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a b s t r a c t

We consider integrable Hamiltonian systems in three degrees of freedom near an elliptic
equilibrium in 1:1:−2 resonance. The integrability originates from averaging along the
periodic motion of the quadratic part and an imposed rotational symmetry about the
vertical axis. Introducing a detuning parameter we find a rich bifurcation diagram,
containing three parabolas of Hamiltonian Hopf bifurcations that join at the origin. We
describe the monodromy of the resulting ramified 3-torus bundle as variation of the
detuning parameter lets the system pass through 1:1:−2 resonance.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Let Hγ be a family of Hamiltonian systems in three degrees of freedom depending on parameters γ ∈ Rk and defined
on R6 with canonical co-ordinates xi, yi, i = 1, 2, 3. We are interested in the dynamics near the elliptic equilibria, which
are isolated for fixed γ . Moving the equilibrium to the origin we expand

Hγ (x, y) = α1(γ )I1 + α2(γ )I2 + α3(γ )I3 + h.o.t. (1)

where Ii =
1
2 (y

2
i + x2i ), i = 1, 2, 3. The dynamical behaviour near the origin now depends on number-theoretic properties

of the frequencies αi = αi(γ ). In the non-resonant case, where there are no integer relations

k1α1 + k2α2 + k3α3 = 0 (2)

among the frequencies, the normal form truncated at order 4 reads as

H(I) =

3∑
i=1

αiIi +

3∑
i,j=1

αijIiIj , (3)

see [2,23] and references therein, and generically satisfies Kolmogorov’s non-degeneracy condition

det(αij)ij ̸= 0 .

The integrable Hamiltonian function (3) defines a ramified torus bundle with regular fibres T3, singular fibres T2

parametrised by the planes Ii = 0, i = 1, 2, 3, periodic orbits (the normal modes, also singular fibres of the ramified torus
bundle) parametrised by the Ii-axes and the equilibrium (giving the most singular fibre of the ramified torus bundle) at
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the origin I1 = I2 = I3 = 0; all this is also valid in the indefinite case (where the frequencies αi do not all have the
same sign). Kolmogorov’s non-degeneracy condition allows to apply kam theory [2] whence the original Hamiltonian (1)
defines a Cantorised ramified torus bundle, with fibres Tn, n = 2, 3 parametrised by Cantor sets — obtained from their
smooth counterparts above by strong non-resonance conditions (e.g. Diophantine conditions) on the internal frequencies
of the tori.

This description of the local dynamics of (1) remains correct in case of resonances if these are of order |k| :=

|k1|+|k2|+|k3| ≥ 5 since then the normal form truncated at order 4 is still given by (3). Thus, for an open and dense subset
of parameters γ a substantial part of the dynamics near the origin is rather transparent. The elliptic equilibrium has three
normal modes and the majority of bounded trajectories is quasi-periodic, with three Cantor sets of Hausdorff-dimension 2
organising the distribution of invariant tori. Note that in the positive definite case αi > 0, i = 1, 2, 3 (as well as in the
negative definite case) the equilibrium is stable in the sense of Lyapunov, while indefinite elliptic equilibria are expected
to be unstable due to Arnol’d diffusion.

In case of a single resonance (2) of order |k| ≤ 4 the normal form truncated at order 4 is still integrable but contains
extra ‘resonant terms’ of order |k|. The resulting ramified torus bundle and its Cantorised counterpart thus depend on
the resonance at hand. For instance, an indefinite elliptic equilibrium with resonance 2α1 + α2 = 0 may have (in three
degrees of freedom) only two normal modes, see [3,9]. Single resonances (2) among the normal frequencies αi = αi(γ )
define hypersurfaces in the parameter space and detuning the frequencies shows how to pass from one open region to a
neighbouring one.

In case of two independent resonances (2) the frequencies are integer multiples αi = niα, i = 1, 2, 3 (with
gcd(n1, n2, n3) = 1) of a basic frequency α ∈ R and one speaks of the n1:n2:n3 resonance

Osc(n1:n2:n3) : K = n1I1 + n2I2 + n3I3

(scaling time allows to achieve α = 1). In this paper we study the indefinite 1:1:−2 resonance where (1) reads as

Hγ (x, y) = (α + δ1(γ ))I1 + (α + δ2(γ ))I2 − (2α + δ3(γ ))I3 + h.o.t. (4)

with detuning δ = δ(γ ); for the moment we refrain from scaling time to achieve α = 1. Smooth changes of
parameters γ ↦→ δ(γ ) allow to skip the γ -dependence in (4) altogether and study Hδ instead. The Hamiltonians with
a 1:1:−2 resonant equilibrium at the origin are thus given by 2δ1 = 2δ2 = δ3.

Remark 1. We expect that the three ‘resonant terms’ of order 3 make the normal form truncated at order 3 non-
integrable, similar to the (definite) 1:1:2 resonance for which non-integrability has been proven in the absence of extra
symmetries [10]; see also [7] where the same result could be achieved for the 1:2:3 and 1:2:4 resonances.

To enforce integrability we impose an axial S1-symmetry of rotations about the x3-axis. From Noether’s theorem it
follows that the third component

N = x1y2 − x2y1

of the angular momentum is an integral of motion. For an axially symmetric detuning we have δ1 = δ2 =: δ and subsume
δ3 into 2α. Adding the axially symmetric detuning βN of the 1:1 subresonance the Hamiltonian (4) becomes

Hδ = αL + βN + δR + h.o.t. (5)

with

Osc(1:1:−2) : L = I1 + I2 − 2I3

and

Osc(1:1:0) : R = I1 + I2.

Let H denote the normal form of Hδ with respect to L truncated at order 4. The conserved quantity N is inherited by H
and the normalising procedure makes L an integral of motion as well. Since {N, L} = 0 the Hamiltonian H admits a
T2-symmetry and the energy–momentum mapping

EM := (N, L,H) : R6
−→ R3 (6)

turns R6 into a ramified torus bundle.

Remark 2. In the literature on integrable Hamiltonian systems, the diagram showing the set of regular and critical
values of the energy–momentum mapping EM and the type of the corresponding fibres of EM is sometimes called the
‘bifurcation diagram of EM’. In this work, to avoid confusion we use the term bifurcation diagram only to refer to the
set of (internal and external) parameter values for which the system undergoes a bifurcation and we use the term set of
critical values of EM to refer to that ‘bifurcation diagram of EM’.
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Fig. 1. The bifurcation diagram for a typical choice of normalised axially symmetric higher order terms in (5) showing two relevant phenomena:
the effect of detuning near the origin and the termination of unstable normal modes at supercritical Hamiltonian Hopf bifurcations. Solid lines stand
for quasi-periodic centre-saddle bifurcations while dashed lines stand for unstable periodic orbits which undergo Hamiltonian Hopf bifurcations
at the bullets — subcritical at a solid bullet • and supercritical at an open bullet ◦. The left figure is without detuning (δ = 0); here, the origin
(µ, ℓ) = (0, 0) stands for the 1:1:−2 resonant equilibrium and has three unstable normal modes. In the right figure δ ̸= 0 and the equilibrium has
three stable normal modes that then undergo subcritical Hamiltonian Hopf bifurcations to become unstable.

After reduction of the T2-symmetry the values µ of N and ℓ of L serve as (internal) parameters. The set of critical values
of the energy–momentum mapping (6) provides for a concise description of the dynamics defined by H . This set of critical
values is in turn determined by the bifurcation diagram (in the (µ, ℓ)-plane) of the reduced system. In Fig. 1 we give two
of the bifurcation diagrams we derive in Section 3 of the present paper. During the process it is instructive to include the
detuning δ as (external) parameter, even if one were only interested in the case δ = 0 of the 1:1:−2 resonance itself.

This paper is organised as follows. Before determining in Section 3 the general form of T2-symmetric higher order
terms of (5) we pass in Section 2 to rotated co-ordinates that better reveal that not only L and R but also N is a resonant
oscillator. Section 2 details the reduction of the T2-symmetry, i.e. the kinematics, while in Section 3 the one-degree-of-
freedom dynamics is used to construct the bifurcation diagram. The set of critical values and the resulting monodromy
(and their dependence on external parameters like δ) are discussed in Sections 4 and 5. The final Section 6 concludes the
paper, coming back to the relation between (5) and its normal form truncated at order 4.

2. Kinematics

The axial symmetry ensures that the Hamiltonian (5) admits the three normal modes

(x1(t), y1(t)) , x2 = −y1, y2 = x1, x3 = 0, y3 = 0
(x2(t), y2(t)) , x1 = −y2, y1 = x2, x3 = 0, y3 = 0
(x3(t), y3(t)) , x1 = 0, y1 = 0, x2 = 0, y2 = 0.

The term normal mode is often restricted to periodic orbits where the remaining co-ordinates rest at 0 as in the normal
3-mode, instead of performing an ‘enslaved’ oscillation as in the normal 1- and 2-modes. To achieve the former for all
normal modes we apply the orthogonal change of variables defined by⎛⎜⎝x1

x2
y1
y2

⎞⎟⎠ =
1

√
2

⎛⎜⎝1 0 0 −1
0 1 −1 0
0 1 1 0
1 0 0 1

⎞⎟⎠
⎛⎜⎝q1
q2
p1
p2

⎞⎟⎠ , x3 = q3, y3 = p3, (7)

which turns the symplectic structure dx ∧ dy into dq ∧ dp. The transformation (7) leaves the form of L and R invariant
while N = x1y2 − x2y1 is revealed to be the Hamiltonian

Osc(1:−1:0) : N =
p21 + q21

2
−

p22 + q22
2

(8)

of three coupled oscillators in 1:−1:0 resonance. An advantage of this point of view is that adding oscillators Osc(m1:m2:m3)
and Osc(n1:n2:n3) yields again an oscillator Osc(m1 + n1:m2 + n2:m3 + n3).
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Table 1
Non-trivial isotropy groups of the T2-action (14) and types of Φ-orbits.
Set Elements Isotropy subgroup Φ-orbit Dynamics

C123 z1 = z2 = z3 = 0 T2 Point Equilibrium
C12 z1 = z2 = 0 ̸= z3 {(s, t) | t = 0} ∼= T1 T1 Normal 3-mode
C13 z1 = z3 = 0 ̸= z2 {(s, t) | s = 0} ∼= T1 T1 Normal 2-mode
C23 z2 = z3 = 0 ̸= z1 {(s, t) | s + t = 0} ∼= T1 T1 Normal 1-mode

Remark 3. Adding the multiple β of N in (5) yielded a detuning of the 1:1 resonant oscillators in the subspace
(x3, y3) = (q3, p3) = 0 to frequencies α + β + δ and α − β + δ (next to −2α) without breaking the symmetry generated
by N . Note that adding a multiple β of

x21 + y21
2

−
x22 + y22

2
= −(q1p2 − q2p1)

or of

x1x2 + y1y2 = q1q2 + p1p2

would yield the same detuning, but at the price of breaking the symmetry generated by N . A general detuning of the
1:1 subresonance has indeed co-dimension three and would lead to all the phenomena detailed in [15] concerning higher
order terms in the normal form.

2.1. Isotropy

Let XG : Ḟ = {F ,G} denote the Hamiltonian vector field defined by a function G and ϕG
t the corresponding flow. Identify

R6 ∼= C3 by introducing complex co-ordinates zj = pj + iqj, j = 1, 2, 3. The flow ϕN
t of XN induces an S1-action on C3. For

treating monodromy later on we prefer to have integer periodicities, so let us define

T1
:= R/Z

(an S1 with radius 1
2π

) and use z = (z1, z2, z3) to write the T1-action induced by ϕN
t as

ϕN
: T1

× C3
−→ C3

(t, z) ↦→ ϕN
2π t (z) = (e2π itz1, e−2π itz2, z3)

. (10)

This action has trivial isotropy, except at z1 = z2 = 0 where the isotropy subgroup is T1. Similarly, the flow ϕL
t of XL

induces a T1-action on C3 given by

ϕL
: T1

× C3
−→ C3

(t, z) ↦→ ϕL
2π t (z) = (e2π itz1, e2π itz2, e−4π itz3)

. (11)

This action has non-trivial isotropies Z2 when z1 = z2 = 0 and T1 when z1 = z2 = z3 = 0. Combining the two commuting
T1-actions ϕN and ϕL one can define an action of T2

= T1
× T1 on C3 given by

T2
× C3

−→ C3

(s, t, z) ↦→ ϕL
2π t ◦ ϕN

2πs(z) = (e2π i(s+t)z1, e2π i(t−s)z2, e−4π itz3)
. (12)

A direct computation shows that the T2-action (12) is not effective as the element (s, t) = ( 12 ,
1
2 ) ∈ T2 acts as the identity

on all of C3.
We need a pair of generators of T1-actions for which the combined T2-action is effective and coincides with (12)

projected to T2/( 12 ,
1
2 ). Such a pair is given by N and J where the latter is defined as

Osc(1:0:−1) : J =
1
2
(N + L) . (13)

The flows ϕN
s and ϕJ

t on R6 combine to the effective T2-action

Φ : T2
× C3

−→ C3

(s, t, z) ↦→ (e2π i(s+t)z1, e−2π isz2, e−2π itz3)
(14)

with momentum mapping (N, J) : R6
−→ R2. Table 1 summarises the isotropies of Φ and the topological types of the

corresponding Φ-orbits.
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Table 2
The Poisson bracket relations among the basic invariants.
{↓,→} N L J R X Y

N 0 0 0 0 0 0
L 0 0 0 0 0 0
J 0 0 0 0 0 0
R 0 0 0 0 2Y −2X
X 0 0 0 −2Y 0 N2

+ 2LR − 3R2

Y 0 0 0 2X 3R2
− 2LR − N2 0

2.2. Reduction

The reduction of the T2-symmetry is best performed by using a Hilbert basis of the algebra of T2-invariant functions as
variables on the reduced phase space, see [8]. As proven in [18,24] this algebra is generated by T2-invariant polynomials.

Proposition 4. The algebra A of invariant polynomials of the action Φ in (14) is generated by the real polynomials N, J and
R together with X and Y defined by

X = Re(z1z2z3) = p1p2p3 − q1q2p3 − q1p2q3 − p1q2q3 ,
Y = Im(z1z2z3) = q1p2p3 + p1q2p3 + p1p2q3 − q1q2q3 .

These satisfy the syzygy

S(N, J, R, X, Y ) := X2
+ Y 2

− (R2
− N2)(R + N − 2J) = 0 , (15)

together with the inequality R ≥ Rmin := max(|N|, 2J − N) ≥ 0. These relations define a semi-algebraic variety in R5.

Note that (N, L) ↦→ (N, J) has the inverse L = 2J −N whence it is also possible to use the generators N, L, R, X, Y of A
which satisfy

S(N, L, R, X, Y ) = X2
+ Y 2

− (R2
− N2)(R − L) = 0 (16)

and R ≥ Rmin = max(|N|, L) ≥ 0. In what follows we switch between these two sets of generators of A depending on
which description is the most convenient.

For the Poisson structure we only need the Poisson bracket relations given in Table 2. As expected, the symmetry
generators N , L and J are Casimir functions and fixing their values to 2ι = µ + ℓ, where ι denotes the value of J , yields
the semi-algebraic surface

Pµℓ =

{
(R, X, Y ) ∈ R3

⏐⏐⏐⏐ R ≥ Rmin, Sµℓ(R, X, Y ) = 0
}
, (17)

with Poisson structure

{f , g} = ⟨∇f × ∇g | ∇Sµℓ⟩ ,

where

Sµℓ(R, X, Y ) = X2
+ Y 2

− (R2
− µ2)(R − ℓ) .

Any smooth (resp. polynomial) Hamiltonian function H on R6 that is invariant under the T2-action Φ can be expressed
as a smooth (resp. polynomial) function of the generators of A, see [18,24]. Alternatively, H gives rise to a function Hµℓ
on the reduced phase space Pµℓ.

The semi-algebraic variety Pµℓ is a surface of revolution about the R-axis. The type of singularities of Pµℓ is given by
the following result and the different possibilities are depicted in Fig. 2.

Proposition 5. The semi-algebraic variety Pµℓ given by (17) is smooth everywhere except possibly at its ‘tip’ point (R, X, Y ) =

(Rmin, 0, 0). The latter point is a cusp (or cuspidal singularity of order 3) when µ = ℓ = 0; a cone (or conical singularity) when
ℓ = |µ| > 0 or µ = 0, ℓ < 0; and smooth in all other cases.

Proof. Since the semi-algebraic variety Pµℓ is a surface of revolution it is sufficient to consider its section with the plane
{Y = 0}. Then we have

X2
= (R2

− µ2)(R − ℓ) , R ≥ Rmin = max(|µ|, ℓ) ≥ 0 .

Let a1 ≥ a2 ≥ a3 denote the ordered values in the set {µ,−µ, ℓ} and write

X2
= (R − a1)(R − a2)(R − a3) , R ≥ Rmin = a1 ≥ 0 . (18)
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Fig. 2. The types of the singularities of the reduced spaces Pµℓ (which are surfaces of revolution about the R-axis). From left to right: smooth,
conical and cuspidal.

The type of singularity at R = a1 of X2
= f (R) with f (a1) = 0 is determined by the lowest order term in the Taylor

expansion of f (R) at R = a1. In particular, writing X2
= c(R− a1)k + h.o.t . we have a smooth curve when k = 1, a conical

singularity when k = 2, and a cuspidal singularity when k ≥ 3. Expand (18) in the form

X2
= [(a1 − a2)(a1 − a3)] (R − a1) + [2a1 − a2 − a3] (R − a1)2 + (R − a1)3 .

The last expression shows that we have a cusp when a1 = a2 = a3 implying µ = ℓ = 0. We have a cone when
a1 = a2 > a3 and one can check that this gives the cases ℓ = |µ| > 0 and µ = 0, ℓ < 0. The other cases lead to a smooth
point. □

In particular, there are three open regions in the (µ, ℓ)-plane, each region being characterised by the (positive) value
of Rmin, that is,

Rmin = µ > max(−µ, ℓ) or Rmin = −µ > max(µ, ℓ) or Rmin = ℓ > |µ| .

The three regions are separated by three half lines satisfying µ = ±ℓ or µ = 0. Along these lines the tip is a cone while at
µ = ℓ = 0 the tip is a cusp. The three half lines and their common limit point parametrising singular tips are the images
under the momentum mapping (N, L) of the sets C23, C13, C12, C123 in Table 1 with non-trivial isotropies T1 and T2 of the
action Φ . After reconstruction to three degrees of freedom these are the elliptic equilibrium at the origin and its three
normal modes.

3. Dynamics

The most general T2-symmetric higher order terms in (5) are functions of N , L, R, X and Y . As in (3) we normalise to
order 4 in the original variables. Then X and Y appear only linearly and a rotation in the (X, Y )-plane removes the Y -term,
whence

HδN,L(R, X, Y ) = αL + βN + δR + X +
κ

2
R2

+ (λ1N + λ2L)R +
γ1

2
N2

+ γ2NL +
γ3

2
L2

(19)

is the most general choice in orders 3 and 4. The coefficient 1 of X can be obtained scaling time or space. Fixing the values
N = µ and L = ℓ of the Casimirs we omit the constant part αℓ+ βµ+

1
2γ1µ

2
+ γ2µℓ+

1
2γ3ℓ

2 and abbreviate

λ := δ + λ1µ + λ2ℓ (20)

to obtain the reduced Hamiltonian

Hλ(R, X, Y ) = X + λR +
κ

2
R2 , (21)

whose energy level sets are the parabolic cylinders

H−1
λ (h) =

{
(R, X, Y ) ∈ R3

⏐⏐⏐⏐ Hλ(R, X, Y ) = h
}
.

The intersections of these with the reduced phase space Pµℓ ⊆ R3 yield the orbits of Hλ. The values µ and ℓ of the
Casimirs serve as internal (or distinguished) parameters. We have equilibria where the two surfaces touch and where
H−1
λ (h) contains a singular point of Pµℓ. We fix κ ̸= 0 and only vary λ as an external parameter.
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Remark 6. The coefficient κ ̸= 0 in (19) could be chosen as κ = 1 through the combined scaling

(λ,µ, ℓ, R, X, Y ,H) ↦→ (κ−1λ, κ−2µ, κ−2ℓ, κ−2R, κ−3X, κ−3Y , κ−3H) (22)

of space and time (which leaves the coefficient of X equal to 1). However, the dynamical consequence is that the basic
frequency (or common multiple) of the unperturbed 1:1:−2 resonant oscillator, the coefficient α of L in (19), gets scaled
to κα and can no longer be scaled to 1. We therefore refrain from scaling the coefficient of R in (19) to 1

2 until (46) in
Section 4. Note that for negative κ the scaling (22) involves a reflection (combined with a scaling) of the parameter λ and
the quantities X , Y and H .

Our aim here is to determine the bifurcation diagram for the Hamiltonian Hλ in the parameter space (δ, µ, ℓ). The
coefficients λ1 and λ2 are fixed at rather small values while the detuning δ (and hence λ) is allowed to vary. For fixed
values of λ1 and λ2, equation (20) defines a diffeomorphism between (λ,µ, ℓ)-space and (δ, µ, ℓ)-space, allowing direct
translation of our findings between these two parameter spaces.

3.1. Regular equilibria and their bifurcations

Regular equilibria occur at smooth points of Pµℓ touching the parabolic cylinders H−1
λ (h). They correspond to invariant

2-tori in three degrees of freedom and their bifurcations are triggered by two of these equilibria, or (all) three, meeting.
All tangent planes of the parabolic cylinder H−1

λ (h) are parallel to the Y -axis while a tangent plane of the surface of
revolution Pµℓ can be parallel to the Y -axis only at points (R, X, Y ) with Y = 0. Thus, the two surfaces can only touch at
points in the (Y=0)-plane and for this it is necessary and sufficient that the parabola

H−1
λ (h) ∩ {Y = 0} : X = X1(R) = h − λR −

κ

2
R2 (23)

has the same derivative X ′
= X ′(R) as the variety

Pµℓ ∩ {Y = 0} : X2
= X2(R)2 = (R2

− µ2)(R − ℓ) , R ≥ Rmin (24)

where we choose

X2(R) =

√
(R2 − µ2)(R − ℓ)

as the ‘upper’ side. Note that the value h of the energy can always be adjusted to ensure that the two derivatives become
equal at a common point (R, X) if R ≥ Rmin. To compute the value of R we equate the slope

X ′

1 = −λ − κR (25)

of (23) with the slope of the variety (24). Adjusting h to actually have a common point of (23) and (24) we can use (the
square of)

2X2X ′

2 = 3R2
− 2ℓR − µ2 (26)

to obtain R = R(µ, ℓ; λ, κ) from

0 = (2X2X ′

1)
2

− (2X2X ′

2)
2

= 4(κR + λ)2(R − ℓ)(R2
− µ2) − (3R2

− 2ℓR − µ2)2 . (27)

An alternative method of obtaining equation (27) that gives the equilibria of the system is to search for double roots of the
polynomial F (R) = X2

1 (R)−X2
2 (R), cf. equation (33). The polynomial F (R) is used in Section 3.3 to compute the bifurcations

in the system, see Lemma 10.

Proposition 7. Equation (27) has at most three solutions in the interval [Rmin,∞[. There can be either one or three distinct
solutions and in both cases the number of elliptic equilibria (centres) exceeds the number of hyperbolic equilibria (saddles) by 1.

Proof. Let S(R) denote the fifth order polynomial in R appearing in (27). Consider the root R∗ =
1
3 (ℓ− (ℓ2 + 3µ2)1/2) of

the polynomial 3R2
− 2ℓR − µ2 in (26). Then one checks that R∗ ≤ Rmin and S(R∗) ≥ 0 while S(Rmin) ≤ 0. This implies

that S must have at least two real roots in ]−∞, Rmin[, so it can have either 1 or 3 distinct real roots in [Rmin,∞[.
Multiple roots are characterised by S ′(R) = 0 whence distinct roots have S ′(R) ̸= 0 corresponding to elliptic equilibria

if S ′(R) > 0 and to hyperbolic equilibria if S ′(R) < 0. The largest root of S(R) must have S ′(R) > 0 and is thus elliptic while
the two smaller ones (if they exist and are distinct) alternate between hyperbolic and elliptic. □

Remark 8. The regular equilibria (R, X, 0) of the reduced system yield invariant 2-tori in three degrees of freedom and
it depends on the ratio between the internal frequencies

∂H
∂N

= β − α + (γ1 − γ2)µ + (γ2 − γ3)ℓ + (λ1 − λ2)R (28a)
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Fig. 3. Bifurcation set for κ = 1. (a) Hamiltonian Hopf bifurcations (blue curves) and cusp bifurcations (red curves). (b) Centre-saddle bifurcations
are represented by the shown surfaces. The parts of the Hamiltonian Hopf bifurcation curves adjacent to centre-saddle bifurcations are subcritical
Hamiltonian Hopf. The non-adjacent parts are supercritical. The transition takes place at the degenerate Hamiltonian Hopf bifurcations where the
(red) cusp bifurcations emanate and the common point (λ,µ, ℓ) = (0, 0, 0) of the three blue curves corresponds to the central equilibrium in
1:1:−2 resonance. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

and
∂H
∂ J

= 2 (α + γ2µ + γ3ℓ + λ2R) (28b)

(defined by the normal form H = HδNJ obtained from (19) by replacing L ↦→ 2J −N) whether the resulting trajectories are
periodic or quasi-periodic.

For a centre and a saddle to meet and vanish in a centre-saddle bifurcation the parabola (23) has to touch the
variety (24) at an inflection point. This is decided by the derivative X ′′

1 = −κ of (25) and the derivative

X2X ′′

2 +
(
X ′

2

)2
= 3R − ℓ (29)

(of half) of (26). Equating the two derivatives or, equivalently, finding the triple roots of F (R) gives a polynomial expression
whose roots correspond to bifurcation points. In particular, we obtain the polynomial

0 = κ4R4
+ κ2(4λκ − 7)R3

+ 3(2λ2κ2
− 4λκ + κ2ℓ+ 3)R2

+ (4λ3κ − 6λ2 + κ2µ2
+ 4λκℓ− 6ℓ)R + λ4 − κ2µ2ℓ + 2λ2ℓ + ℓ2 .

(30)

Inserting the solutions R = R(µ, ℓ; λ, κ) ≥ Rmin into (27) leads to three surfaces λ = λ(µ, ℓ) of centre-saddle bifurcations
CSk, k = 1, 2, 3 in parameter space (recall that we consider κ to be fixed).

This computation is done in Section 3.3 by finding the triple roots of the polynomial F (R) in (33), see Lemma 10. Two
surfaces parametrising centre-saddle bifurcations emanate from each of the three curves of subcritical Hamiltonian Hopf
bifurcations HH−

k , k = 1, 2, 3 discussed in Section 3.2, see Fig. 3. In particular, the surface CS1 extends between HH−

2
and HH−

3 , the surface CS2 extends between HH−

1 and HH−

3 and the surface CS3 extends between HH−

1 and HH−

2 . Each
surface CSk, k = 1, 2, 3 furthermore extends until a curve segment CBk parametrising cusp bifurcations. A fourth surface
CS4 of centre-saddle bifurcations has as boundary the union of the segments CBk, k = 1, 2, 3.

The non-degeneracy condition of a centre-saddle bifurcation requires that the derivative of (29) yields X ′′′

2 ̸= 0 (since
the parabola (23) has zero third derivative). Looking for X ′′′

2 = 0 we find κ(λ+ κR) = 1. The resulting

R =
1
κ2 −

λ

κ
(31)

yields at the singular points R = 0 and R = ℓ = |µ| degenerate Hamiltonian Hopf bifurcations, see Sections 3.2 and 3.4. The
theory in [19] predicts that two curves of cusp bifurcations emanate from each degenerate Hamiltonian Hopf bifurcation.
The three degenerate Hamiltonian Hopf bifurcations form the vertices of a curvilinear triangle with the families CBk,
k = 1, 2, 3, forming the corresponding edges. The cusp bifurcations are non-degenerate. Indeed, X ′′′

2 = 0 turns the second
derivative of (29) into X2X

(4)
2 + 3(X ′′

2 )
2

= 0 whence identifying X ′′

2 with X ′′

1 ≡ −κ yields

X (4)
2 =

−3κ2

X2
̸= 0
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and the sign – positive on the lower arc and negative on the upper arc, i.e. the same sign as the second derivative of Pµℓ
with respect to Y – shows that this is the case of a cusp bifurcation governed by the singularity A+

3 , see [14]. Note that the
surfaces defined by R ≥ Rmin, (27), (30) and the exclusion of the cusp lines indeed parametrise centre-saddle bifurcations
since the latter are given by exactly those parameter values where the non-degeneracy condition is not satisfied.

3.2. Hamiltonian Hopf bifurcations

A singular point (Rmin, 0, 0) of Pµℓ (cone or cusp) is always an equilibrium. We get bifurcations when H−1
λ (h∗), the

parabolic surface given by

X = h∗
− λR −

κ

2
R2 (32)

(with h∗
= λRmin +

1
2κR

2
min = λℓ+

1
2κℓ

2 for Rmin = ℓ = ±µ and h∗
= 0 for Rmin = 0), touches Pµℓ at the singular point,

entering the singular point with a tangent line that coincides with that of the cone of Pµℓ (for the cusp this happens
only when λ = µ = ℓ = 0, i.e. at the 1:1:−2 resonant equilibrium). Since the isotropy groups T1 are not discrete we
expect these bifurcations to be Hamiltonian Hopf bifurcations. The type of intersection of H−1

λ (h∗), given by (32), with
Pµℓ separates stable equilibria (Rmin, 0, 0) on Pµℓ, where H−1

λ (h∗) stays outside of Pµℓ, from unstable equilibria, for which
the intersection of H−1

λ (h∗) with Pµℓ yields their stable=unstable manifolds in Pµℓ. In three degrees of freedom these
correspond to elliptic and hyperbolic periodic orbits; using the canonical equations of motion we immediately see that
these Φ–orbits T1 indeed do not consist of equilibria (they form the three normal modes).

Correspondingly, for the supercritical type of the Hamiltonian Hopf bifurcation the touching parabolic surface H−1
λ (h∗)

stays outside of Pµℓ at the bifurcation parameter (and the bifurcating equilibrium is dynamically stable), while for
the subcritical type H−1

λ (h∗) yields the stable=unstable manifold of the bifurcating equilibrium (which is therefore
dynamically unstable). The unstable periodic orbits resulting from the Hamiltonian Hopf bifurcations largely determine
the monodromy of the system, discussed in Section 5.

Remark 9. Reducing only the T1-action (11) turns the normal modes into regular equilibria in two degrees of freedom
that undergo Hamiltonian Hopf bifurcations. The Krein collision that triggers a Hamiltonian Hopf bifurcation and all other
criteria [16] can be checked in one degree of freedom, but that the Krein collision does not occur at frequency 0 can
only be verified in two degrees of freedom. However, the latter is merely needed for an approximate T1-symmetry that
allows to reduce to one degree of freedom (after an additional normalisation) and in the present situation we already have
imposed the T1-symmetry (10) as an exact symmetry. The whole bifurcation analysis thus takes place in one degree of
freedom. Note that without imposing the T1-symmetry generated by N we would even have to check that a normal mode
undergoing a Hamiltonian Hopf bifurcation does not have its internal frequency, the period, in (low order) normal-internal
resonance with the normal frequencies at the Krein collision.

The analysis in Section 3.3 shows that there are three 1-parameter families of subcritical Hamiltonian Hopf bifurcations
HH−

k , k = 1, 2, 3 that join with three 1-parameter families of supercritical Hamiltonian Hopf bifurcations HH+

k , k = 1, 2, 3;
see Fig. 3. Their parametrisation is given in Proposition 11. As discussed in Section 3.1 there are two families of centre-
saddle bifurcations emanating from each family of subcritical Hamiltonian Hopf bifurcations; the families of supercritical
Hamiltonian Hopf bifurcations are isolated and meet the corresponding subcritical ones at three degenerate Hamiltonian
Hopf bifurcations.

3.3. Bifurcation diagram for κ ̸= 0

In this section we give a complete parametrisation of the bifurcation diagram (shown in Fig. 3) of the system passing
through a 1:1:−2 resonance. As announced after having obtained equation (27) we consider the polynomial function

F (R) = X2
1 (R) − X2

2 (R) =

(
h − λR −

κ

2
R2
)2

− (R2
− µ2)(R − ℓ) . (33)

Recall that X1(R) represents the energy level set H−1
λ (h), see (23), while X2(R) and −X2(R) represent the upper and lower

sides of Pµℓ ∩ {Y = 0} respectively, see (24). Then we have the following characterisation of the bifurcation set of the
reduced Hamiltonian (21), which allows for a complete and uniform approach to parametrising the bifurcation set.

Lemma 10. The set of parameter values (h, λ, κ, µ, ℓ) for which (33) has a triple root R = a (that is, F (a) = F ′(a) =

F ′′(a) = 0) with a ≥ Rmin = max(|µ|, ℓ), describes the set of centre-saddle and Hamiltonian Hopf bifurcations. In particular,
supercritical Hamiltonian Hopf bifurcations are characterised by a = Rmin with F ′′′(a) > 0 and subcritical Hamiltonian Hopf
bifurcations by a = Rmin with F ′′′(a) < 0, while centre-saddle bifurcations are characterised by a > Rmin with F ′′′(a) ̸= 0.
Quadruple roots R = a > Rmin, that is, moreover F ′′′(a) = 0 but F (4)(a) ̸= 0, correspond to cusp bifurcations and quadruple
roots R = a = Rmin correspond to degenerate Hamiltonian Hopf bifurcations.
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Proof. Suppose that R = a is a triple root of F (R). The relation F (a) = 0 gives X1(a) = ±X2(a). The ‘+ ’ sign corresponds
to a common point of the energy level set with the upper side of Pµℓ ∩ {Y = 0}, the ‘−’ sign with the lower side.

Subsequently F ′(a) = 0 gives X1(a)X ′

1(a) = X2(a)X ′

2(a). If X1(a) = X2(a) = 0 then the previous equation is satisfied.
If X1(a) = ±X2(a) ̸= 0 then X ′

1(a) = ±X ′

2(a), implying that the energy level set touches the corresponding side of
Pµℓ ∩ {Y = 0}. Since we consider a triple root a of F the last implication X ′

1(a) = ±X ′

2(a) also follows if X1(a) = X2(a) = 0
since F ′′(a) = 0 gives

(X ′

1)
2(a) − (X ′

2)
2(a) + X1(a)X ′′

1 (a) − X2(a)X ′′

2 (a) = 0 . (34)

As X2(a) = 0 implies a = Rmin the energy level set not only touches Pµℓ ∩ {Y = 0} at the point (Rmin, 0) in this case, but
furthermore the latter is singular, since for non-singular points we have X ′

2(Rmin) = ∞. Dynamically this corresponds to
a Hamiltonian Hopf bifurcation. Finally

F ′′′(R) = 2X1(R)X ′′′

1 (R) + 6X ′

1(R)X
′′

1 (R) − 2X2(R)X ′′′

2 (R) − 6X ′

2(R)X
′′

2 (R)

and for a = Rmin we get

F ′′′(Rmin) = 6X ′

1(Rmin)X ′′

1 (Rmin) − 6X ′

2(Rmin)X ′′

2 (Rmin) .

If the Hamiltonian Hopf bifurcation takes place by a tangency at the upper side, then we find that F ′′′(Rmin) > 0 implies
X ′′

1 > X ′′

2 so the level set H−1
λ (h) touches from outside and we have a supercritical Hamiltonian Hopf bifurcation. If the

tangency is with the lower side, then X ′′

1 < −X ′′

2 so the level set H−1
λ (h) touches from outside and we again have a

supercritical Hamiltonian Hopf bifurcation. Correspondingly, when F ′′′(Rmin) < 0 the level set H−1
λ (h) touches from inside

and the Hamiltonian Hopf bifurcation is subcritical. In between, when F ′′′(Rmin) = 0 (while F (4)(Rmin) ̸= 0) we have a
degenerate Hamiltonian Hopf bifurcation (for more details on this see Section 3.4).

If X1(a) = ±X2(a) ̸= 0 then, as we have earlier seen, we also have X ′

1(a) = ±X ′

2(a), therefore from (34) we find
X ′′

1 (a) = ±X ′′

2 (a). These conditions determine an inflection point between the two curves and therefore a centre-saddle
bifurcation provided that X ′′′

1 (a) ̸= ±X ′′′

2 (a). If the last non-degeneracy condition is not satisfied then we have a cusp
bifurcation. This corresponds to F ′′′(a) = 0 (in addition to F (a) = F ′(a) = F ′′(a) = 0) and F (4)

= 6κ2
̸= 0. □

Given Lemma 10 we can compute the bifurcation diagram of the system by finding the triple roots of F that lie in
[Rmin,∞[.

Proposition 11. The bifurcation diagram for κ = 1 consists of the 2-parameter families of centre-saddle bifurcations, the
1-parameter families of (non-degenerate) Hamiltonian Hopf and cusp bifurcations and the three degenerate Hamiltonian Hopf
bifurcations given in Table 3.

The proof of Proposition 11 is given in the Appendix, except for the degenerate Hamiltonian Hopf bifurcation which
we treat in Section 3.4. The bifurcation set presented in Table 3 includes the centre-saddle and cusp bifurcations discussed
in Section 3.1 and the Hamiltonian Hopf bifurcations discussed in Section 3.2. The bifurcation set in three-dimensional
space (λ,µ, ℓ) is shown for κ = 1 in Fig. 3. Successive horizontal sections of constant ℓ are shown in Fig. 4. Recall that
for κ ̸= 0 we can scale invariants and parameters to obtain a system with κ = 1 and therefore the bifurcation diagram
for any κ ̸= 0 can be obtained by inverting the scaling.

3.4. The degenerate Hamiltonian Hopf bifurcation

Abbreviating

T = x1y2 − x2y1 (35a)

U =
x21 + x22

2
(35b)

V =
y21 + y22

2
(35c)

W = x1y1 + x2y2 (35d)

for a Hamiltonian system in two degrees of freedom, the standard form of the (non-degenerate) Hamiltonian Hopf
bifurcation reads as

Hν = T + U + νV + aV 2 . (36)

The non-degeneracy condition is a ̸= 0 and the sign of a distinguishes between the supercritical case a > 0 and the
subcritical case a < 0 ; see [20] for a proof. In the degenerate case a = 0 terms of order higher than four (in the original
variables x, y) become important, see [4,5,19]. Indeed, if the coefficient b of V 3 is non-zero, then a C∞-versal unfolding is
given by

Hν = T + U + ν1V +
ν2

2
V 2

+ ν3TV + bV 3 . (37)
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Table 3
Bifurcations for the 1:1:−2 resonant system in the case κ = 1. The quantities µ± = µ±(a, λ) and ℓ± = ℓ±(a, λ) are given in the (50) in Appendix,
while a0(λ) is the unique non-negative root of the cubic polynomial g(a) given in (56).
Type Parametrisation of (λ,µ, ℓ) Parameter ranges Remarks

Centre-Saddle

CS1 (λ,−µ−(a, λ), ℓ−(a, λ)) λ < 1
2 and 0 < a < 1 − λ−

√
1 − 2λ

or 1
2 < λ < 1, 0 < a < 1 − λ

Extended by continuity to λ =
1
2

CS2 (λ,µ−(a, λ), ℓ−(a, λ)) same as for CS1

CS3 (λ,±µ+(a, λ), ℓ+(a, λ)) λ < 1
2 , a0(λ) < a < 1 − λ−

√
1 − 2λ

CS4 (λ,±µ−(a, λ), ℓ−(a, λ)) 1
2 < λ < 1 and 1 − λ < a < a0(λ)

Cusp

CB1 (λ,−(λ−
√
2λ− 1), 1 − λ−

√
2λ− 1) 1

2 < λ < 1 ∂CS1 ∩ ∂CS4

CB2 (λ, λ−
√
2λ− 1, 1 − λ−

√
2λ− 1) 1

2 < λ < 1 ∂CS2 ∩ ∂CS4

CB3 ( 12 , µ,
1
4 + µ2) λ ≡

1
2 , −

1
2 < µ < 1

2 ∂CS3 ∩ ∂CS4
Hamiltonian Hopf (subcritical)

HH−

1 (λ, 1 − λ−
√
1 − 2λ, 1 − λ−

√
1 − 2λ) λ < 1

2 ∂CS2 ∩ ∂CS3

HH−

2 (λ,−(1−λ−
√
1 − 2λ), 1−λ−

√
1 − 2λ) λ < 1

2 ∂CS1 ∩ ∂CS3

HH−

3 (λ, 0,−λ2) λ < 1 ∂CS1 ∩ ∂CS2
Hamiltonian Hopf (supercritical)

HH+

1 (λ, 1 − λ+
√
1 − 2λ, 1 − λ+

√
1 − 2λ) λ < 1

2

HH+

2 (λ,−(1−λ+
√
1 − 2λ), 1−λ+

√
1 − 2λ) λ < 1

2

HH+

3 (λ, 0,−λ2) λ > 1

Hamiltonian Hopf (degenerate)

HH0
1 ( 12 ,

1
2 ,

1
2 ) A single point ∂CB2 ∩ ∂CB3

HH0
2 ( 12 ,−

1
2 ,

1
2 ) A single point ∂CB1 ∩ ∂CB3

HH0
3 (1, 0,−1) A single point ∂CB1 ∩ ∂CB2

As expected, the coefficient of V 2 has turned into the unfolding parameter ν2, but furthermore a third unfolding
parameter ν3 has emerged, the coefficient of the fourth order term TV . This C∞-modal parameter can be removed by
passing to a C0-versal unfolding, again see [4,5,19], subject to ν3 /∈ {0,±

√
−b,±

√
3b}.

For a general Hamiltonian with an equilibrium 0 ∈ R4 in 1:−1 resonance, the standard forms (36) and (37) have to be
achieved through normalisation with respect to T (and U). In our application to (19) the Hamiltonian already is symmetric
with respect to N , which amounts here to symmetry with respect to T . This allows to reduce to one degree of freedom and
all other questions can be answered using the reduced system; see [14,16,17] for criteria concerning the supercritical and
subcritical Hamiltonian Hopf bifurcations. To formulate similar criteria for the degenerate Hamiltonian Hopf bifurcation
we therefore reduce (37) to one degree of freedom, using the invariants (35b)–(35d) of the S1-action generated by (35a)
as variables subject to the syzygy

2UV =
W 2

+ T 2

2
and the inequalities U ≥ 0, V ≥ 0. Fixing T = θ this yields one sheet Pθ of a 2-sheeted hyperboloid, a cone if θ = 0, and
the orbits of the flow defined by (37) are given by the intersections (within R3

= {U, V ,W }) with the parabolic cylinders
{Hν = h}, i.e. the latter sets are flat in the W -direction. Such parabolic cylinders can touch the reduced phase space Pθ
only within the plane {W = 0}, whence equilibria occur where the curves

U = 0 (38a)

U = h − θ − ν1V −
ν2

2
V 2

− ν3TV − bV 3 (38b)

have the same derivative (adjusting the height h of (38b) appropriately). Note that this formulation lends itself for
a straightforward generalisation to S1-symmetric Hamiltonian Hopf bifurcations where none of the corresponding
curves (38) is expected to be the co-ordinate axis, again compare with [14,16,17].

The point V = 0 corresponds to the singular tip (U, V ,W ) = (0, 0, 0) of the cone, so it is always an equilibrium. It is
where the Hamiltonian Hopf bifurcation takes place that (38a) and (38b) have the same derivative in V = 0, i.e. where
the corresponding equilibrium in R4 has normal frequencies in 1:−1 resonance. This means that the difference function
between (38b) and (38a) – which for the standard form (37) is simply (38b) – has a double root at the singular point of
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Fig. 4. Bifurcation curves for κ = 1 and fixed values of ℓ (horizontal slices of the three-dimensional bifurcation diagram in Fig. 3). From top left:
ℓ = −5/4, ℓ = −1/8, ℓ = 0, ℓ = 1/8, ℓ = 5/16, and ℓ = 3/4. The • mark subcritical Hamiltonian Hopf bifurcations (for ℓ = 0 the central equilibrium
in 1:1:−2 resonance), the ◦ mark supercritical Hamiltonian Hopf bifurcations, and the □ mark cusp bifurcations. In the panel for ℓ = 5/16 one of
the smaller structures in the bifurcation diagram has been magnified in the inset.

the reduced phase space. Correspondingly, the first derivative of the difference function at V = 0 yields the first unfolding
parameter ν1. The second derivative then yields the second unfolding parameter ν2, vanishing as well at the degenerate
Hamiltonian Hopf bifurcation and otherwise distinguishing between the supercritical case (where the energy level set
touches the cone from the outside) and the subcritical case (where {Hν = 0} touches P0 from the inside). Note that the
first derivative in fact yields ν1 +ν3θ from which we not only obtain the unfolding parameter ν1 by taking θ = 0, but also
the modal parameter ν3 by taking the derivative with respect to θ . Finally, the third derivative equals b and thus should
be non-zero to have a ‘non-degenerate’ degenerate Hamiltonian Hopf bifurcation.

To check whether (and where) a degenerate Hamiltonian Hopf bifurcation takes place in the normal form (19) of the
1:1:−2 resonance we merely have to take derivatives of (the square root of) the curve (24) and of the curve (23) at
R = Rmin = ℓ = |µ| > 0 and at R = Rmin = µ = 0, ℓ < 0. As already noted in (32), the value h of Hλ has to be adjusted
to h∗

= λℓ+
1
2κℓ

2 or h∗
= 0, respectively. Let us first concentrate on Rmin = 0. Then the cubic curve (24) becomes

X2(R) = ±R
√
R − ℓ (39)

with derivatives X ′

2(0) = ±
√

−ℓ, X ′′

2 (0) = ±
√

−ℓ
−1

and X ′′′

2 (0) = ∓
3
4

√
−ℓ

−3
, while (23) has derivatives X ′

1(0) = −λ,
X ′′

1 (0) = −κ and X ′′′

1 (0) = 0. Equating the first derivatives yields

− λ = ±
√

−ℓ , (40)

whence the parabola (23) touches the cubic (24) at the ‘upper’ side for λ < 0 and at the ‘lower’ side for λ > 0. Equating
the second derivatives yields

− κ =
±1

√
−ℓ

, (41)

whence the Hamiltonian Hopf bifurcation is degenerate for

(λ,µ, ℓ) = (
1
κ
, 0,

−1
κ2 ) .

For definiteness we restrict to a positive constant κ > 0, so the degenerate Hamiltonian Hopf bifurcation takes place at the
‘lower’ side of the cubic (24). We infer from (40) that 1

κ
−λ can be used to unfold the Krein collision and from (20) that in
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fact the detuning 1
κ

− δ plays the rôle of the unfolding parameter ν1, while −λ1 plays the rôle of the modal parameter ν3.
From (41) we conclude that the second derivative at R = Rmin = 0 of the difference function between (39) and (23) reads as

1
√

−ℓ
− κ =

κ3

2
(ℓ+

1
κ2 ) +

3κ5

8
(ℓ+

1
κ2 )

2
+ · · ·

whence the rôle of ν2 is played by 1
κ2

+ ℓ. The third derivative 3
4κ

3 is positive for κ > 0 and in particular non-zero. Note
that the latter also follows from F (4)

≡ 6κ2
̸= 0, see Eq. (33).

We now check the conditions at the other two possible values of Rmin. For both(!) Rmin = ℓ = ±µ > 0 the cubic (24)
becomes

X2(R) = ±(R − ℓ)
√
R + ℓ (42)

with derivatives X ′

2(ℓ) = ±
√
2ℓ, X ′′

2 (ℓ) = ±
√
2ℓ

−1
and X ′′′

2 (ℓ) = ∓
3
4

√
2ℓ

−3
, while X ′

1(ℓ) = −λ − κℓ, X ′′

1 (ℓ) = −κ and
X ′′′

1 (ℓ) = 0. Equating the first derivatives yields

− λ − κℓ = ±
√
2ℓ , (43)

whence the parabola (23) touches the cubic (24) at the ‘upper’ side for λ < −κℓ and at the ‘lower’ side for λ > −κℓ.
Equating the second derivatives yields

− κ =
±1
√
2ℓ

, (44)

whence the Hamiltonian Hopf bifurcation is degenerate for

(λ,µ, ℓ) = (
1
2κ
,

±1
2κ2 ,

1
2κ2 ) .

Keeping κ > 0, the degenerate Hamiltonian Hopf bifurcation again takes place at the ‘lower’ side of the cubic (24). We
infer from (43) that 1

2κ − λ can be used to unfold the Krein collision where (again) the detuning 1
2κ − δ plays the rôle of

the unfolding parameter ν1, while −λ1 plays the rôle of the modal parameter ν3. From (44) we conclude that the second
derivative at R = Rmin = 0 of the difference function between (42) and (23) reads as

1
√
2ℓ

− κ = −
κ3

2
(ℓ−

1
2κ2 ) +

3κ5

8
(ℓ−

1
2κ2 )

2
+ · · ·

whence the rôle of ν2 can be played by any linear combination of 1
2κ2

−ℓ and 1
2κ2

∓µ. The third derivative 3
4κ

3 is non-zero;
this also follows from F (4)

≡ 6κ2
̸= 0.

Note that for all three degenerate Hamiltonian Hopf bifurcations the Hamiltonian (19) does provide a full C∞-versal
unfolding, with modal parameter ν3 = −λ1. However, putting λ1 = 0 results in topological co-dimension 3 instead of 2,
see again [19].

3.5. Bifurcation diagram for κ = 0

We briefly discuss here the case κ = 0. Note that this case is degenerate: higher order terms in HN,L may change the
results obtained here. Moreover, fibres may contain non-compact connected components.

An analysis along the lines of Section 3.3 shows that there are no cusp bifurcations or supercritical Hamiltonian Hopf
bifurcations. We find three families of centre-saddle bifurcations CSκ=0

k , k = 1, 2, 3, whose pairwise common boundaries
correspond to three families of subcritical Hamiltonian Hopf bifurcations (HH−

k )
κ=0, k = 1, 2, 3. Their parametrisations

are given in Table 4 and they are depicted in Figs. 5 and 6. Note that the bifurcation diagram for κ = 0 can be obtained
from the one for κ ̸= 0 by considering the limit of each bifurcation family for κ → 0 and ignoring the families that exist
only for λ > 1

2κ
.

4. Critical values of the energy–momentum mapping

We now focus on the set of critical values C of the energy–momentum mapping

EM : R6
−→ R3

defined in (6), i.e. with components N , L and H . Note that the diffeomorphism

(µ, ℓ, h) ↦→ (µ,
ℓ+ µ

2
, h)

of R3 maps C to the set of critical values of

(N, J,H) : R6
−→ R3

;
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Fig. 5. Bifurcation diagram for κ = 0 in (λ,µ, ℓ) space. One may think of this as obtained from Fig. 3 by sending the triangle of cusp and degenerate
Hamiltonian Hopf bifurcations from λ =

1
2 to λ = ∞ (and the supercritical Hamiltonian Hopf bifurcations beyond).

Fig. 6. Bifurcation curves for κ = 0 and fixed values of ℓ in (λ,µ)-space. From left to right: ℓ = −
1
2 , ℓ = 0 and ℓ =

1
2 . The • mark subcritical

Hamiltonian Hopf bifurcations (except for the one at (λ,µ, ℓ) = (0, 0, 0) corresponding to the central equilibrium in 1:1:−2 resonance).

in fact the whole ramified torus bundle defined by (6) turns into the ramified torus bundle defined by (N, J,H). It is only
the way that the toral fibres are orbits of (12) and (14) that is affected by the global isotropy Z2 = {(0, 0), ( 12 ,

1
2 )} — the

T2-action (12) runs through regular fibres twice.
The parameter λ depends on the values N = µ and L = ℓ through (20), which defines a diffeomorphism

(δ, µ, ℓ) ↦→ (λ,µ, ℓ)

of R3 that relates the bifurcation diagram detailed in Proposition 11 to the bifurcation diagram in terms of (δ, µ, ℓ). While
the latter is equal to the former when λ1 = λ2 = 0 – the situation we concentrate on in Section 4.2 – it is instructive to
compare the intersections λ = δ in Figs. 9 and 10 with Fig. 1 where the detuning δ is fixed, but (λ1, λ2) ̸= (0, 0) whence
the vertical planes λ = δ get ‘tilted’ to the planes λ = δ + λ1µ+ λ2ℓ with constant δ.

Similarly, we can replace the normal form H = HδN,L defined in (19) by the (simplified) reduced Hamiltonian function
Hλ of (21) expressed in co-ordinates qi, pi, i = 1, 2, 3 as the diffeomorphism

(µ, ℓ, h) ↦→
(
µ, ℓ, h − αℓ− βµ−

1
2γ1µ

2
− γ2µℓ−

1
2γ3ℓ

2
)
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Table 4
Bifurcation families for κ = 0. Here, the quantities µ± are given by µ2

±
= −3a2 +6aλ2 −2λ4 ∓2|λ|(λ2 −

2a)3/2 and can be obtained from Eq. (50) by setting κ = 0.
Family Parametrisation (λ,µ, ℓ) Parameter ranges

Centre-Saddle

CSκ=0
1 (λ,−µ−, 3a − λ2) λ ∈ R∗ , 0 < a < λ2/2

CSκ=0
2 (λ,µ−, 3a − λ2) λ ∈ R∗ , 0 < a < λ2/2

CSκ=0
3 (λ,±µ+, 3a − λ2) λ ∈ R∗ , 4λ2/9 < a < λ2/2

Hamiltonian Hopf (subcritical)

(HH−

1 )
κ=0 (λ, 1

2λ
2, 1

2λ
2) λ ∈ R∗

(HH−

2 )
κ=0 (λ,− 1

2λ
2, 1

2λ
2) λ ∈ R∗

(HH−

3 )
κ=0 (λ, 0,−λ2) λ ∈ R∗

of R3 maps critical values to critical values. In the sequel we therefore work with the energy–momentum mapping

EM = (N, L,Hλ) , (45)

the values of which we keep denoting by (µ, ℓ, h) ∈ R3. We consider only the case κ ̸= 0 and the scaling (22) allows us
to restrict to

κ = 1 , (46)

the value which was also used for Table 3 and Figs. 3 and 4.

4.1. Amended bifurcation diagram

The critical values of (45) correspond to values (µ, ℓ, h) of the internal parameters and energy for which the level set
H−1
λ (h) of the reduced Hamiltonian either has a tangency with the reduced space Pµℓ or goes through the singular point

of Pµℓ. Recall from Proposition 5 that the reduced phase space Pµℓ is singular at (Rmin, 0, 0) for ℓ = |µ| or µ = 0, ℓ ≤ 0,
where Rmin = max(|µ|, ℓ). From (21) with κ = 1 we find that the value hc of the energy for which H−1

λ (h) goes through
the singular point is

hc = λRmin +
1
2
R2
min =

{
λℓ+

1
2ℓ

2 for µ = ±ℓ, ℓ ≥ 0
0 for µ = 0, ℓ ≤ 0.

This gives three curves of critical values of EM, each one parametrised by ℓ. Mirroring the notation for the normal modes
in Table 1 we denote by C23 the curve corresponding to µ = ℓ, ℓ > 0, parametrising the normal 1-mode, by C13 the
curve corresponding to µ = −ℓ, ℓ > 0, parametrising the normal 2-mode and by C12 the curve corresponding to µ = 0,
ℓ < 0, parametrising the normal 3-mode, noting that EM(Cij) = Cij for ij = 12, 13, 23. Depending on the topology of
H−1
λ (hc) ∩ Pµℓ (parts of) these curves could be attached to a surface of critical values or be transversally isolated, in the

sense that a neighbourhood of a point of such a curve contains only critical values from the same curve. We denote by C0
ij

the subset of the curve Cij where it is transversally isolated and we refer to such subset as thread. Moreover, we denote
by C+

ij ⊆ Cij the subset where hc > hmin; here hmin is the minimal value of Hλ for given (µ, ℓ). The minimum hmin of Hλ

on Pµℓ depends continuously on µ and ℓ whence necessarily C0
ij ⊆ C+

ij .
The topology of H−1

λ (hc)∩Pµℓ, and subsequently of the fibre EM−1(µ, ℓ, hc) depends on the slope of H−1
λ (hc) relative

to the slope of Pµℓ at the singular point. Recall from the discussion in Section 3.2 that for each value of (µ, ℓ) such that
the reduced space Pµℓ has a singular point, there is an interval of values of λ such that the connected component of
H−1
λ (hc) ∩ Pµℓ that goes through the singular point is a topological (non-smooth) circle consisting of the dynamically

unstable singular point and its stable=unstable manifold. We note here that such critical values (µ, ℓ, hc) that have
H−1
λ (hc) ∩ {Y = 0} in the ‘interior’ of Pµℓ, compare with Fig. 2(middle), lie on the thread C0

ij for the corresponding
ij ∈ {12, 13, 23} and thus in the interior of the image of EM.

Reconstructing the T2-action Φ over a topological (non-smooth) circle H−1
λ (hc) ∩ Pµℓ gives that the resulting singular

fibre is the Cartesian product of a two-dimensional pinched torus, see Fig. 7, with a (smooth) torus T1. The latter is the
normal mode that had been reduced to the singular equilibrium on Pµℓ and the former constitutes its stable=unstable
manifold. Specifically, the condition for H−1

λ (hc) ∩ Pµℓ to be a topological circle is |X ′

1(Rmin)| < |X ′

2(Rmin)|. Since

F ′′(Rmin) = 2
(
X ′

1(Rmin)2 − X ′

2(Rmin)2
)

we get the equivalent condition F ′′(Rmin) < 0. For fixed values (µ, ℓ) such that Pµℓ is singular we consider the values of
λ such that H−1

λ (hc) ∩ Pµℓ is a topological circle. Evaluating for h = hc that

F ′′(Rmin) = 2λ2 + 4λRmin + 2(ℓ+ R2
min − 3Rmin) ,
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Fig. 7. Two-dimensional pinched torus.

Fig. 8. Amended bifurcation diagram. The horizontal lines represent intervals of values of λ for which the fibre of Hλ going through the singular
point of Pµℓ is a topological circle, i.e. the singular point is an unstable equilibrium.

we conclude that there is exactly one λ-interval where F ′′(Rmin) < 0, lying between the two real roots of F ′′(Rmin). The
endpoints of the λ-interval correspond to Hamiltonian Hopf bifurcations and Lemma 10 allows us to distinguish the
supercritical from the subcritical ones. In case µ = 0, ℓ < 0, the interval is −

√
−ℓ ≤ λ ≤

√
−ℓ. For −1 < ℓ < 0

both ends of the interval correspond to subcritical Hamiltonian Hopf bifurcations. For ℓ < −1 the right end λ =
√

−ℓ

corresponds to a supercritical Hamiltonian Hopf bifurcation while the left end λ = −
√

−ℓ corresponds to a subcritical
Hamiltonian Hopf bifurcation. In case ℓ = |µ| > 0, the interval is −

√
2ℓ− ℓ ≤ λ ≤

√
2ℓ− ℓ. For 0 < ℓ < 1 both ends of

this interval correspond to subcritical Hamiltonian Hopf bifurcations. For ℓ > 1 the right end λ =
√
2ℓ−ℓ corresponds to

a supercritical Hamiltonian Hopf bifurcation while the left end λ = −
√
2ℓ − ℓ corresponds to a subcritical Hamiltonian

Hopf bifurcation. These λ-intervals are represented by the horizontal lines in Fig. 8 for equally spaced values of ℓ. It is for
these values that pinched tori occur — not a bifurcation, but a critical element for the description of the dynamics.

We call the diagram in Fig. 8 the amended bifurcation diagram. It combines the bifurcation diagram, discussed
in Section 3.3, and the values (λ,µ, ℓ) for which H−1

λ (hc) ∩ Pµℓ is a topological (non-smooth) circle. Each point in this
diagram thus corresponds to a critical value of the energy–momentum mapping (45) and the diagram is used as a starting
point for deducing the structure of the set of critical values of EM.

4.2. Set of critical values of EM

To obtain the set of critical values C of the energy–momentum mapping EM we consider different cases for the
parameters δ, λ1, λ2 appearing in the Hamiltonian function. For fixed values of δ, λ1, λ2 the relation λ = δ + λ1µ+ λ2ℓ

in (20) defines an embedding of the (µ, ℓ)-plane into the (λ,µ, ℓ)-space. The intersection of this embedded plane with
the amended bifurcation diagram provides information that allows us to reconstruct a large part of C. In this section, we
determine C for different choices of δ while fixing λ1 = λ2 = 0, that is, we consider only vertical planes λ = constant in
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Fig. 9. Left: intersection of the plane λ = 0 with the amended bifurcation diagram. The dashed lines parametrise families of unstable periodic orbits,
the ◦ stand for supercritical Hamiltonian Hopf bifurcations. Right: set C of critical values of EM for δ = λ1 = λ2 = 0. The three solid lines lie above
the surface and at the two dashed curves the otherwise smooth surface B has two creases; the transition is at the two supercritical Hamiltonian
Hopf bifurcations. Values in the interior of each solid curve correspond to the Cartesian product of a two-dimensional pinched torus with T1; values
on the dashed lines to T1; values on the surface to T2; regular values above the surface to T3 .

Fig. 10. Left: intersection of the plane λ = −1 with the amended bifurcation diagram. The solid lines parametrise families of centre-saddle
bifurcations, the • stand for subcritical Hamiltonian Hopf bifurcations, and the ◦ stand for supercritical Hamiltonian Hopf bifurcations. Right: set of
critical values C for δ = −1, λ1 = λ2 = 0. For an enlargement of the central region see Fig. 11.

the (λ,µ, ℓ)-space. The study of such vertical planes gives a complete description of possible behaviours also for slightly
tilted planes; the only exception is the (degenerate) λ = 1/(2κ) where a slight tilt qualitatively changes C. For more
strongly tilted planes, arguments similar to the ones we use below allow to determine C for any other choice of δ, λ1, λ2
and also for the case κ = 0. Nevertheless, a complete description of all possible cases is beyond the aim of this paper.

4.2.1. Case δ = λ1 = λ2 = 0
In this ‘undetuned’ case the (µ, ℓ)-plane embeds as the (λ=0)-plane in the (λ,µ, ℓ)-space. We can deduce a large part

of C by checking the intersection of the (λ=0)-plane with the amended bifurcation diagram in Fig. 8. The plane λ = 0
intersects the three surfaces of h-isolated critical values along the lines µ = ±ℓ, 0 ≤ ℓ ≤ 2 and µ = 0, ℓ ≤ 0, see
Fig. 9(left). At ℓ = 2 the two lines µ = ±ℓ end at supercritical Hamiltonian Hopf bifurcations while the line µ = 0
extends indefinitely. These three lines give three curves of critical values of EM, where the value of hc has to also be
taken into account as discussed in Section 4.1. In particular, the curves C23 and C13 have parts C0

23 = C+

23 and C0
13 = C+

13
that end at supercritical Hamiltonian Hopf bifurcations while C12 = C0

12 extends indefinitely.
The parts Cij\C+

ij , ij = 23, 13 have hc = hmin — here the normal 1-mode respectively the normal 2-mode is stable as
H−1

0 (hmin)∩Pµℓ is a single point, the singular point reduced from the normal mode. The rest of C consists of values where
the energy level touches the reduced space from outside, in a regular point of Pµℓ. This implies that for such a value the
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Fig. 11. Detail of C for λ = −1.

energy H0 is at minimum for given (µ, ℓ) and the set of such values (µ, ℓ, hmin) yields the boundary of the image of EM.
We denote by B ⊆ C the surface {(µ, ℓ, hmin) : (µ, ℓ) ∈ R2

}, note that B also contains the lines Cij\C+

ij , ij = 23, 13. The set
C of critical values is shown in Fig. 9(right).

The set R of regular values (µ, ℓ, h) of EM parametrises the Lagrangian T3 in phase space. Critical values on B
parametrise smooth T2 in phase space which are also Φ-orbits, provided that they do not belong to C13 or C23. Critical
values on C13 ∩ B or C23 ∩ B lift to T1. Critical values along the three threads of critical values C0

ij correspond to singular
fibres, the Cartesian product of a two-dimensional pinched torus, see Fig. 7, with a T1, the latter associated to a circle
action that acts freely on the fibre. Note that there is no globally defined circle action arising from a linear combination
of XN and XL that acts freely on fibres over all three curves of critical values. Finally, the critical value (µ, ℓ, h) = (0, 0, 0),
where the three threads meet, corresponds to a singular fibre, which can be described as a T3 where a T2 orbit has been
‘pinched’ to a point.

Remark 12. It is the undetuned case where the central equilibrium is in 1:1:−2 resonance and the level set H−1
0 (0)

passes through the cuspidal singularity of P00, yielding a topological (non-smooth) circle. Hence, in three degrees of
freedom each regular point gets a T2 attached and all these form the stable=unstable manifold of the central equilibrium,
which has isotropy T2 under (11), revealing the 1:1:−2 resonant equilibrium to be unstable (despite being linearly stable).
This is reminiscent of both the ‘phantom kiss’ at a periodic orbit undergoing a 1:3 normal-internal resonance, compare
with [1,14], and the normal 1:−2 resonance in two degrees of freedom, compare with [3,9].

4.2.2. Case δ < 0, λ1 = λ2 = 0
Adding a small detuning δ ̸= 0 qualitatively modifies the set of critical values only in a neighbourhood of the origin.

We first consider the case δ < 0, λ1 = λ2 = 0. Here the (µ, ℓ)-plane embeds in (λ,µ, ℓ)-space as the plane λ = δ < 0,
and all such planes have qualitatively the same intersection with the amended bifurcation diagram.

A plane λ = δ intersects the amended bifurcation diagram along three straight lines and a curvilinear triangle D, see
Fig. 10(left). Each of the straight lines joins D at a vertex corresponding to a subcritical Hamiltonian Hopf bifurcation.
The two straight lines parametrised by µ = ±ℓ with 1 − λ −

√
1 − 2λ < ℓ < 1 − λ +

√
1 − 2λ end at supercritical

Hamiltonian Hopf bifurcations. The straight line parametrised by ℓ < −λ2 at µ = 0 extends indefinitely. The edges of D
are the intersections with the surfaces of centre-saddle bifurcations.

The set of critical values C is depicted in Fig. 10(right). Away from the origin, the description of C from Section 4.2.1
can be repeated verbatim for this case. However, the situation is different near the origin, see Fig. 11. In the set of critical
values we note the appearance of a tetrahedral surface T of critical values, corresponding to the appearance of D in the
intersection of the plane λ = δ with the amended bifurcation diagram. The surface T separates the set R of regular values
into two connected components: R′ outside T and R′′ inside T . Values in R′ lift to T3. However, values v = (µ, ℓ, h) ∈ R′′

correspond to the union of two disjoint T3 in phase space. We denote by T3
A(v) and T3

B(v) the two resulting disjoint families
of tori parametrised by v ∈ R′′.

The curvilinear triangle D of centre-saddle bifurcations embeds in T as the union of three curved edges D′ that splits
the ‘‘upper’’ and ‘‘lower’’ parts of T . The ‘‘upper’’ part of T is visible in Fig. 11. It consists of three faces that we denote by
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Fig. 12. Intersection of the plane λ = 0.48 with the amended bifurcation diagram and the corresponding set of critical values C.

F+, F− and F0, respectively, and the three straight lines C+

ij \C
0
ij of stable normal modes. To be precise, F0 has ℓ > |µ| and

lies between C13, C23 and D′ while F+ has µ > max(ℓ, 0) and lies between C12, C23 and D′ and F− has µ < min(−ℓ, 0) and
lies between C12, C13 and D′. We denote by F◦

e the union of the faces F0,± and by Fe the union of F◦
e with the pairwise

common topological boundaries of F0,± (the dashed lines in Fig. 11), so Fe constitutes the ‘‘upper’’ part of T . The ‘‘lower’’
part consists of a single face Fh with topological boundary D′. Note that in all four cases we do not consider the topological
boundary of a face to belong to the face.

Values on the ‘‘upper’’ part F◦
e lift to the disjoint union of a T2 and a T3. Here, one of the families T3

A,B(v) in v ∈ R′′

shrinks down to a T2 as v approaches F◦
e . This allows us to ‘globally’ distinguish the two families: we take T3

B(v) to be
the family that shrinks down to T2 and T3

A(v) the family that can be smoothly continued outside of R′′ to the regular
T3-fibration over R′. Dynamically, the lower dimensional invariant torus T2 is elliptic. The pairwise common boundaries
of F0,± meet at the origin. The origin lifts to the disjoint union of a point, the central equilibrium, and a T3 in phase space.
Other values on these pairwise common boundaries lift to the disjoint union of a normal mode (a T1) and a T3.

Values on the ‘‘lower’’ part Fh lift to a connected singular fibre. The singular fibre is the Cartesian product of a
figure eight with a T2, that is, it corresponds to the two disjoint families T3

A(v) and T3
B(v) in R′′ getting glued together

along a common T2. Dynamically, this lower dimensional invariant torus T2 is hyperbolic and the two glued T3 correspond
to its stable=unstable manifold. The face Fh meets each one of the faces F0,± along a family of centre-saddle bifurcations
(an edge of D′), where the hyperbolic T2 from Fh and the elliptic T2 from F◦

e meet and disappear. Moving on Fh towards
an edge of D′, the component T3

B (glued with T3
A to form the corresponding singular fibre) shrinks and then disappears at

the edge of D′.

Remark 13. It is instructive to have a look at the quantitative changes that occur as δ increases towards 0 before the
qualitative change at the case δ = 0 discussed before. Indeed for δ ↗ 0 the tetrahedral surface T gets smaller and
smaller, shrinking to the critical value (µ, ℓ, h) = (0, 0, 0) where the three threads that we have seen to exist for δ = 0
meet. For δ > 0 another tetrahedral set T ′ emerges, ‘flipped upside-down’ compared to T . Thus, while passing through the
1:1:−2 resonance, the three straight lines C+

ij \C
0
ij parametrising the stable normal modes of the elliptic central equilibrium

shrink down (and re-grow) as the central equilibrium momentarily loses its stability at the 1:1:−2 resonance itself.

4.2.3. Cases δ > 0, λ1 = λ2 = 0
We now turn our attention to the case δ > 0. Here the (µ, ℓ)-plane embeds in (λ,µ, ℓ)-space as the plane λ = δ > 0

and we must consider three subcases depending on the value of δ. Indeed, when comparing with the case δ < 0 we see
that the planes λ = δ > 0 intersect the amended bifurcation diagram in five different ways. We omit the transitional
cases δ =

1
2 , δ = 1 and concentrate on the three open intervals ]0, 1

2 [, ]
1
2 , 1[ and ]1,∞[ of small, intermediate and large

positive detuning δ.

Case 0 < δ < 1
2 . The intersection of the plane λ = δ with the amended bifurcation diagram as depicted in Fig. 12(left) is

qualitatively the same as in the case δ < 0. The set of critical values C as depicted in Fig. 12(right) is also similar, with the
only difference that the tetrahedral set T ′ of critical values has been flipped upside-down, see Remark 13. Therefore, it is
now the ‘‘upper’’ part where we find the face Fh with hyperbolic T2, while the ‘‘lower’’ part Fe consists of three creases
parametrising the normal modes joined by three faces F0,± where we find elliptic T2. The discussion in Section 4.2.2
carries over mutatis mutandi.
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Fig. 13. Left: intersection of the plane λ = 0.52 with the amended bifurcation diagram. The □ stand for cusp bifurcations and the • marks the
subcritical Hamiltonian Hopf bifurcation. Right: corresponding set of critical values C of EM. For an enlargement of the central region see Fig. 14.

Fig. 14. Two views of C for λ = 0.52 focusing on T ′′ . At the right panel we are not showing the whole set B so as to make more prominent the
features of T ′′ — we are drawing however the curves C12 , C23 , C13 and we note that C13 , C23 , and the part of C12 between the origin and (0, ℓ∗, 0)
are contained in B. Note that T ′′ touches B only along the ‘creases’ L+ and L− of T ′′ that start at (0, ℓ∗, 0) and end at the two topmost ‘horns’.

Remark 14. It is instructive to have a look at the quantitative changes that occur as δ increases towards 1
2 . Indeed, exactly

at δ =
1
2 the two vertices of the tetrahedral surface T ′ correspond to degenerate Hamiltonian Hopf bifurcations. Moreover,

between these two vertices extends a whole curve of cusp bifurcations CB3. This is probably the most important difference
to considering ‘tilted’ planes with (λ1, λ2) ̸= (0, 0) which e.g. for small λ2 > 0 (and λ1 = 0) ‘first’ contain two degenerate
Hamiltonian Hopf bifurcations (for an exceptional value δ∗ < 1

2 ) and (increasing δ slightly above δ∗) contain four isolated
values of cusp bifurcations. For λ1 ̸= 0 the two degenerate Hamiltonian Hopf bifurcations lie in different tilted planes.

For δ ↗
1
2 (with λ1 = λ2 = 0) the face F0 of T ′ moves closer and closer to the surface B of minimal energy values,

until at δ =
1
2 the intersection T ′

∩ B consists of F0, of the values (µ, ℓ, h) = ( 12 ,±
1
2 ,

1
2 ) of degenerate Hamiltonian Hopf

bifurcations and (µ, ℓ, h) = (0, 0, 0) of the central equilibrium, and of the parts of C13, C23 that extend between the central
equilibrium and one of the degenerate Hamiltonian Hopf bifurcations. For δ > 1

2 we denote the tetrahedral surface, which
no longer contains the origin (µ, ℓ, h) = (0, 0, 0), by T ′′ and leave the description of its position with respect to B to case
1
2 < δ < 1 below.

Case 1
2 < δ < 1. In the intersection of the plane λ = δ with the amended bifurcation diagram, depicted in Fig. 13(left),

the two line segments along µ = ±ℓ parametrising unstable normal modes have disappeared. Their endpoints, which are
supercritical and subcritical Hamiltonian Hopf bifurcations, met at δ =

1
2 and for δ > 1

2 the corresponding vertices of the
curvilinear triangle D stand for cusp bifurcations.

The changes in the set of critical values, depicted in Fig. 13(right), reflect the changes in the intersection with the
amended bifurcation diagram. We focus on the modified part of the set of critical values depicted in Fig. 14. In this
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case we ‘again’ have a tetrahedral surface T ′′, but its properties are different from the cases described before. The same
structure also appears in a detuned 1:1:2 resonance and has been described in [22]. Following the previously introduced
terminology, we denote by R′ and R′′ the two connected components of R, outside and inside of T ′′, respectively. Values
in R′ lift to T3. Values in R′′ lift to the disjoint union of two T3 and therefore we can again consider two disjoint families
T3
A(v) and T3

B(v) for v ∈ R′′.
We denote by Fh the ‘‘upper’’ part of T ′′ with topological boundary the embedding D′ of D to T ′′. Values in Fh lift to

singular fibres where the families T3
A(v) and T3

B(v) intersect along a hyperbolic lower dimensional invariant torus T2.
Two of the vertices of D′ correspond to cusp bifurcations, and they are part of the intersection T ′′

∩ B, while the
remaining vertex (with µ = 0, not on B) corresponds to a subcritical Hamiltonian Hopf bifurcation where the thread C0

12
parametrising pinched tori turns into the crease C+

12\C
0
12 of the ‘‘lower’’ part Fe of the tetrahedron, parametrising the now

stable normal 3-mode.
The ‘‘lower’’ part Fe of T ′′ has again three faces. Using the same conventions as in Section 4.2.2, we denote these faces

by F0,± and we denote by F◦
e their union, noting that F◦

e ∩B = ∅. Values on F◦
e lift to the disjoint union of a T2 and a T3.

The difference with previous cases is that it is not the same T3-family in R′′ that shrinks down to T2 at each of these
faces whence we no longer can make a ‘global’ choice. Specifically, let T3

A(v) be the family that shrinks down to T2 at the
face F+. Then, the same family T3

A(v) shrinks down to T2 at F−. However, it is the family T3
B(v) that shrinks down to T2

at F0. Values on the common topological boundary of F− and F+ (a subset of C12) lift to the disjoint union of the stable
normal 3-mode (a smooth T1) and a T3.

Thus, after emanating from the central equilibrium, the normal 3-mode parametrised by C12\C+

12 first is stable with
minimal energy hmin = 0 until the value

(µ, ℓ, h) = (0, ℓ∗, 0) ∈ C12 ∩ T ′′
∩ B , ℓ∗

∈]−λ2, 0[ ,

then is parametrised by C+

12\C
0
12 ⊆ T ′′ and loses its stability in the subcritical Hamiltonian Hopf bifurcation at T ′′

∩ ∂C0
12.

The intersection T ′′
∩ B is formed by (0, ℓ∗, 0) and the two values of cusp bifurcations together with the curve segments

L+ and L− where F+ and F−, respectively, meet with F0. Values on L± lift to the disjoint union T2
A(v)∪̇T2

B(v) of two T2,
one being the limit of the family T3

B(v) at F0 and one being the limit of the family T3
A(v) at F±. Note that the family T3

A(v)
can be smoothly continued through the face F0 (where T3

B(v) shrinks down) to the regular T3-fibration over R′, while the
family T3

B(v) can be smoothly continued through F+ or F− (where T3
A(v) shrinks down).

In the complement of the normal modes parametrised by Cij the surface B parametrises invariant 2-tori with minimal
energy. In particular, the two T2 parametrised by L± have the same energy. Outside of L± the surface B parametrises
a single family of T2. To the side of L± ‘covered’ by F0 this is T2

A(v) and to the sides ‘covered’ by F± this is T2
B(v). In a

similar way, when passing through (0, ℓ∗, 0) the T2-family surrounding the normal 3-mode is T2
A(v), while T2

B(v) consists
of 2-tori even for critical values v = (µ, ℓ, h) with µ = 0. At the cusp value the two families T2

A(v) and T2
B(v), v ∈ L+ (or

v ∈ L−) coincide with the hyperbolic T2 parametrised by Fh as the figure eight yielding the stable=unstable manifolds of
the latter has shrunk to a point.

To better understand the placement of T ′′ with respect to the rest of C and, in particular, to B, consider the straight
line C12 with (µ, ℓ, h) = (0, ℓ, 0), ℓ < 0. Then place the tetrahedral structure in such a way that the edge between F+

and F− is a subset of C12 and does not extend to the origin (where all Cij meet). The edges L± should then be glued to B
while being distinct from C13 and C23, which also belong to B. Note that B is not smooth along L±, along C13 and C23, and
along the part of C12 that belongs on B. The lack of smoothness along L± and C13,23 allows T ′′ to be glued with B in the
indicated way.

In fact, locally around L+ it seems better to view the surfaces not as part of B and T ′′, but as two smooth surfaces
parametrising T2

A(v) and T2
B(v), respectively, that intersect along L+ (similar for L−). In the same way, the surface

parametrising T2
B(v) is pierced through by C12, at (0, ℓ∗, 0) the short line (µ, ℓ, h) = (0, ℓ, 0) does not detach smoothly.

Remark 15. Again the transitional case δ = 1 helps to explain the structure of the set C of critical values. When passing
through δ = 1 the tetrahedral surface T ′′ with its non-empty intersection with B shrinks down to a single value where C12
detaches from B. At δ = 1 this value corresponds to a degenerate Hamiltonian Hopf bifurcation and the set C of critical
values already looks like the one depicted in Fig. 15. Note that this does not indicate a different type of degenerate
Hamiltonian Hopf bifurcation — strongly ‘tilted’ planes have the same kind of transition when passing through one of the
other two degenerate Hamiltonian Hopf bifurcations.

Case 1 < δ. For large positive detuning δ > 1 the intersection of the plane λ = δ with the amended bifurcation diagram
attains its simplest form, see Fig. 15(left). The intersection consists only of the straight half line µ = 0, ℓ ≤ −λ2, which
starts at a supercritical Hamiltonian Hopf bifurcation and extends indefinitely.

The set C of critical values depicted in Fig. 15(right) consists of the surface B where values lift to T2, except along the
curves Cij, ij = 12, 13, 23. In particular, critical values along int(Cij ∩B), ij = 12, 13, 23 (dashed lines in Fig. 15) correspond
to stable normal modes and where these three meet we have the elliptic equilibrium. Critical values on C0

12 = C+

12 (the
half line (0, ℓ, 0), ℓ < −λ2) correspond to the Cartesian product of a T1 (the normal 3-mode) and a pinched torus (its
stable=unstable manifold). The normal 3-mode loses its stability in a supercritical Hamiltonian Hopf bifurcation where
the half line C12 detaches from B to become C0

12 = C+

12.
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Fig. 15. Intersection of the plane λ = 1.5 with the amended bifurcation diagram and the corresponding set of critical values C.

Remark 16. For κ = 0 the fibres of the energy–momentum mapping need not be compact. Correspondingly, not only
the cases with δ ≥

1
2 are lost, but also the interpretation for small detuning δ < 1

2 (i.e. the passage through δ = 0)
changes. What remains are the tetrahedral sets T and T ′ shrinking down to the origin (µ, ℓ, h) = (0, 0, 0) as δ ↗ 0 and
δ ↘ 0, respectively. Regular values v ∈ R′′ parametrise T3

B(v) that shrink down to elliptic T2
B(v), v ∈ F◦

e surrounding
the three normal modes and to hyperbolic T2

B(v), v ∈ Fh which at D′ meet the elliptic T2 in quasi-periodic centre-saddle
bifurcations. When passing through the 1:1:−2 resonance, T shrinks down to the origin and re-emerges as T ′ flipped
upside-down.

In comparison to this, the ‘final stage’ δ > 1 depicted in Fig. 15 also has three faces of B parametrising elliptic T2,
but the ‘hyperbolic face’ has vanished along with two of the subcritical Hamiltonian Hopf bifurcations, while the third
Hamiltonian Hopf bifurcation has become supercritical. In particular, κ ̸= 0 provides not only for compact level sets T3

A(v),
v a regular value of EM, but also for critical values with minimal energy (maximal energy if κ < 0). When κ = 0 higher
order terms in the normal form (19) are needed to decide what other invariant sets are parametrised by regular values
of EM inside and outside of T and T ′.

5. Monodromy

In this section we determine the monodromy for the system defined by the normalised Hamiltonian HδN,L given in (19).
We briefly recall some basic facts about monodromy in integrable Hamiltonian systems as they apply to the system under
study here.

Consider a closed path γ in the set R of regular values of the energy–momentum mapping EM. Then EM−1(γ ) is
a, possibly non-trivial, T3-fibre bundle over γ . The non-triviality of the bundle can be expressed through the glueing
mapping ψ : T3

−→ T3 of the bundle over the circle γ . The mapping ψ induces a mapping ψ∗ on H1(T3) ≃ Z3 which,
fixing a basis of H1(T3), can be written as a matrix of SL(3,Z) which is called the monodromy matrix of the bundle. The
monodromy matrix depends only on the homotopy class [γ ] of a path γ in R and we thus denote the monodromy matrix
by M[γ ]. The mapping

M : π1(R) −→ SL(3,Z)

that assigns to each homotopy class [γ ] of R the corresponding monodromy matrix M[γ ] is called the monodromy mapping
of the system.

Note that not the energy–momentum mapping EM itself, but its set R of regular values is the main ingredient of
the monodromy mapping M . This allows us to use any diffeomorphism of R3 to transform R into a form suitable for
our considerations; in particular we may use any of the alternatives of EM = (N, L,HδN,L) discussed at the beginning of
Section 4. Thus, we again replace HδN,L by Hλ as defined in (21) but considered as a function Hλ : R6

−→ R and now also
replace L by J =

1
2 (N + L), i.e. we work with

EM = (N, J,Hλ)

where λ depends on the values µ of N and ι of J through

λ = δ + (λ1 − λ2)µ + 2λ2ι

which replaces (20). Because of the existence of the effective global T2-action Φ generated by XN and XJ , we choose as a
basis for expressing the monodromy matrix a basis of H1(T3) ≃ Z3 given by the homology cycles gN , gJ represented by
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periodic orbits of XN and XJ on T3 and completed by any other homology cycle g with the property that (gN , gJ , g) form
a basis.

Remark 17. The reason we need to consider here the effective action generated by XN and XJ , rather than the non-effective
action generated by XN and XL, manifests here. The cycles gN and gL generated by the flows of XN and XL cannot be combined
with any other cycle to form a basis of H1(T3). In particular, gJ cannot be expressed as an integer linear combination of
gN and gL, since the definition of J implies gL + gN = 2gJ .

Then the monodromy matrix for [γ ] can be written in such basis as

M[γ ] =

⎛⎝1 0 m[γ ]

N
0 1 m[γ ]

J
0 0 1

⎞⎠ .

The given monodromy matrix signifies that parallel transport of gN and gJ along γ gives gN and gJ respectively, while
parallel transport of g gives g + m[γ ]

N gN + m[γ ]

J gJ .

Remark 18. The cycle g completing the basis (gN , gJ , g) is not uniquely determined: any cycle g ′
= g + kNgN + kJgJ

also defines a basis of H1(T3) with the same orientation. However, different choices of g do not affect the monodromy
matrix since, if g is parallel transported along γ to some cycle ĝ = g +m[γ ]

N gN +m[γ ]

J gJ , then g ′ is parallel transported to
ĝ ′

= g ′
+ m[γ ]

N gN + m[γ ]

J gJ (because gN and gJ do not change under parallel transport).

We define the monodromy vector for [γ ] by

m⃗[γ ]
= (m[γ ]

N ,m[γ ]

J ) ∈ Z2 .

The mapping

m⃗ = (mN ,mJ ) ↦→ M(m⃗) =

(1 0 mN
0 1 mJ
0 0 1

)
exhibits a group isomorphism between (Z2,+, 0⃗) and the subgroup of (SL(3,Z), ·, I) that is the image of π1(R) under the
monodromy mapping. In particular,

M(0⃗) = I , M(m⃗1)M(m⃗2) = M(m⃗1 + m⃗2) , M(m⃗)−1
= M(−m⃗) .

Therefore, the existence of the global T2-action Φ implies that, even though π1(R) may not be abelian, its image under the
monodromy mapping is an abelian subgroup of SL(3,Z). Note that if π1(R) is generated by k not necessarily commuting
paths [γ1], . . . , [γk], then we can expand

[γ ] =

K∏
j=1

k∏
i=1

[γi]
ai,j

into K factors, i.e. with
∑k

i=1 ai,j = 1, j = 1, . . . , K and the corresponding monodromy vector m⃗[γ ] is given by

m⃗[γ ]
=

k∑
i=1

aim⃗[γi] ,

where ai =
∑K

j=1 ai,j. It is therefore sufficient to compute the monodromy vector for the generators of π1(R). We do this
computation in Section 5.1 using the approach of [12].

5.1. Computation of monodromy

We compute monodromy for the cases for which the sets C of critical values were described in Section 4.2. Recall
that the system has always three curves of critical values parametrising the three normal modes C23, C13 and C12. The
monodromy of the ramified torus bundle defined by the energy–momentum mapping EM is largely determined by these
three curves and whether parts of them are transversally isolated in the image of EM or whether they are embedded
in some two-dimensional surface B of critical values. These two possibilities also largely determine π1(R). In all cases
considered in Section 4.2, the fundamental group π1(R) is non-trivial although its structure is not always the same.
Moreover, in some cases monodromy can be meaningfully defined for loops γ that contain critical values of EM, see [11]
for more details.

Remark 19. The monodromy of a similar n-degree-of-freedom Hamiltonian system where n threads of critical values
join at the origin has been studied in [13, Example 1.2]. The monodromy of that system is determined using a convenient
representation where monodromy acts trivially to n − 2 cycles generating the Tn-fibre homology.
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5.1.1. Case δ = λ1 = λ2 = 0
We first determine the monodromy mapping for the resonant system without detuning, cf. Section 4.2.1. Part of this

computation has been given in [12], with the exception of an overall ‘‘sign’’ of the monodromy vector (which depends on a
careful choice of orientations and was outside the scope of [12]). In this case π1(R) is isomorphic to the free product Z∗Z
and is generated by two closed paths: one path [γ1] encircling the thread C0

23 and one path [γ2] encircling the thread C0
13.

The threads C0
23 and C0

13 are oriented so that they start at infinity and point to the origin. Then the paths [γ1] and [γ2]

are oriented so that they follow the right-hand rule with respect to C0
23 and C0

13, respectively. Note that [γ1] and [γ2] do
not commute. We further define [γ3] = [γ1]

−1
· [γ2]

−1. Such a homotopy class is represented by a path that encircles C0
12.

Following the same orientation conventions, [γ3] is positively oriented. Since [γ1] · [γ2] · [γ3] = 1 we conclude that

m⃗[γ1]
+ m⃗[γ2]

+ m⃗[γ3]
= 0⃗ . (47)

Given equation (47), we here first compute m⃗[γ2] and m⃗[γ3], from which we then deduce m⃗[γ1].
To compute m⃗[γ2] we consider a specific representative of [γ2] on a plane N = µ < 0. Using (J,Hλ) as co-ordinates on

the plane N = µ < 0, the thread C0
13 intersects the plane at (J,Hλ) = (0, 1

2µ
2) =: c2. Then [γ2] can be represented

by a circle C2 that winds once counterclockwise around c2 with respect to the oriented co-ordinates (J,Hλ) on the
N = µ < 0 plane and which bounds a disk U2 on this plane. The disk U2 contains one Φ-orbit with non-trivial isotropy T1

J
generated by XJ . Following [12] we note that in the basis (XN , XJ ) we can write XJ = (0, 1) and therefore the corresponding
monodromy vector should be m⃗[γ2]

= ±(0, 1), where the sign must be determined. For a positively oriented (counter-
clockwise) path on the oriented (J,Hλ)-plane the sign is +1 if the Φ-orbit with non-trivial isotropy is positive in the sense
of [12] and is −1 otherwise. The T1

J -action acts on the reduced space

N−1(µ < 0)/T1
N

≃ C2

(where T1
N is generated by XN ) as

(z1z2, z3) ↦→ (e2π itz1z2, e−2π itz3) ,

with complex co-ordinates z1z2 and z3 on N−1(µ < 0)/T1
N . We note here that the two co-ordinates z1z2 and z3 define

an orientation that coincides with the one induced by symplectic reduction. Since T1
J has weights 1:0:−1 the Φ-orbit is

positive (it would have been negative if the weights were 1:0:1) and we conclude that

m⃗[γ2]
= (0, 1) .

We can repeat the same argument to compute m⃗[γ3]. The isotropy in this case is T1
N and in the basis (XN , XJ ) we have

m⃗[γ3]
= ±(1, 0). The T1

N -action on the reduced space J−1(ι < 0)/T1
J reads as

(z1z3, z2) ↦→ (e2π itz1z3, e−2π itz2)

whence the corresponding Φ-orbit is again positive. The only difference is that [γ3] is now represented by a negatively
oriented (clockwise) circle C3 on the plane J = ι < 0. Therefore

m⃗[γ3]
= (−1, 0)

and with (47) finally

m⃗[γ1]
= (1,−1) .

Note that in these computations of the monodromy vectors the specific form of the Hamiltonian Hλ is not used. This
implies that in subsequent cases, where the parameters of the Hamiltonian change, the monodromy vectors remain the
same for paths [γk], k = 1, 2, 3, provided that such paths can be defined (see Section 5.1.3).

5.1.2. Case δ < 0, λ1 = λ2 = 0
In this case R consists of two connected components: one outside T denoted R′, and one inside T denoted R′′.

The fundamental group π1(R′) is isomorphic to Z ∗ Z and the whole discussion from the previous subsection can be
transferred almost verbatim here. Indeed, for closed paths in R′ the tetrahedral surface T together with its interior R′′

is indistinguishable from the mere point value (µ, ι, h) = (0, 0, 0) where the three threads meet when δ = λ1 = λ2 = 0.
The fundamental group π1(R′′) is trivial and thus its image under the monodromy mapping is the identity.

However, monodromy is also meaningful [11] for paths γ that do not lie completely in R′ or R′′, but pass from one
connected component to the other through F◦

e . Then EM−1(γ ) is the disjoint union of a T3-bundle for which we can define
monodromy and another manifold that can be ignored. We use this to extend the monodromy mapping M to π1(R+),
where R+ contains both the interior and the exterior of T , but not the face Fh of T . In this extension the ‘ignorable’
manifold does not contribute to M , reflecting that π1(R′′) is trivial. For example, if γ enters and exits R′′ through the
same face F0,±, then we can reduce the whole T2-action Φ; the family T3

B(v) becomes a cylinder T1
B(v) shrinking to

points at the two values v ∈ F0,±, revealing the reduced ignorable manifold to be S2 and the ignorable manifold itself to
be diffeomorphic to S2

× T2. If γ enters and exits R′′ once through different faces of F◦
e , then only a T1-subaction of Φ
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can be regularly reduced (the normal mode ‘between’ the two faces of F◦
e having non-trivial isotropy) and the relevant

T2
B(v) shrink to T1

B(v), v ∈ F◦
e forming an S3; the ignorable manifold is diffeomorphic to S3

× T1.
Note that we may also consider paths γ that pass through one of the parts of the Cij that form the common topological

boundaries of the F0,±. Indeed, while this may allow for e.g. a deformation of S2
× T2 into S3

× T1, this manifold is then
ignored anyway.

We therefore let R+
:= R ∪ Fe and define a monodromy mapping M : π1(R+) −→ SL(3,Z) by considering only

the monodromy of the T3-bundle connected component of EM−1(γ ) for γ in R+. The fundamental group π1(R+) is
isomorphic to π1(R) and is also generated by the same paths [γ1] and [γ2] for which we found in Section 5.1.1 that
m⃗[γ1]

= (1,−1) and m⃗[γ2]
= (0, 1). Therefore, the results for the monodromy mapping π1(R) −→ SL(3,Z) for the case

δ = λ1 = λ2 = 0 apply without any further modifications to determine the monodromy mapping M : π1(R+) −→

SL(3,Z). The extension of M from π1(R′) to π1(R+) means that we may interpret the three threads (which meet at the
single value (µ, ι, h) = (0, 0, 0) for δ = λ1 = λ2 = 0) as meeting at Fh instead of meeting at T ∪ R′′.

5.1.3. Case δ > 0, λ1 = λ2 = 0
Following the structure of the discussion in Section 4.2.3, we again distinguish the three cases of small, intermediate

and large positive detuning separated by δ =
1
2 and δ = 1.

Case 0 < δ < 1
2 . This case is exactly the same as the case δ < 0. We again define R+

= R ∪ Fe with the only difference
being that now Fe is the ‘‘lower’’ part of T ′. The fundamental group π1(R+) remains isomorphic to Z ∗ Z and the rest of
the discussion goes through without any other changes.

Case 1
2 < δ < 1. Here the set of regular values consists again of two connected components R′ and R′′ which are,

respectively, outside and inside T ′′. However, there are two important changes here with respect to previous cases. First,
π1(R′) is isomorphic to Z. It is generated by [γ3] which winds once around the thread of critical values C12 and for which
we computed in Section 5.1.1 that the monodromy vector is m⃗[γ3]

= (−1, 0).
Second, we can no longer consider paths that enter R′′ through one of the sides F± and exit through F0 or vice versa.

For such paths γ , the pre-image EM−1(γ ) does not contain a T3-bundle over a circle and therefore we cannot define
monodromy. However, we can still consider paths that enter and exit R′′ through the union of F+ and F− with their
common topological boundary, and paths that both enter and exit R′′ through F0. Recall that the topological boundary
of F0 consists of the common boundary with Fh and the two curve segments L± on B. The space of such paths together
with paths that lie entirely in R′ or R′′ is generated by [γ3] and therefore the corresponding homotopy structure is
isomorphic to Z.

Case 1 < δ. In this case π1(R) is isomorphic to Z and generated by [γ3]. The monodromy then is completely determined
by the monodromy vector m⃗[γ3]

= (−1, 0). One may think of the passage of δ through δ = 1 from δ > 1 to δ < 1 as
replacing the value (δ, 0,−δ2), δ > 1 by Fh ∪L± conditional on paths γ not encircling L+ or L− (i.e. paths that enter the
interior R′′ of T ′′ through F0 exit R′′ through F0 as well).

5.2. Global monodromy

Letting the detuning parameter δ = λ (i.e. λ1 = λ2 = 0) vary we may consider EM = (N, J,Hλ) as a mapping

R6
× R1

−→ R3
× R1

(q, p, λ) ↦→ (µ, ι, h, λ) ,

thereby stacking all δ-values together to let the parametrised sets of critical values form a single subset of R4. This results
in a single monodromy mapping assembling the δ-family of monodromy mappings.

Remark 20. This approach is less theoretical than it seems since in applications the detuning parameter δ may easily
arise as the value of some additional action D, see Section 6.

6. Conclusions

An integrable1 Hamiltonian system in three degrees of freedom with an equilibrium in 1:1:−2 resonance, has a set C
of critical values of the energy–momentum mapping EM = (N, L,H0

N,L) of the normal form (19) depicted in Fig. 9, with
three threads parametrising unstable normal modes meeting at the value of the equilibrium. This results in a monodromy
mapping

Z ∗ Z −→ SL(3,Z) (48)

1 Admitting both the axial symmetry generated by the third component N of the angular momentum and the oscillator symmetry generated by
the quadratic part L of the Hamiltonian.
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with commutative image isomorphic to Z2 spanned by the monodromy vectors m⃗[γ1]
= (1,−1) and m⃗[γ2]

= (0, 1). A
small amount of detuning leaves (48) unchangend, but stabilises the detuned resonant equilibrium and with it the three
normal modes, deforming the set C of critical values of EM into those depicted in Fig. 10 and 12 and thereby turning the
monodromy into island monodromy. For large detuning, depending on the relative size (and sign) of third and 4th order
terms in the normal form (19), the monodromy mapping becomes

Z −→ SL(3,Z) (49)

with π1(R) generated by a loop around the single thread in Fig. 15. The mapping (49) describes the (island) monodromy
already for intermediate values of the detuning where the set C of critical values of EM has the more complicated
form depicted in Fig. 13. As discussed in [6,21] monodromy remains meaningful for the non-integrable Hamiltonian (5)
approximated by the integrable normal form (19) and persists even under small perturbations that destroy the axial
symmetry. However, for the latter perturbations the non-degeneracy conditions mentioned in Remark 9 that exclude low
order normal-internal resonances become important.

Our choice to retain in the normal form (19) next to the third order term X also the terms of order 4 had the dynamical
consequence that all motions remained bounded – mostly spinning densely around invariant 3-tori – but furthermore
turned the bifurcation diagram of Fig. 5 into the one depicted in Fig. 3. This resulted in additional bifurcations – compare
Table 4 with Table 3 – which lead to the different type (49) of monodromy for large and intermediate detuning. To
actually prove that the phenomena discovered in a normal form can also be observed in the original system one often
uses a scaling that zooms in on smaller and smaller neighbourhoods of the equilibrium. In the present situation this
would make the 4th order terms smaller and smaller and correspondingly already intermediate detuning larger and larger,
see (22). In the similar situation of periodic orbits in normal-internal resonance the semi-global approach in [14] to the
1:3 resonance reveals the hyperbolic 3-periodic orbit that causes the transitional instability of the initial periodic orbit
at the 1:3 resonance to undergo a periodic centre-saddle bifurcation for a parameter value nearby the 1:3 resonance; a
phenomenon observed in many applications. We therefore expect that also the cusp and supercritical Hamiltonian Hopf
bifurcations emanating from the degenerate Hamiltonian Hopf bifurcations do accompany 1:1:−2 resonances where these
occur.

In order to interpret the ‘external’ detuning as an internal parameter one can study periodic orbits in four degrees
of freedom instead of equilibria in three degrees of freedom. Indeed, while the latter are generically isolated the former
form 1-parameter families, parametrised by the action D conjugate to the angle along the periodic orbit (for non-zero
Floquet exponents one may even parametrise by the energy). Let us impose axial symmetry and assume that the Floquet
exponents encounter a 1:1:−2 resonance. Then it is generic for the value δ of D to detune the resonance. Normalising
with respect to the periodic motion – possible under non-degeneracy conditions that exclude normal-internal resonances
between the normal frequencies and the period – then allows to reduce the T1-action generated by D with reduced
Hamiltonian in three degrees of freedom of the form (5). See also Remark 20 in Section 5.2.

One should keep in mind that even in axially symmetric Hamiltonian systems it is not generic for the 1-parameter
families of periodic orbits to encounter a normal 1:1:−2 resonance. The reason is that adding βN to (5) detunes the
1:1 subresonance, see Remark 3. To account for this second parameter one could study invariant 2-tori (with their
two actions D and B conjugate to the toral angles acting as two internal parameters) in an integrable system of five
degrees of freedom and then reduce the T2-symmetry along the T2-tori to three degrees of freedom, resulting in a
(relative) equilibrium in 1:1:−2 resonance. However, when breaking the symmetries of the integrable system (the above
T2-symmetry, the T1-symmetry generated by L and the axial symmetry generated by N) the 2-parameter family of
invariant 2-tori needs kam theory to persist and a single torus in normal 1:1:−2 resonance may disappear in a resonance
gap (opened by the necessary Diophantine conditions on the two internal frequencies).

It is only in six (or more) degrees of freedom that families of invariant lower dimensional tori with three (or more)
internal frequencies may encounter a normal n1:n2:n3 resonance in such a way that the normally resonant tori even after
perturbation away from integrability form a non-empty Cantor family parametrised by a Cantor set of dimension one (or
more). In this way the detuning does become one of the internal parameters and the phenomena of the previous sections
do persistently occur in six or more degrees of freedom. For the 1:1:−2 resonance the occurrence co-dimension increases
because of the 1:1 subresonance, again see Remark 3, and one needs at least eight degrees of freedom. The non-integrable
1:1:−2 resonance, just like its definite counterpart, is a rather degenerate phenomenon.
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Appendix. Proof of Proposition 11

While the proposition is formulated for κ = 1, the value actually used in Figs. 3 and 4 and in Table 3, we give the
proof here for general κ ̸= 0 to provide for complete formulas. Lemma 10 allows us to compute the bifurcation diagram
of the system via the triple roots of F (R) that lie in [Rmin,∞[. We obtain such roots by factorising F (R) as

F (R) =
κ2

4
(R − a)3(R − b) , (50)
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where a is the sought out triple root and b ∈ R is the remaining root of F (R). Comparing coefficients of powers of R in
the two expressions (33) and (50) for F (R) we obtain the relations

−κ2a3b + 4h2
− 4µ2ℓ = 0 (51a)

κ2a3 + 3κ2a2b − 8hλ + 4µ2
= 0 (51b)

−3κ2a2 − 3κ2ab − 4κh + 4λ2 + 4ℓ = 0 (51c)

3κ2a + κ2b + 4κλ − 4 = 0 . (51d)

Solving (51b)–(51d) for b, ℓ and h we find

b = 4κ−2
− 3a − 4κ−1λ (52a)

2λℓ = −2κ3a3 − 6κ2a2λ + 3κa2 − 6κaλ2 + 6aλ − 2λ3 + κµ2 (52b)

2λh = µ2
+ 3a2 − 2κ2a3 − 3 κa2λ (52c)

which for λ ̸= 0 yields an explicit parametrisation by λ and a. The remaining equation (51a) becomes

1
λ2

Q (µ) = 0 ,

where

Q (µ) = (1 − 2κλ)µ4

+
(
4κ3a3λ− 4κ2a3 + 12κ2a2λ2 − 12κa2λ+ 6a2 + 12κaλ3 − 12aλ2 + 4λ4

)
µ2

+
(
4κ4a6 + 12κ3a5λ− 12κ2a5 + 12κ2a4λ2 − 18κa4λ+ 9a4 + 4κa3λ3 − 4a3λ2

)
is quadratic in µ2 for λ ̸=

1
2κ

.

This makes λ =
1
2κ

a special case, next to λ = 0. Below we shall first check these two special cases before treating

the general cases λ < 0, 0 < λ <
1
2κ

and λ > 1
2κ

.
More degenerate than a triple root of F is having a quadruple root, i.e. b = a in (50). From (52a) then follows

a =
1
κ2 −

λ

κ
. (53)

As (33) is a polynomial of degree 4 we have F (4)
≡ 6κ2 and in particular F (4)(a) ̸= 0 — the quadruple root (53) is not of

order 5 or higher. In Section 3.4 we have seen that for a = Rmin this yields the degenerate Hamiltonian Hopf bifurcations
at

(λ, µ, ℓ) =

(
1
2κ
,

±1
2κ2 ,

1
2κ2

)
and (λ, µ, ℓ) =

(
1
κ
, 0,

−1
κ2

)
and from Lemma 10 we conclude that for a > Rmin this yields cusp bifurcations.

A.1. Special cases

We first check the special cases λ = 0 and λ =
1
2κ

.

Case λ = 0. Setting λ = 0 in (52) gives

b =
4
κ2 − 3a and µ2

= (2κ2a − 3)a2 .

Inserting this in (51) we obtain the quadratic equation

ℓ2 +
(
−2κ4a3 + 6κ2a2 − 6a

)
ℓ +

(
3κ4a4 − 10κ2a3 + 9a2

)
= 0 (54)

in ℓ with discriminant a3(κ2a − 2)3. The condition a ≥ Rmin ≥ |µ| implies a2 ≥ µ2 and a ≥ 0, and gives

a2(2 − κ2a) ≥ 0 ,

that is 0 ≤ a ≤ 2κ−2. For these values (54) has negative discriminant and thus non-real roots except for the end points
a = 0 and a = 2κ−2 of the interval. For a = 0 we find µ = ℓ = a = 0, recovering the equilibrium in 1:1:−2 resonance
with values (λ,µ, ℓ) = (0, 0, 0). While this is what makes λ = 0 special, for a = 2κ−2 we find ±µ = ℓ = a = 2κ−2,
corresponding to a supercritical Hamiltonian Hopf bifurcation. These are not special, but belong to the 1-parameter
families of supercritical Hamiltonian Hopf bifurcations HH+

1 and HH+

2 , see below.
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Case λ =
1
2κ

. Here the equation Q (µ) = 0 becomes linear in µ2 and in particular it factorises to

(2κ2a − 1)3(µ2
− 2κ2a3) = 0

whence a =
1

2κ2 or µ2
= 2κ2a3. Where both equations are satisfied we recover the two degenerate Hamiltonian Hopf

bifurcations HH0
1 and HH0

2. For a =
1

2κ2 we have

b =
1

2κ2 = a , ℓ =
1

4κ2 + κ2µ2 and h =
1

8κ3 + κµ2

where the parametrisation of ℓ and h by µ is restricted by |µ| ≤
1

2κ2 , as obtained from a ≥ Rmin ≥ max(|µ|, ℓ). Therefore

(λ,µ, ℓ) =

(
1
2κ
, µ,

1
4κ2 + κ2µ2

)
, |µ| ≤

1
2κ2

parametrises a 1-parameter family of cusp bifurcations that we denote by CB3 and which extends between HH0
1 and HH0

2.
While this is what makes λ =

1
2κ

special, for µ2
= 2κ2a3 we have

b = −3a +
2
κ2 , ℓ =

6κ2a − 1
4κ2 and h =

3κa2

2
.

Since a2 ≥ µ2
= 2κ2a3 and a ≥ 0 we find 0 ≤ a ≤

1
2κ2 (the second inequality also following from a ≥ ℓ) where a = ±µ

gives the end points a = 0 and a =
1

2κ2 . We have already seen that the right end point a =
1

2κ2 yields the two degenerate

Hamiltonian Hopf bifurcations HH0
1 and HH0

2. The left end point a = 0 yields (λ,µ, ℓ) = ( 1
2κ
, 0, −1

4κ2 ) which belongs to the
family HH−

3 of subcritical Hamiltonian Hopf bifurcations, see below. In between the parametrisation

(λ,µ, ℓ) =

(
1
2κ
, ±

√

2κ2a3,
6κ2a − 1

4κ2

)
, 0 < a <

1
2κ2

yields centre-saddle bifurcations which turn out to belong to the 2-parameter families of centre-saddle bifurcations CS1
and CS2, see again below.

A.2. General case: λ ̸= 0, 1
2κ

Solving the quadratic equation Q (µ) = 0 for µ2 we find the two solutions

µ2
±

=
±2|λ|

2κλ− 1

[
(κa + λ)2 − 2a

]3/2 (55a)

+
2κ3a3λ− 2κ2a3 + 6κ2a2λ2 − 6κa2λ+ 3a2 + 6κaλ3 − 6aλ2 + 2λ4

2κλ− 1

and

2λℓ± = −2κ3a3 − 6κ2a2λ + 3κa2 − 6κaλ2 + 6aλ − 2λ3 + κµ2
±
. (55b)

These solutions are real provided that the discriminant 16λ2[(κa + λ)2 − 2a]3 of Q (µ), the latter seen as a quadratic
polynomial in µ2, is non-negative. While this is always true for λ > 1

2κ
, this gives for λ < 1

2κ
the sub-cases

0 ≤ κ2a ≤ 1 − κλ −
√
1 − 2κλ and κ2a ≥ 1 − κλ +

√
1 − 2κλ .

Case λ >
1
2κ

. Here, the condition a ≥ ℓ+ is not satisfied for any a ≥ 0. Therefore, the solutions µ+, ℓ+ in (50) can be
rejected.

We have checked with Mathematica that the condition a ≥ ℓ− is satisfied for all a ≥ 0 and that a2 ≥ µ2
−

is also true.
We note that the condition µ2

−
≥ 0 gives

a g(a) ≤ 0

with

g(a) = 4κ4a3 +
(
12κ3λ− 12κ2) a2 +

(
12κ2λ2 − 18κλ+ 9

)
a +

(
4κλ3 − 4λ2

)
. (56)
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For a = 0 the inequality a g(a) ≤ 0 is satisfied for any value of g(a). If a > 0 then we require that g(a) ≤ 0 and check that
g(0) = 4κ2λ2(κλ− 1) and that g(a) has two extrema at strictly negative values of a. This means that for 1

2κ
< λ <

1
κ
the

cubic equation g(a) = 0 has a unique positive root a0(λ) and thus g(a) ≤ 0 for 0 ≤ a ≤ a0(λ). This yields centre-saddle
bifurcations at the triple roots a > Rmin while for κ2a = 1 − κλ we have b = a and get cusp bifurcations (recall that the
non-degeneracy condition F (4)(a) ̸= 0 is always true in our system).

We have 0 ≤ 1 − κλ ≤ κ2a0(λ), therefore the bifurcations are split to several 2-parameter families of centre-saddle
bifurcations separated by cusp bifurcations. The centre-saddle bifurcations are the family CS4 parametrised by

1
2κ

< λ <
1
κ
, µ = ±µ− , ℓ = ℓ− , 1 − κλ < κ2a < κ2a0(λ) .

Then, a part of the family CS1 is parametrised by
1
2κ

< λ <
1
κ
, µ = µ− , ℓ = ℓ− , 0 < κ2a < 1 − κλ

and a part of CS2 is parametrised by
1
2κ

< λ <
1
κ
, µ = −µ− , ℓ = ℓ− , 0 < κ2a < 1 − κλ .

There are two families of cusp bifurcations denoted by CB1 and CB2. They can be obtained from CS4 by setting κ2a = 1−κλ.
This gives for CB1 that

1
2κ

< λ <
1
κ
, µ = µ− = κ−2(κλ −

√
2κλ− 1) , ℓ− = 1 − κλ −

√
2κλ− 1

and for CB2 the same parametrisation up to µ = −µ−.
For λ ≥ κ−1 we have g(a) > 0 for all a > 0 and therefore the only possibility that is left is a = 0. Subsequently, for

λ ≥ κ−1, we obtain by substituting a = 0 that

µ2
±

= 0 and ℓ± = −λ2 .

So, for λ > κ−1 we have the family of supercritical Hamiltonian Hopf bifurcations parametrised by (λ,µ, ℓ) = (λ, 0,−λ2)
and denoted by HH+

3 . This can be checked using the derivative F ′′′(a = 0) = 6(κλ− 1) > 0.

Case λ <
1
2κ
, λ ̸= 0. The condition a ≥ ℓ−, together with a ≥ 0 and a2 ≥ µ2

−
≥ 0, gives

κ2a ≥ 1 − κλ +
√
1 − 2κλ

or

κ2a0(λ) ≤ κ2a ≤ 1 − κλ −
√
1 − 2κλ , λ < 0

and

0 ≤ κ2a ≤ 1 − κλ −
√
1 − 2κλ , λ > 0 .

Here a0(λ) is the unique real root of (56). This parametrises the part of the family CS1 with λ < 1
2 for µ = µ− and the

corresponding part of CS2 for µ = −µ−. The condition a ≥ ℓ+, together with a ≥ 0 and a2 ≥ µ2
+

≥ 0, gives

κ2a ≥ 1 − κλ +
√
1 − 2κλ

or

0 ≤ κ2a ≤ 1 − κλ −
√
1 − 2κλ , λ < 0

and

κ2a0(λ) ≤ κ2a ≤ 1 − κλ −
√
1 − 2κλ , λ > 0 .

This parametrises the family CS3 for µ = ±µ+. Note that for κ2a = 1 − κλ −
√
1 − 2κλ we have µ2

+
= µ2

−
= a2

and ℓ+ = ℓ− = a. Therefore we obtain two curves parametrising subcritical Hamiltonian Hopf bifurcations since here
F ′′′(a) = −6

√
1 − 2κλ < 0. The two curves are HH−

1 and HH−

2 . For κ
2a = 1 − κλ+

√
1 − 2κλ we obtain the two curves

ℓ = a , µ = ±a , λ = ±
√
2a − κa , a ≥ 0

which can alternatively be written as

ℓ = κ−2(1 − κλ +
√
1 − 2κλ) , µ = ±ℓ , λ <

1
2κ

.

These two curves parametrise families of supercritical Hamiltonian Hopf bifurcations since here F ′′′(a) = 6
√
1 − 2κλ > 0.

The curves are HH+

1 and HH+

2 .
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Note that for λ = 0 these expressions give ℓ = 2κ−2, µ = ±2κ−2 which are two of the values we already identified
for λ = 0. Considering now the constraint 0 ≤ κ2a ≤ 1 − κλ−

√
1 − 2κλ for λ = 0 we find a = 0 and thus ℓ = µ = 0.

This is the third value we identified for λ = 0. Therefore, we can extend the parametrisation for λ < 1
2κ

to include the
case λ = 0.
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