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The self-consistent method, first introduced by Kuramoto, is a powerful tool for the analysis of the steady
states of coupled oscillator networks. For second-order oscillator networks, complications to the application of
the self-consistent method arise because of the bistable behavior due to the co-existence of a stable fixed point
and a stable limit cycle and the resulting complicated boundary between the corresponding basins of attraction.
In this paper, we report on a self-consistent analysis of second-order oscillators which is simpler compared to
previous approaches while giving more accurate results in the small inertia regime and close to incoherence. We
apply the method to analyze the steady states of coupled second-order oscillators and we introduce the concepts
of margin region and scaled inertia. The improved accuracy of the self-consistent method close to incoherence
leads to an accurate estimate of the critical coupling corresponding to transitions from incoherence.
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I. INTRODUCTION

Synchronization of coupled dynamical units has been rec-
ognized in the past 50 years, since the pioneering works of
Winfree [1] and Kuramoto [2], as one of the most important
phenomena in nature. Several mathematical models are used
to understand this fascinating phenomenon. Among them,
coupled Kuramoto oscillators is one of the most popular
models [3,4]. Many analytical methods have been devel-
oped for Kuramoto oscillators, like the self-consistent method
[3,5], the Ott-Antonsen ansatz [6-8], and stability analysis
in the continuum limit [9-11]. With these methods, comple-
mented by numerical simulations, many interesting phenom-
ena of Kuramoto oscillators have been found and analyzed
[4,12-14].

The Kuramoto model is not only simple and amenable to
analytical considerations, but it is also easy to generalize in
different directions. By adding frequency adaptations (iner-
tias), the second-order oscillators model has been proposed
and developed to describe the dynamics of several systems:
tropical Asian species of fireflies [15], Josephson junction
arrays [16—18], goods markets [19], dendritic neurons [20],
and power grids [21]. Many important conclusions about the
stability of power grids have been obtained through analysis
of this model [22-36].

Kuramoto’s self-consistent analysis [2] has been extended
to second-order oscillators by Tanaka ef al. [37,38]. In this
paper, we are revisiting the self-consistent method for the
steady states of second-order oscillators. The benefits are
twofold. First, we considerably simplify the derivation of
the estimates of the limit cycles of the system that play a
role in the self-consistent analysis. Second, the obtained esti-
mates are much more accurate compared to earlier estimates,
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especially for small inertias. Therefore, the method can be ap-
plied to the general case of the second-order oscillators, with
large or small inertias, for both incoherent or synchronized
states. The improved limit cycle estimates also lead to self-
consistent equations that coincide well with numerical simu-
lations. Moreover, the more accurate self-consistent method
allows us to obtain the critical coupling strength K. where
steady-state solutions bifurcate from the incoherent state. The
results agree with the stability analysis of the incoherent state
in Ref. [39] obtained through an unstable manifold expansion
of the associated continuity equation.

We give a short outline of the paper. In Sec. II, the model
and the general framework of the self-consistent method are
introduced. The dynamics of a single second-order oscillator
is discussed in Sec. III. Based on this, the self-consistent
equation is obtained in Sec. IV and several properties of
steady states for arbitrary natural frequency distributions are
discussed. In Sec. V the steady states of oscillators with
symmetric and unimodal natural frequency distribution are
discussed and the theoretical results are compared to numeri-
cal simulations. We conclude the paper in Sec. VI.

II. MODEL AND SELF-CONSISTENT METHOD

The model for coupled second-order Kuramoto-type oscil-
lators reads

) . K&
m;@; + Dig; = Q; + N E sin(@; — ¢;), (D
Jj=1

fori =1,..., N, where m;, D;, and 2; are respectively the
inertia, damping coefficient, and natural frequency of the ith
oscillator. The dynamics of each oscillator is described by its
phase ¢ and corresponding velocity ¢, with (¢, ¢) € S x R,
where S = R/2n7Z (a circle of length 2). Moreover, N is
the number of oscillators and K is the (uniform) coupling
strength.
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To describe the collective behavior of the oscillators, one
defines the order parameter as

1 N
i¢__E 9
re? = N j_le‘/’/. (2)

Here r € [0, 1] is indicative of the coherence of the oscil-
lators. We have r = 1 if and only if all the oscillators are
synchronized with ¢; () = ¢(¢) for all 1 < i < N. Moreover,
an (almost) uniform distribution of the phase terms ¢'¢ over
the unit circle corresponds to r = 0; note, however, that the
opposite implication is not always true. The rate of change of
the collective phase ¢ is related to the mean frequency of the
oscillators and describes the global rotation.

Using the amplitude r(¢) and phase ¢(¢) of the order
parameter, the model (1) can be rewritten in a mean-field form
as

m;@; + Digi = Qi + Kr(t)sin(p(1) — ¢;), 3)

with i = 1,..., N. In this paper we consider only steady
states, given by

p)=Q 1+ W, “4)

where r, ", and W are all constant. Passing to a frame
rotating by ¢(¢) = Q"¢ + W, and defining the phase difference
between each oscillator and the frame as

0 = @i — (1), 4)

one finds that the dynamics for the oscillators in the rotating
frame is given by

m;0; + D:0; = (Q; — D;Q") — Krsin6;, (6)

r(t) =r,

for i =1,..., N. Dropping the index i from Eq. (6) and
assuming Krm # 0, the dynamics of a single oscillator in the
rotating frame can be transformed to the standard form

6 +ab = b —sinb, (7
with only two effective parameters
D Q—DQ

VKrm’ N Kr

and rescaled time T = t/Kr/m.

In this paper we consider only the case where all the
oscillators have the same inertia m and damping coefficient D
even though our approach generalizes to the case of different
inertias and damping coefficients. To pass to the continuum
limit we replace by a density function g(£2, 6y, fy) the collec-
tion of discrete oscillators characterized by natural frequency
2; and initial state (6;(0), 6; (0)). Note that, differently from
the case of first-order Kuramoto oscillators, the initial state
(6o, 90), is important for the dynamics of our case because of
the bistable mechanism we discuss in Sec. III.

In terms of the phases 6; Eq. (2) becomes

| N
o
r=—>» €%,
N Z
Jj=1
which in the continuum limit reads as
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FIG. 1. Phase diagram for a single second-order oscillator,
Eq. (7), in the (a, b) parameter plane. The thick black curve rep-
resents bg(a) and the dashed curve represents b, (a) = 1. Note that
for a > 1.193 the two curves coincide. The two curves separate the
parameter plane into the three regions shown in the diagram.

Here 6(¢) represents the solution for the dynamics of a single
oscillator, Eq. (6), and depends on parameters (a,b) and
initial conditions (6, 6y). In what follows, our goal is to un-
derstand the self-consistent equation (9) and use it to explore
the properties of steady states of second-order oscillators.

III. DYNAMICS OF A SINGLE OSCILLATOR
AND BISTABLE REGION

In this section we recall facts about the dynamics of a
single second-order oscillator described by Eq. (6) and then
we compute an approximation to the limit cycle that plays a
central role in what follows.

A. Fixed points and limit cycle

Depending on the values of the parameters a and b, Eq. (7)
can have a fixed point, a globally attracting stable limit cycle,
or a bistable region where the fixed point and the limit cycle
coexist [16,38,40]. A thorough qualitative study of the fixed
points and limit cycle in this system can be found in Ref. [16]
where it has been shown that for » > 1 the system has no fixed
points and it has a globally attracting stable limit cycle. For
b < 1 the system has exactly two fixed points, one stable and
one unstable. Then for each fixed value b < 1 there is a value
a.(b) of a for which if 0 < a < a,(b) the system also has
a stable limit cycle; a so-called bistable state. For a > a,(b)
the limit cycle does not exist anymore. The transition at a =
a4(b) occurs through a homoclinic tangency bifurcation. For
b =1 the situation concerning the limit cycle is similar, with
corresponding a.(1) = 1.193. However, for b =1 the two
fixed points merge and the system undergoes a saddle-node
bifurcation so that for b > 1 there are no more fixed points.
These results are summarized in the phase diagram shown in
Fig. 1. The dynamics for three qualitatively different cases are
shown in Fig. 2.

Remark 1. The limit cycle is a running or rotating limit
cycle. That is, following the dynamics on the limit cycle, in
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FIG. 2. Phase portraits for a single second-order oscillator, Eq. (7). In (a), fora = 0.5, b = 0.2, there is a stable and an unstable fixed point
and no limit cycles. In (b), fora = 0.5, b = 0.7, we have a bistable system where the stable and unstable fixed points coexist with a limit cycle.
In (c), for a = 0.5, b = 1.5, there exists only a limit cycle. The solid thick curve in (b) and (c) represents the limit cycle. The dashed curves
in (a) and (b) represent stable and unstable asymptotic curves to the saddle fixed point. Note that the left and right sides of the picture must be

identified because of the 27 periodicity of 6.

one period the phase 0 increases by 2. Alternatively stated,
the phase space of the system is a cylinder (R/277Z) x R
and the limit cycle is a nonhomotopically trivial circle on the
cylinder, see Fig. 2(b) and Fig. 2(c).

For our purposes we use a different description of the phase
diagram. We define two functions: the (constant) function
by (a) = 1 and the function

(@) (@),

0<a<a(l)=1.193,
bs(a)={1 A

a 2z a,(1),

where (a,)”! is the inverse of a, :[0, 1] — [0, a.(1)].
Clearly, adapting the discussion above, for b > b;(a) =1
there exists a globally attracting limit cycle and no fixed
points. For 0 < b < bg(a) the system has two fixed points and
no limit cycle. Finally, the bistable state exists for bg(a) <
b < bi(a).

The condition b < by (a) = 1 for the existence of fixed
points is easily obtained, since the fixed points correspond
to solutions of (6, 6) = (0, 0), giving the equation b = sin .
Further computing the stability of the fixed points, we obtain
that for b < by (a) =1 (and a > 0) the system has the fixed
points

(6o, 09) = [arcsin(b), 0], (stable),
(6o, 6’0) = [r — arcsin(b), 0], (saddle point). (10)

In particular, for the stable point we obtain
exp(ify) = v 1 — b2 +ib. an

Determining the existence region of the limit cycle, that
is, the function bg(a), is more complicated. The limit cycle
is always stable and it appears for 0 < a < a,(1) through a
homoclinic bifurcation and for a > a,(1) through an infinite
period bifurcation [16,40]. For small values of a an applica-
tion of Melnikov’s method [41], or Lyapunov’s direct method

[42], gives

bs(a) = 4n'a = 1.2732a, (12)

cf. Fig. 1. Using numerical simulations, see Ref. [43], a
higher-order approximation of this bifurcation line has been
obtained as

1.2732a — 0.3056 a°,

bs(a) = {1 0 <a<a(l)=1.193,

a > a.(1l).
(13)

B. Approximation of the limit cycle

The analysis of the self-consistent equation for the second-
order oscillators requires an analytic expression for the limit
cycle. In general, the solution of the limit cycle cannot be ob-
tained analytically. An approximate expression has been com-
puted in Ref. [38] through the use of the Poincaré-Lindstedt
method at the underdamped limit a*> < 1 ~ b. Translating the
result of Ref. [38] to our notation we have

2 4

a* . a
0(t)=vt + 2 sin(vt) + ;(cos(vr) -+, (14a)
where
b_a (14b)
V= — — — cee
a 2b3

The value of the time average of cos 6 on the limit cycle is
then approximated in Ref. [38] by

a2

0y =——,
(cos 0) T

(15)
see also Ref. [44].

Here we derive different approximations to the limit cycle
and the corresponding value of (cos®) which are valid for

042201-3



JIAN GAO AND KONSTANTINOS EFSTATHIOU

PHYSICAL REVIEW E 98, 042201 (2018)

2.0 2.0

1.5 1.5

b 1.0 b 1.0

0.5

0.5

°8.

05 10 15 20 %80 05 10
a a

20 05
15 " 04
|
b 1o . &
0.2
05
0.1
15 20 99 10 15 20 .

a

FIG. 3. Approximation errors of (cos ) corresponding from left to right to Eq. (15), Eq. (20), and Eq. (19). The error is defined as the
maximum of the absolute value of the difference between the numerical calculation of (cos6) along the limit cycle [which exists only for
b > bg(a)] and the corresponding analytical estimation. Note that in (a) all errors above 0.5 are represented by the same color.

a larger range of parameter values and which at the under-
damped limit coincide with Tanaka’s approximations, Eq. (14)
and Eq. (19). .

We start by expressing 6 as a function of 6 for points on
the limit cycle using a Fourier series. Keeping only the first
harmonics we write

6(0) = Ao+ A, cos® + B sin6.

Substituting the last expression in Eq. (7) and computing
the Fourier coefficients so that the first harmonics vanish we

obtain
. b ab a’
60)= — + ——— . —
©) a+g4+b2 a* +b?

= vy + ecos(d + 6,), (16)

where
b 1 .
v=-—, =
a £

* =1y +ia.

The time average of ¢’® on the limit cycle is given by

(e

— / exp(if(t))dr

2
_ exp(z@) // 1
0 0(0) 0(9)

These integrals can be exactly computed for 6(6) given by
Eq. (16). Computing the period integral we obtain

a7

2
V= - \/vo—ez_\/vo v0+a lgvo. (18)
The computation of (e?) gives
(eig) = eiie"e*l[,/vg — g2 — Vo]
= —vyo(vg —v) +ia(vy—v). (19)
A Taylor series expansion in ¢ < 1 gives the expression
. 1 j
(%) = _<_1 + f)gz T
2 Vo
1 ia* a®
= —(—-14+4 = O(e* 20
2( +b) arp toEh. o)

which is valid for a® 4+ v3 > 1, that is, for a> < b ora > 1.
With the same order of approximation, one can replace 6 by
vot in Eq. (16). Then integration with respect to T gives

4

a
b(a* + b?)
2

+ cz“aw sin(vy7),

0(t) = vot + [cos(vyT) — 1]

2L

with the constant of integration chosen so that 6(0) =0
Observe that for a> < b, Eq. (21) gives the approximation in
Eq. (14), and the real part of Eq. (20) gives the approximation
in Eq. (15).

As a result, when a?> < 1 ~ b all the three approximate
expressions, Eq. (19), Eq. (20), and Eq. (15), give the same
estimation of (cos#) on the limit cycle. Using numerical
simulations, we have found that both the computation in
Eq. (19) or the one with the Taylor expansion in Eq. (20) are
significantly better estimates of (cos #) on the limit cycle com-
pared to the approximation obtained previously as Eq. (15),
see Fig. 3. However, it is hard to distinguish from these
numerical results which one of Eq. (18) or Eq. (21) provides
the best approximation. Moreover, in the limit of large or
small inertias, with > <« b or a > 1, Eq. (19) and Eq. (20)
are the same neglecting terms of order O(e*) and higher.
Hence we consider both expressions as equally accurate for
the self-consistent method. In the computations in subsequent
sections we will be using the expression Eq. (20) because it
leads to simpler analytical expressions. One can show that
both the quantitative (such as the value of K.) and qualitative
(such as the margin regions) results we obtain can also be
obtained with the alternative expression, Eq. (19).

IV. SELF-CONSISTENT EQUATION
FOR TWO PROCESSES

Because of the complexity of the basins of attraction, it
is difficult to study the problem of synchronization in its
full generality. Instead, following Tanaka ef al.’s approach
in Ref. [37,38], we consider the synchronization during the
so-called forward and backward processes.
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In the forward process [F] the system starts at the inco-
herent state with coupling K = 0 and then K progressively
increases. Small coupling K < 1 and incoherent state r = (
corresponds to large values of > = D?/Krm and b = (Q —
DQ")/Kr. In particular, it can be ensured that all oscillators
are in the parameter region b > by (a) = 1 where there exists
only a stable limit cycle (no stable fixed point), see Sec. III.
Similarly, in the backward process [B] the system starts at a
coherent state with a large value of K and then the coupling
progressively decreases. Large coupling K >>> 1 and coherent
state = 1 corresponds to small values of a®> = D*/Krm
and b = (2 — DQ")/Kr. Here it can be ensured that all
oscillators are in the parameter region 0 < b < bg(a) where
there exists only a stable fixed point (no stable limit cycle).

Thus, in these two processes the initial states of all the
oscillators lie entirely in the basin of one stable state, the fixed
point for [B] and the limit cycle for [F], and only leave it
when this stable state disappears as K changes. This happens
in the [ B] process when oscillators cross the boundary bp =
by and in the [ F'] process when they cross the boundary bp =
bs. Note that because of the different values of the natural
frequency €2 for each oscillator, the oscillators will move from
one stable state to another one at different values of K.

The previous discussion implies that in the forward and
backward processes the role of the initial state (6, 8) for each
oscillator can be neglected and therefore we can consider the
density g(£2) obtained by integrating g(£2, 6y, 6o), that is,

(@) = / / ¢(2, 60, 60) dfly dby.
S /R

Moreover, for fixed values of r and Q" the density g(<2)
is transformed under the change of variables b = (2 —
DQ")/Kr to adensity G(b) as

G(b)=Krg(Krb+ DQ").

During the forward and backward processes, we can write
the order parameter r as the sum of the coherence of two
populations of oscillators: oscillators at the stable fixed point,
which we call locked, and oscillators at the stable limit cycle,
which we call running. We have

r=2z;+ 2,

where z; and z, represent the coherence of the locked and
running oscillators, respectively. In the forward and backward
processes, the locked and running oscillators are separated by
the boundary of the bistable region of a single oscillator, i.e.,
by bs for [F] and b, for [B].

With substitution of the stable solution of a single oscilla-
tor, Eq. (11), into the self-consistent equation for the locked
oscillators, z; reads

2 =f G(b)[\/l—b2+ib]db
|bl<bp(a)
=/ G(b)l;[\/l—bz—i-ib]db,
R

where the indicator function 1; takes the value 1 if |b| <
bp(a), corresponding to the condition for locked oscillators,
and 0 otherwise. In the equation above we have bp = b, for
the backward process and bp = bg for the forward process.

For the running oscillators, using Eq. (20), the coherence
z, reads

7 = / G(b)1,(e%)db
R

_/G(b)ll 1+"“2 L P
- R d 2 b Cl4+b2 ’

where the function 1, takes the value 1 if |b| > bp(a), cor-
responding to the condition for running oscillators, and 0
otherwise. Note that

1,+1,=0.

Combining z; and z,, and separating the real and imaginary
parts, we obtain the self-consistent equations for the second-
order oscillators as

r =/ G(b)[l,ﬂ—
R

2

1 a
"2(b% + a%)
4

a
0= /RG(b)[lzb + lrm]db.

One checks that Eq. (22) always has the trivial solution
r = 0. For r > 0 with the definition ¢ = Kr, we have a =
D/./qm and Eq. (22) can be divided by g > 0 to obtain the
equations

1
— =Fi(g. ) Ef g(qb+DQ’)[11\/l iy
R

(12

]db, (222)

(22b)

-L 2002 + a4)]db’ 3
a4
0= Fg, Q)= b+ DQ")| 1,b+1, ————— |db
2(q, $2") /Rg(q + )[1 + 2b(b2+a4)]
(23b)

We now describe how to solve the self-consistent equa-
tion (23). For each pair (g, 2") satisfying 0 = F>(q, "), one
can obtain the corresponding value of K by computing 1/K =
Fi(q, "), provided that Fi(gq, 2") > 0. Since g = Kr we
conclude that the triplet (K, g, ") can be transformed to the
solutions of the self-consistent equation Eq. (23) as

(K,r, Q)= (K,gK™', Q")
= ([Fi(q, Q17" qFi(q, 2"), Q").

These solutions can be (locally) parameterized in terms of K
as families (r(K), 2" (K)), except at points of bifurcation, i.e.,
at values of K where the number of families changes.

As an example of this approach we consider a system with
the bimodal density function

@@= 2 expoa@r+ L 2 exploa@o1y)
8(2)=15y 7 &P 1+ 15y 7 expl=22=17,
24)

see Fig. 4(a), and fix the parameter valuesto D = 1 and m =
2. The solution set of F,(g, ") = 0 is shown in Fig. 4(b)
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FIG. 4. Steady-state solutions of the self-consistent equations for a system with bimodal density g(<2), Eq. (24), m =2, D = 1, and
bp = bg, corresponding to the backward process. Panel (a) depicts g(£2). Panel (b) shows the zero sets of F,(g, 2"), Eq. (23b), with black
curves. The gray areas represent points (g, 2") where F)(g, ") < 0 and thus cannot correspond to solutions of Eq. (23) even if the satisfy
F>(gq, ") = 0. We note the existence of three solution branches Q" (¢q) of Eq. (23b) for small ¢; for larger ¢ only one branch remains. Panel
(c) shows the families (K (q), r(q), 2" (q)) obtained through Eq. (23a) as described in the text. Panel (d) shows the projection of the families

from panel (c) to the (K, r) plane.

and the corresponding solutions are depicted in Fig. 4(c)
in the (K, r, Q") space and projected onto the (K, r) plane
in Fig. 4(d). Note the existence of more than one K-
parameterized families (r(K), Q"(K)). Moreover, note in
Fig. 4(b) that some points (g, 2") satisfying F»>(g, 2") =0
lie in the region where Fj(g, 2") < 0, represented by the
gray color in Fig. 4(b). Such points cannot represent a solu-
tion of the self-consistent equation since they give 1/K < 0.
Therefore, they must be rejected and they do not contribute to
subsequent panels (c) and (d) in Fig. 4.

In the rest of this section we explore in more detail
the properties of steady states obtained as solutions of the
self-consistent equation, Eq. (23), for arbitrary distributions
g(€2). In particular, we discuss the existence of multiple solu-
tion branches of the self-consistent equations, the bifurcation
points from the incoherent state (transition points), and steady
states beyond the forward and backward processes. In the
subsequent Sec. V we focus the discussion of the steady-
state solutions and their properties to the case of unimodal
symmetric distributions.

A. Multiple solution branches

Solutions to the self-consistent equation, Eq. (23), for
second-order oscillators can have multiple branches. This
feature is a natural consequence of the nonlinear nature of the
self-consistent equations.

First, for a given value of ¢, there may be multiple solution
branches 2" (¢q) of the equation F,(gq, Q") = 0, Eq. (23b). The
number of these branches is always odd (counting multiplic-
ity), as a consequence of the continuity of F>(q, "), and the
fact that there is M > 0 such that F>(g, ") < 0 for Q" > M
and F>(q, 2") > 0 for Q" < —M. Second, for each solution
branch €2, (q), we have corresponding one-parameter families
of steady states (K (q), r(q), 2"(g)) through Eq. (23a). For
each such family we can solve to obtain r as a function of K.
However, for each family there may be more than one such
branches r(K). This is depicted in Fig. 4(d) for the bimodal
distribution, Eq. (24), and in Fig. 5 for a Gaussian distribution,
Eq. (27), witho = 1.

In addition, since F;(q, €2") is bounded we conclude that K
cannot take values smaller than some K,;, > O for solutions
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FIG. 5. The steady-state solutions obtained by numerical integration of Eq. (30) for oscillators with Gaussian g(£2), o = 1, depicted
together with the incoherent state » = 0. The damping coefficient is D = 1. From top left to bottom right: (a) m = 0.5, (b)ym =1, (c) m = 3,
and (d) m = 6. Solid lines (except r = 0) represent the backward process with bp = b;, and dashed lines the forward process with bp = bs.
The gray-shaded area represents the margin region M discussed in Sec. V C. Transition points where steady-state solutions merge with or

detach from the incoherent state » = 0 are marked in the picture.

of the self-consistent equation, Eq. (23), or, equivalently, for
the nontrivial solutions of Eq. (22). This implies that the only
solution that is possible for K < K, is the trivial solution
r = 0 and other branches are the result of bifurcations that
occur at values of K larger than K.

Remark 2. The first-order Kuramoto model also exhibits
multiple branches of steady-state solutions (multistability)
if we consider nonunimodal natural frequency distributions
[13], phase shifts [45], or complex network topologies [46].

B. Transition points

The trivial solution r = O represents the incoherent state.
We are interested at the transition points, that is, the values
K. of the coupling strength where nontrivial solutions of the
self-consistent equation either merge with or detach from the
incoherent state for r > 0. Such transition points are impor-
tant since often they coincide with the loss of stability of the
incoherent state and the occurrence of a phase transition in the
forward process and can also be called forward critical points
[47]. Note that the transition points K. do not necessarily
correspond to the minimum value of the coupling strength for
which the system has nontrivial solutions, as can be seen in
the examples in Fig. 4(d) and in Fig. 5.

Using Eq. (23), we can determine the transition points
taking the limit ¢ — 0T corresponding to r — 0. When

g — 0%, we have @ — oo and hence bp(a) = 1 for both for-
ward and backward processes. This implies that the computed
transition points are the same for forward and backward pro-
cesses and for all the intermediate steady states, see Sec. [V C.
However, we must stress that only in the forward process the
transition point K, is the value of K where the incoherent
state becomes unstable and the system moves to a stable
nontrivial steady-state solution. In the backward process the
system may pass from a stable nontrivial steady-state solution
to the stable incoherent state for values of K smaller than K.

The transition points (2!, K.) are determined through
nontrivial solutions of the self-consistent equation, Eq. (23),
which we rewrite as

1 1
— = lim / g(qb + D)W — b2 db
KC q—)()Jr —1

[e%) —1 aZ
— i b+ DQ)— db,
et [/1 +/m}g(" D) e

1
0= lim/ ¢(qb + Db db
q—0*t J_1

o) —1 a4
li b+ DQRY—— db.
T o8 [/1 +/m}g(" DR e T
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The change of variables x = gb, the introduction of the
reduced mass ;1 = m/D?, and subsequent calculations bring
the previous equations to the form

Kic = %g(Dszg) - /Rg(x 4 Dﬂg)m dx,
(25a)
0= lim foo gx + DY) — g(—x + DY) 1 dx.
g—0" J, 2x 1+ u2x?
(25b)

If the steady-state branch that bifurcates at K = K, from
the incoherent state is unstable, then the transition between
the incoherent state and corresponding coherent state is dis-
continuous. Otherwise, the transition is continuous.

Remark 3. Figure 4(b) shows that it is possible that
lim,_, o+ F1(q, 2" (q)) < 0 and thus K. < 0. We reject such
solutions since for ¢ > 0 (as we consider here) they give
the nonphysical » < 0. Consider the situation depicted in
Fig. 4(b) where a curve C of solutions of F,(g, ") = 0 enters
the region Fi(q, 2") < 0 by crossing the zero set of Fj (g, 2")
[dashed curve in Fig. 4(b)] at a point (go, £2(). Then, clearly,
only the part C;. of C where Fi(g, 2") > 0 can be considered.
Consider a point (g, ") on C, that approaches (g, $2().
Then the value of F)(g, 2") approaches 0 (while positive),
and thus K = [F;(q, Q)] approaches oo. This implies that
in the (K, r) plane we obtain a family (K(q), r(q)) with
K(g) - oo and r(q) — 0 as ¢ — qo in such a way so that
K(q)r(g) — qo as ¢ — qo. In other words, for large-enough
K the corresponding curve r(K) becomes asymptotic to the
hyperbola Kr = gq.

Remark 4. Compared with the Kuramoto model where
K. =2/(mg(DRQL)), the effect of inertias in Eq. (25a) is
always to decrease the value of 1/K, since the integral in this
equation is non-negative. Hence with the same 7, the critical
coupling strength K, for second-order oscillators is always
larger than the one for Kuramoto oscillators.

C. Steady states beyond the forward and backward processes

For second-order oscillators, a crucial complication is the
existence of the bistable state and the corresponding com-
plicated basins of attraction. Restricting our attention to the
forward and backward processes, leading to Eq. (22), this
complication is avoided since then the locked and running
oscillators are separated by the boundaries of the bistable
region.

The steady states attained in the forward and backward
processes is a special collection of steady states. In general,
for other processes with arbitrary choice of initial states it
is hard to analytically find the boundary between locked and
running oscillators and consequently obtain the correspond-
ing steady states. However, with different initial states, the
oscillators will always separate into two groups. The corre-
sponding fractions can be defined as C;(b; a) and C, (b; a) for
locked and running groups, respectively, with normalization
condition C;(b;a) + C,(b;a) = 1. In the special case of the
forward process we have C;(b;a) =1, ,, where 1;,, takes
the value 1 if |b| < bp(a) and O otherwise. In the backward

process we similarly have C;(b;a) =1;;,. In terms of the
fractions C;(b;a) and C,(b;a) the self-consistent equation
reads

r= / G(b)|:C1(b;a)\/1 —b% — C,(b;a) a
R

R a4)}db,
(26a)

2

a
0= | GWb)|Ci(b;a)b+ C,.(b;a)——— |db. (26b
A; ()[ (b @b + Co( a)Zb(b2+a4)} (26b)
Even though we cannot easily determine C;(b;a), we note
that

1, < Ci(b;a) < 1,,.

Therefore, different possibilities can be viewed as interme-
diate between the two considered processes. In particular,
we can consider a boundary function bp(a) given as convex
combination of the boundaries for the two processes, that is,

bp(a) =cbs(a)+ (1 —c)br(a).

The previous discussion implies that, for fixed parameters
(m, D, K) and fixed frequency distribution g(£2), different
initial states may reach different steady states. This is further
discussed in Sec. VC and demonstrated in Fig. 9 for a
symmetric unimodal distribution.

D. Frequency scaling and scaled inertia

Consider a frequency distribution g,(£2) that depends on a
scale parameter s > 0 so that

1 Q
() =~ (—)
S S

Typical examples are the Gaussian distribution, Eq. (27),
where s = o, and the Lorentz distribution, Eq. (28), where
s=y.

Suppose that for inertia ©; and distribution g; one finds
a steady-state solution of the self-consistent equation (not
necessarily one obtained through a forward or backward pro-
cess), characterized by the parameters (g1, wi, K, ;). Here
we introduce the parameter w = D" since 2" appears in the
self-consistent equation only through w. Then a straightfor-
ward computation shows that for given inertia p, = sy
and for given distribution g there is a steady-state solution
characterized by parameters (g, wy, Ky, ry) with

qs = squ, K, =5Kj,

This property of steady-state solutions allows the translation
of results from s = 1 to any value of s > 0. In particular,
this allows the straightforward translation of the numerical
results in Sec. V, which have been obtained for a Gaussian
distribution with o = 1, to the case of arbitrary o > 0.

Moreover, this observation suggests that we should intro-
duce a more natural notion of inertia, the scaled inertia

Wy = Swh, ry =1r1.

V= Ssu,

so that vy = sy, = w; = v; is invariant under the scaling
transformation. In what follows we do not directly use v
since we are interested in distributions that do not necessarily
depend on a scale parameter.
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V. SYMMETRIC UNIMODAL NATURAL FREQUENCY
DISTRIBUTION

In this section, we consider the system with symmetric uni-
modal density function g(€2). Note that for a single oscillator
with natural frequency €2, we can describe its dynamics in
a frame rotating with frequency Q' as having a new natural
frequency 2 — D'. Because of this property, we can assume
that the median (and, when defined, also the mean) of g(2) is
zero. Moreover, we have g(2) = g(—) and g(21) < g(£2,)
if Q> Q; >0 from the unimodal property. Two typical
symmetric unimodal distributions are the Gaussian distribu-

tion
1 Q?
g(82) = 53 oXP (_F> 27
and the Lorentz (or Cauchy) distribution
Iy
g(Q2) = - m (28)

A. Self-consistent equations

One crucial characteristic of the coupled oscillators with
symmetric unimodal g(£2) is that there is only one solution
Q" (g) = 0 of the equation F,(gq, Q") = 0. To show this, we
rewrite Eq. (23b) as

0= Fag, @)
- f l(qb + D) — g(—qb + D) bW(|b])db,
0

(29)

where W (|b]) is the even positive function given by

4
WP rah O
Since the distribution g(£2) is symmetric and unimodal, we
have for gb # 0 that g(gb + DQ") — g(—qb+ D) =0 if
and only if Q" = 0. Hence the only solution of Eq. (29), or
equivalently Eq. (23b), is " = 0.

Remark 5. Note that for a symmetric (not necessarily uni-
modal) g(2) the function Fj(g, ") is even in " while
F>(q, ") is odd in Q". The latter property implies that
F>(g, 0) = 0 for all g, while the former property then implies
that the corresponding value F;(q, 0) is a local maximum or

minimum value of Fj(q, 2") for fixed g.
With the substitution Q" = 0, Eq. (23a) reads

2
%= Fi(q,0) =/ g(qb)|:11\/1 e | “—]db,
R

"2(b? 4+ a*)

wabsh=1+1,

(30)

where we remind that bp = bg for the forward process and
bp = by = 1 for the backward process. The solutions to the
self-consistent equation, Eq. (30), for different values of u =
m/D? and a Gaussian distribution with o = 1 are shown in
Fig. 5.

Even though for symmetric unimodal distributions g(£2)
the self-consistent equation F>(g, 2") = 0 has only one solu-
tion Q" (q) = 0, we can still obtain multiple solution branches
r(K) from the self-consistent equation F;(Kr,0)=1/K,

Eq. (30). Multiplying both sides of the last equation by ¢ =
Kr and using the original parameters (alternatively, substi-
tuting the original parameters in Eq. (22a) and then setting
Q" = 0) we obtain the equation

r=F(r K), (31a)
where F(r, K) is given by
Q2
|Q|<Krbp(1//Kr) K=r
K
- / g __dQ.
1QI>Kr bp(1 /KT 2(1 + p2%)

(31b)

We note that Eq. (31a) has the trivial solution r = 0, that
is, F(0, K) = 0. Moreover, we have

QZ
F(1,K)</ g( @)1 - = dQ
191<K bp(1/VER) K

< / g()dQ < 1.
Q1<K bp(1//K1)

Hence there is at least one
with0 < r < 1.

To check the analysis of steady states, we have performed
several numerical simulations. We have numerically calcu-
lated the dynamics of a network with N = 5000 oscillators,
following Eq. (1), using the fourth-order Runge-Kutta method
with fixed-size integration time step dt = 10~3. The natural
frequency €2; for each oscillator is chosen randomly from a
Gaussian distribution g(€2) with o = 1. At a given coupling
strength K, after a transient period ty = 40, we calculate the
order parameter r according to the definition in Eq. (2) as
the average value over a measurement period At = 4. In the
forward and backward processes, we take dK = 1072 and
dK = —1072, respectively, as the increasing and decreasing
coupling strength steps. In each step, the initial states of all
the oscillators are the last states in the previous step. In the
backward and forward processes, the initial states of the first
step are chosen randomly from 6(0) € [0, 2x], 6(0) € [0, 1]
and 6(0) € [0, 0.02x], 6(0) € [0, 1], respectively.

The phase transitions in the forward and backward pro-
cesses are shown in Fig. 6. for oscillators with inertias m =
0.2 in Fig. 6(a) and m = 2 in Fig. 6(b). In all simulations
D = 1. The figures show that our analytical results coincide
with the numerical ones quite well and much better than the
analytical results given in Refs. [37,38]. The error in the
location of the transition point is due to the finite number
(N = 5000) of oscillators used in the numerical simulations,
whereas the self-consistent analysis is based on the limit
N — o0; see Ref. [48] for a more detailed discussion of this
phenomenon.

solution of Eq. (31la)

B. Transition points

Near the incoherent state, that is, for r = 0, we have by =
by = 1, and there is no bistable behavior. Substituting " = 0
into Eq. (25a) we obtain the critical value K.(u) of K as a
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0.6r
r

0.4r

0.27

0 2 4 6 8 10
K

FIG. 6. Numerical simulations of the backward and forward processes for N = 5000 oscillators with (a) m = 0.2 and (b) m = 2, where
D =1, and g(2) is the Gaussian distribution, Eq. (27), with ¢ = 1. Solid lines represent the backward process with bp = b, and dashed lines
the forward process with bp = bs. The numerical results for the backward processes are represented by (red filled) squares and for the forward
processes by (blue) circles. In panel (a) the points for the two processes largely overlap.

function of the reduced inertia & = m/D?. This is given by

Ke(n) = (32)

()

(33)

mg(0) — A(n)’
where

" 1
A = D E——— d =
() Al+ﬂ%ﬁu>x Al+ﬁ

This critical coupling strength K.(u) coincides with the value
of coupling strength where the incoherent state becomes
unstable, see Ref. [39].

Since g is unimodal we have that

il R e 0 P LR
—_— = — —_ | — > U,
dp e+l S\ )2

and, moreover, lim, ,90A(u)=0 and lim, ., A(u)=
mg(0). Hence we have 0 < A(un) < wg(0) and

K. >
7g8(0)
for > 0. In particular, K, increases with u, see Fig. 5. In
the limit u — 0 (corresponding either to small inertia or to
large damping coefficient), one obtains the critical coupling
strength of Kuramoto oscillators, K.(0) = 2/[7g(0)].
For Gaussian and for Lorentz distributions the value K.(u)
can be explicitly computed. For the Gaussian distribution,
Eq. (27), we find

242 o
VT 1 —exp (55)[1 —erf (ﬁ;ﬂg)]’

which for small p > 0 gives

22 4
me=—;a+;#u+0w%

JT

while for large p it gives

K.(uw) =

Kmn=2#u+/§o+0w1>

For the Lorentz distribution, Eq. (28), we find

Ke(w) =2y +2y%pu.

C. Margin region

Recall that for symmetric unimodal distributions g(£2)
we have F,(g,0)=0 for all ¢ >0 and any bound-
ary function bp(a). This implies that steady states are
parameterized by g > 0 through the relations K(q) =
Fi(g,0)"!, r(g) =qFi(q,0). Fix a value ¢ >0 and let
(Kr(q),rr(gq)) and (Ks(q), rs(q)) satisfy the self-consistent
equations with bp = by and bp = bg, respectively, assum-
ing that r7(¢)Kr(q) =rs(q)Ks(q) = q, see Fig. 7. Then

0.8 :
0.6
0.4

0.2¢

0.0

FIG. 7. Representation of the margin region, cf. Fig. 5. In this
picture m = 2, D = 1, and g(2) is Gaussian with o = 1. The family
of light gray curves represent sets of constant ¢ = Kr. The margin
region appears for ¢ > ¢, = 0.35 and is represented by the gray area.
The set ¢ = g, is represented by the dotted curve passing through the
transitional point Q where the curves for the backward and forward
process start differentiating. The two steady states marked by L and
S correspond to the parameters (K, 7. ) and (K, rs), respectively,
described in Sec. V C, for a value of ¢ (here, g = 1.75).
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1.0

0.8r
0.6¢
r

0.4

0.27

O.O0

FIG. 8. The boundaries of the margin region correspond to
steady-state solutions of the self-consistent equation with bp =
b, and bp = bg. Points in the margin region can be realized as
steady-state solutions with bp =cbs+ (1 —c)b,, 0 <c < 1. In
this picture the corresponding curves for ¢ € {0.2, 0.4, 0.6, 0.8} are
represented by white curves inside the margin region. The parameters
arem = 3, D = 1, and g(2) is Gaussian with o = 1.

we find

1
= Fi(q,0;b;) > Fi(q,0;bs) = ——, 35
1(q L) 1(q s) Ks(@) (35)

Ki(q)

and subsequently 1. (g) = rs(q).

For these two points to be distinct it is necessary
that bg(a) < by(a) = 1, implying that a < a,(1) = 1.193 or,
equivalently, that

1 1
> = — = —,
17 = (P~ Vo

see Fig. 7. Therefore, we can consider the set M of steady
states characterized by (r, K) with K € (K.(g), Ks(g)) and
r =q/K for g > q.. We call M the margin region. Steady
states in the margin region can be realized as solutions of the
self-consistent equation by considering a boundary function
bp(a) with bg(a) < bp(a) < by(a), cf. Sec. IV C, that is, by
considering steady states that are not obtained through the for-
ward and backward processes, see Fig. 8. Thus, with different
choices of initial states, the system may attain a steady state
in the margin region different than those attained at the for-
ward and backward processes. This is one crucial difference
of second-order oscillators compared to first-order, globally
coupled Kuramoto oscillators with unimodular natural fre-
quency distribution. When one only considers the forward and
backward processes, this feature results in the well-known
hysteresis of second-order oscillators, see Refs. [37,38] and
Fig. 6(b).

In Fig. 9, the initial states dependence of the steady states
and the corresponding margin regions are shown for oscilla-
tors with Gaussian g(€2) with o = 1 for two given coupling
strengths K = 2.5 (a) and K = 4 (b). The dynamics of N =
10000 oscillators with m = 2 and D = 1 has been calculated.
The initial phases have been chosen randomly and uniformly
in a connected subset of [0, 2] so that the corresponding
initial order parameter is ry. The initial phase velocities have

(36)

1.0

(a)
0.8 WK rEEL.
L.

0.6 5 ¥ L4

0.4

r

0.2¢

ed o8 ‘ ‘ ‘
0
8o 0.2 0.4 0.6 0.8 1.0

ro
1.0 ‘ ‘ ‘
(b) XKXXXXXKXZXKX@
ot ¥ ¥ ¥

0.67
r
0.4

0.2f

%80 0.2 04 0.6 0.8 1.0
ro

FIG. 9. The initial states dependence of steady states and margin
region are shown with initial order parameter ry and order parameter
r (mean: o; maximum: V; minimum: A) with (a) K = 2.5 and (b)
K = 4. N = 10000 oscillators are used with m = 2 and D = 1. The
boundaries of the margin region are calculated by setting bp = b,
and bp = bg in Eq. (30).

been chosen randomly and uniformly in [—0.5, 0.5]. After
a transient time period fy = 200, the order parameter r is
measured as the time average over a period At = 10. The
maximum and minimum of r is also recorded to show the
variation of r. The boundary of regions of stable steady states
is calculated with bp = by and bp = bg in Eq. (30). We
observe in Fig. 9 that states with different order parameters
ro reach steady states with different » which either correspond
the incoherent state or can be found inside the margin region.

VI. CONCLUSIONS

In this paper, we have considered the self-consistent
method for second-order oscillators. Based on our analy-
sis, and on the obtained self-consistent equations, we have
discussed several properties of steady states. There are several
important and novel points in this analysis.

First, instead of wusing the original parameters
(m, D, K, r, Q") we have introduced the rescaled parameters
a and b in Eq. (3), thus simplifying the analysis of single
oscillators but also of the network.
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Second, we have given a significantly improved estimate
of the limit cycle of the second-order oscillators, where the
estimation proposed in Ref. [38] is obtained as the lowest
order of the Taylor series. Using numerical simulations, we
find that our estimation is more accurate for a much wider
range of parameters compared to previously obtained estima-
tions. Therefore, the new estimation results to more accurate
self-consistent equations for second-order oscillators.

Third, using the more accurate self-consistent equations,
we have performed a detailed analysis of the properties of
the steady-state solutions, such as the existence of multiple
branches, and their dependence on the initial state. The critical
transition point K = K, has also been calculated, coinciding
with the stability analysis in Ref. [39], obtained for symmetric
and unimodal distribution g(£2) through an unstable manifold
expansion.

Finally, to better understand the dynamics and the steady
states, we have introduced new concepts such as the margin
region, Sec. V C, and the scaled inertia v = s, Sec. IV D.

The approach to self-consistent equations for second-order
oscillators used in this paper provides a framework that can
be easily generalized to explore properties of steady states for
more general systems, for example, with nonconstant inertias
and damping coefficients or with phase shifts. Moreover, com-
bined with the development of generalized order parameters,
as in Ref. [49], our approach can also pave the way to the
analysis of second-order oscillators in complex networks,
such as power grids. The analysis in this paper is from these
points of view a basic building block in this research direction.

ACKNOWLEDGMENTS

We thank the Center for Information Technology of the
University of Groningen for the use of the Peregrine HPC
cluster for our numerical simulations. We also thank the
(anonymous) referees for their comments which helped to
improve the presentation of this work. J. Gao is supported by
a China Scholarship Council (CSC) scholarship.

[1] A. T. Winfree, J. Theor. Biol. 16, 15 (1967).

[2] Y. Kuramoto, in International Symposium on Mathematical
Problems in Theoretical Physics, Lecture Notes in Physics,
Vol. 39, edited by H. Araki (Springer, Berlin, 1975), pp. 420-
422,

[3] Y. Kuramoto and I. Nishikawa, J. Stat. Phys. 49, 569 (1987).

[4] F. A. Rodrigues, T. K. D. Peron, P. Ji, and J. Kurths, Phys. Rep.
610, 1 (2016).

[5] H. Sakaguchi and Y. Kuramoto, Prog. Theor. Phys. 76, 576
(1986).

[6] E. Ott and T. M. Antonsen, Chaos 18, 037113 (2008).

[7] A. Pikovsky and M. Rosenblum, Phys. D 240, 872 (2011).

[8] S. A. Marvel, R. E. Mirollo, and S. H. Strogatz, Chaos 19,
043104 (2009).

[9] S. H. Strogatz and R. E. Mirollo, J. Stat. Phys. 63, 613 (1991).

[10] J. D. Crawford, J. Stat. Phys. 74, 1047 (1994).

[11] H. Chiba, Ergod. Theory Dynam. Syst. 35, 762 (2015).

[12] S. H. Strogatz, Phys. D 143, 1 (2000).

[13] J. A. Acebrén, L. L. Bonilla, C. J. P. Vicente, F. Ritort, and R.
Spigler, Rev. Mod. Phys. 77, 137 (2005).

[14] A. Arenas, A. Diaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou,
Phys. Rep. 469, 93 (2008).

[15] B. Ermentrout, J. Math. Biol. 29, 571 (1991).

[16] M. Levi, F. C. Hoppensteadt, and W. Miranker, Q. Appl. Math.
36, 167 (1978).

[17] S. Watanabe and S. H. Strogatz, Phys. D 74, 197 (1994).

[18] B. R. Trees, V. Saranathan, and D. Stroud, Phys. Rev. E 71,
016215 (2005).

[19] Y. Ikeda, H. Aoyama, Y. Fujiwara, H. Iyetomi, K. Ogimoto, W.
Souma, and H. Yoshikawa, Prog. Theor. Phys. Suppl. 194, 111
(2012).

[20] E. Sakyte and M. Ragulskis, Neurocomputing 74, 3912 (2011).

[21] G. Filatrella, A. H. Nielsen, and N. F. Pedersen, Eur. Phys. J. B
61, 485 (2008).

[22] M. Rohden, A. Sorge, M. Timme, and D. Witthaut, Phys. Rev.
Lett. 109, 064101 (2012).

[23] M. Rohden, A. Sorge, D. Witthaut, and M. Timme, Chaos 24,
013123 (2014).

[24] S. Lozano, L. Buzna, and A. Diaz-Guilera, Eur. Phys. J. B 85,
231 (2012).

[25] D. Witthaut and M. Timme, New J. Phys. 14, 083036 (2012).

[26] P.J. Menck, J. Heitzig, N. Marwan, and J. Kurths, Nat. Phys. 9,
89 (2013).

[27] F. Hellmann, P. Schultz, C. Grabow, J. Heitzig, and J. Kurths,
Sci. Rep. 6, 29654 (2016).

[28] H. Kim, S. H. Lee, and P. Holme, New J. Phys. 17, 113005
(2015).

[29] L. V. Gambuzza, A. Buscarino, L. Fortuna, M. Porfiri, and M.
Frasca, IEEE J. Emerg. Select. Top. Circ. Syst. 7, 413 (2017).

[30] F. Dorfler, M. Chertkov, and F. Bullo, Proc. Natl. Acad. Sci.
USA 110, 2005 (2013).

[31] J. Grzybowski, E. Macau, and T. Yoneyama, Chaos 26, 113113
(2016).

[32] N. Maizi, V. Krakowski, E. Assoumou, V. Mazauric, and X.
Li, in Proceedings of the 2016 IEEE Conference on Smart
Energy Grid Engineering (SEGE’16) (IEEE, sLos Alamitos,
CA, 2016), pp. 106-110.

[33] D. Manik, M. Rohden, X. Zhang, S. Hallerberg, D. Witthaut,
and M. Timme, Phys. Rev. E 95, 012319 (2017).

[34] R. S. Pinto and A. Saa, Physica A 463, 77 (2016).

[35] M. Rohden, D. Witthaut, M. Timme, and H. Meyer-Ortmanns,
New J. Phys. 19, 013002 (2017).

[36] D. Witthaut, M. Rohden, X. Zhang, S. Hallerberg, and M.
Timme, Phys. Rev. Lett. 116, 138701 (2016).

[37] H.-A. Tanaka, A. J. Lichtenberg, and S. Oishi, Phys. Rev. Lett.
78,2104 (1997).

[38] H.-A. Tanaka, A. J. Lichtenberg, and S. Oishi, Phys. D 100, 279
(1997).

[39] J. Barre and D. Métivier, Phys. Rev. Lett. 117, 214102
(2016).

[40] S. H. Strogatz, Nonlinear Dynamics and Chaos: With
Applications to Physics, Biology, Chemistry, and Engineering
(Westview Press, Boulder, CO, 2014).

[41] J. Guckenheimer and P. J. Holmes, Nonlinear Oscillations,
Dynamical Systems, and Bifurcations of Vector Fields (Springer
Science & Business Media, Berlin, 2013), Vol. 42.

042201-12


https://doi.org/10.1016/0022-5193(67)90051-3
https://doi.org/10.1016/0022-5193(67)90051-3
https://doi.org/10.1016/0022-5193(67)90051-3
https://doi.org/10.1016/0022-5193(67)90051-3
https://doi.org/10.1007/BF01009349
https://doi.org/10.1007/BF01009349
https://doi.org/10.1007/BF01009349
https://doi.org/10.1007/BF01009349
https://doi.org/10.1016/j.physrep.2015.10.008
https://doi.org/10.1016/j.physrep.2015.10.008
https://doi.org/10.1016/j.physrep.2015.10.008
https://doi.org/10.1016/j.physrep.2015.10.008
https://doi.org/10.1143/PTP.76.576
https://doi.org/10.1143/PTP.76.576
https://doi.org/10.1143/PTP.76.576
https://doi.org/10.1143/PTP.76.576
https://doi.org/10.1063/1.2930766
https://doi.org/10.1063/1.2930766
https://doi.org/10.1063/1.2930766
https://doi.org/10.1063/1.2930766
https://doi.org/10.1016/j.physd.2011.01.002
https://doi.org/10.1016/j.physd.2011.01.002
https://doi.org/10.1016/j.physd.2011.01.002
https://doi.org/10.1016/j.physd.2011.01.002
https://doi.org/10.1063/1.3247089
https://doi.org/10.1063/1.3247089
https://doi.org/10.1063/1.3247089
https://doi.org/10.1063/1.3247089
https://doi.org/10.1007/BF01029202
https://doi.org/10.1007/BF01029202
https://doi.org/10.1007/BF01029202
https://doi.org/10.1007/BF01029202
https://doi.org/10.1007/BF02188217
https://doi.org/10.1007/BF02188217
https://doi.org/10.1007/BF02188217
https://doi.org/10.1007/BF02188217
https://doi.org/10.1017/etds.2013.68
https://doi.org/10.1017/etds.2013.68
https://doi.org/10.1017/etds.2013.68
https://doi.org/10.1017/etds.2013.68
https://doi.org/10.1016/S0167-2789(00)00094-4
https://doi.org/10.1016/S0167-2789(00)00094-4
https://doi.org/10.1016/S0167-2789(00)00094-4
https://doi.org/10.1016/S0167-2789(00)00094-4
https://doi.org/10.1103/RevModPhys.77.137
https://doi.org/10.1103/RevModPhys.77.137
https://doi.org/10.1103/RevModPhys.77.137
https://doi.org/10.1103/RevModPhys.77.137
https://doi.org/10.1016/j.physrep.2008.09.002
https://doi.org/10.1016/j.physrep.2008.09.002
https://doi.org/10.1016/j.physrep.2008.09.002
https://doi.org/10.1016/j.physrep.2008.09.002
https://doi.org/10.1007/BF00164052
https://doi.org/10.1007/BF00164052
https://doi.org/10.1007/BF00164052
https://doi.org/10.1007/BF00164052
https://doi.org/10.1090/qam/484023
https://doi.org/10.1090/qam/484023
https://doi.org/10.1090/qam/484023
https://doi.org/10.1090/qam/484023
https://doi.org/10.1016/0167-2789(94)90196-1
https://doi.org/10.1016/0167-2789(94)90196-1
https://doi.org/10.1016/0167-2789(94)90196-1
https://doi.org/10.1016/0167-2789(94)90196-1
https://doi.org/10.1103/PhysRevE.71.016215
https://doi.org/10.1103/PhysRevE.71.016215
https://doi.org/10.1103/PhysRevE.71.016215
https://doi.org/10.1103/PhysRevE.71.016215
https://doi.org/10.1143/PTPS.194.111
https://doi.org/10.1143/PTPS.194.111
https://doi.org/10.1143/PTPS.194.111
https://doi.org/10.1143/PTPS.194.111
https://doi.org/10.1016/j.neucom.2011.08.006
https://doi.org/10.1016/j.neucom.2011.08.006
https://doi.org/10.1016/j.neucom.2011.08.006
https://doi.org/10.1016/j.neucom.2011.08.006
https://doi.org/10.1140/epjb/e2008-00098-8
https://doi.org/10.1140/epjb/e2008-00098-8
https://doi.org/10.1140/epjb/e2008-00098-8
https://doi.org/10.1140/epjb/e2008-00098-8
https://doi.org/10.1103/PhysRevLett.109.064101
https://doi.org/10.1103/PhysRevLett.109.064101
https://doi.org/10.1103/PhysRevLett.109.064101
https://doi.org/10.1103/PhysRevLett.109.064101
https://doi.org/10.1063/1.4865895
https://doi.org/10.1063/1.4865895
https://doi.org/10.1063/1.4865895
https://doi.org/10.1063/1.4865895
https://doi.org/10.1140/epjb/e2012-30209-9
https://doi.org/10.1140/epjb/e2012-30209-9
https://doi.org/10.1140/epjb/e2012-30209-9
https://doi.org/10.1140/epjb/e2012-30209-9
https://doi.org/10.1088/1367-2630/14/8/083036
https://doi.org/10.1088/1367-2630/14/8/083036
https://doi.org/10.1088/1367-2630/14/8/083036
https://doi.org/10.1088/1367-2630/14/8/083036
https://doi.org/10.1038/nphys2516
https://doi.org/10.1038/nphys2516
https://doi.org/10.1038/nphys2516
https://doi.org/10.1038/nphys2516
https://doi.org/10.1038/srep29654
https://doi.org/10.1038/srep29654
https://doi.org/10.1038/srep29654
https://doi.org/10.1038/srep29654
https://doi.org/10.1088/1367-2630/17/11/113005
https://doi.org/10.1088/1367-2630/17/11/113005
https://doi.org/10.1088/1367-2630/17/11/113005
https://doi.org/10.1088/1367-2630/17/11/113005
https://doi.org/10.1109/JETCAS.2017.2649598
https://doi.org/10.1109/JETCAS.2017.2649598
https://doi.org/10.1109/JETCAS.2017.2649598
https://doi.org/10.1109/JETCAS.2017.2649598
https://doi.org/10.1073/pnas.1212134110
https://doi.org/10.1073/pnas.1212134110
https://doi.org/10.1073/pnas.1212134110
https://doi.org/10.1073/pnas.1212134110
https://doi.org/10.1063/1.4967850
https://doi.org/10.1063/1.4967850
https://doi.org/10.1063/1.4967850
https://doi.org/10.1063/1.4967850
https://doi.org/10.1103/PhysRevE.95.012319
https://doi.org/10.1103/PhysRevE.95.012319
https://doi.org/10.1103/PhysRevE.95.012319
https://doi.org/10.1103/PhysRevE.95.012319
https://doi.org/10.1016/j.physa.2016.07.009
https://doi.org/10.1016/j.physa.2016.07.009
https://doi.org/10.1016/j.physa.2016.07.009
https://doi.org/10.1016/j.physa.2016.07.009
https://doi.org/10.1088/1367-2630/aa5597
https://doi.org/10.1088/1367-2630/aa5597
https://doi.org/10.1088/1367-2630/aa5597
https://doi.org/10.1088/1367-2630/aa5597
https://doi.org/10.1103/PhysRevLett.116.138701
https://doi.org/10.1103/PhysRevLett.116.138701
https://doi.org/10.1103/PhysRevLett.116.138701
https://doi.org/10.1103/PhysRevLett.116.138701
https://doi.org/10.1103/PhysRevLett.78.2104
https://doi.org/10.1103/PhysRevLett.78.2104
https://doi.org/10.1103/PhysRevLett.78.2104
https://doi.org/10.1103/PhysRevLett.78.2104
https://doi.org/10.1016/S0167-2789(96)00193-5
https://doi.org/10.1016/S0167-2789(96)00193-5
https://doi.org/10.1016/S0167-2789(96)00193-5
https://doi.org/10.1016/S0167-2789(96)00193-5
https://doi.org/10.1103/PhysRevLett.117.214102
https://doi.org/10.1103/PhysRevLett.117.214102
https://doi.org/10.1103/PhysRevLett.117.214102
https://doi.org/10.1103/PhysRevLett.117.214102

SELF-CONSISTENT METHOD AND STEADY STATES OF ...

PHYSICAL REVIEW E 98, 042201 (2018)

[42] H. Risken, in The Fokker-Planck Equation (Springer, Berlin,
1996), pp. 63-95.

[43] I. V. Belykh, B. N. Brister, and V. N. Belykh, Chaos 26, 094822
(2016).

[44] In Eq. (A.3) of Ref. [38] the values of cosC and sinC have
been interchanged leading to an incorrect estimation of the
time-average of cosf along the limit cycle. In particular, the
expression %fA3 in Eq. (33) of Ref. [38] should have been
%i"Az which, in our notation, corresponds to Eq. (15) in the
present paper.

[45] E. Omel’chenko and M. Wolfrum, Phys. D 263, 74
(2013).

[46] D. Manik, M. Timme, and D. Witthaut, Chaos 27, 083123
(2017).

[47] Y. Zou, T. Pereira, M. Small, Z. Liu, and J. Kurths, Phys. Rev.
Lett. 112, 114102 (2014).

[48] S. Olmi, A. Navas, S. Boccaletti, and A. Torcini, Phys. Rev. E
90, 042905 (2014).

[49] M. Schroder, M. Timme, and D. Witthaut, Chaos 27, 073119
(2017).

042201-13


https://doi.org/10.1063/1.4961435
https://doi.org/10.1063/1.4961435
https://doi.org/10.1063/1.4961435
https://doi.org/10.1063/1.4961435
https://doi.org/10.1016/j.physd.2013.08.004
https://doi.org/10.1016/j.physd.2013.08.004
https://doi.org/10.1016/j.physd.2013.08.004
https://doi.org/10.1016/j.physd.2013.08.004
https://doi.org/10.1063/1.4994177
https://doi.org/10.1063/1.4994177
https://doi.org/10.1063/1.4994177
https://doi.org/10.1063/1.4994177
https://doi.org/10.1103/PhysRevLett.112.114102
https://doi.org/10.1103/PhysRevLett.112.114102
https://doi.org/10.1103/PhysRevLett.112.114102
https://doi.org/10.1103/PhysRevLett.112.114102
https://doi.org/10.1103/PhysRevE.90.042905
https://doi.org/10.1103/PhysRevE.90.042905
https://doi.org/10.1103/PhysRevE.90.042905
https://doi.org/10.1103/PhysRevE.90.042905
https://doi.org/10.1063/1.4995963
https://doi.org/10.1063/1.4995963
https://doi.org/10.1063/1.4995963
https://doi.org/10.1063/1.4995963



