,p2) : q2
1 + q2

2 + p2
1 + p2

2 < 2r} ⊆ V,

where r > 0 is fixed. The ball B is XJ-invariant but not XH-invariant: for any point in B, except for
points on the 2-dimensional stable manifold, the corresponding XH-orbit leaves B in finite time.

In the ball B, we make the specific choice of rotation 1-form

ϑ B dθ1 =
p1dq1 − q1dp1

q2
1 + p2

1

.

Fibers F−1( j,h) ∩ cl(B) for j2 + h2 , 0 are diffeomorphic to cylinders S1 × [−1,1] and the cyl-
inder bundle over R2 \ {0} is trivial. This is Proposition 23 but it can also be explicitly shown
through the following parameterization, which is a symplectic modification of the one given in
Ref. 4. Specifically, we define the section σ : R2 → R4 given by

q1 =
j + 1
√

2
, p1 =

h
√

2
, q2 =

h
√

2
, p2 =

j − 1
√

2
.
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Note that the section σ given here agrees with the section in Ref. 4 when h2 + j2 = 1. Then a
computation shows that σ∗ω = 0, where ω is the canonical symplectic form in R4. Therefore, σ is
Lagrangian. Furthermore,

H(σ( j,h)) = h, J(σ( j,h)) = j.

Then the trivialization is given by

ϕ(u, j, v,h) = ϕuJ ◦ ϕvH(σ( j,h)),
where u ∈ [0,2π), v ∈ R. Here ϕt

J and ϕt
H represent the time-t flows of XJ and XH , respectively.

In coordinates (u, j, v,h), the symplectic form becomes

ϕ∗ω = du ∧ d j + dv ∧ dh,

while ϕ∗H = h, ϕ∗J = j.
We further define non-symplectic coordinates (u, j, w,h) by w = e2v + j. In the latter coordi-

nates we have

dθ1 = du +
h dw − w dh

h2 + w2 .

Consider now, in the image of F, the closed path Γ given by

Γ(s) = ( j(s),h(s)) = (ℓ cos s, ℓ sin s), s ∈ [0,2π], ℓ > 0.

The set of XH orbits

C = {(u, j, w,h) : u = 0, j = ℓ cos s, h = ℓ sin s}
is a cylinder in phase space containing one XH orbit (given by u = 0) for each fiber of F (Fig. 7).
The form dθ1 has a pole at one point on C, given by s = π (therefore, h = 0, j = −ℓ) and w = 0.

The relative rotation number Φrel is discontinuous at the pole and the variation VarΓΦrel of the
rotation number along Γ is the opposite of the size of the discontinuity of Φrel at s = π. If we denote
the integral curve of XH on C by γH(s) then

VarΓΦrel = lim
s→π−


γH (s)

dθ1 − lim
s→π+


γH (s)

dθ1.

Using the fact that dθ1 is closed, we can then express VarΓΦrel as

VarΓΦrel = −

δ

dθ1,

FIG. 7. The variation of the rotation number can be expressed as the integral of dθ1 around a single point on the cylinder C .
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where δ is a positively oriented closed path on C winding once around the pole (Fig. 7). Using
coordinates (w,h) in a neighborhood of the pole C, we find that

dθ1|C = h dw − w dh
h2 + w2 .

The choice of the coordinates as (w,h) is so that the orientation is the same as the choice (s, w) used
in defining the positive direction for δ. Then

δ

h dw − w dh
h2 + w2 = −2π,

which gives

VarΓΦrel = 2π,

and therefore the monodromy number is k = −1.

Remark 27. In the local trivialization, we could have chosen ϑ = du as a rotation 1-form. Such
a choice would give Φrel = 0 and thus VarΓΦrel = 0 thus contradicting our result. Nevertheless, one
can check that du is not transversal to F and therefore Theorem 1 is not applicable with this choice
of rotation 1-form.

V. NONCOMPACT FIBRATIONS AND SCATTERING MONODROMY

In Secs. I–IV we have been considering integrable Hamiltonian systems with an S1 action and
connected, compact fibers. In this section, we discuss the case of systems with noncompact fibers
and we show how the local considerations in Section IV lead to a definition of monodromy for such
systems. This noncompact monodromy is then compared to the notion of scattering monodromy.

A. Definition of noncompact monodromy

We assume that the integral map F is S1 invariant and that the fibers are connected but non-
compact while the flow of XH is complete. Under these assumptions, the regular fibers of F are
cylinders S1 × R.

Such systems can be claimed to “have no monodromy” in the following sense, see Ref. 4.

Consider a simple closed path Γ in the set of regular values of F. Then F−1(Γ) F−→ Γ is an orientable
cylinder bundle over Γ and it is thus trivial, that is, isomorphic to the bundle S1 × (S1 × R) pr1−→ S1.

Expanding on the concept of scattering monodromy, introduced in Ref. 4, we propose to define
noncompact monodromy by appropriately identifying the two “ends” of the cylinder fibers of F,
turning the cylinder bundle over Γ into a torus bundle. We show that our definition of noncompact
monodromy, which is based on topological considerations, matches scattering monodromy for the
particular system studied in Ref. 4 and we explain in detail how the two concepts are related.

First, we construct a torus bundle starting from F−1(Γ) F−→ Γ, through the following procedure.
Recall that we consider an S1 invariant integral map F, with noncompact, connected, fibers. Let Γ be
a simple closed path in the set R of regular values of F, bounding a disk D ⊆ R. Denote by f the
S1-reduced integral map, that is F = f ◦ ρ, where ρ is the reduction map of the S1 action.

We make the assumption that for each v ∈ D the fiber f −1(v) = F−1(v)/S1 is homeomor-
phic to R. Then there is a homeomorphism g : F−1(D)/S1 → D × R such that pr1 ◦ g = f , that is,

the bundles F−1(D)/S1 f
−→ D and D × R

pr1−→ D are topologically isomorphic. Let Bm = g
−1(D ×

[−m,m]) ⊂ f −1(D), m > 0. We have ∂Bm = N+m ∪ N−m with N±m homeomorphic to D. Let A±m =
ρ−1(N±m). Assuming that the S1 action has a finite number of fixed points, we can choose m large
enough so that all such fixed points in F−1(D) are contained in ρ−1(Bm). Thus, each set A±m is
homeomorphic to a solid torus. Consider continuous sections

σ±m : D ≃ N±m → A±m
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of the principal S1 bundle A±m
f
−→ D. Then define homeomorphisms

h±m : D × S1 → A±m : (v, t) → ϕt
J(σ±m(v)),

which in turn allow the definition of the identification map

ηm : A+m → A−m : p → ηm(p) = h−m ◦ (h+m)−1(p).
Consider now the space

Cm = ρ
−1(Bm)/∼ηm,

obtained by identifying points at the boundary A+m ∪ A−m of ρ−1(Bm) through the map ηm. This
construction turns ρ−1(Bm) ⊂ F−1(D) into a closed topological manifold without boundary. Finally,
define

Tm = (ρ−1(Bm) ∩ F−1(Γ))/∼ηm = ρ−1(g−1(Γ × [−m,m]))/∼ηm.
The space Tm is a bundle of tori over Γ with the projection map given by F. Note that F is well

defined on Tm since F ◦ ηm = F. We will denote the bundle Tm
F−→ Γ simply by Tm. With this

construction we can now give the following definition of noncompact monodromy.

Definition 28. The noncompact monodromy of the cylinder bundle F−1(Γ) F−→ Γ is the mon-
odromy of the torus bundle Tm if there is M > 0 such that the monodromy of Tm is constant for all
m > M .

Remark 29. In the construction of the torus bundle above we assumed that the identification of
the ends of the “cut” cylinders is done over the whole disk D bounded by Γ. This is essential for
defining the torus bundle Tm uniquely (up to isotopy). If the identification is given only over Γ, then
there is enough freedom to construct torus bundles with an arbitrary monodromy number. Note that
the identification of A+ and A− over the whole D, and not only over Γ, also plays an essential role in
the proof of Proposition 25.

In the construction of the torus bundle Tm one can define, in analogy with our local description
in Section IV, and the definition of Φrel,

Φm(v) =

γH (v)

ϑ,

where ϑ is any rotation 1-form and γH(v) is an orbit segment of XH going from A−m to A+m. Then
we define

Φ(v) = lim
m→∞

Φm(v), (8)

if the latter limit exists.
Moreover, one can define the rotation number Θ(v) in the following way. Let q = σ−m(v)

and consider the XH orbit that starts at q and ends at a point p′ = ψm(q) = ψm(σ−m(v)) in A+m.
Furthermore, let p = η−1

m (q) = σ+m(v). Then define Θm(v) by

ψm(σ−m(v)) = ϕΘm(v)
J (σ+m(v)),

and, finally, the rotation number is defined by

Θ(v) = lim
m→∞

Θm(v), (9)

if the latter limit exists.

B. Comparison to scattering monodromy

We now focus on the integrable Hamiltonian system given by F in Eq. (7), but with F now
defined over R4 and not only in a neighborhood of the origin as in Section IV C. Note that in this
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case the regular fibers of F are cylinders. Moreover, this is precisely the system studied in Ref. 4 up
to assigning coordinates (q1,p1,q2,p2) to (x1, x2, y1,−y2) respectively.

Proposition 30. The noncompact monodromy of F in Eq. (7) is the local monodromy deter-
mined in Section IV C and it thus has the monodromy number k = −1.

Proof. Comparing the proof of monodromy in Proposition 25 for the bundle F−1(Γ) F−→ Γ with
the construction of the torus bundle Tm, one sees that for finite m > 0 the two bundles have the same
monodromy. Since the monodromy of Tm is the same for all m > 0, the noncompact monodromy is
well defined and equal to the local monodromy. �

Further note that the noncompact monodromy defined here coincides with the scattering mon-
odromy introduced in Ref. 4. This is not a coincidence; instead, it sheds light to an aspect of the
definition of scattering monodromy, that is, an implicit compactification of the cylinder bundle
in Ref. 4.

Let us recall the definition of scattering monodromy from Ref. 4. The projections of the integral
curves of XH in this system have well defined asymptotic directions in the (q1,p1)-plane as t → ±∞.
The angle between these two directions on the fiber F−1(v) is given by the scattering angle Θs(v)
which is shown to equal arg( j + ih), where v = (h, j). It follows that VarΓΘs = 2π and therefore one
gets a non-trivial variation which is reminiscent of the variation of the rotation number in compact
monodromy. The scattering angle can also be obtained by integrating the form

ϑs =
q1 dp1 − p1 dq1

q2
1 + p2

1

,

along an integral curve of XH , or its projection in the (q1,p1)-plane. Note that, following our
terminology, ϑs is a rotation 1-form in R4 \ {q1 = p1 = 0}, cf. Definition 10.

Comparing definitions one directly sees that, choosing the rotation 1-form to be ϑ = ϑs, we
have Φ(v) = Θ(v) = Θs(v), where Φ(v) and Θ(v) are given in Eqs. (8) and (9), respectively. More-
over, note that for any m > 0 we have, using the result of Section IV C, that

VarΓΦm = 2π.

Therefore, we also have

VarΓΦ = 2π,

in accordance with VarΓΘs = 2π obtained in Ref. 4.
Note that there are two aspects of this story. One computational, where we define an ad hoc

rotation number, and one topological, where we identify the two ends of the cylinders in the bundle
F−1(Γ). The computational considerations show that scattering monodromy is precisely the local
monodromy considered in Section IV. The construction of the torus bundle Tm described earlier and
culminating to Definition 28 of noncompact monodromy gives a topological interpretation of this
computation.

In particular, for the construction of the torus bundle Tm for F in Eq. (7) we define the sections
σ±m : D → A±m by

σ±m(h, j)= (q1 + ip1,q2 + ip2)
=

(�( j2 + h2 + m2)1/2 + j
�1/2

,
 ( j2 + h2 + m2)1/2 − j

h2 + m2

1/2
(h ∓ im)

)
.

Note that for large values of m, m2 ≫ h2 + j2, the sections are asymptotically equal to

σ±m(h, j) = (q1,p1,q2,p2) ≃ �√
m,0,0,∓

√
m
�
.

This choice corresponds exactly to asymptotic motion along the q1 axis while the sign of p2 =

−XH(q1) = ±√m signifies incoming (for “+”) or outgoing (for “−”) motions. Using the terminology
of Ref. 4, incoming asymptotic motions are “negative ends” and outgoing asymptotic motions are
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“positive ends” of integral curves of XH . From this point of view, the map ηm for large m iden-
tifies negative ends with positive ends, that is, it identifies incoming and outgoing motions that are
asymptotically along the same direction in the (q1,p1)-plane.

Recall from Section IV B that Φrel
m (v) measures the time to go along the flow of XJ from

σ+m(v) to ψ(σ−m(v)). In scattering monodromy, Θs(v) measures the time to go along the flow of
XJ from the “parallel transport of the negative end of the integral curve” to the “positive end of the
integral curve.” The parallel transport defined in Ref. 4 provides an identification of “positive ends”
and “negative ends” that extends over all fibers, including the singular one. This demonstrates that
the computationally defined scattering monodromy is indeed the monodromy of a properly defined
torus bundle.

A different, but closely related to Ref. 4, definition of scattering monodromy is given in Ref. 10.
A deflection angle ∆φ is defined as the difference between the asymptotic directions of two outgo-
ing classical trajectories: one for a free particle (that is, without scattering) and one scattered under a
repulsive potential corresponding to the Hamiltonian function

H(q,p) = 1
2
(p2

1 + p2
2) −

1
2
(q2

1 + q2
2),

invariant under the circle action generated by the angular momentum J = q1p2 − q2p1. We note
here that a linear symplectic coordinate change brings this system to the form given in Eq. (7). It
is then shown in Ref. 10 that for a closed path Γ around the origin in the (H, J)-plane the map
χ : Γ ≃ S1 → S1 which assigns to each point on Γ the corresponding deflection angle ∆φ has degree
1, and this observation is characterized as scattering monodromy. The correspondence between the
result in Ref. 10 and the noncompact monodromy defined here is straightforward. The identification
of the two “ends” of the fibers of F (typically, cylinders) is given by the flow of the reference Hamil-
tonian H0 =

1
2 (p2

1 + p2
2) corresponding to free motion. Such an identification extends continuously to

the singular fiber F−1(0) since the flow of H0 has no fixed points. Given such an identification the
map χ coincides with the map Θ defined in Eq. (9) and as the proof of Proposition 25 shows, the
degree of Θ determines the monodromy of the corresponding torus bundle.

The results obtained in the present paper show that the descriptions of scattering monodromy
in Refs. 4 and 10 are ultimately equivalent. The difference between the two approaches boils
down to a different identification of incoming and outgoing asymptotic directions. Since both iden-
tifications extend continuously inside the disk bounded by the closed path Γ, we conclude that
they define the same monodromy which coincides with the noncompact monodromy as given by
Definition 28.

The main difference between our approach and the one in Refs. 4 and 10 is the following.
We treat the choice of the rotation 1-form and the choice of identification of the cylinder ends as
independent. In particular, the choice of rotation 1-form determines the function Φ(v) while the
choice of identification determines the function Θ(v); it turns out that VarΓΘ = VarΓΦ. Refs. 4 and
10 implicitly give an identification of cylinder ends and then choose to integrate a rotation 1-form
for which Φ(v) = Θ(v).

VI. DISCUSSION

Given a 2DOF integrable system with a circle symmetry, we introduced the concept of rotation
1-form. A rotation 1-form is a closed 1-form which measures the displacement with respect to the
flow of the circle action (just as a connection 1-form for principal bundles). This displacement is
strictly related to the classical rotation number, whose multivaluedness gives the integer that is
commonly referred to as the monodromy. In the presence of singularities of the integrable system,
the rotation 1-form is necessarily undefined in some submanifold of poles in the phase space. It is
precisely a residue-like formula around such poles that gives the monodromy.

Under the hypothesis that the system has a simple focus-focus singularity, the computation
turns out to give the monodromy when confined in a neighborhood of the singularity. This allows us
to define monodromy also in the case of non-compact fibration and to show that it extends previous
notions of scattering monodromy.
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Being associated with general closed 1-forms with poles, the sum of the residues is not
necessarily an integer multiple of 2π. Our idea appears to be suitable to generalizations to more
general types of monodromy, such as fractional monodromy. The presence of threads of singular-
ities makes the analysis more complicated and requires a deeper investigation that might involve
Picard-Lefschetz formulas.
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20 Sugny, D., Mardešić, P., Pelletier, M., Jebrane, A., and Jauslin, H. R., “Fractional hamiltonian monodromy from a

Gauss–Manin monodromy,” J. Math. Phys. 49(4), 042701 (2008).
21 Vũ Ngo. c, S., “Sur le spectre des systèmes complètement intégrables semi-classiques avec singularités,” Ph.D. thesis,

Université Grenoble 1 - Joseph Fourier, 1998.
22 Zung, N. T., “A note on focus-focus singularities,” Differ. Geom. Its Appl. 7(2), 123–130 (1997).
23 Zung, N. T., “Another note on focus-focus singularities,” Lett. Math. Phys. 60(1), 87–99 (2002).

http://dx.doi.org/10.1007/BF00944566
http://dx.doi.org/10.2478/s11533-007-0022-4
http://dx.doi.org/10.1006/jdeq.2000.3852
http://dx.doi.org/10.1016/S0167-2789(00)00053-1
http://dx.doi.org/10.1002/cpa.3160330602
http://dx.doi.org/10.1103/PhysRevLett.101.070405
http://dx.doi.org/10.1103/PhysRevLett.101.070405
http://dx.doi.org/10.1088/0951-7715/17/5/012
http://dx.doi.org/10.1016/j.aim.2006.05.006
http://dx.doi.org/10.1070/SM1994v077n02ABEH003454
http://dx.doi.org/10.1070/SM1996v187n04ABEH000122
http://dx.doi.org/10.1155/IMRN.2005.27
http://dx.doi.org/10.1016/j.physd.2010.06.012
http://dx.doi.org/10.1063/1.2863614
http://dx.doi.org/10.1016/S0926-2245(96)00042-3
http://dx.doi.org/10.1023/A:1015761729603



