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a b s t r a c t

We consider the monodromy of n-torus bundles in n degree of freedom integrable
Hamiltonian systems with a complexity 1 torus action, that is, a Hamiltonian Tn−1 action.
We show that orbits with T1 isotropy are associated to non-trivial monodromy and we
give a simple formula for computing the monodromy matrix in this case. In the case of 2
degree of freedom systems such orbits correspond to fixed points of the T1 action. Thus we
demonstrate that, given a Tn−1 invariant Hamiltonian H , it is the Tn−1 action, rather than
H , that determines monodromy.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The, now classical, work by Duistermaat on obstructions to global action–angle coordinates in integrable Hamiltonian
systems [1] highlighted the importance of the non-triviality of torus bundles over circles for such systems. Since then non-
trivialmonodromyhas beendemonstrated in several integrableHamiltonian systems.We indicativelymention the spherical
pendulum [1,2], the Lagrange top [3], the Hamiltonian Hopf bifurcation [4], the champagne bottle [5], the coupled angular
momenta [6], the two-centers problem [7], and the quadratic spherical pendulum [8,9]. A common aspect of these systems
is the presence of a symmetry given by a Hamiltonian Tn−k action, where n is the number of degrees of freedom (for the
two-centers problem k = 2 and for the other systems k = 1).

Remark 1.1. Hamiltonian Tn−k actions on symplectic 2n manifolds are called complexity k torus actions. Classification of
symplectic manifolds with such actions has been studied by Delzant in [10] (k = 0), and Karshon and Tolman in [11]
(k = 1). We note that for integrable systems with a complexity 0 torus action monodromy is always trivial.

In the present paper we consider integrable n degree of freedom systems with a complexity 1 torus action, that is, a
Hamiltonian Tn−1 action. Monodromy in such systems (along a given curve) is determined by n−1 free integer parameters.
We will show that these parameters are related to singular orbits of the Tn−1 action via the curvature form of an appropriate
principal Tn−1 bundle; see Theorems 3.2 and 3.4. Surprisingly, this relation has not been observed before. The usually
adopted approaches to monodromy (see [12–17,2]) do not take into account the differential geometric invariants of the
Hamiltonian Tn−1 symmetry, such as the curvature form and the Chern numbers. Moreover, these approaches are rather
concentrated on the study of thewhole integralmap, that is, theHamiltonian and themomenta that generate theTn−1 action.
Our results in this paper show that the Hamiltonian plays a secondary role to the momenta for determining monodromy.
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Specifically, for 2 degrees of freedom systems monodromy is determined in terms of the fixed points of the Hamiltonian
T1 action; see Theorem 3.10. For n degree of freedom systems monodromy is determined in terms of how the S1 isotropy
group is expressed in a given basis of the Tn−1 action; see Theorem 3.15.

The paper is organized as follows. In Section 2 we specify our setting and recall necessary definitions from the theory of
principal bundles. In Section 3 we formulate our main results that relate monodromy with singularities of the Tn−1 action;
see Theorems 3.2, 3.4, 3.10 and 3.15. The proof of Theorem3.2,which ismore technical, is postponed to Section 5. In Section 4
we apply our techniques to various integrable systems. The paper is concluded in Section 6 with a discussion.

2. Preliminaries

LetM be a connected 2n-dimensional manifold with a symplectic form Ω . Since Ω is a non-degenerate 2-form, to every
smooth function F1 : M → R one can associate the so-calledHamiltonian vector field XF1 = Ω−1(dF1). Suppose that we have
n almost everywhere independent functions F1, . . . , Fn onM such that all Poisson brackets vanish:

{Fi, Fj} = Ω(XFi , XFj) = 0.

Then we say that we have an integrable Hamiltonian system onM . The map

(F1, . . . , Fn) : M → Rn

is called the integral map of the system. Everywhere in the paper we assume that the Assumption 2.1 hold (except for
Section 5 where we work in a more general setting of a Hamiltonian Tk action, 1 ≤ k ≤ n − 1).

Assumptions 2.1. The integral map F is assumed to have the following properties.

(1) F is proper, that is, for every compact set K ⊂ Rn the preimage F−1(K) is a compact subset ofM .
(2) The integral map F is invariant under a Hamiltonian Tn−1 action.
(3) The Tn−1 action is free on F−1(R), where R ⊂ image(F) the set of regular values of F .

Consider a regular simple closed curve γ ⊂ R and assume that the fibers F−1(ξ), ξ ∈ γ , are connected. By the
Arnol’d–Liouville theorem we have a n-torus bundle

(Eγ = F−1(γ ), γ , F) (1)

with respect to F . Take a fiber F−1(ξ0), ξ0 ∈ γ , and let T n−1 be any orbit of the Hamiltonian Tn−1 action on F−1(ξ0). We
choose a basis (e1, . . . , en) of the integer homology group H1(F−1(ξ0)) so that (e1, . . . , en−1) is a basis of H1(T n−1). Since
the Hamiltonian Tn−1 action is globally defined on Eγ , the generators ej, j = 1, . . . , n − 1, are also ‘globally defined’, that
is they are preserved under the parallel transport along γ . It follows that the monodromy matrix of the bundle (Eγ , γ , F)
with respect to the basis (e1, . . . , en) has the form

1 · · · 0 m1
...

. . .
...

...
0 · · · 1 mn−1
0 · · · 0 1

 .

We call m⃗ = (m1, . . . ,mn−1) ∈ Zn−1 themonodromy vector. In Section 3we relate m⃗ to the curvature form of an appropriate
principal Tn−1 bundle and then give a formula that allows us to compute m⃗ in specific integrable Hamiltonian systems.

The assumption of the existence of a Tn−1 action made throughout this paper brings us in the context of principal torus
bundles and their Chern numbers. We recall here some relevant definitions. For a detailed exposition of the theory we refer
to Postnikov [18].

Consider a principal Tn−1 bundle (E, B, ρ). The structure group Tn−1 is isomorphic to the direct product of n − 1 circles:

Tn−1
= {(eiϕ1 , . . . , eiϕn−1) | ϕj ∈ R} ⊂ Cn−1.

The Lie algebra TeTn−1 can be thus identified with iRn−1. The Lie bracket is identically zero since Tn−1 is a commutative
group.

Let A# denote the fundamental vector field generated by A ∈ iRn−1 and R⋆
g denote the pull-back of the right shift

Rg : E → E.

Definition 2.2. A connection one-form ω on (E, B, ρ) is a iRn−1-valued one-form on E such that ω(A#) = A and R⋆
g(ω) = ω.

Remark 2.3. In our setting both E and B are compact manifolds. Hence a connection one-form exists. It separates tangent
spaces of E into vertical and horizontal subspaces.

Let {Uα}α∈I be a trivialization cover of B.
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Definition 2.4. On each trivialization chart Uα define the curvature form F by the following formula:

F|Uα = ds⋆α(ω),

where sα : Uα → E is a section and s⋆α denotes the pull-back.

Remark 2.5. Since Tn−1 is commutative, the curvature form F is well-defined. It is a closed 2-formwhose cohomology class
[F] does not depend on the choices made.

Remark 2.6. If n = 2 then c1(F) =
i

2π [F] is the (first) Chern class of the principal circle bundle (E, B, ρ). But conversely, let
n ≥ 2 be arbitrary. Consider the subgroup Tn−2

l of Tn−1 defined by

Tn−2
l = {(eiϕ1 , . . . , eiϕn−1) | ϕl = 0; ϕj ∈ R, j ≠ l}.

Let c1(Fl) be the first Chern class of the circle bundle (E/Tn−2
l , B, ρ). Then the (cohomology class of a) curvature form F of

the Tn−1 bundle (E, B, ρ) is given by

i
2π

[F] = (c1(F1), . . . , c1(Fn−1)) . (2)

Wewill apply the above theory to the case when B is a 2-dimensional manifold. In this case the following integral is defined:

m⃗ =
i

2π


B
F.

The output m⃗ is a set of n − 1 integers. We call them, in line with Eq. (2), Chern numbers of the principal bundle (E, B, ρ).

3. Monodromy and Chern numbers

Recall that we have a n-torus bundle (Eγ = F−1(γ ), γ , F). Since the Tn−1 action is free on Eγ ⊂ F−1(R), the monodromy
vector m⃗ is defined and we have a principal bundle (Eγ , Eγ /Tn−1, ρ) with respect to the reduction map ρ : M → M/Tn−1.
We note that Eγ /Tn−1 is a 2-torus since it is an orientable circle bundle over the curve γ . Since the base Eγ /Tn−1 is compact,
there exists a curvature form F and thus the Chern numbers i

2π


Eγ /Tn−1 F are defined.

Remark 3.1. The (cohomology class) of F is given by the Chern classes of the circle bundles (Eγ /Tn−2
l , Eγ /Tn−1, ρ); see

Section 2 and Eq. (2) therein. These Chern classes should not be confused with the Chern class introduced by Duistermaat
in [1], which obstructs the existence of a global section of (F−1(R), R, F). It can happen that the Chern class in the sense of
Duistermaat is trivial, while the Tn−1 action is not.

The entire paper is based on the following result, the proof of which we give in Section 5.

Theorem 3.2. Let F : M → Rn be a proper integral map of an integrable system on M invariant under a Hamiltonian Tn−1

action. Consider a regular simple closed curve γ ⊂ R such that the fibers F−1(ξ), ξ ∈ γ , are connected and such that the Tn−1

action is free on Eγ = F−1(γ ).
Then the monodromy vector m⃗ is determined by the Chern numbers of (Eγ , Eγ /Tn−1, ρ), specifically,

m⃗ =
i

2π


Eγ /Tn−1

F.

Remark 3.3. Recall that the monodromy vector m⃗ depends on the choice of the generators (e1, . . . , en−1). The generators
(e1, . . . , en−1) result in a basis of the Lie-algebra TeTn−1

= iRn−1. In Theorem 3.2 we implicitly assume that the curvature
form F is written with respect to this basis.

We will now use Theorem 3.2 in order to show that the monodromy of the bundle (Eγ , γ , F) is related to the orbits of
the Tn−1 action with S1 isotropy. In particular, we prove the following result.

Theorem 3.4. Let F and γ be as in Theorem 3.2. Assume, moreover, that the following conditions hold.

(1) There exists a 2-disk U in the image of F with ∂U = γ .
(2) The preimage F−1(U) is a closed submanifold (with boundary) of M.
(3) The Tn−1 action is free on F−1(U) outside ℓ orbits p1, . . . , pℓ ∈ F−1(U) with S1 isotropy.
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Then

m⃗ =
i

2π

ℓ
k=1


S2k

F, (3)

where S2k is an arbitrary small sphere around the point ρ(pk) in the reduced space F−1(U)/Tn−1.

Proof. Take sufficiently small open balls Vk ⊂ F−1(U)/Tn−1 around ρ(pk) such that the complement

B =

F−1(U)/Tn−1 

\

ℓ
k=1

Vk

is a compact connected manifold with boundary. Observe that by construction the boundary ∂B is the disjoint union of the
spheres S2k = ∂Vk, k = 1, . . . , ℓ, and the 2-torus Eγ /Tn−1.

Let E = ρ−1(B). Then the bundle (E, B, ρ) is a principal Tn−1 bundle. Let F denote its curvature 2-form. Theorem 3.2
implies that

m⃗ =
i

2π


Eγ /Tn−1

F,

and a direct application of Stokes’ theorem gives

m⃗ =
i

2π

ℓ
k=1


S2k

F. �

Remark 3.5. Since the spheres S2k can be chosen to be arbitrary small, the monodromy vector m⃗ is determined by the
behavior of the Tn−1 action near the singular orbits pk.

Remark 3.6. In the case n = 2 the assumption (2) from Theorem 3.4 can be omitted as it always holds. Moreover, in this
case the singular orbits p1, . . . , pℓ with S1 isotropy are simply the fixed points of the S1

= T1 action.

Up to the end of this section we assume that F and γ satisfy the conditions of Theorem 3.4. Our goal is to obtain
expressions for m⃗ that can be more easily used in applications. First consider the simplest case n = 2.

3.1. The case of 2 degrees of freedom

From the slice theorem [19, Theorem I.2.1] (see also [20]) it follows that in a small equivariant neighborhood of a fixed
point the S1

= T1 action can be linearized. Thus in appropriate complex coordinates (z, w) ∈ C2 it can be written as

(z, w) → (eimtz, eintw), t ∈ S1,

for some integers m, n. By our assumption, the Hamiltonian S1 action is free everywhere in F−1(U) except for ℓ singular
points P1, . . . , Pℓ ∈ F−1(U). Hence near each such singular point it can be written as

(z, w) → (e±itz, eitw), t ∈ S1,

in appropriate complex coordinates (z, w) ∈ C2. The two cases can be mapped to each other through an orientation-
reversing coordinate change.

Definition 3.7. We call a singular point P positive if the local S1 action is given by (z, w) → (e−itz, eitw) and negative if the
action is given by (z, w) → (eitz, eitw) in a coordinate chart having the orientation induced by the symplectic form Ω .

Remark 3.8. The S1 action (z, w) → (eitz, eitw) defines the Hopf fibration on the sphere S3 = {(z, w) ∈ C2
| 1 =

|z|2 +|w|
2
}. The S1 action (z, w) → (e−itz, eitw) defines a fibration which can be transformed to the Hopf fibration through

an orientation-reversing coordinate change. If an orientation is fixed and the S1 action is given by (z, w) → (e−itz, eitw)
then we talk about an anti-Hopf fibration [21].

Lemma 3.9. The Chern number of the Hopf fibration is equal to −1, while for the anti-Hopf fibration it is equal to 1.

Proof. Consider the case of the Hopf fibration (the anti-Hopf case is analogous). Its projection map h : S3 → S2 is defined
by the formula h(z, w) = (z : w) ∈ CP1

= S2. Put

U1 = {(u : 1) | u ∈ C, |u| < 1} and U2 = {(1 : v) | v ∈ C, |v| < 1}.
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Define sections sj : Uj → S3 by the formulas

s1((u : 1)) =


u

|u|2 + 1
,

1
|u|2 + 1


and

s2((1 : v)) =


1

|v|2 + 1
,

v
|v|2 + 1


.

Now, the cocycle t12 : S1 = U1 ∩ U2 → S1 corresponding to the sections s1 and s2 is given by

t12((u : 1)) = exp(−iArg u).

If ω is a connection one-form then

s⋆2(ω) = s⋆1(ω) + t−1
12 dt12 = s⋆1(ω) − i · d(Arg u).

It follows that

−1 =
i

2π


S1

i · d(Arg u) =
i

2π


∂U1

s⋆1(ω) +
i

2π


∂U2

s⋆2(ω)

and hence

−1 =
i

2π


U1

ds⋆1(ω) +
i

2π


U2

ds⋆2(ω) =
i

2π


S2

F. �

Observe that the right hand side of Eq. (3) is the sum of the Chern numbers of Hopf or anti-Hopf fibrations. Thus, in view
of Lemma 3.9, the following result holds.

Theorem 3.10. Let F and γ be as in Theorem 3.4 with n = 2. Then the monodromy of the 2-torus bundle (Eγ , γ , F) is given by
the number of positive singular points minus the number of negative singular points in F−1(U).

Remark 3.11. Note that Theorem 3.10 does not require that the singular points are focus–focus singularities of F .

3.2. The case of n ≥ 2 degrees of freedom

In this section we provide two approaches for computing the monodromy vector m⃗ in the case n ≥ 2. The first approach
is to reduce the number of degrees of freedom and apply techniques from Section 3.1. First, let us reformulate Theorem 3.2
as follows. Consider the subgroup Tn−2

l of Tn−1 defined by

Tn−2
l = {(eiϕ1 , . . . , eiϕn−1) | ϕl = 0; ϕj ∈ R, j ≠ l}. (4)

Let c1(Fl) be the first Chern class of the circle bundle (Eγ /Tn−2
l , Eγ /Tn−1, ρ). From Eq. (2) we get

ml =


Eγ /Tn−1

c1(Fl). (5)

Let J lk be smooth functions onM such that their Hamiltonian vector fields generate theTn−2
l action. Denote by J lc the common

level set of J lk:

J lc = {J l1 = c1, . . . , J ln−2 = cn−2}.

Suppose that there exists a regular J lc such that F−1(U) ⊂ J lc . Symplectic reduction with respect to the Tn−2
l action yields a

2 degree of freedom Hamiltonian system on J lc/Tn−2
l . From Eq. (5) it follows that ml gives the monodromy along γ in the

reduced system, and one can apply the results from Section 3.1 to determineml.

Remark 3.12. The reduction method just described can be applied only when the functions J lk are constant on F−1(γ ). In
practical situations one can use the fact that the monodromy along γ depends only on its homotopy type [γ ] in F−1(R) to
find an appropriate γ and generators J lk so that this condition holds.

The second approach starts from Eq. (3). We want to compute integrals i
2π


S2k

F, where 1 ≤ k ≤ ℓ. Represent the acting

torus Tn−1 as a direct product Tn−1
= S1

1 × · · · × S1
n−1 in such a way that the isotropy group of pk is S1

1. This representation
leads to a new basis (e′

1, . . . , e
′

n−1, en) of H1(F−1(ξ0)) (cf. the beginning of Section 3).
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Consider the subgroup Tn−2
l of Tn−1 defined as in (4). Suppose l > 1. Then the triple (ρ−1(Vk)/Tn−2

l , Vk, ρ) is a trivial
circle bundle since Vk is contractible. Now suppose l = 1. It follows from the slice theorem that S1

1 acts on the quotient
ρ−1(Vk)/Tn−2

1 linearly as

(z, w) → (e±itz, eitw), t ∈ S1
1,

in appropriate coordinates (z, w). In accordance to Definition 3.7 we propose the following definition.

Definition 3.13. We call the orbit pk positive with respect to the Tn−1 action if the S1
1 action on the quotient ρ−1(Vk)/Tn−2

1 is
given by (z, w) → (e−itz, eitw) and negative otherwise.

Remark 3.14. There is a canonical orientation on the quotient ρ−1(Vk)/Tn−2
1 induced by the symplectic form Ω .

With the above conventions we have
i

2π


S2k

F = (±1, 0, . . . , 0)t (6)

depending on whether the singular orbit pk is positive or negative for the Tn−1 action.
Note that we made a specific choice of the basis of the Lie algebra of the acting torus Tn−1 when we represented it as

a direct product Tn−1
= S1

1 × · · · × S1
n−1. The basis (e1, . . . , en−1) associated to the monodromy vector m⃗ corresponds, in

general, to a different basis of the Lie algebra. It can be checked that in the latter basis Eq. (6) becomes
i

2π


S2k

F = ±u⃗k,

where u⃗k = (u1
k, . . . , u

n−1
k ) ∈ Zn−1 is such that e′

1 =
n−1

j=1 uj
kej. In other words, the coefficients (u1

k, . . . , u
n−1
k ) are the

expansion coefficients of the isotropy group pk with respect to the generators (e1, . . . , en−1).
Finally we get the following theorem.

Theorem 3.15. Let F and γ be as in Theorem 3.4 with n ≥ 2 arbitrary. Then the monodromy of the n-torus bundle (Eγ , γ , F) is
given by

m⃗ =

ℓ
k=1

±u⃗k,

where the sign for the kth term depends on whether the orbit pk is positive or negative with respect to the Tn−1 action.

4. Examples

In this section we use Theorems 3.10 and 3.15 to determine the monodromy of torus bundles in specific cases.

4.1. Monodromy around a focus–focus singularity

Suppose that ξ0 = (0, 0) is a focus–focus critical value of the 2 degree of freedom Hamiltonian system defined by a
proper integral map F . Then F−1(ξ0) is a singular fiber of complexity ℓ ∈ N, i.e., it contains ℓ singular focus–focus points. Let
γ be a circle around ξ0 of sufficiently small radius r > 0. Then there is the following result.

Theorem 4.1 ([13,14]). The monodromy of the bundle (Eγ , γ , F) is given by the matrix

1 ℓ
0 1


.

The above monodromy theorem was proved for ℓ = 1 by Lerman and Umanskiı̆ in [12] and then for arbitrary ℓ by
Matveev in [13]. In [14] Zung gave a proof of the monodromy theorem based on the fact that all focus–focus singularities of
the same complexity are semi-locally C0-equivalent and on the existence of a unique Hamiltonian S1 action as described in
the following result.

Theorem 4.2 ([14]). In a neighborhood of the singular fiber F−1(ξ0) there is a unique (up to orientation reversing) Hamiltonian
S1 action which is free everywhere except for the singular points of F . Near each singular point of F in F−1(ξ0) there is a local
symplectic coordinate system (q1, p1, q2, p2) in which the momentum of the S1 action is

J =
1
2
(q21 + p21) −

1
2
(q22 + p22).

Corollary 4.3. Given the existence of a circle action for granted, themonodromy theorem follows directly fromour results. Namely,

Theorems 3.10 and 4.2 ⇒ Theorem 4.1.
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Fig. 1. (a–c) Bifurcation diagrams for different regimes of the quadratic spherical pendulum: (a) type O; (b) type II; (c) type I. (d) Paths in a type I system.

Proof. Let z = q1 + ip1 and w = q2 + ip2, where (q1, p1, q2, p2) are as in Theorem 4.2. Then the local chart (z, w) is
positively oriented with respect to the orientation induced by Ω = dq1 ∧ dp1 + dq2 ∧ dp2. It can be checked that the S1

action near each focus–focus point has the form (z, w) → (e−itz, eitw). It follows from Lemma 3.9 that each focus–focus
point is positive. �

Remark 4.4. In the work [22] of Zung (cf. Cushman and Duistermaat [23]) monodromy was generalized to the case of an
integrable non-Hamiltonian system of bi-index (2, 2), that is a 4-dimensional symplectic manifoldM together with 2 vector
fields Xj and 2 functions Jj such that [Xj, Xl] = 0 and Xj(Jl) = 0.

Just as in the Hamiltonian case, one can define monodromy for the map F = (J1, J2), define the notion of a (possibly
degenerate) focus–focus critical value and prove the existence, in a tubular neighborhood of the singular fiber, of a system-
preserving S1 action; see [22]. The S1 action turns out to be free outside fixed points.

It is not difficult to see (details will be published in a forthcoming paper) that Theorem 3.10 is applicable in this setting
and thus monodromy around a possibly degenerate focus–focus critical value is given by the number of positive singular
pointsminus the number of negative singular points, cf. [23] and [22]. Note that negative singular pointsmight appearwhich
means that some of the Chern numbers in Eq. (3) will be equal to −1.

4.2. Quadratic spherical pendula

Consider a particle moving on the unit sphere

{x = (x1, x2, x3) ∈ R3
: x21 + x22 + x23 = 1}

in a quadratic potential V (x3) = bx23 + cx3. The corresponding Hamiltonian system (TS2, Ω|TS2 ,H), where H(x, v) =
1
2 ⟨v, v⟩+V (x) is the total energy, is called quadratic spherical pendulum [9]. This system is integrable since the x3 component
J of the angular momentum is conserved. Moreover, J generates a global Hamiltonian S1 action on TS2. As we change the
parameters b and c of the potential the system goes through different regimes characterized by qualitatively different
bifurcation diagrams of the integral map F = (H, J). In [9] these regimes were classified as follows:

Type O The image of F has one isolated critical value that lifts to a pinched torus containing one focus–focus point
(Fig. 1(a)). The spherical pendulum V (x3) = x3 belongs to this category.

Type II The integral map F has two focus–focus critical values, isolated in the set of critical values (Fig. 1(b)). Each such
critical value lifts to a singly pinched torus.

Type I The set of regular values F consists of two disjoint regions (Fig. 1(c)). Fibers of F over points in the outer region are
T 2 while fibers over points in the inner region are disjoint unions of two T 2. We call the inner region ‘‘island’’. The
common boundary of the two regions consists of critical values of F . Fibers of F over the hyperbolic critical values
at the top of the island are the topological product of a 2-bouquet with S1. At the two top ends of the island these
fibers degenerate to cuspidal tori, see [24]. The fiber over the lowest point of the island is the disjoint union of a
T 2 and a single point P . The latter is an elliptic–elliptic singularity for the integrable system. The remaining elliptic
critical fibers at the boundary of the island are the disjoint union of a T 2 and an S1.

The monodromy for systems of type O or II is standard. As discussed in Section 4.1, the monodromy matrix for any path
in the image of the integral map that once encircles exactly one focus–focus critical value is


1 1
0 1


.
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The monodromy of type I systems is determined in [9] using the fact that such systems can be obtained through a sub-
critical Hamiltonian Hopf bifurcation of type O systems; the (local) bifurcation does not affect the (global) geometry of the
T 2 bundle. Here, applying Theorem 3.10, we can compute themonodromy of such systems in a direct way even though they
do not have focus–focus points and their monodromy cannot be determined by the monodromy theorem (Theorem 4.1).
Indeed, consider the path γ2 shown in Fig. 1(d) which encircles the inner region of regular values of F . Then

Proposition 4.5 ([9]). The monodromy along γ2 is given by the matrix

1 1
0 1


.

Proof. LetD2 be the 2-disk with ∂D2 = γ2. Then in the preimage F−1(D2) there is only one fixed point of the global S1 action
induced by J , namely, the elliptic–elliptic point P . Since the function J does not depend on the parameters b and c , and P is
positive when it is a focus–focus point (in type O systems) we deduce that P is also positive with respect to the S1 action in
type I systems. It is left to apply Theorem 3.10. �

Remark 4.6. Since P is an elliptic–elliptic point of the integrable system (H, J) there exists a T2 action in its neighborhood.
Thus one can consider two S1 actions in a neighborhood of P such that P is positive with respect to one and negative with
respect to the other. Nevertheless, to apply Theorem 3.10 we must consider an S1 action defined on F−1(D2) and the only
such action is the global S1 action generated by J . Therefore, checking whether P is positive or negative must be done with
respect to the global S1 action.

The path γ2 we considered does not cross any critical values of F . However, we can also consider closed paths, such as
γ1 in Fig. 1(d), that encircle the curve of hyperbolic critical values and cross the curves of elliptic critical values. Then the
preimage F−1(γ1) consists of two connected components [9,24]. One of these components is diffeomorphic to S3 while the
other is the total space of a T 2 bundle over γ1.

Proposition 4.7 ([9]). The monodromy of the T 2 bundle over γ1 is given by the matrix

1 1
0 1


.

Proof. Consider the preimage of the interior of γ1 and of the island. This preimage is a smooth manifold containing a fixed
point P of the S1 action. Cut out a small 4-ball around P to get a manifold E, invariant under the S1 action. The quotient E/S1

is a 3-manifold with boundary T 2
⊔ S2. Applying Eq. (5) we find that the monodromy is

T2
c1(F) =


S2

c1(F) = 1. �

Remark 4.8. Alternatively, to compute monodromy along γ1 one can switch from working with values of F in R2 to the
unfolded momentum domain [24]. Each value of F in the unfolded momentum domain corresponds to exactly one connected
component of the fibration defined by F . Theorem 3.10 holds also in this setting.

4.3. Monodromy in the 1:1:(−2) resonance

Consider the Hamiltonian system (R6, dq ∧ dp,H) defined by the Hamiltonian

H = Re(z1z2z3) + |z1|2|z2|2.

Here we introduced complex coordinates zk = qk + ipk, k = 1, 2, 3. The system is called 1:1:(−2) resonance due to the fact
that H Poisson commutes with the resonant 1:1:(−2) oscillator; see [25]. Here by the resonant 1:1:(−2) oscillator wemean
the following function

N =
1
2
(|z1|2 + |z2|2) − |z3|2.

Let

J =
1
2
(|z1|2 − |z3|2), L =

1
2
(|z1|2 − |z2|2),

and note that N = 2J − L. It can be checked that L,N and H Poisson commute. Hence the map

F : R6
→ R3

: F = (L,N,H)

is the integral map of an integrable system on R6. Furthermore, the Hamiltonian flows of integrals J and L define an effective
Hamiltonian T2 action Φ : T2

× C3
→ C3. This action is given by the formula

Φ(t1, t2, z) = ( z1 exp[i(t1 + t2)], z2 exp[−it2], z3 exp[−it1] ).
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Fig. 2. BD for 1:1:(−2) resonance.

The bifurcation diagram (set of critical values of F ) has the form shown in Fig. 2. For each pair of values (N, L) there is a
minimum permissible value of the energy, giving a surface S of critical values of F . The image of the integral map (N, L,H)
consists of values above S. In the interior of the image of F the only critical values are the sets

C1 = {(s, s, 0) : s > 0}, C2 = {(s, −s, 0) : s > 0}, C3 = {(−s, 0, 0) : s > 0},

and the origin.
The fundamental group of the set of regular values is isomorphic to the free product Z∗Z. Its generators are closed paths

γ1 encircling C1 and γ2 encircling C2. We want to find the monodromy matricesMγ1 andMγ2 .

Recall from Section 3 that in a basis (eJ , eL, e) of H1(T 3), with eJ and eL the generators corresponding to the flow of XJ and
XL respectively, the monodromy matrices have the form

Mγk =

1 0 m(k)
1

0 1 m(k)
2

0 0 1

 ,

where m(k)
1 and m(k)

2 are integers.

Proposition 4.9. The integers m(k)
j are as follows:

m(1)
1 = 1, m(1)

2 = −1, m(2)
1 = 1, and m(2)

2 = 0.

Proof. Let us compute m(1)
1 and m(1)

2 first. Since Mγ1 depends only on the homotopy type of γ1, we can assume that γ1 lies
on a constant L = ε, ε > 0, plane. Let U1 be the interior of γ1 in the plane L = ε. Since ε > 0 is a regular value of L, the
preimage F−1(U1) is a submanifold of R6. The T2 action is free everywhere in F−1(U1) except for one singular orbit

p1 = {(z1, z2, z3) | z2 = z3 = 0 and |z1|2 = ε}.

The isotropy group of p1 is S1 and it corresponds to the flow of J − L. Therefore the generator of the isotropy is written in
the basis (eJ , eL) as (1, −1)t . From Theorem 3.15 it follows thatm(1)

1 = 1 andm(1)
2 = −1.

Analogously we can compute m(2)
1 and m(2)

2 . In this case we assume that γ2 lies on a constant L = −ε, ε > 0, plane. Just
as before we let U2 be the interior of γ2 in the plane L = −ε. It can be checked that the only singular orbit of the T2 action
in F−1(U2) is

p2 = {(z1, z2, z3) | z1 = z3 = 0 and |z2|2 = ε}.

The isotropy group of p2 is also S1 and it corresponds to the flow of J , thus the generator of the isotropy is written in the
basis (eJ , eL) as (1, 0)t . Direct application of Theorem 3.15 yieldsm(2)

1 = 1 and m(2)
2 = 0. �
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Remark 4.10. Resonances n:n:(−m) are studied in [25] in more detail. In particular, the monodromy of the 1:1:(−2)
resonance is computed there with the help of symplectic reductions.

5. Proof of Theorem 3.2

In this section we give the proof of Theorem 3.2 working in a more general setting than in Section 3. In particular, we
have an integrable Hamiltonian system F = (F1, . . . , Fn) defined on a connected 2n-dimensional symplectic manifold M
and we assume that F is proper and invariant under a Hamiltonian Tk action, where k ≤ n − 1. The Tk action is assumed to
be free on F−1(R), where R ⊂ image(F) is the set of regular values of F .

Consider a regular simple closed curve γ ⊂ R and assume that the fibers F−1(ξ), ξ ∈ γ , are connected. Being compact,
connected and invariant under the Rn action (generated by the flows of XFj ), these fibers are homeomorphic to a n-torus.
Specifically,

F−1(ξ) = Rn/Zn
ξ ,

whereZn
ξ is the isotropy group of theRn action on F−1(ξ). We note that Zn

ξ can be identifiedwithH1(F−1(ξ)) for each ξ ∈ γ .
Let γ be parametrized by an angle coordinate χ and let (e1(0), . . . , en(0)) be a basis of Zn

χ=0. Extend this basis into a
smooth family

(e1 = e1(χ), . . . , en = en(χ)),

where χ ∈ (−ε, π + ε) and (e1(χ), . . . , en(χ)) is a basis of Zn
χ . Analogously define the family

(e′

1 = e′

1(χ), . . . , e′

n = e′

n(χ)),

where χ ∈ (π − ε, 2π + ε). By the construction,

e1 = e′

1, . . . , en = e′

n when χ = 0.

Because of the Tk action we can assume that e1, . . . , ek are globally defined. In particular,

e1 = e′

1, . . . , ek = e′

k when χ = π. (7)

Generally speaking, (e1, . . . , en) are not globally defined since monodromy of the bundle (F−1(γ ), γ , F) can be non-
trivial. The corresponding monodromymatrix, which is a transformation matrix between the bases (e1(π), . . . , en(π)) and
(e′

1(π), . . . , e′
n(π)), has the form

E M
O N


∈ SL(n, Z). (8)

Here the (E,O)t block corresponds to Eq. (7), that is, E is the k × k identity matrix and O is the (n − k) × k zero matrix, and
the matricesM = (mlj), N = (nji) are unknown.

Consider a smooth section of the bundle (F−1(γ ), γ , F). Let (ϕ1, . . . , ϕn) be angle coordinates on F−1(−ε, π + ε)
corresponding to this section and the family (e1, . . . , en). Analogously define (ϕ′

1, . . . , ϕ
′
n). Since e1 = e′

1, . . . , en = e′
n

when χ = 0, we also have

ϕ1 = ϕ′

1, . . . , ϕn = ϕ′

n when χ = 0.

From (8) it follows that

ϕl = ϕ′

l +

n−k
i=1

mliϕ
′

i+k and ϕk+j =

n−k
i=1

njiϕ
′

k+i, (9)

when l ≤ k, j ≤ n − k and χ = π .
Let U1 = F−1(−ε, π + ε)/Tk and U2 = F−1(π − ε, 2π + ε)/Tk. Define a section s1 : U1 → F−1(−ε, π + ε) by the

following rule:

(χ, ϕk+1, . . . , ϕn) →


χ,

n−k
j=1

ϕk+jek+j


.

Analogously, define a section s2 : U2 → F−1(π − ε, 2π + ε) given by

(χ, ϕ′

k+1, . . . , ϕ
′

n) →


χ,

n−k
j=1

ϕ′

k+je
′

k+j


.

We will need the following lemma.
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Lemma 5.1. Let ω be a connection one-form on (Eγ , Eγ /Tk, ρ). Define a loop γ ′

k+j ⊂ F−1(π)/Tk by setting ϕ′

k+i = 0, i ≠ j.
Then the columns m⃗j of the matrix M satisfy

m⃗j =
i

2π


γ ′
k+j

s⋆1(ω) − s⋆2(ω).

Proof. On one hand, recall that on F−1(π) we have

e′

k+j =

k
i=1

mijei +
n−k
i=1

nijek+i.

Therefore,

s2|γ ′
k+j

= ϕ′

k+je
′

k+j =

k
i=1

mijϕ
′

k+jei +
n−k
i=1

nijϕ
′

k+jek+i.

On the other hand, Eq. (9) implies

s1|γ ′
k+j

=

n−k
i=1

ϕk+iek+i =

n−k
i=1

nijϕ
′

k+jek+i.

Thus

s2|γ ′
k+j

= s1|γ ′
k+j

+

k
i=1

mijϕ
′

k+jei.

We see that the cocycle t12 : U1 ∩ U2 → Tk corresponding to the sections s1 and s2 is given by the vector
exp(im1jϕ

′

k+j), . . . , exp(imkjϕ
′

k+j)


= exp(im⃗jϕ
′

k+j).

Hence, the compatibility condition

s⋆2(ω) = s⋆1(ω) + t−1
12 dt12 = s⋆1(ω) + im⃗j dϕ′

k+j

implies

i
2π


γ ′
k+j

s⋆1(ω) − s⋆2(ω) =
m⃗j

2π


γ ′
k+j

dϕ′

k+j = m⃗j. �

Analogous to the loop γ ′

k+j ⊂ F−1(π)/Tk, we have a loop γk+j ⊂ F−1(π)/Tk defined by ϕk+i = 0, i ≠ j.

Remark 5.2. Suppose that γ ′

k+j = γk+j. Then the generator ek+j is globally defined on the quotient Eγ /Tk. It spans a 2-torus
T 2
j ⊂ Eγ /Tk. We can thus form the principal Tk bundle (ρ−1(T 2

j ), T 2
j , ρ) with a curvature form F.

Theorem 5.3. Assume that γk+j = γ ′

k+j for some j ≤ n − k. Let T 2
j and F be as in Remark 5.2. Then the column m⃗j of the matrix

M satisfies

m⃗j =
i

2π


T2j

F.

Proof. Consider the cylinders C1 = [0, π] × γk+j and C2 = [π, 2π ] × γk+j. Lemma 5.1 implies

m⃗j =
i

2π


∂C1

s⋆1(ω) − s⋆2(ω) =
i

2π


∂C1

s⋆1(ω) +
i

2π


∂C2

s⋆2(ω).

Therefore

m⃗j =
i

2π


C1

ds⋆1(ω) +
i

2π


C2

ds⋆2(ω) =
i

2π


T2j

F. �

We now observe that Theorem 3.2 follows directly from Theorem 5.3. Indeed, in Theorem 3.2 we consider a Hamiltonian
Tn−1 action, that is k = n − 1. The quotient Eγ /Tn−1 is a 2-torus since it is an orientable circle bundle over the curve γ . It
follows that γn = γ ′

n and T 2
1 = Eγ /Tn−1. This completes the proof of Theorem 3.2.
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6. Discussion

In this paper we considered n degree of freedom integrable Hamiltonian systems F : M → Rn with a Tn−1 action. We
studied the monodromy of n-torus bundles over closed paths γ in the set of regular values of F . We have shown that if we
consider the pre-image F−1(U) of a 2-disk U bounded by γ and the only singular orbits of the Tn−1 action are orbits with
S1 isotropy then the latter completely determine the monodromy of the n-torus bundle. Suppose, in particular, that the
manifold M and the Tn−1 action are fixed and write F in the form (J1, . . . , Jn−1,H), where J1, . . . , Jn−1 are momenta for the
Tn−1 action and H is the Tn−1 invariant energy function which can be varied. Then our results imply that the only way in
which H affects monodromy is by determining whether there exist paths γ encircling critical values of F corresponding to
singular Tn−1 orbits with S1 isotropy; if such paths exist then the monodromy for the n-torus bundle over γ depends only
on these singular orbits of the Tn−1 action.

This point of view is different than the one usually adopted in studies of Hamiltonian monodromy which have until now
focused on the behavior near focus–focus singularities or near families of hyperbolic orbits, that is, near singularities of the
map F . In such cases one starts with a singularity of F , proves the existence of a Tn−1 action in a saturated neighborhood
of such singularity, and uses this to prove monodromy for nearby n-torus bundles. In our approach we assume that a Tn−1

action exists and that F defines n-torus bundles near singular orbits of the Tn−1 action with T1 isotropy. Then we prove the
non-triviality of the monodromy without having to analyze what type of singularity of F we have.

In a forthcoming paper we provide a natural extension of this point of view to systems with fractional monodromy. Such
an extensionwould also be a natural continuation of the results in [26] where fractional monodromywas proved for specific
S1 actions in 2 degree of freedom systems but with weak requirements on the form of the energy function H .
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