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We consider a network of identical pulse-coupled oscillators with delay and all-to-all coupling. We

demonstrate that the discontinuous nature of the dynamics induces the appearance of isochronous
regions—subsets of the phase space filled with periodic orbits having the same period. For each

fixed value of the network parameters, such an isochronous region corresponds to a subset of initial

states on an appropriate surface of section with non-zero dimensions such that all periodic orbits in

this set have qualitatively similar dynamical behaviour. We analytically and numerically study in

detail such an isochronous region, give proof of its existence, and describe its properties. We fur-

ther describe other isochronous regions that appear in the system. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4982794]

Pulse coupled oscillator networks (PCONs) are key mod-

els for the study of synchronization in a wide variety of

systems, ranging from fireflies to wireless communication

systems. Moreover, despite their simplicity, they manifest

dynamical behavior that does not typically appear in

smooth finite-dimensional dynamical systems. We report

on the existence of isochronous dynamics in pulse coupled

oscillator networks with delay: for suitable values of the

parameters, there exist open sets of initial conditions giv-

ing periodic orbits with the same period. This, previously

unknown, behavior of pulse coupled oscillator networks

with delay provides a deeper understanding of their

dynamics and how they can reach synchronization.

I. INTRODUCTION

A. Pulse coupled oscillator networks

Pulse coupled oscillator networks (PCONs) have been

used to model interactions in networks where each node

affects other nodes in a discontinuous way. Two such exam-

ples are the synchronization related to the function of the

heart (Peskin, 1975) and the synchronization of fireflies

(Mirollo and Strogatz, 1990). There is now an extensive lit-

erature on the dynamics of pulse coupled oscillator networks

focusing on synchronization and the stability of synchro-

nized states.

Concerning synchronization, after the seminal work by

Mirollo and Strogatz (1990) who considered excitatory cou-

pling with no delay, Ernst et al. (1995, 1998) showed the

importance of delayed and inhibitory coupling in complete

synchronization, while excitatory coupling leads to

synchronization with a phase lag. In particular, for inhibitory

coupling, it was shown that the network synchronizes in mul-

tistable clusters of a common phase. Wu and Chen (2007,

2009) showed that all-to-all networks with delayed excit-

atory coupling do not synchronize, either completely or in a

weak sense, for sufficiently small delay and coupling

strength. In the work by Wu et al. (2010), it was shown that

the parameter space in systems with excitatory coupling is

separated into two regions that support different types of

dynamics. The effect of network connectivity on synchroni-

zation is numerically studied in LaMar and Smith (2010)

where it is shown that the proportion of initial conditions

that lead to synchronization is an increasing function of the

node-degree. Kielblock et al. (2011) showed that pulses

induce the breakdown of order preservation and demon-

strated a system of 2 identically and symmetrically coupled

oscillators where the winding numbers of the two oscillators

can be different. Klinglmayr and Bettstetter (2012) showed

that under self-adjustment assumptions, systems with hetero-

geneous phase rates and random individual delays would

converge to a close-to-synchrony state. Moreover, synchro-

nization has been considered in systems with stochastic fea-

tures. O’Keeffe et al. (2015) studied how small clusters of

synchronized oscillators in all-to-all networks coalesce to

form larger clusters and obtained exact results for the time-

dependent distribution of cluster sizes.

Except for synchronized states, more interesting dynam-

ics also manifests in pulse coupled oscillator networks. The

existence of unstable attractors has been established, numeri-

cally and analytically, in all-to-all pulse coupled oscillator

networks with delay (see Ashwin and Timme, 2005; Broer

et al., 2008b; Timme, 2002; Timme et al., 2003). Unstable

attractors are fixed points or periodic orbits, which are

locally unstable, but have a basin of attraction which is an

open subset of the state space. Heteroclinic connections

between saddle periodic orbits, such as unstable attractors,
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have been shown to exist in pulse coupled oscillator net-

works with delay (Ashwin and Borresen, 2004, 2005; Broer

et al., 2008a), and they have been proposed as representa-

tions of solutions of computational tasks. Schittler Neves

and Timme (2012) showed that complex networks of dynam-

ically connected saddle states are capable of computing arbi-

trary logic operations by entering into switching sequences

in a controlled way. Timme and Wolf (2008) gave an analy-

sis of asymptotic stability for topologically strongly con-

nected PCONs, while Zeitler et al. (2009) analyzed the

influence of asymmetric coupling and showed that it leads to

a smaller bistability range of synchronized states. Zumdieck

et al. (2004) numerically showed the existence of long cha-

otic transients in pulse-coupled oscillator networks. The

length of the transients depends on the network connectivity,

and such transients become prevalent for large networks.

B. Isochronous dynamics

In this paper, we report on a newly observed dynamical

behavior of PCONs with delay. Specifically, we show that

for appropriate values of the coupling parameters, that is, of

the coupling strength e and the delay s, there is a n � 1-

dimensional subset of state space foliated by periodic orbits

having the same period. We call the subsets of state space

isochronous regions. These periodic orbits are equivalent in

a sense we make precise in Definition III.1. Furthermore, the

parameter region for which such periodic orbits manifest is

an open subset of the parameter space.

This type of observed dynamics in PCON with delay is

a special case of isochronous dynamics. One talks of isochro-

nous dynamics when a dynamical system has an open set

of initial states that give rise to periodic solutions having

the same period. Examples include the one-dimensional

harmonic oscillator, any N-dimensional harmonic oscillator

where the frequencies, x1;…;xN , satisfy N � 1 resonance

relations, and the restriction of the Kepler problem to any

constant energy surface. We refer to Calogero (2011) for an

extensive review of recent results pertaining to isochronous

dynamics in the context of ordinary differential equations

and Hamiltonian systems. Nevertheless, such isochronous

dynamics have not been previously observed in PCONs,

except of course for the trivial case of identical uncoupled

oscillators.

A non-trivial example of isochronous dynamics induced

by a non-smooth map g : ½0; 1� ! ½0; 1� is depicted in Fig. 1.

Each point in the middle (red) segment of the graph of g,

lying along the diagonal, is a fixed point of g, and thus, such

points give isochronous dynamics of period 1.

C. Structure of this paper

In Section II, we describe the dynamics of PCONs with

delay and we review its basic properties. In Section III, we

first present numerical experiments that show the appearance

of n � 1-dimensional sets of periodic orbits on a surface of

section for specific values of the dynamical parameters.

Then, we define the notion of a isochronous region. In

Section IV, we discuss in detail one of the isochronous

regions in the system. We prove its existence for an open

subset of parameter values, describe in detail the dynamics

in the region, and determine the stability of the periodic

orbits that constitute the region. In Section V, we briefly

describe other isochronous regions that appear in the system.

We conclude this paper in Section VI.

II. DYNAMICS OF PCONs WITH DELAY

In this section, we specify the dynamics of the PCONs

with delay that we consider in this paper.

A. Mirollo-Strogatz model with delay

We consider a variation of the Mirollo-Strogatz model

(Mirollo and Strogatz, 1990; Ernst et al., 1995, 1998). The

system here is a homogeneous all-to-all network consisting

of N pulse coupled oscillators with delayed excitatory

interactions. All the oscillators follow the same integrate-

and-fire dynamics. Between receiving pulses, the state of

each oscillator evolves autonomously and its dynamics is

smooth. When the i-th oscillator reaches the threshold value

xi¼ 1, its state is reset to xi¼ 0. At the same moment, the

i-th oscillator sends a pulse to all other oscillators, j 6¼ i, in

the network. The time between the moment an oscillator

sends a pulse and the moment the other oscillators receive

that pulse is the delay s � 0. When the i-th oscillator

receives m simultaneous pulses without crossing the thresh-

old value, its state variable jumps to x0i ¼ xi þ mê. If

xi þ mê � 1, that is, if the oscillator crosses the firing

threshold by receiving these pulses, then the new state

becomes x0i ¼ 0 � 1. The dynamics for each oscillator is

thus given by

_xiðtÞ ¼ FðxiðtÞÞ; (1a)

xiðtþÞ ¼ 0; if xiðtÞ ¼ 1; (1b)

and

xiðtÞ ¼ minð1; xiðt�Þ þ mêÞ; (1c)

FIG. 1. Isochronous dynamics in a non-smooth 1D map.
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if m other oscillators fired at time t� s. Here,

ê ¼ e=ðN � 1Þ, where e � 0 is the coupling strength, and F
is a positive, decreasing, function ðF > 0; F0 < 0Þ.

To simplify the description of the dynamics we define,

following Mirollo and Strogatz (1990), the phases ðhiÞNi¼1

instead of the state variables ðxiÞNi¼1. The two sets of varia-

bles are related through

xi ¼ f ðhiÞ;

where f : ½0; 1� ! ½0; 1� is a diffeomorphism fixing the end-

points, that is, f ð0Þ ¼ 0 and f ð1Þ ¼ 1. The map f is defined

through the requirement that the uncoupled dynamics of

each oscillator is given by _hi ¼ 1. This implies that

_x ¼ F xð Þ ¼ f 0 f�1 xð Þ
� �

¼ 1

f�1ð Þ0 xð Þ
;

and that f is increasing and concave down ðf 0 > 0; f 00 < 0Þ.
Following Mirollo and Strogatz (1990), we choose

F xð Þ :¼ Fb xð Þ ¼ eb � 1

b
e�bx; b > 0;

giving

f hð Þ :¼ fb hð Þ ¼ 1

b
ln 1þ eb � 1ð Þ h
� �

:

Then, in terms of the phases hi, the dynamics is given by

_hiðtÞ ¼ 1; (2a)

hiðtþÞ ¼ 0; if hiðtÞ ¼ 1; (2b)

and

hiðtÞ ¼ minf1;Hðhiðt�Þ;mêÞg; (2c)

if m other oscillators fired at time t� s. The function H is

defined by

H h; dð Þ ¼ f�1 f hð Þ þ d
� �

¼ ebd hþ ebd � 1

eb � 1
; (3)

and it gives the new phase of an oscillator with phase h after

it receives a pulse of size d, ignoring the effect of the

threshold.

Typically, one also defines the pulse response function
(PRF) Vðh; dÞ representing the change in the phase after

receiving a pulse of size d, ignoring the effect of the thresh-

old. Specifically,

V h; dð Þ ¼ H h; dð Þ � h ¼ ebd � 1ð Þ hþ ebd � 1

eb � 1
; (4)

see Fig. 2(b). Note that the function H in Eq. (3) has the

property

HðHðh; dÞ; d0Þ ¼ Hðh; dþ d0Þ:

implying

HðHðh; m êÞ; m0 êÞ ¼ Hðh; ðmþ m0Þ êÞ:

To simplify the notation, for a fixed value of ê, we write

Hðh;mêÞ ¼ HmðhÞ and Hðh; êÞ ¼ H1ðhÞ ¼ HðhÞ:

B. Description of the dynamics

In principle, to determine the dynamics of a system with

delay s for t � 0, one should know the phases hiðtÞ; i ¼
1;…;N of the oscillators for all t 2 ½�s; 0�. This information

can be encoded in the phase history function

h : �s; 0½ � ! T
n : t 7! ðh1ðtÞ;…; hNðtÞÞ:

In the particular system studied here, this description

can be further simplified since it is not all the information

about the phases in ½�s; 0� that is necessary to determine the

future dynamics. Instead, it is enough to know the phases

FIG. 2. (a) The function fbðhÞ for b¼ 3. (b) The function Vðh;mêÞ for b¼ 3,

ê ¼ 0:1, and m¼ 1, 2, 3.
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hið0Þ; i ¼ 1;…;N at t¼ 0 and the firing moments of each

oscillator in ½�s; 0�, that is, the moments when each oscilla-

tor reaches the threshold value.

We denote by �rðjÞi the j-th firing moment of the i-th
oscillator in ½�s; 0� and by Ri ¼ frðjÞi g the set of all such fir-

ing moments. Note that our ordering is

� � � < �rð3Þi < �rð2Þi < �rð1Þi � 0:

To simplify the notation we also write ri ¼ rð1Þi in the case

that Ri contains exactly one element. We refer to rðjÞi as the

firing time distance (FTD) and ri the last firing time distance
(LFTD).

Remark II.1. It is shown in Ashwin and Timme (2005)

that for sufficiently small values of e and s, the size of the set

R ¼ [N
i¼1Ri is bound for all t � 0. The parameter region of

interest in the present paper is not covered by the explicit

estimates given in Ashwin and Timme (2005). Nevertheless,

for the specific orbits in the isochronous regions, we consider

that the size of R remains bound for all t � 0.

The dynamics of the system for t � 0 can then be deter-

mined from the FTD in ½�s; 0� and the phases at t¼ 0, i.e.,

from the set

U ¼ ffrðjÞi gj; higi¼1;…;N:

When U is a finite set, we can ask whether a neighborhood is

a finite or infinite dimensional set. Broer et al. (2008b) show

that, by choosing an appropriate metric on the space of phase

history functions, a neighborhood of U is finite dimensional.

Nevertheless, this local dimension is not constant and is not

bound throughout the state space.

To describe high-dimensional dynamics, it is convenient

to introduce a Poincar�e surface of section. Here, we choose

the surface hN ¼ 0, see also Ashwin and Timme, 2005;

Broer et al., 2008b. Given a state U with hN ¼ 0, the time

evolution of the system produces a new state U0 when hN

becomes 0 again. This defines the Poincar�e map l : U! U0.
We call the sequence of points ljðUÞ ¼ lðlj�1ðUÞÞ; j ¼ 1;
2;…, the Poincar�e orbit with initial state l0ðUÞ ¼ U. We

also define a related concept.

Definition II.2 (Phase orbit). Consider a Poincar�e orbit

fljðUÞgj¼0;1;2;… and let prh denote the projection

U ¼ ffrðjÞi gj; higi¼1;…;N 7!fhigi¼1;…;N�1:

Then, the phase orbit of U is the sequence prhðljðUÞÞ;
j ¼ 0; 1; 2;….

Remark II.3. Note that the phase orbit gives only a pro-

jection of the dynamics to the space of N � 1 phase variables

ðh1;…; hN�1Þ. Since the full dynamics further depends on

the firing moments in the time interval ½�s; 0�, we cannot

define a map T
N�1 ! T

N�1
that depends only on the phases

ðh1;…; hN�1Þ and fully encodes the dynamics.

A Poincar�e orbit fljðUÞgj¼0;1;2;… for which ljþTPðUÞ
¼ ljðUÞ for all j � 0 is called periodic with Poincar�e period

TP. Note that TP is not necessarily the minimal period. By

construction, a periodic Poincar�e orbit corresponds to a peri-

odic orbit in the full state space for the dynamics with

continuous time t � 0. In particular, let UðtÞ be the state

at time t � 0 corresponding to a periodic Poincar�e orbit.

Then, there is a time T, corresponding to TP, such that Uðtþ
TÞ ¼ UðtÞ for all t � 0. We call T the orbit period.

III. ISOCHRONOUS DYNAMICS

In this paper, we consider a pulse coupled oscillator

network with N¼ 3 oscillators. We show that there is an

open region in the parameter space ðe; sÞ with families of

periodic orbits exhibiting intriguing dynamical behavior. In

particular, the periodic orbits are not isolated, but for each

ðe; sÞ, they fill up a n � 2-dimensional subset in state space,

or equivalently, a n � 1-dimensional subset on the Poincar�e
surface of section.

A. Numerical experiments

We first report the results of numerical experiments for

a pulse coupled 3-oscillator network with delay with param-

eters ðe; sÞ. Specifically, we numerically compute the orbits

of the system starting from a specific class of initial states

U on the Poincar�e surface of section h3 ¼ 0. These states

are defined by scanning the ðh1; h2Þ-space T
2 and setting

h3 ¼ 0. As we earlier mentioned, this information is not suf-

ficient for determining the dynamics of the system, and we

also need to know the firing time distances. In this computa-

tion, for the oscillators 1 and 2, we set

Ri ¼ frðjÞi g ¼
fhig; if hi � s

;; if hi > s:

(
(5)

Note that this choice of initial states does not exhaustively

cover the phase space due to the restrictions imposed on the

FTDs. In particular, we could have also considered initial

states with more firing moments in ½�s; 0�, but our choice is

the simplest natural choice which sufficiently reduces the

computational time so as to make the computation feasible

while allowing us to study the system for different parameter

values.

We numerically find that all such orbits are eventually
periodic. There is a time T0 such that for t � T0, it holds that

Uðtþ TÞ ¼ UðtÞ, where T> 0 is the eventual orbit period. In

other words, each initial state converges in a finite time to a

periodic attractor with period T.

In Fig. 3, we show for ðe; sÞ ¼ ð0:58; 0:58Þ, the projec-

tion of the periodic attractors to the ðh1; h2Þ-space, that is,

we show the phase orbits corresponding to the periodic

attractors. The figure shows the existence of periodic orbits

with Poincar�e periods TP 2 f3; 4; 5g. Note that we did not

find any attractors with Poincar�e periods TP¼ 2 or TP � 6 in

this computation. Most importantly, we observe that for

ðe; sÞ ¼ ð0:58; 0:58Þ, the attractors with Poincar�e periods

TP 2 f3; 4; 5g are not isolated. Projections of periodic attrac-

tors with TP¼ 3 appear to fill one-dimensional sets in the

ðh1; h2Þ-space. Projections of periodic attractors with TP¼ 4

or TP¼ 5 appear to fill one- and two-dimensional sets. In

what follows, we analytically study the periodic orbits that

we numerically observed. We aim to prove that their
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projections to the ðh1; h2Þ-plane fill one- and two-parameter

sets and to describe the appearance of these orbits and their

properties.

B. Definitions

To give a systematic description, we classify the peri-

odic orbits into equivalence classes. First, we introduce some

notations. Let O be a periodic orbit with period T> 0, and

the j-th pulse received by the i-th oscillator in the time inter-

val ½0; TÞ is denoted by Pi;j. The multiplicity of the pulse Pi;j

is denoted by nðPi;jÞ, that is, how many simultaneous pulses

correspond to Pi;j.

Definition III.1. Two periodic orbits O and O0 are pulse
equivalent; if they have the same periods T ¼ T0 > 0, the

sets fPi;jg and fP0i;jg have the same cardinalities and

nðPi;jÞ ¼ nðP0i;jÞ for all i, j.
We now define an isochronous region. For this, we show

that not only the orbit periods in an isochronous region are

the same but also the stronger condition that the orbits are

pulse equivalent.

Definition III.2. A subset B of the state space is an iso-
chronous region of period T (or Poincar�e period TP) if

(a) all orbits starting in B are pulse equivalent with period

T (or Poincar�e period TP),

(b) each orbit starting in B remains within B, and

(c) there is a homeomorphism S between the space of

orbits in B and an open, connected, subset X of

Rk; k � 1.

Remark III.3. B is required to be invariant under the

Rþ action induced by the dynamics. This allows us to define

the space of orbits B=Rþ obtained by reducing B with

respect to the Rþ action. Note that the requirement that

B=Rþ is connected does not imply that B is also connected

since each periodic orbit in B may be disconnected. The

requirement that dimB=Rþ � 1 implies that isolated peri-

odic orbits are excluded.

With these definitions in place, we now turn to the

detailed description of one of the isochronous regions that

we numerically identified in Section III.

IV. THE ISOCHRONOUS REGION IR4

In this section, we select one of the numerically

observed isochronous regions, describe its periodic orbits,

and discuss its existence. In Section IV C, we consider the

dynamical stability of the periodic orbits. Specifically, we

focus on the orbits with TP¼ 4 appearing in the lower right

corner of Fig. 3(b). We denote the corresponding isochro-

nous region by IR4.

A. Description

We have verified, analytically and numerically, that all

periodic orbits represented by these points can be parameter-

ized by the firing time distances (FTD) ðr1; r2; r3Þ of the

three oscillators. We first prove the following slightly more

general result which is also useful for determining the stabil-

ity of the periodic orbits, see Section IV C.

Proposition IV.1 (Dynamics). Consider the initial state
of the pulse coupled 3-oscillator network on the Poincar�e
surface of section h3 ¼ 0, determined by the phases
ðh1; h2; 0Þ, and the firing time distances ðfr1g; fr2g; fr3gÞ
satisfying:

(a) 0 < r2 < r1 < r3 < s,

(b) H� < h1 þ s� r3 < 1,

(c) H� < Hðh2 þ s� r3Þ � r1 þ r3 < 1,

(d) H� < Hðs� r1Þ � r2 þ r1 < 1, and

(e) Hðr3 � r2Þ < 1.

Then, the dynamics of the system induces the Poincar�e map

G : ðr1; r2; r3; h1; h2Þ
7!ðr3 � r2; r1 � r2; s� r2; Hðr3 � r2Þ; r1 � r2Þ: (6)

Proof. We use the event sequence representation of the

dynamics (see Broer et al., 2008b). In particular, we denote

by ½P; ði1;…; ikÞ; t� a pulse that will be received by the

oscillators i1;…; ik after time t. We denote by ½F; i; t� the

event corresponding to the oscillator i firing after time t,
further implying that hi ¼ 1� t. The initial condition given

by phases ðh1; h2; 0Þ and firing time distances ðfr1g; fr2g;
fr3gÞ corresponds to the event sequence

(a) (b) (c)

FIG. 3. The periodic points of the PCONs of the 3-oscillator system under the simulation with parameters e ¼ s ¼ 0:58. We choose ðh1ð0Þ; h2ð0ÞÞ from ½0; 1Þ2
with a step of 10�3 in each direction. Except for the periodic orbits with period TP 2 f2; 3; 4g, the numerical computation also reveals the existence of the fixed

point ðh1; h2Þ ¼ ð0; 0Þ. (a) Projection of period-3 orbits; (b) projection of period-4 orbits; and (c) projection of period-5 orbits.
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P; ð1; 2Þ; s� r3½ �; P; ð2; 3Þ; s� r1½ �; P; ð1; 3Þ; s� r2½ �;
P; ð1; 2Þ; s½ �; F; 1; 1� h1½ �; F; 2; 1� h2½ �; F; 3; 1½ �:

Note that we write pulse events separately from fire events,

keeping the time ordering in each of the subsets. In particu-

lar, this implies that 0 < r2 < r1 < r3 < s and that

0 < h2 < h1 < 1.

The inequality h1 þ s� r3 < 1 implies that the first

pulse event will be processed first. Then, the next event

sequences will be

!1 P; ð1; 2Þ; 0½ �; P; ð2; 3Þ; r3 � r1½ �; P; ð1; 3Þ; r3 � r2½ �;
P; ð1; 2Þ; r3½ �; F; 1; 1� h1 � sþ r3½ �;
F; 2; 1� h2 � sþ r3½ �; F; 3; 1� sþ r3½ �

!2 P; ð2; 3Þ; r3 � r1½ �; P; ð1; 3Þ; r3 � r2½ �; P; ð1; 2Þ; r3½ �;
F; 1; 0½ �; F; 2; 1� Hðh2 þ s� r3Þ½ �; F; 3; 1� sþ r3½ �:

Here, we used the assumptions that h1 þ s� r3 > H� and

h2 þ s� r3 < H�. The next event sequence is

!3 P; ð2; 3Þ; r3 � r1½ �; P; ð1; 3Þ; r3 � r2½ �;
P; ð1; 2Þ; r3½ �; P; ð2; 3Þ; s½ �; F; 2; 1� Hðh2 þ s� r3Þ½ �;
F; 3; 1� sþ r3½ �; F; 1; 1½ �

!4 P; ð2; 3Þ; 0½ �; P; ð1; 3Þ; r1 � r2½ �; P; ð1; 2Þ; r1½ �;
P; ð2; 3Þ; sþ r1 � r3½ �;
F; 2; 1� Hðh2 þ s� r3Þ þ r1 � r3½ �;
F; 3; 1� sþ r1½ �; F; 1; 1þ r1 � r3½ �

!5 P; ð1; 3Þ; r1 � r2½ �; P; ð1; 2Þ; r1½ �;
P; ð2; 3Þ; sþ r1 � r3½ �; F; 2; 0½ �;
F; 3; 1� Hðs� r1Þ½ �; F; 1; 1þ r1 � r3½ �

!6 P; ð1; 3Þ; r1 � r2½ �; P; ð1; 2Þ; r1½ �;
P; ð2; 3Þ; sþ r1 � r3½ �; P; ð1; 3Þ; s½ �;
F; 3; 1� Hðs� r1Þ½ �; F; 1; 1þ r1 � r3½ �; F; 2; 1½ �:

The inequality Hðh2 þ s� r3Þ � r1 þ r3 < 1 implies again

that the first pulse event was processed first and then Hðh2 þ
s� r3Þ � r1 þ r3 > H� that oscillator 2 fires. Moreover, the

assumption s� r1 < H� ensures that oscillator 3 does not

fire. The next event sequence is

!7 P; ð1; 3Þ; 0½ �; P; ð1; 2Þ; r2½ �; P; ð2; 3Þ; sþ r2 � r3½ �;
P; ð1; 3Þ; sþ r2 � r1½ �;
F; 3; 1� Hðs� r1Þ þ r2 � r1½ �;
F; 1; 1þ r2 � r3½ �; F; 2; 1þ r2 � r1½ �

!8 P; ð1; 2Þ; r2½ �; P; ð2; 3Þ; sþ r2 � r3½ �;
P; ð1; 3Þ; sþ r2 � r1½ �; F; 3; 0½ �;
F; 1; 1� Hðr3 � r2Þ½ �; F; 2; 1þ r2 � r1½ �:

Here, by the assumptions H� < Hðs� r1Þ � r2 þ r1 < 1

and Hðr3 � r2Þ þ r2 < 1, we have

!9 P; ð1; 2Þ; r2½ �; P; ð2; 3Þ; sþ r2 � r3½ �;
P; ð1; 3Þ; sþ r2 � r1½ �; P; ð1; 2Þ; s½ �;
F; 1; 1� Hðr3 � r2Þ½ �; F; 2; 1þ r2 � r1½ �; F; 3; 1½ �;

thus proving the statement. �

Let Xe;s be the subset of the ðr1; r2; r3Þ-space defined

by the relations

0 < r2 < r1 < r3 < s;

H� � Fkðr; sÞ � 1; k ¼ 1; 2; 3; 4; (7a)

where

F1ðr; sÞ :¼ Hðr1Þ þ s� r3;

F2ðr; sÞ :¼ Hðs� r3 þ r2Þ þ r3 � r1;

F3ðr; sÞ :¼ Hðs� r1Þ þ r1 � r2;

F4ðr; sÞ :¼ Hðr3 � r2Þ þ r2; (7b)

and

H� ¼ H�1
1 1ð Þ ¼ eb � ebê

eb � 1ð Þebê
:

Moreover, we define the map

S : ðr1; r2; r3Þ 7! ðh1; h2; h3; fr1g; fr2g; fr3gÞ
¼ ðHðr1Þ; r2; 0; fr1g; fr2g; fr3gÞ; (8)

from Xe;s to the space of initial conditions of the PCON.

Then, we prove the following statement.

Proposition IV.2. Consider the initial state of the pulse
coupled 3-oscillator network on the Poincar�e surface of sec-
tion h3 ¼ 0, given by SðrÞ for r 2 Xe;s. Then, the map

g : ðr1; r2; r3 Þ 7! ð r3 � r2; r1 � r2; s� r2 Þ (9)

has the following properties:

(a) gðXe;sÞ ¼ Xe;s. and

(b) GðSðrÞÞ ¼ SðgðrÞÞ for all r 2 Xe;s, where G is the

Poincar�e map (6).

Proof. First, one easily checks that if r 2 Xe;s, then

gðrÞ 2 Xe;s and vice versa. Then, note that if r 2 Xe;s, then

SðrÞ satisfies the conditions of Proposition IV.1. This

implies

GðSðrÞÞ ¼ ðr3 � r2; r1 � r2; s� r2; Hðr3 � r2Þ; r1 � r2Þ
¼ SðgðrÞÞ:

�

Proposition IV.2 shows that S intertwines the map g on

Xe;s with the Poincar�e map G. We then have the following

description of the dynamics in Xe;s.

Proposition IV.3. The map g on Xe;s has period 4, that is,
g4ðrÞ ¼ r for all r 2 Xe;s. The point r� :¼ ðs=2; s=4; 3s=4Þ
2 Xe;s is a fixed point of g, and points r 2 Xe;s along the line
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parameterized by r ¼ r� þ tð0; 1; 1Þ; t 2 R, are period-2
points of g.

Proof. The proof of the statement is a straightforward

computation. Nevertheless, it is more enlightening to pro-

ceed in a different way. Let

r ¼ r� þ s;

where s ¼ ðs1; s2; s3Þ. In terms of s, g becomes the linear map

gðsÞ ¼ Ls;

where

L ¼
0 �1 1

1 �1 0

0 �1 0

0
@

1
A:

Clearly, s ¼ 0 is the only fixed point of L. One checks that L2

acts as the rotation by p about the line s ¼ tð0; 1; 1Þ; t 2 R.

Therefore, L2 leaves this line invariant, and L4 is the identity. �

Remark IV.4. Proposition IV.2 implies that the

Poincar�e map G has Poincar�e period TP¼ 4 for each

SðrÞ; r 2 Xe;s. The evolution of the phases of the 3 oscilla-

tors for such orbits is depicted in Fig. 4(a), and the detailed

dynamics is given in Table I. The set Xe;s also gives rise to

periodic orbits with a smaller minimal orbit period than

T ¼ 3s. In particular, there is a line in Xe;s given by

ðr1; r2; r3Þ ¼ ðs=2; r2; s=2þ r2Þ for which all points give

rise to period T ¼ 3s=2 orbits (TP¼ 2), see Fig. 4(b). One

point along this line, having r2 ¼ s=4, gives rise to a period

T ¼ 3s=4 orbit (TP¼ 1), see Fig. 4(c).

B. Existence

Let ~Xe;s ¼ SðXe;sÞ be the embedding of Xe;s in the

ðh; rÞ-space. Moreover, let Ae;s ¼ prhð~Xe;sÞ, where prh :
R6 ! R2 is the projection to the ðh1; h2Þ-plane. The set Ae;s

is depicted in Fig. 5(a) for ðe; sÞ ¼ ð0:58; 0:58Þ. One can see

that Xe;s and Ae;s have non-empty interior for ðe; sÞ ¼
ð0:58; 0:58Þ and that each point in ~Xe;s is the initial condition

of a periodic orbit in IR4 in Table I with period T ¼ 3s and

Poincar�e period TP¼ 4. Therefore, ~Xe;s is a periodic plateau.

Proposition IV.5. The isochronous region IR4 in Table I

exists in the subset of the parameter space ðe; sÞ given by

H� � H
s
2

� �
þ s

4
� 1; (10)

see Fig. 5(c).

FIG. 4. Evolution of the phases of the 3 oscillators for different orbits in the

isochronous region IR4. The shaded region represents one period of the

generic orbit, that is, T ¼ 3s; dashed vertical lines represent the phase jumps

induced by the reception of pulses. From top to bottom: (a) Generic orbit,

T ¼ 3s and TP¼ 4; (b) r ¼ ðs=2;r2; s=2þ r2Þ; r2 6¼ s=4, giving T ¼ 3s=2

and TP¼ 2; and (c) r ¼ r� ¼ ðs=2; s=4; 3s=4Þ, giving T ¼ 3s=4 and TP¼ 1.

TABLE I. Dynamics for a periodic orbit in the isochronous region IR4. The periodic orbits in this isochronous region have Poincar�e period TP¼ 4 and period

T ¼ 3s in the full phase space. In the time interval ð�s; 0Þ, the only useful information is the firing moments, and so, we use “�” in the table to represent the

“useless” information and “F” to represent an oscillator fired at the given moment.

Time O1½fr1g; h1] O2½fr2g; h2] O3½fr3g; h3]

�r3 ½�;�� ½�;�� ½�;F�
�r1 ½�;F� ½�;�� ½�;��
�r2 ½�;�� ½�;F� ½�;��
0 ½r1;Hðr1Þ� ½r2; r2� ½r3; 0�
s� r3 ½s� r3 þ r1; 0� ½s� r3 þ r2;Hðs� r3 þ r2Þ� ½s� r3; s� r3�
s� r1 ½r3 � r1;r3 � r1� ½s� r1 þ r2; 0� ½s� r1;Hðs� r1Þ�
s� r2 ½r3 � r2;Hðr3 � r2Þ� ½r1 � r2; r1 � r2� ½s� r2; 0�
T ½r3; 0� ½r1;Hðr1Þ� ½r2;r2�
2s� r3 ½s� r3; s� r3� ½s� r3 þ r1; 0� ½s� r3 þ r2;Hðs� r3 þ r2Þ�
2s� r1 ½s� r1;Hðs� r1Þ� ½r3 � r1; r3 � r1� ½s� r1 þ r2; 0�
2s� r2 ½s� r2; 0� ½r3 � r2;Hðr3 � r2Þ� ½r1 � r2;r1 � r2�
2s ½r2;r2� ½r3; 0� ½r1;Hðr1Þ�
3s� r3 ½s� r3 þ r2;Hðs� r3 þ r2Þ� ½s� r3; s� r3� ½s� r3 þ r1; 0�
3s� r1 ½s� r1 þ r2; 0� ½s� r1;Hðs� r1Þ� ½r3 � r1;r3 � r1�
3s� r2 ½r1 � r2;r1 � r2� ½s� r2; 0� ½r3 � r2;Hðr3 � r2Þ�
3s ½r1;Hðr1Þ� ½r2; r2� ½r3; 0�
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Proof. Note that

1

4

X4

k¼1

Fk r; sð Þ ¼ H
s
2

� �
þ s

4
:

This implies that Eq. (10) is a necessary condition for

Eq. (7a) to hold. We show that if Eq. (10) holds, then Xe;s

contains a non-empty open subset. Consider the point

r� ¼
s
2
;
s
4
;
3s
4

� �
:

Then, r� 2 Xe;s if and only if Eq. (10) holds since in this

case, we have Fkðr�; sÞ ¼ Hðs=2Þ þ s=4, for k ¼ 1;…; 4.

Therefore, when Eq. (10) holds, Xe;s 6¼ ;. Moreover, when

the strict form of Eq. (10) holds, there is an open neighbor-

hood U of Ds in r-space such that U 	 Xe;s. �

Fig. 5(d) shows the volume of Xe;s for ðe; sÞ 2 ½0; 1�2. The

volume is computed using the Mathematica function Volume.

Remark IV.6. If H s
2

� �
þ s

4
¼ H� or H s

2

� �
þ s

4
¼ 1, the

inequalities (7a) are satisfied only by the point r�. Fig. 6

shows the phases for an orbit starting from the point r� when

ðe; sÞ moves outside the region of existence of IR4. In that

FIG. 5. Sets Ae;s and Xe;s for IR4. (a)

Ae;s; cf. Fig. 3, for ðe; sÞ ¼ ð0:58; 0:58Þ.
(b) Xe;s for ðe; sÞ ¼ ð0:58; 0:58Þ. (c)

The shaded region represents the subset

of parameter space ðe; sÞ, given by Eq.

(10), for which X�;s is non-empty. (d)

Volume of Xe;s.

FIG. 6. Evolution of the phases of the 3 oscillators with r ¼ r� ¼ ðs=2; s=4; 3s=4Þ outside the region.
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case, the dynamics converges in a short time to a stable peri-

odic orbit with TP¼ 1.

Fig. 7(a) compares the analytically obtained Ae;s for

ðe; sÞ ¼ ð0:58; 0:58Þ with the numerical results discussed in

Section III A. We note that the numerically obtained orbits

cover only part of Ae;s. This can be explained by the fact

that the space of initial conditions that we scanned in our

numerical experiments does not include the periodic orbits

in IR4. Some of the orbits in IR4 are periodic attractors

for our numerical initial conditions, but others are not

accessible. This effect is much more pronounced for

ðe; sÞ ¼ ð0:45; 0:45Þ, as is shown in Fig. 7(b). In this case,

our initial numerical experiments did not reveal the exis-

tence of any orbits in IR4. Nevertheless, in this case, Xe;s is

non-empty and subsequent numerical experiments with

different initial conditions allowed us to numerically find

orbits in IR4.

C. Stability

In this section, we consider the stability of the periodic

orbits in IR4. We show that, for r 2 Xe;s, small changes in h

lead to the same periodic orbit, while small changes in r

lead to a nearby periodic orbit in the same pulse equivalence

class. In particular, we have the following result.

Proposition IV.7. Let ðh; rÞ ¼ SðrÞ; r 2 Xe;s, and the
corresponding periodic orbit in IR4 is denoted by YðrÞ. Then,
for sufficiently small values of Dh and Dr, the orbit with ini-
tial condition ðhþ Dh; rþ DrÞ converges in one iteration of
the Poincar�e map to the periodic orbit Yðrþ DrÞ.

Proof. This statement is a straightforward consequence

of Proposition IV.1. Since Xe;s is open in R3, given r 2 Xe;s,

there is an open neighborhood U � r with U 
 Xe;s.

Therefore, for small enough Dr, we have rþ Dr 2 Xe;s.

Therefore, ðh0; rþ DrÞ ¼ Sðrþ DrÞ satisfies the conditions

of Proposition IV.1. This implies that for sufficiently

small Dh, we have that ðh0 þ Dh0; rþ DrÞ also satisfies the

conditions of Proposition IV.1, showing convergence to

Yðrþ DrÞ. Finally, we note that Dh0 can be made suffi-

ciently small by making Dh sufficiently small because of the

continuity of the map S. �

V. OTHER ISOCHRONOUS REGIONS

The isochronous region IR4 is not the only such region

that appears in the system under consideration here. Here,

we briefly report on two other such regions.

A. The isochronous region IR3

The isochronous region IR3 consists of periodic orbits

with Poincar�e period TP¼ 3. For orbits in IR3, two of the

oscillators have the same phase. This implies that the projec-

tion of orbits in IR3 to the ðh1; h2Þ-plane lies either on one of

the axes or along the diagonal. Let Xe;s be the subset of the

ðr1; r3Þ-space defined by the relations

0 < r1 < r3 < s;

H� � Fkðr; sÞ � 1; k ¼ 1; 2; 3;

H�� � Fkðr; sÞ � 1; k ¼ 4; 5; 6; (11a)

where

F1ðr; sÞ :¼ Hðr2Þ þ s� r;

F2ðr; sÞ :¼ Hðs� r3Þ þ r3 � r2;

F3ðr; sÞ :¼ Hðr3 � r2Þ þ r2;

F4ðr; sÞ :¼ r3;

F5ðr; sÞ :¼ s� r2;

F6ðr; sÞ :¼ sþ r2 � r3; (11b)

and

H�� ¼ H�1
2 1ð Þ ¼ eb � e2bê

eb � 1ð Þe2bê
:

FIG. 7. Comparison between the analytically obtained Ae;s and the numeri-

cally computed orbits in IR4 in our initial numerical computations. (a)

ðe; sÞ ¼ ð0:58; 0:58Þ. (b) ðe; sÞ ¼ ð0:45; 0:45Þ.
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Then, we consider in state space the set SðXe;sÞ, where S is

given by

S : ðr1; r3Þ 7! ðh1; h2; h3; fr1g; fr2g; fr3gÞ
¼ ðr1; r1; 0; fr1g; fr1g; fr3gÞ: (12)

The region Xe;s and the projection Ae;s of SðXe;sÞ on the

ðh1; h2Þ-plane are shown in Fig. 8.

Using similar arguments as in the analysis of IR4, we

find that the point

r� ¼ r1; r3ð Þ ¼
s
3
;
2s
3

� �
;

gives a periodic orbit with Poincar�e period TP¼ 1. Its phase

evolution is shown in Fig. 9. Moreover, we find that this

occurs for

H� � H
s
3

� �
þ s

3
� 1; (13)

thus giving the subset of the parameter space ðe; sÞ for which

IR3 exists, see Fig. 10(a).

FIG. 9. Phase evolution for the period 1 point in IR3. Note that oscillators 1

and 2 are synchronized, that is, h1 ¼ h2.

FIG. 8. The sets Xe;s and Ae;s for IR3 and parameter values ðe; sÞ
¼ ð0:58; 0:58Þ. (a) Xe;s. (b) Ae;s.

FIG. 10. Subsets of the parameter space ðe; sÞ for which the network has iso-

chronous regions IR3 and IR5. (a) Parameter region for IR3. (b) Parameter

region for IR5.
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B. The isochronous region IR5

For the isochronous region IR5, corresponding to peri-

odic orbits with Poincar�e period TP¼ 5, we consider the sub-

set Xe;s of the ðr1; r
ð1Þ
2 ; rð2Þ2 ; r3Þ-space defined by the

relations

0 < rð1Þ2 < r1 < r3 < rð2Þ2 < s;

H� � Fkðr; sÞ � 1; k ¼ 1; 2; 3; 4; 5; (14a)

where

F1ðr; sÞ :¼ Hðrð1Þ2 Þ þ s� r3;

F2ðr; sÞ :¼ Hðs� rð2Þ2 Þ þ rð2Þ2 � r1;

F3ðr; sÞ :¼ Hðrð2Þ2 � r3Þ þ r3 � rð1Þ2 ;

F4ðr; sÞ :¼ Hðr3 � r1Þ þ r1;

F5ðr; sÞ :¼ Hðr1 � rð1Þ2 Þ þ rð1Þ2 þ s� rð2Þ2 : (14b)

Then, the set of initial states comprising IR5 is SðXe;sÞ,
where S is given by

S : ðr1; r
ð1Þ
2 ; rð2Þ2 ; r3Þ

7!ðh1; h2; h3; fr1g; frð1Þ2 ; rð2Þ2 g; fr3gÞ
¼ ðHðr1 � rð1Þ2 Þ þ rð1Þ2 ;Hðrð1Þ2 Þ; 0;

fr1g; frð1Þ2 ; rð2Þ2 g; fr3gÞ:

The projection of SðXe;sÞ on the ðh1; h2Þ-plane is shown in

Fig. 11(a).

Using similar arguments as in the analysis of IR4, we

find that the point

r� ¼ r1; r
1ð Þ

2 ; r 2ð Þ
2 ; r3

� �
¼ 2s

5
;
s
5
;
4s
5
;
3s
5

� �
:

gives a periodic orbit with Poincar�e period TP¼ 1. Its phase

evolution is shown in Fig. 12. Moreover, we find that this

occurs for

H� � H
s
5

� �
þ 2s

5
� 1; (15)

thus giving the subset of the parameter space ðe; sÞ for which

IR5 exists, see Fig. 10(b).

VI. CONCLUSIONS

We have reported the existence of non-trivial isochro-

nous dynamics in pulse coupled oscillator networks with

delay. In particular, we have presented numerical evidence

for the existence of such isochronous regions and we have

proved their existence for a subset of the parameter space

ðe; sÞ with non-empty interior. Moreover, we have described

in detail the dynamics and stability of orbits in one of the iso-

chronous regions that we call IR4.

The appearance of isochronous regions in pulse coupled

oscillator networks with delays demonstrates the capacity of

such systems for generating non-trivial dynamics that one

would not, in general, expect for smooth dynamical systems.

Of particular interest here is that isochronous dynamics

coexists with attracting isolated fixed points and periodic

orbits. This may be of interest for applications using hetero-

clinic connections between saddle periodic orbits as repre-

sentations of computational tasks (Ashwin and Borresen,

2004, 2005 and Schittler Neves and Timme, 2012).

Several questions regarding isochronous regions in pulse

coupled oscillator networks with delay remain open. The

main questions going forward are whether such dynamics

exist for larger numbers of oscillators and whether suchFIG. 12. Phase dynamics for the period 1 point in IR5.

FIG. 11. The set Ae;s (the projection of SðXe;sÞ onto the ðh1; h2Þ-plane) for

IR5 and comparison with the numerically computed period-5 orbits. For

comparison, we have drawn Ae;s and its reflection with respect to the diago-

nal corresponding to the interchange of oscillators 1 and 2. (a) Ae;s: (b)

Comparison with numerically computed period-5 orbits.
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dynamics persists in networks with non-identical oscillators

or different network structures.
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