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Abstract

The notion of monodromy was introduced by J.J. Duistermaat as the first obstruction to the existence
f global action coordinates in integrable Hamiltonian systems. This invariant was extensively studied
ince then and was shown to be non-trivial in various concrete examples of finite-dimensional integrable
ystems. The goal of the present paper is to give a brief overview of monodromy and discuss some of its
eneralizations. In particular, we will discuss the monodromy around a focus–focus singularity and the
otions of quantum, fractional and scattering monodromy. The exposition will be complemented with a
umber of examples and open problems.
c 2020 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
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1. Introduction

In the context of finite-dimensional integrable Hamiltonian systems, the notion of mon-
dromy was introduced by Duistermaat in his seminal paper [34] published in 1980. He defined
is notion of monodromy as the (usual) monodromy of a certain covering map that can naturally
e defined for a given integrable system. To be more specific, assume that we are given n
ndependent functions in involution (F1, . . . , Fn) on a symplectic manifold M of real dimension
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2n.1 These functions give rise to the so-called integral or momentum map

F = (F1, . . . , Fn) : M → Rn

and the (defined on an open subset U ⊂ Rn
× M) action

G : U ⊂ Rn
× M → M, G(t1, . . . , tn)(x) = gt1

1 . . . gtn
n (x),

where gt
i is the Hamiltonian flow associated to Fi . Observe that the action G leaves the fibers

F−1( f ) ⊂ M of F invariant since the functions F1, . . . , Fn are in involution.
For simplicity, we shall for the moment consider the case when all of the fibers F−1( f )

re compact and connected. Then the action G is a global Rn action on M . Moreover, for
ach regular value f in the image of F , the isotropy group G f is an n-dimensional lattice
n

⊂ Rn . In particular, regular fibers F−1( f ) are n-dimensional tori; see Arnol’d–Liouville
heorem [2,3,65] for detail. The collection of the lattices G f , with f in the set R ⊂ image(F)
f the regular values of F , is a subset of Rn

× R. The natural projection Pr : Rn
× R → R

ives rise to the covering map

Pr :
⋃
f ∈R

G f → R. (1)

his is the covering that we mentioned above. In the paper [34], the monodromy of the torus
bration F : F−1(R) → R was defined as the (usual) monodromy of the covering (1), that

s, as a representation of the fundamental group π1(R, f0) in the group of automorphisms of
G f0 ≡ Zn (the representation is given by lifting paths from π1(R, f0) to the total space of the
overing (1)).

We note that Duistermaat’s original definition included the case of Lagrangian torus
brations over an arbitrary manifold (not necessarily an open subset of Rn). We will not pursue

his generality here.
Since Duistermaat’s work [34], non-trivial monodromy was found in various concrete

ntegrable systems of physics and classical mechanics. The first such example is the spherical
endulum, which is an integrable system that describes the motion of a particle on the unit
phere in R3 in the linear gravitational potential.2 The monodromy of the spherical pendulum
as observed to be non-trivial by R. Cushman and computed by J. J. Duistermaat in the same
aper [34]. It turned out that π1(R, f0) is isomorphic to Z in this case (see Fig. 1) and that the
onodromy is given by the matrix

Mγ =

(
1 1
0 1

)
. (2)

ere γ corresponds to the generator of the group π1(R, f0) ≡ Z. We shall return to this
xample and to the computation of the monodromy matrix later in this paper.

Another example, which is probably the simplest one, is the so-called champagne bottle
ystem (a particle in a Mexican hat potential). For this system, the monodromy was computed
y L. Bates in [6]. It turns out that also in this case, the fundamental group π1(R, f0) is
somorphic to Z and the corresponding monodromy matrix is given by Eq. (2).

1 We recall that an integrable Hamiltonian system on a symplectic 2n-manifold M is specified by n independent
functions in involution F1, . . . , Fn . Typically, F1 = H is the Hamiltonian of the system and F2, . . . , Fn are additional
first integrals.

2 For this system, the functions F1 = H and F2 = J are the restrictions of the functions H =
1
2 ∥p∥

2
+ q3 and

J = q p − q p , defined on T ∗R3, to T ∗S2
⊂ T ∗R3.
1 2 2 1
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Fig. 1. Bifurcation diagram for the spherical pendulum and the generator γ of π1(R).

Several other examples of integrable Hamiltonian systems with non-trivial monodromy are
the quadratic spherical pendulum [8,25,34,38], the coupled angular momenta [83], the Lagrange
top [28], the Hamiltonian Hopf bifurcation [35], the Jaynes–Cummings model [36,54,79], the
hydrogen atom in crossed fields [29], and the Euler two-center problem [66,97]. We note that
monodromy can naturally be generalized to integrable non-Hamiltonian systems [27,104]; see
also [14] for a discussion of monodromy in the context of the Hamiltonisation problem. This
invariant can also be extended to the setting of nearly-integrable systems [18,20,81], which is
relevant for applications since real physical systems are seldom integrable.

It was later understood that most of the known examples of integrable systems with non-
trivial monodromy have one common property, namely, the existence of so-called focus–focus
points. For instance, in the case of the spherical pendulum, this is the unstable equilibrium
when the pendulum is at the top of the sphere. In the case of the Mexican hat potential, this is
the unstable equilibrium when the particle is on the ‘top of the hat’. The precise result, which
is sometimes referred to as the geometric monodromy theorem, was obtained first by L. M.
Lerman and Ya. L. Umanskiı́ [63] in the case of a single focus–focus point and later by V. S.
Matveev [72] and N. T. Zung [103] in the case of arbitrary many focus–focus points on a
singular focus–focus fiber. We note that outside the context of integrable Hamiltonian system,
this result was already obtained by Y. Matsumoto in [71]. We also note that in the context
of complex geometry, the geometric monodromy theorem follows from the Picard–Lefschetz
theory; see [5,11,103] for details. We shall come back to case of focus–focus singularities later
in this paper, in connection with the classical Morse theory and principal circle bundles; this
is the content of the recent topological theory of monodromy developed in [66].

Another breakthrough in the monodromy theory was the quantum formulation of this
invariant; first, for the quantum spherical pendulum [26,50] and later, in more generality, by
S. Vũ Ngoc [92]. The main idea is that in a quantum integrable system, the joint spectrum
.
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Fig. 2. The joint spectrum of the quantum spherical pendulum (h̄ = 0.1), and the transport of an elementary cell
round the focus–focus point.

f the commuting operators locally has the form of a lattice. Globally, this does not have to
e the case, and one can observe a lattice defect in the joint spectrum when transporting an
lementary cell around a singularity; see Fig. 2. This lattice defect is usually interpreted as the
on-existence of smooth global quantum number assignment for a given quantum integrable
ystem. We note that this is very similar to what happens classically when one looks at the
ction coordinates and the so-called integer affine structure [103]. We also note that quantum
onodromy is determined by the classical monodromy of the underlying classical integrable
amiltonian system [92].
This is, in short, what is classically known about monodromy. More recently, several

eneralized versions of monodromy have been defined. The most important and general of
hese are the so-called fractional and scattering monodromies as well as their quantum analogs.
he notion of fractional monodromy was introduced in the paper [77] as a generalization
f the usual Duistermaat’s monodromy (sometimes referred to as Hamiltonian monodromy)
o the case of singular fibrations; it naturally appears in integrable systems with hyperbolic
ingularities. Scattering monodromy appears in completely integrable systems with non-
ompact invariant manifolds; it was originally defined by L. Bates and R. Cushman in [7]
or a two degree of freedom hyperbolic oscillator and later generalized in the works [37,41]
nd [68].

The main goal of the present paper is to give a concise and systematic overview of the
onodromy theory and of some of the recent developments in this field. Our main focus will

e on the classical notion of monodromy and some of the generalized versions of this invariant.
e will complement our exposition with various concrete examples and formulate a few open
roblems. For a more thorough exposition of the state of the art of the monodromy theory
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and integrable systems, we refer the reader to [11,15,25,66,85,100]. Several parts of this work
appeared in a more extended form in [66].

2. Preliminaries on Hamiltonian monodromy

The notion of Hamiltonian monodromy3 was originally introduced as the first obstruction
to the existence of global action–angle coordinates in integrable systems [34]. We briefly
review a construction of these coordinates here and explain the relation to the definition
of Hamiltonian monodromy given in the Introduction. Then we discuss a connection of
Hamiltonian monodromy to Picard–Lefschetz theory, the latter being a very classical situation
in which monodromy of non-singular hypersurfaces appears. The discussion continues in the
next section, where we review the classical theorem which describes the monodromy around
a focus–focus singularity and discuss several more recent results.

2.1. Liouville integrability, action–angle coordinates and monodromy

We recall that a Hamiltonian system

ẋ = X H , ω(X H , ·) = −d H,

on a 2n-dimensional symplectic manifold (M, ω) is called Liouville integrable if there exist
almost everywhere independent functions F1 = H, . . . , Fn that are in involution with respect
to the symplectic form ω:

{Fi , F j } = ω(X Fi , X F j ) = 0.

We note that by definition, for each i and j , the function Fi is invariant with respect to the
Hamiltonian flow of F j ; in particular, the functions Fi are first integrals of the flow of X H .
Various Hamiltonian systems, such as the Kepler problem, the spherical pendulum, the geodesic
flow on an ellipsoid, Euler, Lagrange and Kovalevskaya tops, the Calogero–Moser systems, are
integrable in this sense.

The map F = (F1, . . . , Fn) consisting of the integrals Fi is called the integral map (or the
energy–momentum map) of the integrable system. It encodes both the dynamics (F1 = H ) and
he symmetry associated to the system. A central problem in the theory of integrable systems
s to understand the geometry of such integral maps; in other words, to classify them up to a
opological, smooth or symplectic equivalence.

It is well-known that, in the case when the map F is proper, any regular fiber F−1(ξ0) is
n n-dimensional torus (or a union of several n-tori). Moreover, a small tubular neighborhood
f any such torus is a trivial torus bundle Dn

× T n admitting action–angle coordinates

I ∈ Dn and ϕ mod 2π ∈ T n, ω = d I ∧ dϕ.

his is the content of the Arnol’d–Liouville theorem [2,3,65]. It follows from the existence of
ction–angle coordinates that the motion (that is, the flow of X H ) is quasi-periodic on each
orus {ξ} × T n .

The above coordinates are sometimes referred to as semi-local since they exist in a
eighborhood of a given invariant torus. The global situation (of when do such coordinates

3 Duistermaat’s notion of monodromy is usually referred to as Hamiltonian monodromy to distinguish it from
other types of monodromy, such as fractional monodromy or monodromy of a covering map.
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exist globally) was clarified by Nekhoroshev [76] and Duistermaat [34]. We briefly review a
few main results of these works below.

Let R ⊂ image(F) denote the set of the regular values of F that are in the image of F .
ssume for the moment that all of the fibers F−1( f ) are compact and connected. Then global

ction–angle coordinates exist if the following two conditions are satisfied (see [76]):

π1(R, f0) = 0 and H 2(R,R) = 0.

Otherwise, the torus bundle F : F−1(R) → R is not necessarily globally trivial, and certain
obstructions to the triviality of this bundle appear; see [34]. One of such obstructions is
monodromy, which we have briefly discussed in the introduction. It is an obstruction in the
sense that its non-triviality entails the non-existence of global action coordinates. To see this,
let us assume for simplicity that the symplectic form ω is exact: ω = dη. Then the action
oordinates I = (I1, . . . , In) can be defined by the formula

Ii =
1

2π

∫
Ii dϕi =

1
2π

∫
αi

I dϕ =
1

2π

∫
αi

η + ci ,

here αi is the ϕi -cycle on the corresponding Liouville torus F−1( f ) and ci does not depend
n f . The cycles α1, . . . , αn form a basis of the first integer homology group of F−1( f ). But
his homology group can be identified with the isotropy group G f of the global Rn action on
F−1( f ); see Introduction (Section 1). Thus, the non-triviality of monodromy of the covering,

q. (1), formed by the lattices G f implies that it is not possible to choose the cycles α1, . . . , αn

n a continuous way over R: transports of these homology cycles along different paths do
ot give the same result. In particular, it is not possible to choose the action coordinates
n a globally smooth way: transports along different paths result in different sets of action
oordinates I and I ′ related by a transformation I = M I ′, where M ∈ SL(n,Z). After
xcursions along elements of π1(R, f0), we get the monodromy automorphisms, described in
he Introduction.

.2. Picard–Lefschetz theory

In the context of fibrations by complex tori, the notion of Hamiltonian monodromy is
ssentially the classical monodromy that appears in Picard–Lefschetz theory.

Let C2 be the complex two-plane with complex coordinates (z, w). Following [11], consider
he symplectic transformation

A(z, w) → (w−1, zw2) (3)

defined for w ̸= 0). Let the compact manifold M be defined by gluing the boundary solid tori
f

U1 = {(z, w) ∈ C2
| |zw| ≤ ε, |z| ≤ 1, |w| ≤ 1} (4)

sing this transformation. (The boundary solid tori of U1 are given by the sets {(z, w) ∈ U1 |

z| = 1} and {(z, w) ∈ U1 | |w| = 1}.) Observe that the function f : C2
→ C defined by

f (z, w) = zw

escends to a smooth function on this manifold. It has one critical fiber: the preimage of the

rigin in C. All of the other fibers are regular two-tori. Let γ be a small circle in C around the



N. Martynchuk, H.W. Broer and K. Efstathiou / Indagationes Mathematicae 32 (2021) 193–223 199

m
b
H
a

t
s
e
n
a
i
u
m

3

m
T
i
t
c
b
W
s

3

o
o
s

S
f

D
o
i

origin. According to the Picard–Lefschetz formula [4], the monodromy of f along γ is given
by the matrix

Mγ =

(
1 1
0 1

)
.

Now observe that the holomorphic function f can be viewed as an energy–momentum
ap of a real integrable Hamiltonian system on M : the functions in involution are given

y the real and imaginary part of the function f ; see [46]. By a topological definition of
amiltonian monodromy in terms of homology cycles, this matrix is the monodromy matrix

long γ associated to this integrable system.
For the above argument, it is important that the phase space is a complex manifold and

hat f is a holomorphic (meromorphic) function on this manifold. We note that in a general
ituation, an integrable Hamiltonian system is only defined on a real symplectic manifold and,
ven if the manifold can be endowed with a complex structure, the integrals of motion are
ot always meromorphic functions. Therefore, the Picard–Lefschetz formula is not always
pplicable; at least, not directly. Nonetheless, in various examples of integrable systems the
ntegrals of motions are polynomials and it is possible to complexify them. Then one can
se the Picard–Lefschetz theory in the complexified domain and deduce information about
onodromy in the original system. We refer to [5,9,88] for more information.

. Hamiltonian monodromy

In this section, we continue our discussion of Hamiltonian monodromy. We review the geo-
etric monodromy theorem, which describes the monodromy around a focus–focus singularity.
his central result in monodromy theory allows one to compute monodromy in various concrete

ntegrable systems by computing the complexity of the focus–focus fibers of such systems. We
hen explain a dynamical manifestation of non-trivial Hamiltonian monodromy. Afterwards, we
ome back to the spherical pendulum and discuss the monodromy from a different point of view
ased on Morse theory and Chern numbers (a general situation is treated in the work [67]).
e conclude this section with an extension of Hamiltonian monodromy to nearly integrable

ystems.

.1. Monodromy around a focus–focus singularity

Hamiltonian monodromy was first observed to be non-trivial in concrete integrable systems
f classical mechanics and molecular physics. It was later observed that in the typical case
f n = 2 degrees of freedom, non-trivial monodromy is manifested by the presence of the
o-called focus–focus points of the integral fibration F ; see [63,72,103]. (The singular point

z = w = 0 of the function f = zw from Section 2.2 is an example of a focus–focus point.)
uch a result is often referred to as the geometric monodromy theorem. Below we discuss a
ew different approaches to this theorem.

First, let us recall the notion of the focus–focus singularity.

efinition 3.1. Consider a two-degree of freedom integrable system F = (H, J ) : M → R2

n a 4-manifold M . Let x0 be a rank zero singular point of F , that is, d Fx0 = 0. The point x0

s called a focus–focus point of F = (H, J ) if the Hessians d2 H and d2 J are independent
x0 x0
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and there exist local canonical coordinates near x0 such that

d2
x0

H = A1(dp1dq1 + dp2dq2) + B1(dp1dq2 − dp2dq1)

d2
x0

J = A2(dp1dq1 + dp2dq2) + B2(dp1dq2 − dp2dq1).

emark 3.2. The focus–focus singularity is an example of a non-degenerate singularity
f an integrable system. Alongside focus–focus points, there are also other types of non-
egenerate singular points of integrable two-degrees of freedom systems: elliptic–elliptic,
yperbolic–hyperbolic, elliptic–regular, etc.; see [11].

emark 3.3. We note that by Eliasson’s theorem [44,45,95], not only the quadratic parts of
H and J , but also the map F = (H, J ) itself can be put into a normal form near a singular
ocus–focus point x0: there exist local canonical coordinates near x0 such that

H = H (p1q1 + p2q2, p1q2 − p2q1)
J = J (p1q1 + p2q2, p1q2 − p2q1).

n particular, in a neighborhood of a focus–focus point x0, the (singular) fibration induced by
F is locally the same (up to a regular change of coordinates on the base of this fibration) as
he fibration induced by the function F̃ = (Re(zw), I m(zw)) : C2

→ R2 near the origin.
We note that Eliasson’s theorem describes the local symplectic normal form also of other

ypes of non-degenerate singularities; see [44,45] for details.

Assume that we are given a proper integral map F with an isolated critical value f0 such
hat the singular fiber F−1( f0) contains a (finite) number m of focus–focus points. Note that in
his case, the singular fiber F−1( f0) is homeomorphic to a 2-torus with m “pinches”, that is, a
-torus, where m parallel homology cycles are shrunk to a single point each; see [11, Lemma
.7]. (In the case when m = 1, this is also a sphere with two points identified). According to the
eometric monodromy theorem, the monodromy of F around f0 is completely determined by
he topology of the singular fiber F−1( f0) and is essentially given by the number of “pinches”
the focus–focus points).

heorem 3.4 (Geometric Monodromy Theorem, [63,71,72,92,103]). Monodromy around a
ocus–focus singularity is given by the matrix

M =

(
1 m
0 1

)
,

here m is the number of the focus–focus points on the singular fiber.

One way to prove this theorem is to prove that the number m of the focus–focus points on
singular focus–focus fiber F−1( f0) (also called the complexity of this fiber) is a complete

opological invariant of the Liouville fibration in a tubular neighborhood of this fiber F−1( f0);
ee [72,103]. The monodromy is a particular invariant of this fibration, and is thus a function
f the number m of the focus–focus points. To prove the geometric monodromy theorem, it
s sufficient to prove the statement for a particular example of an integrable system with m
ocus–focus points. The rest follows from Picard–Lefschetz theory; cf. Section 2.2. We refer
o [103] for details.

emark 3.5. We have noted above that the complexity is a complete semi-local topological
nvariant of a focus–focus singularity; see [11,103]. This is not the case symplectically: there
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exist infinitely many (semi-locally) non-symplectomorphic Lagrangian fibrations even in the
case of complexity m = 1; see [94]. We note that a similar result does not hold even in
the smooth category: there exist smoothly non-equivalent Lagrangian fibrations in the case of
m ≥ 2 focus–focus points on a given focus–focus fiber; see the works [11,12,52] for details.

Remark 3.6. We note that in concrete problems of physics and classical mechanics, the
complexity of focus–focus fibers is usually small. This can be proven rigorously in many cases
in terms of the topology of the underlying symplectic manifold [86]. For instance, in R4 one can
only have complexity m = 1 focus–focus fibers (R4 does not contain Lagrangian spheres [15]).
For integrable systems on T ∗S2, one can have complexity m = 1 or m = 2, but not 3 or more.
We refer to the work [86] for details.

Remark 3.7. For a generalization of the geometric monodromy theorem to the case of
integrable systems with many degrees of freedom, we refer the reader to [51,104].

A related result in the context of the focus–focus singularities is that they come with a
Hamiltonian circle action [103,104].

Theorem 3.8 (Circle Action Near Focus-Focus, [103,104]). In a neighborhood of a singular
focus–focus fiber, there exists a unique (up to orientation) Hamiltonian circle action which is
free outside the singular focus–focus points. Near each focus–focus point, the momentum of
the circle action can be written as

J =
1
2

(q2
1 + p2

1) −
1
2

(q2
2 + p2

2)

for some local canonical coordinates (q1, p1, q2, p2). In particular, the circle action defines the
anti-Hopf fibration on every sufficiently small 3-sphere S3

ε = {q2
1 + p2

1 + q2
2 + p2

2 = ε} around
each focus–focus point.

One implication of Theorem 3.8 is that it allows one to give a different proof of the
geometric monodromy theorem by looking at the circle action. For example, one can apply the
Duistermaat–Heckman theorem; see [104]. A related and purely topological proof will be given
below on the example of the spherical pendulum, following the point of view of [43,66,67,69].
For other approaches to the geometric monodromy theorem, we refer the reader to [5,25,41,93].

3.2. Dynamical manifestation of monodromy

In this subsection we briefly comment on implications of non-trivial monodromy for dynam-
ics. More specifically, we make a connection to the so-called rotation number
[25, Section IV.4].

We assume that the energy–momentum map F = (H, J ) is such that all of the fibers F−1( f )
re compact and connected. Moreover, we assume that F is invariant under the Hamiltonian
ircle action given by the Hamiltonian flow ϕt

J of J . Let F−1( f ) be a regular torus. Consider
point x ∈ F−1( f ) and the orbit of the circle action passing through this point. The trajectory
t
H (x) leaves the orbit of the circle action at t = 0 and then returns back to the same orbit at
ome time T > 0. The time T is called the the first return time. The rotation number Θ = Θ( f )

is defined by ϕ2πΘ
J (x) = ϕT

H (x). With this notation, there is the following result.
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Theorem 3.9 (Monodromy and Rotation Number, [25]). The Hamiltonian monodromy of the
orus bundle F : F−1(γ ) → γ is given by(

1 m
0 1

)
∈ SL(2,Z),

here −m =
∫
γ

dΘ is the variation of the rotation number Θ .

We note that this theorem can be used as a powerful analytic tool for the computation
f monodromy in specific examples of integrable systems with a circle action. We refer
o [25,41,93] for details. For another dynamical manifestation of monodromy, see [32].

.3. The spherical pendulum

We now come back to the case of the spherical pendulum and prove that the monodromy
atrix of this system is given by Eq. (2). We shall mainly focus on a topological idea which

oes back to R. Cushman and F. Takens and which has been developed in the work [67], see
lso [43,69].

We recall that the spherical pendulum is a mechanical Hamiltonian system that describes
he motion of a particle moving on the sphere

S2
= {(x, y, z) ∈ R3

: x2
+ y2

+ z2
= 1}

in the linear gravitational potential V (x, y, z) = z. The phase space is T ∗S2 with the standard
symplectic structure. The Hamiltonian is given by

H =
1
2

(p2
x + p2

y + p2
z ) + V (x, y, z)

he total energy of the pendulum. Since (the component of) the angular momentum J =

xpy − ypx is conserved, the system is Liouville integrable. The bifurcation diagram of the
energy–momentum map

F = (H, J ) : T ∗S2
→ R2,

that is, the set of the critical values of this map, is shown in Fig. 1.
Consider the closed path γ around the isolated critical value; see Fig. 1. It was shown by

Duistermaat in [34] using an analytic argument that the monodromy along γ is given by the
matrix

Mγ =

(
1 1
0 1

)
. (5)

emark 3.10. Duistermaat’s proof is based on the computation of the action coordinates. To
e more specific, observe that for the spherical pendulum, there are ‘natural’ actions coming
rom the separation of the system in spherical coordinates. One of these actions is simply
iven by the function J ; it is globally defined on the phase space T ∗S2. The other one is an
lliptic integral. One can deduce the monodromy from the derivatives of the second action
hen J approaches zero; see [34] for details. We note that this kind of approach can be used
ore generally; it reduces the computation of monodromy to studying certain limits of elliptic
ntegrals.
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We note that the above result can directly be obtained from the geometric monodromy
heorem, Theorem 3.4. Indeed, it can be shown that the isolated critical value is a focus–focus
ingularity of complexity 1 (there is one and only one unstable equilibrium of the pendulum).

Below, following the work [67], we shall give a different proof of Eq. (5), without
omputing the action coordinates or invoking the geometric monodromy theorem, but using
nly topological ideas.

The first step, is to observe that J generates a Hamiltonian circle action on T ∗S2. It
ollows that any orbit of this action on F−1(γ (0)) can be transported along γ . Let (a, b) be a
asis of H1(F−1(γ (0))), where b is given by the homology class of such an orbit. Then the
orresponding Hamiltonian monodromy matrix along γ is given by

Mγ =

(
1 mγ

0 1

)
or some integer mγ . We now prove that the integer mγ ̸= 0; this argument is due to R.
ushman.

roof. Observe that the points

Pmin = {p = 0, z = −1} and Pc = {p = 0, z = 1}

re the only critical points of H , and they are non-degenerate. We have H (Pmin) = −1 and
H (Pc) = 1. From the Morse lemma, for small ε > 0 (ε should be less than 2), the manifold
H−1(1 − ε) is diffeomorphic to the 3-sphere S3. On the other hand, it can be shown that
H−1(1+ε) is diffeomorphic to the unit cotangent bundle T ∗

1 S2. It follows readily that mγ ̸= 0,
or otherwise the manifolds F−1(γ1) and F−1(γ2), where γ1 and γ2 are the curves shown in
ig. 3, would be diffeomorphic. This is not the case since F−1(γ1) and F−1(γ2) are isotopic

o H−1(1 − ε) and H−1(1 + ε), respectively. □

The next step was made by Floris Takens [89], who proposed the idea of using Chern
umbers of energy hyper-surfaces H−1(h)4 and classical Morse theory for the computation of
onodromy. More specifically, he observed that in integrable systems with a Hamiltonian circle

ction (in particular, in the spherical pendulum), the Chern number of energy hyper-surfaces
hanges when the energy passes a simple non-degenerate critical value of the Hamiltonian
unction:

heorem 3.11 (Takens’s Index Theorem [89]). Let H be a proper Morse function on an
riented 4-manifold. Assume that H is invariant under a circle action that is free outside the
ritical points. Let hc be a critical value of H containing exactly one critical point. Then the
hern numbers of the nearby levels satisfy

c(hc + ε) = c(hc − ε) ± 1.

ere the sign is plus if the circle action defines the anti-Hopf fibration near the critical point
nd minus for the Hopf fibration.

For the spherical pendulum, the circle action comes from rotational symmetry. The Chern
umber c(1 + ε) of the energy level H−1(1 + ε) ≃ T ∗

1 S2 is equal to 2, and the Chern number
(1 − ε) of H−1(1 − ε) ≃ S3 is equal to 1. Thus, to conclude the proof in this case, it is

4 To be precise, the Chern numbers are defined for the principal circle bundles ρ : H−1(h) → H−1(h)/S1, where
is the reduction map for the Hamiltonian circle action; see [47,75] for a relevant background.
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Fig. 3. Bifurcation diagram for the spherical pendulum, the energy levels, the curves γ1 and γ2, and the loop γ

round the focus–focus singularity.
ource: The figure is taken from [67].

eft to show that mγ = c(1 + ε) − c(1 − ε). This last step was made in [67], where it was
bserved that the monodromy of a two-degree of freedom system with a circle action is given
y the difference of the Chern numbers of appropriately chosen energy levels. For the spherical
endulum, the proof is also based on Fig. 3. First, one observes that the Chern number of

F−1(γ1) is equal to c(1 + ε) and the Chern number of F−1(γ1) to c(1 − ε). The manifolds
F−1(γ1) are obtained from two solid tori by gluing the boundary tori via(

a−

b−

)
=

(
1 ci

0 1

) (
a+

b+

)
,

where ci is the Chern number of F−1(γi ). (We note that this representation using gluing
matrices is a very special case of Fomenko–Zieschang theory [11,48].) It follows that the
monodromy matrix along γ is given by the product

Mγ =

(
1 c1
0 1

) (
1 c2
0 1

)−1

.

Since c1 − c2 = 1, we conclude that the monodromy matrix

Mγ =

(
1 1
0 1

)
.

We note that the above Morse-theoretic approach works for more general two-degree of
freedom systems that have a global circle action. In particular, one can prove the geometric

monodromy theorem using this point of view.
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3.4. Several remarks

There are various cases (systems with many degrees of freedom, non-compact energy levels)
when Morse theory cannot be used directly for the computation of monodromy. Nonetheless,
as was shown in [43,69], even in such cases, one can effectively compute the monodromy
for integrable systems that are invariant under a global circle action (or a complexity 1 torus
action).

The first observation, which is the starting point of the work [43], is that in the case of a
global circle action, the monodromy of a torus bundle F : F−1(γ ) → γ is given by the Chern

umber of F−1(γ ) (the Chern number comes from the circle action). Specifically, there is the
ollowing result.

heorem 3.12 ([11, §4.3.2], [43]). Assume that the energy–momentum map F is proper and
nvariant under a Hamiltonian circle action. Let γ ⊂ image(F) be a simple closed curve in
he set of the regular values of the map F. Then the Hamiltonian monodromy of the 2-torus
undle F : F−1(γ ) → γ is given by(

1 m
0 1

)
∈ SL(2,Z),

here m is the Chern number of the principal circle bundle ρ : F−1(γ ) → F−1(γ )/S1, which
s defined by reducing the circle action.

The second observation is that in the case when the curve γ bounds a disk D ⊂ image(F),
he Chern number m can be computed from the singularities of the circle action that project into
D. More specifically, there is the following result, which can be proven by applying Stokes’s
heorem to the Chern class of ρ : U → U/S1, where U is the subset of F−1(D) on which the
ircle action is free. (Note that according to Theorem 3.12, the monodromy index m is equal
o the integral of the Chern class over the 2-torus F−1(γ )/S1.)

heorem 3.13 ([43]). Let F and γ be as in Theorem 3.12. Assume that γ bounds a 2-disk
D ⊂ image(F) and that the circle action is free in F−1(D) outside isolated fixed points. Then
he Hamiltonian monodromy of F : F−1(γ ) → γ is given by the number of positive5 fixed
oints minus the number of negative fixed points in F−1(D).

We note that Theorems 3.12 and 3.13 were generalized to a much more general setting of
ractional monodromy and Seifert fibrations; see the work [69]. Such a generalization allows
ne, in particular, to define a notion of monodromy for circle bundles over 2-dimensional
urfaces of genus g ≥ 1; in the standard case, the genus g = 1. We will come back to fractional
onodromy and Seifert manifolds in Section 5. For an introduction to Seifert manifolds, we

efer the reader to [47,53].
The works [43,69] essentially settle the monodromy question in the case when the 2 degree

f freedom system admits a circle action (or, in the case of many degrees of freedom, a
omplexity 1 torus action). The case when no such action exists is much less understood.
n view of the above Morse theory approach, the following problem seems natural.

5 The sign of a fixed point depends on whether the circle action defines the anti-Hopf or the Hopf fibration near
this point.
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Problem 3.14. Is it possible to generalize Cushman–Takens approach to the case when there
is no Hamiltonian circle action?

We note that there are examples of integrable systems with focus–focus fibers and no global
circle action; see for example [64,87,90,97]. The Hamiltonian monodromy around several such
fibers does not have to be of the from

Mγ =

(
1 k
0 1

)
.

In fact, it can be any SL(2,Z) matrix (this follows from properties of the group SL(2,Z));
see [30,31].

In this connection, we mention the class of integrable geodesic flows on Sol-manifolds that
was constructed in [10]. This class comes from a deep problem of non-integrability in classical
mechanics [16,60,61]. In this case, the monodromy is associated to a degenerate singular fiber,
and a 2 × 2 block of the Hamiltonian monodromy matrix is given by an integer hyperbolic
matrix. One particular example is

Mγ =

⎛⎝2 1 0
1 1 0
0 0 1

⎞⎠ .

We note that cases of such general SL(n,Z) monodromy matrices (in n = 2 or 3 degree of
freedom systems) are not yet understood and new examples are currently missing.

Problem 3.15 (A. Bolsinov). Construct new examples of integrable systems with a prescribed
monodromy around a (possibly degenerate) singular fiber.

3.5. Monodromy in nearly integrable systems

Let F : M → Rn be a proper integral map of an integrable Hamiltonian system on
M . Assume that the Hamiltonian H is real-analytic and Kolmogorov nondegenerate. Then,
according to the Kolmogorov–Arnol’d–Moser theory [1,59,74], there are invariant Liouville
tori F−1( f ), forming a set of measure 1−O(

√
ε), which survive small perturbations H +εP of

H . This leads to the following natural question, which was addressed in [18,20,81], cf. [102]:
can one extend geometric invariants of integrable systems (like monodromy) to the nearly-
integrable case? It turns out that this is indeed possible, at least in the topological setting. More
specifically, one can ‘smoothly interpolate’ the invariant tori given by the KAM theorem in a
global way. Such an interpolation results in a torus bundle for the perturbed system which is
diffeomorphic to the original torus bundle associated to H . This implies that the topology of the

riginal torus bundle, given by the non-singular part of F , is preserved under the perturbation.
n particular, Hamiltonian monodromy can be extended to nearly-integrable systems. Below
e discuss this idea in more detail, following mainly [18].
Consider the product Dn

× Tn of an n-disk and an n-torus with the standard symplectic
tructure d I ∧ dϕ. Suppose that H is a non-degenerate Hamiltonian of the integral map

F = Pr : Dn
× Tn

→ Dn . This means that the frequency map

ωi =
∂ H
∂ Ii

: Dn
→ Rn

is a diffeomorphism onto its image. For τ ≥ n and γ > 0, let

D = {ω ∈ Rn
| ⟨ω, k⟩ ≥ γ |k|

−τ , for all k ∈ Zn
\ {0}}
τ,γ
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be the set of Diophantine frequency vectors. We also let

Aτ,γ = {I ∈ Dn
| ω(I ) ∈ Dτ,γ and dist(ω(I ), ∂ω(Dn)) > γ }.

A main ingredient in the proofs of the monodromy invariance under perturbations is the
ollowing (semi-)local theorem of Pöschel [80].

heorem 3.16 (Semi-local KAM Theorem [80]). Consider the product Dn
× Tn with the

tandard symplectic structure. Suppose that H is a non-degenerate integral of F = Pr : Dn
×

n
→ Dn . Let P be a smooth function on Dn

× Tn . Then for all sufficiently small ε, there
xists a diffeomorphism Φε : Dn

× Tn
→ Dn

× Tn such that
(i) Φε is close to the identity;
(ii) the restriction of Φε to Aτ,γ ×Tn conjugates the Hamiltonian flows of H and H + εP.

We note that in integrable systems, the product Dn
×Tn appearing in Theorem 3.16 comes

rom semi-local action–angle coordinates. This is why this theorem is semi-local. In [18], by
sing a partition of unity and a convexity argument, this result was extended to the global setting
f (possibly non-trivial) Lagrangian torus bundles. More specifically, there is the following
esult.

heorem 3.17 ([18]). Let F : M → Rn be the integral map of an integrable system such
hat all of the fibers F−1( f ) are compact and connected. Suppose that H is a non-degenerate
ntegral of F, and let P be a smooth function on M. Finally, consider the non-singular part
f F over a relatively compact set R ⊂ Rn: the n-torus bundle

F : F−1(R) → R.

hen for all sufficiently small ε, there exist a subset R′
ε ⊂ R and a diffeomorphism

ε : F−1(R) → F−1(R) such that
(i) Φε is close to the identity;
(ii) R′

ε is nowhere dense in Rn and the measure of R \ R′
ε tends to zero when ε tends to

ero;
(iii) the restriction of Φε to F−1(R′

ε) conjugates the Hamiltonian flows of H and H + εP.

emark 3.18. The construction of the global diffeomorphism Φε is based heavily on the
hitney extension theorem [98] and a unicity theorem [20], stating that the local KAM

onjugacies provided by Theorem 3.16 are unique up to a torus translation on the set of
iophantine tori corresponding to the density points of Aτ,γ .

emark 3.19. In the two degree of freedom case of a focus–focus singularity, the important
ondition of nondegeneracy of H is fulfilled in a small neighborhood of the focus–focus
ber; [102].

From this theorem it readily follows that the notion of Hamiltonian monodromy (as well as
uistermaat’s Chern class [34]) can be extended to sufficiently small perturbations H + εP of

H .
We note that in the two-degree of freedom case of monodromy around a focus–focus

ingularity, it is essentially sufficient to apply only the semi-local theorem of Pöschel by
ssuming the interpolation diffeomorphism Φε to be the identity outside a suitably chosen

ction–angle chart; for details see [81].
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4. Quantum monodromy

Consider an integrable system F = ( f1, . . . , fn) on a cotangent bundle T ∗N , for instance,
the spherical pendulum. Assume for simplicity, that all of the fibers of F are compact and
connected. Since the symplectic form is exact, one can construct semi-local action coordinates
via the formula

Ii =
1

2π

∫
αi

pdq,

where α1, . . . , αn is a family of (bases of) homology cycles on Liouville tori. Different choices
of such cycles result in different sets of (semi-local) action coordinates. These sets of semi-local
action coordinates are related by a SL(n,Z) transformation6

(I1, . . . , In) = M(I ′

1, . . . , I ′

n), M ∈ SL(n,Z). (6)

Recall that each of the actions Ii is a function of F = (F1, . . . , Fn). Equating

Ii = h̄(ni + µi ), i = 1, . . . , n, (7)

he actions Ii to integer multiples of the reduced Planck constant (up to the addition of Maslov’s
orrection µi ), gives a set of points in the (F1, . . . , Fn)-space. This set of points is called a
emi-classical spectrum and Eq. (7) is the so-called Bohr–Sommerfeld or action quantization.
e note that the semi-classical spectrum does not depend on the specific choice of the cycles

i because of Eq. (6). In fact, this set locally looks like a regular Zn lattice by the Arnol’d–
iouville theorem. However, due to a possibly non-trivial Hamiltonian monodromy, this does
ot have to be the case globally. The global lattice may exhibit a non-trivial lattice defect
99,100].

A model example of a lattice defect can be constructed as follows; see [99,103] for more
etails. Let n = 2 and consider the standard Z2 lattice in R2. Remove the open solid angle
rom R2 that is spanned by the vectors (−1, 0) and (−1, 1). Identify the edges of the solid
ngle via a vertical shift, that is, by gluing pairs of boundary points of the angle having the
ame first coordinate. Note that this transformation identifies the corresponding pairs of Z2

attice points. After the identification, we get a new lattice on the quotient space (the quotient
pace is again an R2). This lattice has a non-trivial monodromy defect, which can be revealed
hrough a transport of an elementary cell, defined by adjacent points of the lattice, around the
rigin; see Fig. 4.

We remark that a similar type of a lattice defect is always present when there is a focus–focus
ingularity of the system. In particular, it is present in the spherical pendulum [26]; compare
ith Fig. 2, where the transport of an elementary cell of the quantum spectrum is shown.
This is the basic idea behind the quantum monodromy. One can call the monodromy based

n action quantization semi-classical, since it is constructed out of the underlying classical
ntegrable system.

To get to a purely quantum case, one considers a set of commuting pseudodifferential
perators7 F̂1, . . . , F̂n whose principal symbols define a classical integrable system on T ∗M
s above; see [92] for more details. For instance, for the spherical pendulum,

F̂1 = Ĥ = −
1
2 h̄2∆ + V

6 In general, different sets of action coordinates are related by a SL(n,Z) ⋉Rn transformation; note that in our
case, we have the canonical one-form pdq .

7 For compact prequantizable Kähler manifolds, one can use Berezin–Toeplitz operators [17,22,78].
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Fig. 4. Model example of a monodromy defect.

is the corresponding Schrödinger operator on S2 and

F̂2 = Ĵ = −i h̄(x∂y − y∂x ).

The main paradigm is that the semi-classical spectrum obtained from the action quantization
gives an approximation (in terms of h̄) to the joint spectrum

σ (F̂1, . . . , F̂n) = {(λ1, . . . , λn) ∈ Rn
|

n⋂
i=1

K er (F̂i − λi I ) ̸= 0}

f the commuting operators F̂1, . . . , F̂n . In particular, one can observe a lattice defect also in
he quantum problem; see Fig. 2.

These ideas were originally introduced by Cushman–Duistermaat [26] and Guillemin–
ribe [50] for the spherical pendulum. They were made precise by S. Vũ Ngo. c in [92];

ee also [21,24]. There are now various examples of quantum systems with a non-trivial
uantum monodromy, such as the quantum versions of integrable systems arising from classical
echanics, and having a non-trivial Hamiltonian monodromy, as well as certain (simplified
odels of) quantum physical systems, such as the hydrogen atom in crossed fields [29], coupled

ngular momenta [83], the water molecule [23,101], the LiNC/NCLi molecule [42,55], trapped
ose condensates [96], etc. For more information on quantum monodromy and the spectral

heory of integrable systems, we refer the reader to [22,62,78,79,83,92,100].

. Fractional monodromy

As we have seen in the previous sections, Hamiltonian monodromy is intimately related
o the singularities of a given integrable system. However, this invariant is defined for the
on-singular part

F : F−1(R) → R
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Fig. 5. The bifurcation diagram of the integrable 1: (−2) resonance. The closed curve γ around the origin intersects
the critical hyperbolic branch.

of the possibly singular torus fibration F : M → Rn that comes with the system. An
invariant that generalizes Hamiltonian monodromy to singular torus fibrations was introduced
by Nekhoroshev, Sadovskiı́ and Zhilinskiı́ in [77] and it is called fractional monodromy.

5.1. 1: (−2) resonant system

Fractional monodromy has up until now been discussed mainly for so-called m: (−n)
esonances; see [39,40,84,88]. We shall only focus here on the special case of 1: (−2)
esonance, which is the simplest and historically the first example of an integrable Hamiltonian
ystem with fractional monodromy introduced in the work [77].

Consider R4 with the standard symplectic structure ω = dq ∧ dp. Let the integral map
F = (H, J ) : R4

→ R2 be defined by the Hamiltonian function

H = 2q1 p1q2 + (q2
1 − p2

1)p2 + R2,

here R =
1
2 (q2

1 + p2
1) + (q2

2 + p2
2), and the ‘momentum’

J =
1
2

(q2
1 + p2

1) − (q2
2 + p2

2).

e note that the functions H and J are involution, so that F is indeed the integral map of an
ntegrable Hamiltonian system. We also note that the function J defines a Hamiltonian circle
ction on R4 which preserves the fibration given by F .

The bifurcation diagram of the integral map F is shown in Fig. 5. From the structure of the
iagram, we observe that the Hamiltonian monodromy is trivial. Indeed, the set

R = { f ∈ image(F) | f is a regular value of F}

s contractible. In particular, every closed path in R can be deformed to a constant path within
R. Non-triviality appears if one considers the closed curve γ that is shown in Fig. 5.

More specifically, consider a non-singular point γ (t0) and a basis (a0, b0) of the integer
omology group H1(F−1(γ (t0))) ≃ Z2. Then one can try to ‘parallel transport’ these cycles
long γ such that at each regular point γ (t) they form a basis of H1(F−1(γ (t0))) and such that

he resulting family of cycles is (locally) continuous, also at the critical fiber, corresponding
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Fig. 6. Curled torus.

o the intersection of γ with the critical hyperbolic branch.8 We note that in the case of
amiltonian monodromy, when we are moving along regular Liouville tori, such a parallel

ransport is always possible [34]. In this fractional monodromy case, it turns out that only a
ubgroup of H1(F−1(γ (t0))) can be transported through the critical fiber. Specifically, there is
he following result.

heorem 5.1 ([77]). Let (a0, b0) be an integer basis of H1(F−1(γ (t0))), where γ (t0) ∈ R and
0 is an orbit of the circle action. The parallel transport (fractional monodromy) along the
urve γ is given by

2a0 ↦→ 2a0 + b0, b0 ↦→ b0.

emark 5.2. When written formally in the integer basis (a0, b0), the parallel transport has the
orm of the rational matrix(

1 1/2
0 1

)
∈ SL(2,Q),

alled the matrix of fractional monodromy.

8 This critical fiber is a so-called curled torus, which can be obtained as follows. Take the direct product of a
figure eight and a segment. Identify the upper and the lower boundary components of this product after making a
rotation (of the upper component) by the angle π . The result is schematically shown in Fig. 6.
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Remark 5.3. Theorem 5.1 is closely related to Fomenko-Zieschang theory. More specifically,
to the curve γ one can associate a so-called loop molecule, which consists of one atom A∗,
corresponding to a neighborhood of the curled torus, and the marks r = ∞, ε = 1, n = 1
(see [11] for relevant definitions). Fractional monodromy is a function of these invariants, in
this case determined by the atom A∗ and the n-mark; see [13,66] for more details.

Since the pioneering work [77], various proofs of Theorem 5.1 appeared; see [19,39,40,
49,69,88,91]. A natural approach, which was pursued in [19,49,91], is to separate the problem
into two parts: the computation of fractional monodromy in a neighborhood U of the curled
torus and the computation of (essentially) the usual monodromy outside of this neighborhood

. We note that the Liouville fibration inside U is topologically standard (that is, does not
depend on the specific system, but only on the singularity). Another approach, which was
pursued in the work [88], is to complexify the system to bypass the hyperbolic branch and
compute the variation of the rotation number in the complexified domain; cf. [5]. We note that
this approach works also for higher order resonances. Below we sketch a different proof of
Theorem 5.1, following the point of view of Seifert manifolds, developed in the work [69].

Proof of Theorem 5.1. Consider again the curve γ shown in Fig. 5. The key observation,
which was already made in [13], is that F−1(γ ) is a Seifert 3-manifold. The structure of
a Seifert fibration comes from the circle action given by the momentum J . In complex
oordinates z = p1 + iq1 and w = p2 + iq2, this circle action has the form

(t, z, w) ↦→ (ei t z, e−2i tw), t ∈ S1. (8)

e observe that the origin is fixed under this action and that the set

P = {(q, p) | q1 = p1 = 0 and q2
2 + p2

2 ̸= 0}

onsists of points with Z2 isotropy group. This implies that the Euler number9 of the Seifert
anifold F−1(γ ) equals 1/2 ̸= 0. Indeed, Stokes’ theorem implies that the Euler number of

F−1(γ ) coincides with the Euler number of a small 3-sphere around the origin z = w = 0.
he latter Euler number equals 1/2 because of (8). From this and Theorem 3.12, we get the

ollowing.

emma 5.4 ([69]). The quotient space F−1(γ )/Z2 is the total space of a torus bundle over γ .
ts monodromy is given by

M =

(
1 1
0 1

)
∈ SL(2,Z).

From Lemma 5.4 we infer that the parallel transport along the curve γ in the Z2-quotient
pace has the form

ar
0 ↦→ ar

0 + br
0, br

0 ↦→ br
0,

here the cycles ar
0 = a0/Z2 and br

0 = b0/Z2 form the induced basis of the group
H1(F−1(γ (t0))/Z2). Observe that a0 is not affected by the quotient map and the orbit b0

9 For a definition of the Euler number of a Seifert fibration, see, for instance, [47,53]. Note that, in general,
this is a rational number. The integer Chern number, considered in Section 3, appears as a special case when the
Seifert fibration is a principal circle bundle over a 2-surface. When we specialize to unit tangent bundles, the Chern
number coincides with the Euler characteristic of the 2-surface.
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becomes ‘shorter’: 2br
0 ≃ b0. It follows that the parallel transport in the original space has

the form

2a0 ↦→ 2a0 + b0, b0 ↦→ b0.

This concludes the proof of Theorem 5.1. □

We note that the idea of computing fractional monodromy using a covering map appeared in
the work [39], where the authors computed fractional monodromy for a large class of integrable
systems with an m: (−n) resonance. There an uncovering map was used to lift the (possibly
singular) Lagrangian fibers to a union of tori. Here we used a covering map instead. Moreover,
we focused not on the fibers of the energy–momentum map, but rather on the global topology of
an associated Seifert fibration. This approach, which was developed in the work [69], turned out
to be very effective and allowed one to define fractional monodromy over an arbitrary Seifert
manifold with an orientable base of genus g ≥ 1. (We note that the known examples appeared
as a special case of this construction when the genus g = 1 and there are at most two singular
fibers of the Seifert fibration.) The precise results can be stated as follows; cf. Theorems 3.12
and 3.13.

Theorem 5.5 ([69]). Let X be the total space of a Seifert fibration with an orientable base such
that the boundary of X consists of two tori. Let X f be the closed Seifert manifold obtained by
gluing these tori via a fiber-preserving diffeomorphism f . Take bases of these tori (a0, b0) and
(a1, b1) such that b0, b1 correspond to non-singular fibers of the Seifert fibration. Let N denote
the least common multiple of the orders of exceptional fibers. Then only linear combinations
of Na0 and b0 can be parallel transported along X and under the parallel transport

Na0 ↦→ Na1 + kb1

b0 ↦→ b1

for some integer k = k( f ) which depends only on the isotopy class of the diffeomorphism f .
Moreover, the Euler number of X ( f ) is given by e( f ) = k( f )/N.

emark 5.6. We note that, in this case, the matrix of fractional monodromy is given by

MX =

(
1 e( f )
0 1

)
∈ SL(2,Q).

emark 5.7. In Theorem 5.5, we use the notion of parallel transport introduced in [39].
pecifically, let ∂ X = T2

1 ⊔ T2
0. By definition, a cycle α1 ∈ H1(T2

1) is a parallel transport
f α0 ∈ H1(T2

0) if these cycles are of the same integer homology class in X . We note that
his definition of parallel transport can be used for abstract manifolds with boundary, without
n explicit connection to integrability. However, such a parallel transport is not always well
efined: one can construct examples of 3-manifolds where parallel transport is not unique or
oes not give rise to a well-defined automorphism [66]. According to Theorem 5.5, this notion
f parallel transport is well defined for Seifert manifolds with an orientable base and results in
n automorphism of an index-N subgroup of H1(T2

0 ≃ f T2
1).

Theorem 5.5 implies that in order to compute fractional monodromy for a specific integrable
ystem, it is sufficient to compute the orders of exceptional orbits and the Euler number of the
orresponding Seifert fibration. We note that in concrete examples of integrable systems, the
rders of exceptional orbits are often known from the circle action. To compute the Euler
umber, one can use the following result.
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Theorem 5.8 ([69]). Let M be a compact oriented 4-manifold that admits an effective circle
action. Assume that the action is fixed-point free on the boundary ∂ M and has only finitely
many fixed points p1, . . . , pℓ in the interior. Then

e(∂ M) =

ℓ∑
k=1

1
mknk

,

here (mk, nk) are isotropy weights of the fixed points pk .

We note that the idea of using Seifert fibration in the context of integrable systems goes
ack to A. T. Fomenko and H. Zieschang. In their molecule theory [11,48], atoms and Seifert
anifolds appear as the basic building blocks. However, not every loop molecule admits the

tructure of a global Seifert fibration.

roblem 5.9 (A.T. Fomenko). Suppose that X corresponds to a loop molecule of an integrable
nd non-degenerate two-degree of freedom system. Then X admits a decomposition into
eifert-fibered pieces. Can one construct an algorithm that computes fractional monodromy
f X , when it exists?

A related problem is the following.

roblem 5.10. Suppose X is a graph-manifold (a loop molecule). Under which geometric
onditions does fractional monodromy exist along X?

.2. Towards quantum fractional monodromy

Let us come back to the example of a system with 1: (−2) resonance. Consider the
semi-local) action coordinates

I1 =
1

2π

∫
α1

pdq and

I2 =
1

2π

∫
α2

pdq,

where the cycle α2 corresponds to the circle action and α1 is such that (α1, α2) form a basis
n the first homology group of a Liouville torus. Note that I2 = J .

As in the case of the usual quantum monodromy, one can consider the quantization condition

I1 = h̄(n1 + µ1),
I2 = h̄(n2 + µ2),

which gives a semi-classical spectrum locally outside the hyperbolic branch. However, for
this spectrum one cannot transport an elementary cell around the singularity in a continuous
way. The novel idea that was introduced in [77] is to consider not an elementary cell, but a
double cell in this case. Let us explain this idea on the level of the actions. Observe that by
Theorem 5.1, it is possible to define 2I1 and I2 also in a neighborhood of the curled torus.
Therefore, the action quantization

I1 = h̄(n1 + µ1),
I2 = h̄(2n2 + µ2)
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Fig. 7. The joint spectrum of the quantum 1: (−2) resonance (h̄ = 0.004), and the transport of a double cell around
he singularity.

ill result in a globally defined lattice which is contained in the original semi-classical spectrum
nd for which one can transport an elementary cell around the origin. By the construction, an
lementary cell for this lattice is a double cell for the original spectrum. After the transport
round the origin, this double cell will not come back to its initial position, but will be
ransformed to another double cell, related to the initial one by the quantum monodromy
ransformation

Mquant =

(
1 0
1 1

)
,

ee Fig. 7, where the joint spectrum of (Ĥ , Ĵ ) for the quantum 1: (−2) resonance system and
he transport of a double cell are shown.

We note that here we suppress the question of a continuous transport of an elementary cell
n the joint spectrum of (Ĥ , Ĵ ) for the quantum 1: (−2) resonance system near the hyperbolic
ranch.

The idea of considering a double or an n-cell leads to the notion of quantum fractional
onodromy [77]. We refer the reader to [77] for more details.

. Scattering monodromy

Up until now we considered integrable Hamiltonian systems such that the corresponding
ntegral map F has compact invariant fibers F−1( f ), f ∈ Rn . In this section, we mainly
iscuss the non-compact case. In particular, we discuss the so-called scattering monodromy in
he context of classical potential scattering theory.

.1. Preliminaries

A notion of scattering monodromy was originally introduced by L. M. Bates and R. H.
ushman in [7] for a two degree of freedom hyperbolic oscillator.10 At about the same time,

10 The hyperbolic oscillator is not a scattering system in the sense of, for instance, [57], since the potential of this
system is unbounded at infinity and is not decaying to zero. Nonetheless, the system shares some of the properties
of scattering systems, such as the existence of the so-called deflection angle; see below.
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Fig. 8. Bifurcation diagram for the integral map F = (H, J ) of a planar scattering integrable system with a repulsive
otential.

cattering monodromy was introduced by H. R. Dullin and H. Waalkens in [37] for planar
cattering systems with a repulsive rotationally symmetric potential, both in the classical and
uantum settings. The idea behind the works [7,37] is as follows.

Consider a Hamiltonian system on T ∗R2 with canonical coordinates (q1, q2, p1, p2) defined
y the Hamiltonian function

H =
1
2

(p2
1 + p2

2) + V (r ),

here V is a radially symmetric potential r2
= q2

1 +q2
2 . This system describes the motion of a

article on the plane R2 with coordinates (q1, q2) under the influence of the potential function
V . We observe that the system is Liouville integrable since the momentum J = q1 p2 − q2 p1

is conserved.
We shall assume, for simplicity, that the potential V is a smooth, positive, and monotone

function, decaying at infinity sufficiently fast. The bifurcation diagram of F = (H, J ) is shown
in Fig. 8. It consists of a single critical value, corresponding the maximum of V . This is
a focus–focus singularity if the maximum is non-degenerate. In particular, the set R of the
egular values of F is not simply-connected. Nonetheless, it can be shown that global action–
ngle coordinates exist for this system; see [7]. Topologically, the bundle F−1(γ ) → γ is a
rivial cylinder S1

× R-bundle. Moreover, the energy levels H−1(hmax ± ε) below and above
hmax = max V are topologically the same.

To get a non-trivial invariant, the authors of [7,37] considered the so-called deflection angle
f a trajectory. Specifically, observe that under the Hamiltonian dynamics, a particle in the
lane gets deflected by V . It proceeds to spatial infinity in both forward and backward time,

nless it approaches the maximum of the potential. To any such scattering trajectory, one can
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associate the deflection angle

Φ =
1

2π

∫
+∞

−∞

dϕ(q(t))
dt

dt,

where ϕ is the polar angle in the configuration q1q2-plane. Due to rotational symmetry, the
deflection angle is a function of F = (H, J ). Hence, one can consider its variation along γ .

Theorem 6.1 ([7,37]). In the above setting, the variation of the deflection angle Φ along γ is
equal to −1.

The above approach to scattering monodromy is based on the notion of the deflection angle,
which is very close to the notion of the rotation number for compact systems. We note that
one can approach scattering monodromy also from other (related) perspectives. For instance,
in [37] the authors used radial actions for the pair of integrable systems: the original system
given by V and a reference system with the zero potential (the free flow). These radial actions

I =
1
π

∫
∞

r0

pr dr and Iref =
1
π

∫
∞

r ′
0

pref
r dr

o not exist individually. However, if the potential V decays sufficiently fast, their difference
xists. More specifically, the limit

lim
r→∞

1
π

∫ R

r0

pr dr −
1
π

∫ R

r ′
0

pref
r dr

xists and behaves like the usual radial action of a compact system with a rotationally-
ymmetric potential. In particular, transporting this radial action and the action J along γ ,
ne gets a monodromy automorphism of the usual form:

Mγ =

(
1 mγ

0 1

)
,

here mγ = −1 is the variation of the deflection angle.
Related to this is a ‘billiard’ approach, which is also based on the action coordinates. It is

pplicable whenever a given integrable system with non-compact fibers is separable. We refer
he reader to the works [32,73,82].

We also mention the work [41], where the notion of non-compact monodromy was intro-
duced. Here the idea is that for a non-compact integrable system with the integral map F and a
global circle action, one can compactify the fibers of F near a focus–focus fiber preserving the
circle action. Then one gets a compact fibration with the usual monodromy around the focus–
focus fiber. In [41], this monodromy is called non-compact. It coincides with the scattering
monodromy for the above two-degree of freedom systems.

Finally, we mention the work [68], where the authors follow the point of view of classical
potential scattering theory; see, in particular, [57]. The novelty of this work is that it is
applicable to possibly many degrees of freedom scattering and integrable systems that are
not necessarily rotationally symmetric. This approach generalizes the above approaches to
scattering monodromy. We discuss it in some more detail below.

6.2. Classical scattering theory

Below we briefly review classical potential scattering theory, following mainly A. Knauf

[57,58] and J. Derezinski and C. Gerard [33]; see also [66,68].
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Consider a pair of Hamiltonians on T ∗Rn given by

H =
1
2
∥p∥

2
+ V (q) and Hr =

1
2
∥p∥

2
+ Vr (q),

here the (singular) potentials V and Vr are assumed to decay sufficiently fast. Let gt
H denote

he Hamiltonian flow. Define the invariant set s of scattering states by

s = {(q, p) ∈ T ∗Rn
| H (q, p) > 0, supt∈R±∥gt

H (q, p)∥ = ∞}.

If the potential V decays at infinity sufficiently fast (for example, is of short range [33,57]),
then the trajectories are asymptotic to straight lines. Moreover, for any x ∈ s, the following
functions, usually called the asymptotic direction and the impact parameter of gt

H (x),

p̂±(x) = lim
t→±∞

p(t, x) and q±

⊥
(x) = lim

t→±∞
q(t, x) − ⟨q(t, x), p̂±(x)⟩

p̂±(x)
2h

,

are defined and depend continuously on x ∈ s. (Here h is the energy of gt
H .) In other words,

the space of trajectories s/gt
H , that is, the quotient space of s with respect to the Hamiltonian

flow gt
H , gets parametrized by the trajectories of the free Hamiltonian H =

1
2∥p∥

2. Due to the
gt

H -invariance, we get the maps

A±
= ( p̂±, q±

⊥
) : s/gt

H → AS

from s/gt
H to a subset AS ⊂ Rn

× Rn of the ‘asymptotic states’.
Similarly, one can construct the maps

A±

r = ( p̂±, q±

⊥
) : sr/gt

Hr
→ AS

for the Hamiltonian Hr =
1
2 p2

+ Vr (q).

efinition 6.2 ([57,68]). Let M be a gt
H -invariant submanifold of s. Assume that the

omposition map

S = (A−)−1
◦ A−

r ◦ (A+

r )−1
◦ A+

is well defined and maps the set B = M/gt
H to itself. The map S is then called the scattering

map with respect to H, Hr and B.

6.3. Monodromy in scattering systems

To define scattering monodromy, we need to restrict the class of possible reference systems
to those for which the corresponding scattering map preserves the integral fibration at infinity.

Definition 6.3 ([68]). Consider a Hamiltonian H which gives rise to a scattering integrable
ystem with the integral map F . A Hamiltonian Hr will be called a reference Hamiltonian for

this system if

F
(

lim
t→+∞

gt
Hr

(x)
)

= F
(

lim
t→−∞

gt
Hr

(x)
)

(9)

for every scattering trajectory t ↦→ gt
Hr

(x).

Remark 6.4. We note that Eq. (9) appeared in a related context in the work [56].
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Consider the Liouville fibration F : s → Rn . Let Hr be a reference Hamiltonian for F such
that A±(s) ⊂ A±(sr ) holds. Then we have the scattering map

S : B → B, B = s/gt
H ,

which allows us to identify the asymptotic states of s at t = +∞ and t = −∞. This results
in a new total space sc and a new fibration

Fc : sc → Rn.

Definition 6.5 ([68]). Assume that the fibration

Fc : sc → Rn

is a torus bundle. The Hamiltonian monodromy of this bundle is called scattering monodromy
of F with respect to Hr .

One distinctive property of scattering monodromy in the sense of Definition 6.5 is its relative
form (dependence on the choice of Hr ). For instance, if we choose Hr to coincide with the
original Hamiltonian H , Duistermaat’s Hamiltonian monodromy is recovered.

Another property that we mention here is that using an appropriately chosen scattering map,
one can define scattering monodromy for certain scattering systems that are not necessarily
Liouville integrable or even nearly-integrable on the whole phase space T ∗Rn . This is similar
to the case of another scattering invariant (the so-called scattering degree) introduced by A.
Knauf in [57] outside the context of integrability; cf. also the work [70].

6.4. Example

Let us come back to the example considered at the beginning of this section: a Hamiltonian
system on T ∗R2 given by the Hamiltonian function

H =
1
2

(p2
1 + p2

2) + V (r ),

where V is a radially symmetric, positive, monotone decaying potential. Let J = q1 p2 − q2 p1

denote the angular momentum. Consider the curve γ around the focus–focus fiber shown in

Fig. 8. Setting Hr =
1
2

(p2
1 + p2

2) and M = F−1(γ ), we get the scattering map

S : B → B, B = M/gt
H .

Note that the manifold B is a two-torus in this case.

Theorem 6.6 ([68]). In the first homology group of B = F−1/gt
H , the scattering map S is

given by the matrix

Mγ =

(
1 1
0 1

)
.

This scattering monodromy along γ (w.r.t. H and Hr =
1
2 (p2

1 + p2
2)) is given by the same

atrix Mγ .

Another interesting example, where a natural choice of Hr is not given by the free flow, is
he (spatial) Euler two-center problem. We refer to the work [68] for details.
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6.5. Quantum scattering monodromy

We have already noted that for a scattering system on T ∗R2 with a decaying rotationally
symmetric potential V (r ), one can define a notion of scattering monodromy using the difference
of the radial actions

Idiff = lim
r→∞

1
π

∫ R

r0

pr dr −
1
π

∫ R

r ′
0

pref
r dr, (10)

for the original system and the reference system with zero potential (the free flow); see [37].
Using this idea, it was shown in the same work [37] that for scattering systems in the plane, one
can define a quantum analogue of scattering monodromy. The non-triviality of this invariant
also leads to a lattice defect, similarly to the compact case.

We note, however, that in quantum scattering (and even in the case of quantum scattering in
the plane), there is an additional difficulty related to the decay of the potential function: if the
potential V is of long range, then the corresponding action difference given in Eq. (10) diverges.
This is not a problem for the classical scattering monodromy (in the sense of Definition 6.5).
Another interesting and related problem is to define quantum scattering monodromy for
scattering integrable systems with many degrees of freedom. For a discussion of these problems,
we refer the reader to [66].
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