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Abstract: The notion of fractional monodromy was introduced by Nekhoroshev,
Sadovskií and Zhilinskií as a generalization of standard (‘integer’) monodromy in the
sense of Duistermaat from torus bundles to singular torus fibrations. In the present paper
we prove a general result that allows one to compute fractional monodromy in various
integrable Hamiltonian systems. In particular, we show that the non-triviality of frac-
tional monodromy in 2 degrees of freedom systems with a Hamiltonian circle action is
related only to the fixed points of the circle action. Our approach is based on the study
of a specific notion of parallel transport along Seifert manifolds.

1. Introduction

A fundamental notion in classical mechanics is the notion of Liouville integrability. A
Hamiltonian system

ẋ = X H , ω(X H , ·) = −d H,

on the 2n-dimensional symplectic manifold (M, ω) is called Liouville integrable if there
exist almost everywhere independent functions F1 = H, . . . , Fn such that all Poisson
brackets vanish:

{Fi , Fj } = ω(X Fi , X Fj ) = 0.

Various Hamiltonian systems, such as the Kepler and two-centers problem, the problem
of n ≤ 3 point vortices, Euler, Lagrange and Kovalevskaya tops, are integrable in this
sense.

The topological significance of Liouville integrability reveals itself in the Arnol’d–
Liouville theorem [1]. Assume that the integral map

F = (F1, . . . , Fn) : M → R
n
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is proper. The theorem states that a tubular neighborhood of a connected regular fiber
F−1(ξ0) is a trivial torus bundle Dn×T n admitting (semi-local)action-angle coordinates

I ∈ Dn and ϕ mod 2π ∈ T n, ω = d I ∧ dϕ.

In particular, F is a singular torus fibration and on each torus {ξ} × T n the motion is
quasi-periodic.

The question whether and when the action-angle coordinates exist globally was an-
swered in [12,26]. It turns out [26] that global action-angle coordinates exist if the set
R ⊂ image(F) of regular values of F is such that

π1(R, ξ0) = 0 and H2(R,R) = 0.

Obstructions that give necessary and sufficient conditions for the existence of global
action-angle coordinates were given by Duistermaat; see [12,24]. One such obstruction
is called (standard) monodromy. It appears only if π1(R, ξ0) �= 0 and entails the non-
existence of global action coordinates.

Since the work of Duistermaat, standard monodromy has been observed in many
integrable systems of classical mechanics, as well as in integrable approximations to
molecular and atomic systems. In the typical case of n = 2 degrees of freedom non-
trivial monodromy is manifested by the presence of the so-called focus–focus points
of the integral fibration F [23,25,35]. Such a result is often referred to as geometric
monodromy theorem. It has been recently observed in [17] that the geometricmonodromy
theorem is a consequence of the following topological result.

Theorem 1 ([7, §4.3.2], [17]). Assume that n = 2 and that F : F−1(R) → R is invariant
under a free fiber-preserving S

1 action. For a simple closed curve γ ⊂ R set E =
F−1(γ ) and B = E/S1. Then the monodromy of the 2-torus bundle F : E → γ is given
by

(
1 〈e, B〉
0 1

)
∈ SL(2,Z),

where e is the Euler class of the principal circle bundle ρ : E → B.

Remark 1. The number 〈e, B〉, which is obtained by integrating the Euler class over
the base B, is called the Euler (or the Chern) number of the principal circle bundle
ρ : E → B. Theorem 1 tells us that this Euler number determines the monodromy of
the 2-torus bundle F : E → γ and vice versa.

In a neighborhood of the focus–focus fiber there exists a unique (up to orientation)
system preserving S

1 action that is free outside focus–focus points [35]. On a small
3-sphere S3

ε around a focus–focus point it defines a circle bundle with the Euler number
〈e, S3

ε 〉 = 1, the so-called anti-Hopf fibration. It follows from Stokes’ theorem that for
a small loop γ around the focus–focus critical value the Euler number 〈e, B〉 equals the
number of focus–focus points on the singular fiber. In particular, standard monodromy
along γ is non-trivial. More details can be found in [17]; see also Sect. 2.

Even though standard monodromy is related to singularities of the torus fibration
F , it is an invariant of the regular, non-singular part F : F−1(R) → R. An invariant
that generalizes standard monodromy to singular torus fibrations is called fractional
monodromy [28]. We note that fractional monodromy is not a complete invariant of
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such fibrations—it contains less information than the marked molecule in Fomenko–
Zieschang theory [6,7,19]—but it is important for applications and appears, for instance,
in the so-called m:(−n) resonant systems [15,27,28,30,31]; see Sect. 4.1 for details.

It was observed by Bolsinov et al. [6] that in m:(−n) resonant systems the circle
action defines a Seifert fibration on a small 3-sphere around the equilibrium point and
that the Euler number of this fibration equals the number appearing in the matrix of
fractional monodromy, cf. Remark 1. The question that remained unresolved is why
this equality holds. In the present paper we give a complete answer to this question by
proving the following results.

(i) Parallel transport and, therefore, fractional monodromy can be naturally defined
for closed Seifert manifolds (with an orientable base of genus g > 0).

(ii) The fractional monodromy matrix is given by the Euler number of the associated
Seifert fibration. In the case of integrable systems, this Euler number can be computed
in terms of the fixed points of the circle action.

The latter result generalizes the results of [15,17], in particular, Theorem 1, thus
demonstrating that for standard and fractional monodromy the circle action is more
important than the precise form of the integral map F .

We note that the importance of Seifert fibrations in integrable systemswas discovered
by Fomenko and Zieschang. In their classification theorem [7,19] Seifert manifolds
play a central role: regular isoenergy surfaces of integrable nondegenerate systems with
2 degrees of freedom admit decomposition into families, each of which has a natural
structure of a Seifert fibration. In our case of a global circle action, there is only one
such family, which has a certain label associated to it, the so-called n-mark [7]. In fact,
this n-mark coincides with the Euler number that appears in Theorem 1 and is related
to the Euler number in the general case; see Remark 2. Our results therefore show how
exactly this n-mark determines fractional monodromy.

1.1. 1:(−2) resonant system. Here, as a preparation to the more general setting of
Sects. 2 and 3, we discuss the famous example of a Hamiltonian system with fractional
monodromy due to Nekhoroshev et al. [28].

Consider R4 with the standard symplectic structure ω = dq ∧ dp. Define the energy
by

H = 2q1 p1q2 + (q2
1 − p21)p2 + R2,

where R = 1
2 (q

2
1 + p21) + (q2

2 + p22), and the momentum by

J = 1

2
(q2

1 + p21) − (q2
2 + p22).

A straightforward computation shows that the functions H and J Poisson commute,
so themap F = (J, H) defines an integrable Hamiltonian system onR4. The bifurcation
diagram, that is, the set of critical values of F , is depicted in Fig. 1. Let

R = {ξ ∈ image(F) | ξ is a regular value of F}.

Since the fundamental group of the set R vanishes, there is no monodromy and, thus,
the 2-torus bundle F : F−1(R) → R admits a free fiber-preserving action of a 2-torus.
We observe that the acting torus contains a subgroup S

1 whose action extends from
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Fig. 1. The bifurcation diagram of the 1:(−2) resonant system. Critical values are colored black; the set R is
shown gray; the closed curve γ around the origin intersects the hyperbolic branch of critical values once and
transversely

F−1(R) to the whole R4. Indeed, such an action is given by the Hamiltonian flow of J .
In complex coordinates z = p1 + iq1 and w = p2 + iq2 it has the form

(t, z, w) 
→ (eit z, e−2i tw), t ∈ S
1. (1)

From above it follows that the S1 action is free on F−1(R) and, moreover, has a trivial
Euler class. However, on the whole phase space R4 the action is no longer trivial: the
origin is fixed and the punctured plane

P = {(q, p) | q1 = p1 = 0 and q2
2 + p22 �= 0}

consists of points with Z2 isotropy group. This implies that the Euler number of the
Seifert 3-manifold F−1(γ ), where γ is as in Fig. 1, equals 1/2 �= 0. Indeed, Stokes’
theorem implies that the Euler number of F−1(γ ) coincides with the Euler number of
a small 3-sphere around the origin z = w = 0. The latter Euler number equals 1/2
because of (1).

The following result shows that the non-trivial Euler number of the Seifert manifold
F−1(γ ) enters the monodromy context, giving rise to what is now known as fractional
monodromy.

Lemma 1. Let Z2 = {1,−1} denote the order two subgroup of the acting circle S
1.

The quotient space F−1(γ )/Z2 is the total space of a torus bundle over γ . Its standard

monodromy is given by

(
1 1
0 1

)
∈ SL(2,Z).
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Fig. 2. Representation of a curled torus. Take a cylinder over the figure ‘eight’, as shown in (a). Glue the upper
and lower halves of this cylinder after rotating the upper part by π . The resulting surface is a curled torus (b)

Fig. 3. The loop molecule associated to γ

Proof. Let ξ ∈ γ ∩ R. Then the fiber F−1(ξ) is a 2-torus. Since the S1 action is free on
this fiber, the quotient F−1(ξ)/Z2 is a 2-torus as well.

Consider the critical value ξcr ∈ γ. Its preimage F−1(ξcr ) is the so-called curled
torus; see Fig. 2b.

In this case there is a ‘short’ orbit b of the S1 action, formed by the fixed points of
the Z2 action. The ‘short’ orbit passes through the tip of the cycle a; see Fig. 2a. Other
orbits are ‘long’, that is, principal. From this description it follows that after taking the
Z2 quotient only half of the cylinder survives and, thus, F−1(ξcr )/Z2 is topologically a
2-torus. In view of [19], we have shown that

F : F−1(ξ)/Z2 → γ

is a torus bundle. In order to complete the proof of the theorem it is left to apply
Theorem 1. Indeed, since the Euler number of F−1(γ ) equals 1/2, the Euler number of
F−1(γ )/Z2 equals 1. �

Remark 2. Lemma 1 can be reformulated by saying that the n-mark of the loop molecule
associated to γ equals 1. The molecule has the form shown in Fig. 3. Note that the A∗
atom corresponds to the curled torus Fig. 2b. A similar statement holds for higher-order
resonances.

Remark 3. We note that the symplectic structure on an open neighborhood O of the
manifold F−1(γ ) does not descend to theZ2-quotient. Hence, the fibration F : O/Z2 →
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Fig. 4. Parallel transport along X

R
2 does not carry a natural Lagrangian structure andDuistermaat’smonodromy (parallel

transport) along γ is not defined. Instead, we use the more general Definition 1.

Cutting the manifold F−1(γ )/Z2 along any fiber F−1(ξ0)/Z2, ξ0 ∈ γ ∩ R, we get a
manifold X with the boundary ∂ X = X0 
 X1 consisting of the two tori Xi . Following
[15], we define the parallel transport using the connecting homomorphism of the long
exact sequence of the pair (X, ∂ X).

Definition 1. The cycle α1 ∈ H1(X1) is a parallel transport of the cycle α0 ∈ H1(X0)

along X if

(α0,−α1) ∈ ∂∗(H2(X, ∂ X)),

where ∂∗ is the connecting homomorphism of the exact sequence

· · · → H2 (X) → H2 (X, ∂ X)
∂∗−→ H1 (∂ X) → H1 (X) → · · ·

Remark 4. Definition 1 is applicable to an arbitrary manifold X with boundary ∂ X =
X0 
 X1. For compact 3 manifolds it may be reformulated as follows (see [21]): α1 is a
parallel transport of α0 along X if there exists an oriented 2-dimensional submanifold
S ⊂ X that ‘connects’ α0 and α1:

∂S = S0 
 S1 and [Si ] = (−1)iαi ∈ H1(Xi );
see Fig. 4. We note, however, that even for compact 3-manifolds it might happen that,
for a given homology cycle, the parallel transport is not defined or is not unique. For
manifolds F−1(γ ) and F−1(γ )/Z2 (and, more generally, for Seifert manifolds) the
parallel transport is unique; see Theorem 3.

From Lemma 1 we infer that, in a homology basis of the fiber F−1(ξ0)/Z2, the
parallel transport has the form of the monodromy matrix(

1 1
0 1

)
∈ SL(2,Z).

For the fibration F−1(γ ) → γ this manifests the presence of nontrivial fractional mon-
odromy.
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Theorem 2 ([28]). Let (a0, b0) be an integer basis of H1(F−1(ξ0)), where b is given
by any orbit of the S

1 action. The parallel transport is unique and has the form 2a0 
→
2a0 + b0 and b0 
→ b0.

Remark 5. When written formally in an integer basis (a0, b0), parallel transport has the
form of a rational matrix (

1 1/2
0 1

)
∈ SL(2,Q),

called the matrix of fractional monodromy.

Since the pioneering work [28], various proofs of Theorem 2 appeared; see [8,16,31,
32] and [15]. Our proof, which is based on the singularities of the circle action, shows
that

– the fixed point 0 ∈ R
4 of the S1 action and

– the short orbit b with Z2 isotropy

manifest the presence of fractionalmonodromy in this 1:(−2) resonant system.A similar
kind of result holds in a general setting of Seifertmanifolds; see Sect. 2, and, in particular,
in the setting of Hamiltonian systems with m:(−n) resonance; see Sect. 4.1.

1.2. The paper is organized as follows. In Sect. 2 we consider a general setting of Seifert
fibrations. We show that the parallel transport along the total space of such a fibration is
given by its Euler number and the orders of the exceptional orbits; see Theorems 3. In
the case when a Seifert fibration admits an equivariant filling, the Euler number is given
by the fixed points of the circle action inside the filling manifold; see Theorem 4.

In Sect. 3.2, after discussing the concepts of standard and (more general) fractional
monodromy in integrable Hamiltonian systems, we apply the results of Sect. 2 to frac-
tional monodromy in the 2 degrees of freedom case; see Theorems 5 and 6. These
theorems specify the subgroup of homology cycles that admit parallel transport, and
give a formula for the computation of the fractional monodromy. These results, more-
over, demonstrate that for standard and fractional monodromy the circle action is more
important than the precise form of the integral map.

Examples are investigated in Sect. 4. The proof of Theorem 3 is given in Sect. 5. We
conclude with a discussion in Sect. 6.

2. Parallel Transport along Seifert Manifolds

2.1. Seifert fibrations. In the present subsection we recall the notions of a Seifert fibra-
tion and its Euler number. For a more detailed exposition we refer to [18].

Definition 2. Let X be a compact orientable 3-manifold (closed orwith boundary)which
is invariant under an effective fixed point free S1 action. Assume that the S1 action is
free on the boundary ∂ X . Then

ρ : X → B = X/S1

is called a Seifert fibration. The manifold X is called a Seifert manifold.
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Remark 6. From the slice theorem [2, Theorem I.2.1] (see also [5]) it follows that the
quotient B = X/S1 is an orientable topological 2-manifold. Seifert fibrations are also de-
fined in a more general setting when the base B is non-orientable; see [18,22]. However,
in this case there is no S

1 action and the parallel transport is not unique; see Remark 9.
We will therefore consider the orientable case only.

Consider a Seifert fibration

ρ : X → B = X/S1

of a closed Seifert manifold X . Let N be the least common multiple of the orders of the
exceptional orbits, that is, the orders of non-trivial isotropy groups. Since X is compact,
the number N is well defined. Denote by ZN the order N subgroup of the acting circle
S
1. The subgroup ZN acts on the Seifert manifold X . We thus have the reduction map

h : X → X ′ = X/ZN and the commutative diagram

X X ′

B

h

ρ
ρ′

with ρ′ defined via ρ = ρ′ ◦ h. By the construction, ρ′ : X ′ → B is a principal circle
bundle over B. We denote its Euler number by e(X ′).
Definition 3. The Euler number of the Seifert fibration ρ : X → B = X/S1 is defined
by e(X) = e(X ′)/N .

Remark 7. We note that a closed Seifert manifold X can have non-isomorphic S1 actions
with different Euler numbers. Indeed, let m and n be co-prime integers. Consider the S1

action

(t, z, w) 
→ (eimt z, e−intw), t ∈ S
1,

on the 3-sphere S3 = {(z, w) | |z|2 + |w|2 = 1}. Then the Euler number of the fibration
ρ : S3 → S3/S1 equals 1/mn. Despite this non-uniqueness, we sometimes refer to e(X)

as the Euler number of the Seifert manifold X . This should not be a cause of confusion
since it will be always clear from the context what is the underlying S

1 action.

In the following Sect. 2.2 we show that the Euler number of a Seifert fibration is an
obstruction to the existence of a trivial parallel transport; see Definition 1.

2.2. Parallel transport. Consider a Seifert fibration ρ : X → B = X/S1 such that the
boundary ∂ X = X0 
 X1 consists of two 2-tori X0 and X1. Take an orientation and fiber
preserving homeomorphism f : X0 → X1. Any homology basis (a0, b0) of H1(X0) can
be then mapped to the homology basis

(a1 = f�(a0), b1 = f�(b0))

of H1(X1). In what follows we assume that b0 is equal to the homology class of a (any)
fiber of the Seifert fibration on X0. Let

X ( f ) = X/ ∼, X0 � x0 ∼ f (x0) ∈ X1,

be the closedSeifertmanifold that is obtained from X bygluing theboundary components
using f .

Finally, let N be the least common multiple of n j—the orders of the exceptional
orbits. With this notation we have the following result.
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Theorem 3. The parallel transport along X is unique. Only linear combinations of Na0
and b0 can be parallel transported along X and under the parallel transport

Na0 
→ Na1 + kb1
b0 
→ b1

for some integer k = k( f ) which depends only on the isotopy class of f. Moreover, the
Euler number of X ( f ) is given by e( f ) = k( f )/N .

Proof. See Sect. 5. �

Remark 8. We note that (by the construction) X ( f )/S1 has genus g > 0 and hence is
not a sphere. It follows that the S1 action on X and X ( f ) is unique up to isomorphism;
see [21, Theorem 2.3].

Remark 9. Even if the base B is non-orientable, the group ∂∗(X, ∂ X) is still isomorphic
to Z

2. However, in this case, ∂∗(X, ∂ X) is spanned by (b0, b1) and (2b0, 0). It follows
that no multiple of a0 can be parallel transported along X and that the parallel transport
is not unique.

2.3. The case of equivariant filling. Theorem 3 shows that the Euler number of a Seifert
manifold can be computed in terms of the parallel transport along this manifold. But
conversely, if we know the Euler number and the orders of exceptional orbits of a
Seifert manifold, we also know how the parallel transport acts on homology cycles. In
applications the orders of exceptional orbits are often known. In order to compute the
Euler number one may then use the following result.

Theorem 4. Let M be a compact oriented 4-manifold that admits an effective circle
action. Assume that the action is fixed-point free on the boundary ∂ M and has only
finitely many fixed points p1, . . . , p� in the interior. Then

e(∂ M) =
�∑

k=1

1

mknk
,

where (mk, nk) are isotropy weights of the fixed points pk .

Remark 10. Recall that near each fixed point pk the S1 action can be linearized as

(t, z, w) 
→
(

eimk t z, e−ink tw
)

, t ∈ S
1, (2)

in appropriate coordinates (z, w) that are positive with respect to the orientation of M .
The isotropy weights mk and nk are co-prime integers. In particular, none of them is
equal to zero.

Remark 11. In the above theorem neither M nor ∂ M are assumed to be connected. The
orientation on ∂ M is induced by M .

Proof of Theorem 4. Equation (2) implies that for each fixed point pk there exists a
small closed 4-ball Bk � pk invariant under the action. Denote by Z the manifold
Z = M\⋃�

k=1 Bk . Let N be a common multiple of the orders of all exceptional orbits
in M and ZN be the order N subgroup of the acting circle S1. Set

X = Z/ZN and Y = Z/S1.
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Denote by Pr : X → Y the natural projection that identifies the orbits of the S
1/ZN

action. By the construction the triple (X, Y,Pr) is a principal circle bundle.
Because of the slice theorem [2] the spaces X and Y are topological manifolds (with

boundaries). The boundary ∂Y is a disjoint union of the closed 2-manifold B = ∂ M/S1

and the 2-spheres S2
k = ∂ Bk/S

1. Let iB : B → Y and ik : S2
k → Y be the corresponding

inclusions.
Denote by eY ∈ H2(Y ) the Euler class of the circle bundle (X, Y,Pr). By the func-

toriality i∗B(eY ) and i∗k (eY ) are the Euler classes of the circle bundles (Pr−1(B), B,Pr)
and (Pr−1(S2

k ), S2
k ,Pr), respectively. Hence

〈eY , iB(B)〉 = 〈i∗B(eY ), B〉 = Ne(∂ M)

and analogously

〈eY , ik(S2
k )〉 = 〈i∗k eY , S2

k 〉 = N

mknk
.

The equality

〈eY , iB(B) −
�∑

k=1

ik(S2
k )〉 = 〈eY , ∂Y 〉 = 0

completes the proof. �


3. Monodromy in Integrable Systems

3.1. Historical and mathematical background. Standard monodromy was introduced
by Duistermaat in [12] as an obstruction to the existence of global action coordinates in
integrable Hamiltonian systems. Since the early work [12], non-trivial monodromy has
been observed in the (quadratic) spherical pendulum [4,9,12,14], the Lagrange top [10],
the Hamiltonian Hopf bifurcation [13], the champagne bottle [3], the coupled angular
momenta [29], the hydrogen atom in crossed fields [11], the two-centers problem [33,34]
and many other systems. A common aspect of most of these systems is the presence of
focus–focus singular points of the Lagrangian fibration. It is known that the presence of
such singular points is sufficient for the monodromy to be nontrivial in the general case
(geometric monodromy theorem) [23,25,35].

The definition of standard monodromy in the sense of Duistermaat [12] reads as fol-
lows. Consider a Lagrangian n-torus bundle F : M → R over a n-dimensional manifold
R. By definition, this means that M is a symplectic manifold and that each fiber F−1(ξ)

is a Lagrangian submanifold of M .

Remark 12. In the context of integrable systems R ⊂ R
n and F is given by n Poisson

commuting functions. Conversely, every chart (V, χ) of R gives rise to an integrable
system on F−1(V ) ⊂ M with the integral map F ◦ χ .

There is awell-defined action of the fibers of Pr : T ∗ R → R on the fibers of F : M →
R, which, in every chart (V, χ), is given by the flow of n Poisson commuting functions
F ◦ χ ; see [12,24]. For each ξ ∈ R the stabilizer of the R

n
ξ = Pr−1(ξ) action on

T n
ξ = F−1(ξ) is a lattice Zn

ξ ⊂ R
n
ξ . The union of these lattices covers the base manifold

R:

Pr :
⋃

Z
n
ξ → R.
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Definition 4. The (standard) monodromy of the Lagrangian n-torus bundle F : M → R
is defined as the representation

ρ : π1(R, ξ0) → AutZn
ξ0

� GL(n,Z)

of the fundamental group π1(R, ξ0) of the base R in the group of automorphisms of Zn
ξ0
.

For each element [γ ] ∈ π1(R, ξ0), the automorphism ρ([γ ]) is called the (standard)
monodromy along γ

Remark 13. We note that the lattices Zn
ξ give a unique local identification of cotangent

spaces of T ∗ R, that is, a flat connection. Thus, standard monodromy is given by the
parallel transport (holonomy) of this connection.

The following lemma shows that, in the case of Lagrangian torus bundles, the parallel
transport in the sense of Definition 1 coincides with the parallel transport of the flat
connection, given in Remark 13.

Lemma 2. Let γ = γ (t) be a continuous curve and

X = {(x, t) ∈ M × [0, 1] : F(x) = γ (t)}. (3)

Then (α0,−α1) ∈ ∂∗(H2(X, ∂ X)) if and only if the cycle α1 is a parallel transport of
α0 in the sense of Remark 13.

Proof. By homotopy invariance, we can assume that γ is smooth. Let (0 = t0 ≤ . . . ≤
tn = 1) be a sufficiently fine partition of the segment [0, 1]. Then, for each i , we have

γ ([ti , ti+1]) ⊂ Vi ,

where Vi is a small open neighborhood Vi ⊂ R. By the Arnol’d–Liouville theorem [1],
the two notions of parallel transport along γ |[ti ,ti+1] coincide. The result follows. �

Remark 14. Let γ be a simple curve. If γ (0) �= γ (1), then the manifold X in (3) is
homeomorphic to F−1(γ ). If γ (0) = γ (1) = ξ0, then the manifold X is obtained from
F−1(γ ) by cutting along the fiber F−1(ξ0).

Fractional monodromy was introduced in [28] as a generalization of standard mon-
odromy in the sense of Duistermaat from Lagrangian torus bundles to singular La-
grangian fibrations. Since the pioneering work [28], non-trivial fractional monodromy
has been demonstrated in several integrable Hamiltonian systems [15,20,27,31].

What has been missing until now for fractional monodromy is a result that associates
fractional monodromy to certain singular points of the Lagrangian fibration in the same
spirit as the geometric monodromy theorem associates standard monodromy to focus–
focus singular points. In the next Sect. 3.2we give such a result for fractionalmonodromy
in the case when the fibration is invariant under an effective circle action. Specifically,
we show that fractional monodromy is completely determined by the singularities of
the corresponding circle action and that, in certain cases, fractional monodromy can be
computed in terms of the fixed points of this action, just as standard monodromy [17].

The definition of fractional monodromy (in the sense of [15,28]) reads as follows.
Consider a singular Lagrangian fibration F : M → R over a n-dimensional manifold R,
given by a proper integral map F . Locally, such a fibration gives an integrable Hamilto-
nian system. Let γ = γ (t) be a continuous closed curve in F(M) such that the space

X = {(x, t) ∈ M × [0, 1] : F(x) = γ (t)}
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is connected and such that ∂ X = X0 
 X1 is a disjoint union of two regular tori X0 =
F−1(γ (0)) and X1 = F−1(γ (1)). Set

H0
1 = {α0 ∈ H1(X0) | α0 can be parallel transported along X}.

Definition 5. If the parallel transport along X defines an automorphism of the group
H0
1 , then this automorphism is called fractional monodromy along γ .

Remark 15. As was mentioned in Sect. 1.1, in the singular case the notion of parallel
transport in the sense of Remark 13 is not defined. Instead, the more general Definition 1
is used.

3.2. Applications to integrable systems. Consider a singular Lagrangian fibration
F : M → R over a 2-dimensional manifold R. Assume that the map F is proper and
invariant under an effective S1 action. Take a simple closed curve γ = γ (t) in F(M)

that satisfies the following regularity conditions:

(i) the fiber F−1(γ (0)) is regular and connected;
(ii) the S1 action is fixed-point free on the preimage E = F−1(γ );
(iii) the preimage E is a closed oriented connected submanifold of M .

Remark 16. Note that, generally speaking, F−1(γ (t)), t ∈ [0, 1], is neither smooth nor
connected.

From the regularity conditions it follows that

X = {(x, t) ∈ M × [0, 1] : F(x) = γ (t)}
is a Seifert manifold with an orientable base. This manifold can be obtained from the
Seifert manifold E = F−1(γ ) by cutting along the fiber F−1(γ (0)). We note that the
boundary ∂ X = X0 
 X1 is a disjoint union of two tori.

Let e(E) be the Euler number of E and N denote the least common multiple of
n j—the orders of the exceptional orbits. Take a basis (a, b) of the homology group
H1(X0) � Z

2, where b is given by any orbit of the S
1 action. Then the following

theorem holds.

Theorem 5. Fractional monodromy along γ is defined. Moreover, (Na, b) form a basis
of the parallel transport group H0

1 and the corresponding isomorphism has the form
b 
→ b and Na 
→ Na + kb, where k ∈ Z is given by k = Ne(E).

Proof. Follows directly from Theorem 3. �

Remark 17. Theorem 5 tells us that the orders of the exceptional orbits n j and the Euler
number e(E) completely determine fractional monodromy along γ .

Remark 18. Let i0 : X0 → X and i1 : X1 → X denote the corresponding inclusions.
Observe that, in our case, the composition

i−1
1 ◦ i0 : H1(X0,Q) → H1(X0,Q)

gives an automorphism of the first homology group H1(X0,Q). In a basis of H1(X0,Z)

the isomorphism i−1
1 ◦ i0 is written as 2 × 2 matrix with rational coefficients, called

the matrix of fractional monodromy [32]. We have thus proved that in a basis (a, b) of
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H1(M0), where b corresponds to the S
1 action, the fractional monodromy matrix has

the form (
1 e(E) = k/N
0 1

)
∈ SL(2,Q).

In certain cases we can easily compute the parameter e(E) = k/N , as is explained
in the following theorem.

Theorem 6. Assume that γ bounds a compact 2-manifold U ⊂ R such that F−1(U )

has only finitely many fixed points p1, . . . , pl of the S
1 action. Then

e(E) =
l∑

k=1

1

mknk
,

where (mk, nk) are the isotropy weights of the fixed points pk .

Proof. Follows directly from Theorem 4. �

Remark 19. For the case of standard monodromy, Theorem 6 agrees with Theorem 2.2
from [17], which considers only the case mk = 1 and nk = ±1 and which states that
the monodromy parameter is given by the sum of positive singular points (nk = 1) of
the Hamiltonian S

1 action minus the number of negative singular points (nk = −1).

Remark 20. Theorem 4, when applied to the context of Lagrangian fibrations, tells us
more than Theorem 6. Indeed, consider smooth curves γ1 and γ2 that are cobordant in
R. Theorem 4 allows to compute

e(F−1(γ1)) − e(F−1(γ2)),

which is the difference between the Euler numbers of F−1(γ1) and F−1(γ2). This
difference shows how far is fractional monodromy along γ1 from fractional monodromy
along γ2. Theorem 6 is recovered when γ1 is cobordant to zero.

Combining Theorems 5 and 6 together one can compute fractional monodromy in
various integrable Hamiltonian systems. We illustrate this in the following Sect. 4.

4. Examples

4.1. Resonant systems. In this section we consider m:(−n) resonant systems [15,27,30,
31], which are local models for integrable 2 degrees of freedom systemswith an effective
Hamiltonian S

1 action. Our approach to these systems is very general. Moreover, it
clarifies a question posed in [6, Problem 61], cf. Remark 2.

Definition 6. ConsiderR4 with the canonical symplectic structuredq∧dp.An integrable
Hamiltonian system

(R4, dq ∧ dp, F = (J, H))

is called a m:(−n) resonant system if the function J is the m:(−n) oscillator

J = m

2
(q2

1 + p21) − n

2
(q2

2 + p22).

Here m and n be relatively prime integers with m > 0.
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We note that for every m:(−n) resonant system there exists an associated effective
S
1 action that preserves the integral map F = (J, H). Indeed, the induced Hamiltonian

flow of J is periodic. In coordinates z = p1 + iq1 and w = p2 + iq2 the action has the
form

(t, z, w) 
→
(

eimt z, e−intw
)

, t ∈ S
1. (4)

Assume that the integral map F = (J, H) is proper. Let γ = (J (t), H(t)) be a
simple closed curve satisfying the assumptions (i)–(iii) from Sect. 3.2.

Remark 21. We note that, in this case, the assumptions (i)–(iii) can be reduced to the
following more easily verifiable conditions

(i’) the fiber F−1(γ (0)) is regular and connected;
(ii’) the preimage E = F−1(γ ) is connected;
(iii’) for all t the following holds: H ′(t)d J − J ′(t)d H �= 0.

Proof. Under (i)–(iii), the space E = F−1(γ ) is the boundary of the compact oriented
manifold F−1(U ), where U is the 2-disk bounded by γ . Hence, E is itself compact and
oriented. It is left to note that the S1 action is fixed-point free on E . �


Let (a, b) be a basis of the integer homology group H1(F−1(γ (0)) such that b is
given by any orbit of the S1 action. There is the following result (cf. [15]).

Theorem 7. Let U be a 2-disk in the (J, H)-plane such that ∂U = γ . Case 1: (0, 0) ∈
U. The parallel transport group is spanned by mna and b. The matrix of fractional
monodromy has the form

(
1 1/mn
0 1

)
∈ SL(2,Q).

Case 2: (0, 0) /∈ U. The parallel transport group H0
1 is spanned by Na and b, where

N ∈ {1, m, n, mn}. The matrix of fractional monodromy is trivial.

Proof. In view of Theorems 5 and 6, we only need to determine the least common
multiple N .

Case 1. In this case the fixed point q = p = 0 of the S1 action belongs to F−1(U ) ⊂
R
4.Orbits with Zm and Zn isotropy group emanate from this fixed point and necessarily

‘hit’ the boundary F−1(γ ). It follows that the least common multiple is N = mn.
Case 2. In this case the fixed point q = p = 0 of the S

1 action does not belong
to F−1(U ) ⊂ R

4. However, γ might intersect critical values of F that give rise to
exceptional orbits in E = F−1(γ ) with Zm or Zn isotropy group. It follows that the
least common multiple is N = 1, m, n or mn. �


Remark 22. If mn < 0, then the fixed point z = w = 0 of the S1 action is necessarily at
the boundary of the corresponding bifurcation diagram. Hence non-trivial monodromy
(standard or fractional) can only be found when mn > 0. Because of Theorem 7, non-
trivial standard monodromy can manifest itself only when m = n = 1.

Example 1. An example of such a 1:−1 resonant system can be obtained by considering
the Hamiltonian

H = p1q2 + p2q1 + ε(q2
1 + p21)(q

2
2 + p22).
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Fig. 5. Bifurcation diagram of a 1:(−1) system. The set of regular values is shown gray; the critical values
are colored black; the isolated critical point O = (0, 0) lifts to the singly pinched torus F−1(O)

The bifurcation diagram of the integral map F = (J, H) has the from shown in Fig. 5.
From Theorem 7 we infer that the monodromy matrix along γ has the form

(
1 1
0 1

)
∈ SL(2,Z).

Example 2. An example of a m:(−n) resonant system with non-trivial fractional mon-
odromy is the specific 1:(−2) resonant system, which has been introduced in [28]. The
system is obtained by considering the Hamiltonian

H = 2q1 p1q2 + (q2
1 − p21)p2 + εR(q, p)2,

where ε > 0 and R = R(q, p) is the 1:(2) oscillator. The bifurcation diagram of the
integral map F = (J, H) has the form shown in Fig. 1. In this case the set of regular
values is simply connected and, thus, standard monodromy is trivial. Let the curve γ be
as in Fig. 1. From Theorem 7 we infer that the parallel transport group H0

1 is spanned
by 2a and b, and that the fractional monodromy matrix has the form

(
1 1/2
0 1

)
∈ SL(2,Q).

This system is discussed in greater detail in Sect. 1.1.

4.2. A system on S2 × S2. Let (x1, x2, x3) and (y1, y2, y3) be coordinates in R
3. The

relations

{xi , x j } = εi jk xk, {yi , y j } = εi jk yk and {xi , y j } = 0

define a Poisson structure on R
3 × R

3. The restriction of this Poisson structure to
S2 × S2 = {(x, y) : |x | = |y| = 1} gives the canonical symplectic structure ω.



442 N. Martynchuk, K. Efstathiou

Fig. 6. Bifurcation diagram of the integral map F . The set of regular values shown gray; the critical values
are colored black. All regular fibers are 2-tori. Curled T 2 contains one exceptional (‘short’) orbit of the S1

action. Critical fibers Fcr contain two such orbits. They can be obtained by gluing two curled tori along a
regular orbit of the S1 action

We consider an integrable Hamiltonian system on (S2×S2, ω) defined by the integral
map F = (J, H) : S2 × S2 → R

2, where

J = x1 + 2y1 and H = Re{(x2 + i x3)
2(y2 − iy3)}.

It is easily checked that the functions J and H commute, so F is indeed an integral map.
The bifurcation diagram is shown in Fig. 6.

Even without knowing the precise structure of critical fibers of F , we can compute
fractional monodromy along curves γ1, γ2 and γ3, shown in Fig. 6. Specifically, assume
that γi (0) = γi (1) lifts to a regular torus.

Theorem 8. For each γi , the parallel transport group is spanned by 2ai and bi , where
(ai , bi ) forms a basis of H1(F−1(γi (0)) and bi is given by any orbit of the S

1 action.
The fractional monodromy matrices have the form

(
1 1/2
0 1

)
for i = 2, 3 and

(
1 1
0 1

)
for i = 1.

Proof. Consider the case i = 2. The other cases can be treated analogously. The curve
γ2 intersects the critical line H = 0 at two points ξ1 and ξ2. Let ξ1 < P2 < ξ2 on H = 0.
The critical fiber F−1(ξ1), which is a curled torus, contains one exceptional orbit of the
S
1 action with Z2 isotropy. The critical fiber F−1(ξ1) contains two such orbits. Finally,

observe that the point

(1, 0, 0) × (−1, 0, 0) ∈ S2 × S2,

which projects to P2 under the map F , is fixed under the S
1 action and has isotropy

weights m = 1, n = 2. Since F−1(γ2) is connected, it is left to apply Theorems 5 and
6. �
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Fig. 7. Bifurcation diagram of the integral map F . The set of regular values shown gray. The critical values
are colored black. The points in the interior of the ‘island’ are regular and lift to the disjoint union of 2 tori

4.3. Revisiting the quadratic spherical pendulum. The example of the systemon S2×S2

discussed in the previous Sect. 4.2 shows that fractionalmonodromymatrix along a given
curve γ1 could be an integer matrix even if standard monodromy along γ1 is not defined.
In this subsection we show that the same phenomenon can appear when the isotropy
groups are either trivial or S1, that is, when the S1 action is free outside fixed points.

Consider a particle moving on the unit sphere

{x = (x1, x2, x3) ∈ R
3 : x21 + x22 + x23 = 1}

in a quadratic potential V (x3) = bx23 + cx3. The corresponding Hamiltonian system
(T S2,Ω|T S2 , H), where H(x, v) = 1

2 〈v, v〉+V (x) is the total energy, is calledquadratic
spherical pendulum [14]. This system is completely integrable since the x3 component
J of the angular momentum is conserved. Moreover, J generates a global Hamiltonian
S
1 action on T S2. For a certain range of parameters b and c the bifurcation diagram of

the integral map F = (J, H) has the form shown in Fig. 7.
Let γ1 and γ2 be as in Fig. 7. Assume that the starting point γi (0) = γi (1) lifts to a

regular torus.

Theorem 9. For each γi , the parallel transport group coincides with the whole homology
group H1(F−1(γi (0)). The fractional monodromy matrices have the form(

1 1
0 1

)
for i = 1 and

(
1 0
0 1

)
for i = 2.

Proof. Consider the case i = 1. The other case can be treated similarly. The S1 action
is free on the connected manifold F−1(γ1). The Euler number of this manifold equals
1. Indeed, the elliptic–elliptic point

P = (0, 0, 1) × (0, 0, 0) ∈ T S2 ⊂ TR
3,

which projects to the point F(P) ∈ int(γ1), is fixed under the S1 action and has isotropy
weights m = 1, n = 1. It is left to apply Theorems 5 and 6. �
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Remark 23. From Theorem 9 it follows that all homology cycles can be parallel trans-
ported alongγi , i = 1, 2.Even though this situation is very similar to the case of standard
monodromy, the monodromy along γi is fractional. We note that such examples have
not been considered until now.

5. Proof of Theorem 3

In the present section we use the notation introduced in Sect. 2.2. The result, Theorem 3,
will follow from Lemmas 3, 4, 5, and 6 that are given below.

Lemma 3. There exists k ∈ Z such that (Na0, Na1 + kb1) and (b0, b1) belong to
∂∗(H2(X, ∂ X)).

Proof. LetZN be the order N subgroup of S1. The quotient X ′ = X/ZN , which is given
by the induced action of the subgroupZN , is the total space of the principal circle bundle

Pr ′ : X ′ → X/S1.

We note that this bundle is, moreover, trivial. Indeed, the base X/S1 has a boundary and
is, thus, homotopy equivalent to a graph.

Let br
i = bi/ZN , i = 0, 1. Then (ai , br

i ) forms a basis of H1(Xi/ZN ). There is a
unique parallel transport of the cycles a0 and br

0 along X ′. Indeed, take a global section
s : X ′/S1 → X ′ with s(X0/S

1) = a0. Then S = s(X ′/S1) is a relative 2-cycle that
gives the parallel transport of a0. In order to transport the cycle br

0 take a smooth curve
Γ ⊂ X/S1 connecting X0/S

1 with X1/S
1 and define the relative 2-cycle by (Pr ′)−1(Γ ).

�

Remark 24. In what follows we assume that Γ is a simple curve that does not contain the
singular points Pr(p1), . . . ,Pr(pM ), where Pr : X → X/S1 is the canonical projection;
see Fig. 8.

From above it follows that the parallel transport in the reduced space has the form
a0 
→ a1 +kbr

1 and br
0 
→ br

1 for some k ∈ Z. The parallel transport of the cycles (a0, br
0)

in the reduced space lifts to the parallel transport of the cycles (Na0, b0) along X in the

Fig. 8. The base manifold X/S1
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Fig. 9. An example of the covering map π : π−1(S) → S. Here the Seifert manifold X contains only one
exceptional orbit with Z2 isotropy (N = 2); the base X/S1 ∼= S is a ‘cone with a hole’

original space. Indeed, let π : X → X ′ be the quotient map, given by the action of ZN .
The preimage

π−1((Pr ′)−1(Γ )) = Pr −1(Γ )

transports b since Γ does not contain the singular points Pr(p j ). In order to transport Na
take π−1(S). Since π : π−1(S) → S is a branched N -covering, see Fig. 9, the preimage
π−1(S) is a relative 2-cycle that transports Na. The result follows. �


This following lemma shows that the parallel transport along X is unique.

Lemma 4. Suppose that (0, c) ∈ ∂∗(H2(X, ∂ X)) for some c ∈ H1(X1). Then we have
c = 0.

Proof. This statement was essentially proved in [15] (see §7.1 therein). For the sake of
completeness we provide a proof below.

Since X is an orientable 3-manifold, the rank of the image ∂∗(H2(X, ∂ X)) is half of
the rank of H1(∂ X) � Z

2 ⊕ Z
2. Hence

rk ∂∗(H2(X, ∂ X)) = 2.

As a subgroup of a free abelian group H1(∂ X), the image ∂∗(H2(X, ∂ X)) is a free abelian
group and thus is isomorphic to Z ⊕ Z.

From Lemma 3 we get that α = (Na0, Na1 + kb1) and β = (b0, b1) belong to
∂∗(H2(X, ∂ X)).
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Suppose that parallel transport along X is not unique. Then there exists an element
η = (0, c) ∈ ∂∗(H2(X, ∂ X)) with c �= 0. Since α and β are linearly independent over
Z, we get l1α + l2β = l3η, where l j are integers and l3 �= 0. But l1Na0 + l2b0 = 0, so
l1 = l2 = 0 and we get a contradiction. �


The set H0
1 of cycles α ∈ H1(X0) that can be parallel transported along X forms a

subgroup of H1(X0). Since Na0 and b0 can be parallel transported along X , the group
H0
1 is spanned by La0 and b0 for some L ∈ N, which divides N . Our goal is to prove

that L = N . The proof of this equality is based on the important Lemma 5 below.
Let E be a closed Seifert manifold which is obtained from X by identifying the

boundary tori Xi via an orbit preserving diffeomorphism that sends a0 to a1 and b0 to
b1.

Lemma 5. The Euler number e(E) of the Seifert manifold E satisfies e(E) = k
N .

Proof. Consider the action of the quotient circle S
1/ZN on the quotient space E ′ =

E/ZN . Since E ′ is a manifold and the action is free, we have a principal bundle (E ′, B =
E/S1,Pr ′). Let

U1 ∼= [0, ε] × S1

be a cylindrical neighborhood of X0/S
1 in X/S1 with {0} × S1 ∼= X0/S

1. Define

U2 = B\U1.

We already know that if X ′ = X/ZN then (X ′, X/S1,Pr ′) is a trivial circle bundle.
Observe that E ′ is obtained from X ′ by identifying the boundary tori X ′

0 and X ′
1 via

a diffeomorphism induced by the ‘monodromy’ matrix

(
1 k
0 1

)
. Hence there exist cross

sections s1 : U1 → E ′ and s2 : U2 → E ′ such that s2 = s1 on the boundary circle
{ε} × S1 and s1 = eikϕs2 on {0} × S1, parametrized by an angle ϕ.

Let f : [0, 2π ] → [0, 1] be a smooth function such that f |[0,δ] = 1 and f |[2δ,2π ] = 0.
Define a continuous function h : [0, ε] × S1 → [0, 2δ] by the following formula

h(φ, ϕ) = ε − φ

ε
ϕ f (ϕ).

Let D2 = (0, ε)×(δ, 2π).Define new cross sections s′
1 : U1 → E ′ and s′

2 : B\D2 → E ′
as follows

s′
1 = s1 · eikh and s′

2 =
{

s2 on U2,
s′
1 otherwise.

Observe that s1(0× S1) = s2(0× S1) + kb, where b corresponds to the S1 action. If
δ > 0 is small enough, then s1(0 × S1) is homological to s′

1(0 × S1). Hence

s′
1(0 × S1) = s′

2(0 × S1) + kb.

But s′
1(∂ D2 + 0 × S1) = s′

2(∂ D2 + 0 × S1). Therefore

s′
2(∂ D2) = s′

1(∂ D2) + kb.

Thus, e(E ′) = k and

e(E) = 1

N
e(E ′) = k

N
.

�
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Lemma 6. The parallel transport group H0
1 is spanned by the cycles Na0 and b0.

Proof. We have already noted that H0
1 is spanned by La0 and b0 for some L ∈ N, which

divides N . In order to prove the equality L = N it is sufficient to prove that for every j
the number L is a multiple of n j (the order of the exceptional orbit p j ).

The image of the exceptional fiber p j under the projection Pr : E → B = E/S1 is a
single point Pr(pi ) on the base manifold B. Cutting E along the torus X0 ∼= X1 results
in the manifold X . The quotient X/S1 is obtained from B by cutting along an embedded
circle. Consider an annulus A j ⊂ X/S1 that contains X0/S

1 and exactly one singular
point Pr(p j ); see Fig 8.

Clearly, the preimage E j = Pr−1(A j ) is a Seifert manifold with only one exceptional
fiber. From the definition of the parallel transport it follows that there exists a relative
cycle S ⊂ E j such that one of the connected components of S is La0. In other words,
La0 can be parallel transported along E j .

Let us identify the boundary tori of E j via an orbit preserving diffeomorphism. Then
the result of the parallel transport of La0 along E j is l1a0 + l2b0. Since the parallel
transport is unique, see Lemma 4, we have

Nl1a0 + Nl2b0 = N La0 = L Na0 = L Na0 + Lm j b0, (5)

where m j ∈ Z. Let e j denote the Euler number of the Seifert manifold E j . From
Lemma 5 it follows that

m j/n j = e j (mod 1).

In particular, m j and n j are relatively prime. Equation (5) implies Nl2 = Lm j . Since
n j divides N , it also divides L . �


6. Discussion

In [17] we have shown that if the circle action is free outside isolated fixed points then
standard monodromy can be completely determined by the weights 1:(±1) of the circle
action at those points. This result allowed us to consider both focus–focus and elliptic–
elliptic singular points of the integral map and provide a unified result for standard
monodromy around such points. Moreover, it showed that the circle action is more
important for determining standard monodromy than the precise form of the integral
map F .

In the present paperwegeneralized results from [17] to the setting of Seifert fibrations.
Specifically, we showed that the parallel transport along the total space of such a fibration
is well defined and is completely determined by the Euler number and the orders of the
exceptional orbits. Then, we applied the obtained results to fractional monodromy in
singular Lagrangian fibrations (integrable Hamiltonian systems) that are invariant under
an effective (Hamiltonian) circle action with isolated fixed points.

In the case of singular Lagrangian fibrations fixed points with weights m:n differ-
ent from 1:(±1) may appear. The existence of such weights m:n implies the existence
of points with non-trivial isotropy group Zm or Zn . Such points are projected to one-
parameter families of critical values of F . These families contain essential information
about the geometry of the singular Lagrangian fibration. However, for standard mon-
odromy such critical families are ‘invisible’ in the sense that in standard monodromy
we only consider the regular part of the fibration and the curves γ along which standard
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monodromy is defined do not cross any critical values. In the fractional case the curves
γ are allowed to cross critical values of F . Our results show that also in this fractional
case the circle action is more important for fractional monodromy than the precise form
of the integral map F .
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