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Abstract—In 2005 Dullin et al. proved that the nonzero vector of Maslov indices is an
eigenvector with eigenvalue 1 of the monodromy matrices of an integrable Hamiltonian system.
We take a close look at the geometry behind this result and extend it to the more general
context of possibly non-Hamiltonian systems. We construct a bundle morphism defined on the
lattice bundle of an (general) integrable system, which can be seen as a generalization of the
vector of Maslov indices. The nontriviality of this bundle morphism implies the existence of
common eigenvectors with eigenvalue 1 of the monodromy matrices, and gives rise to a corank
1 toric foliation refining the original one induced by the integrable system. Furthermore, we
show that, in the case where the system has 2 degrees of freedom, this implies the existence of
a compatible free S1 action on the regular part of the system.

MSC2010 numbers: 37J35

DOI: 10.1134/S1560354722030042

Keywords: integrable system, toric foliation, S1 action, Maslov index, monodromy matrix

1. BACKGROUND AND MOTIVATION

An integrable Hamiltonian system contains the following ingredients: a 2n-dimensional sym-
plectic manifold (M,ω) as the phase space, an integral map F = (f1, . . . , fn) : M → R

n which is
regular almost everywhere, Hamiltonian vector fields Xi for i = 1, . . . , n with fi as the Hamitonians
and the commutativity condition: [Xi,Xj ] = 0. The commutativity of the vector fields Xi induces a

Hamiltonian R
n action Φ on the phase space M given by Φ(t1,...,tn)(p) = ϕt1

1 ◦ . . . ◦ ϕtn
n (p) with ϕi

being the flow of Xi for each i. The nondegeneracy of the symplectic form ω implies that X1, . . . ,Xn

are linearly independent wherever DF = (df1, . . . , dfn) has full rank. Note that the level sets of the
integral map are invariant under the action Φ. For simplicity, we will refer to the domain consisting
of regular level sets of the integral map together with the dynamics on it as the regular part of the
system.

When a regular orbit of Φ, i. e., an orbit consisting of regular points of F , is compact, it is an
n-dimensional Lagrangian torus. The region M0 consisting of compact regular orbits of Φ thereby
admits a Lagrangian toric foliation F with these n−tori as the leaves. The Arnold –Liouville theorem
shows that near each of the leaves the foliation is nice in the sense that local action-angle coordinates
exist. However, topological and geometric obstructions prevent in general the global existence of
action-angle coordinates. This has been investigated by Duistermaat in [7]. The nontriviality of the
torus bundle F−1(C) over some loop C lying in the set of regular values of F serves as one of these
obstructions, and it is characterized by the monodromy matrix MC of the bundle. One should note
that here, for simplicity, we have assumed each level set F−1(c) with c ∈ C to consist of a single
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orbit. However, in general, F−1(c) can contain more than one orbit and hence F−1(C) → C is not
necessarily a torus bundle. We will deal with this problem later in a more rigorous way.

Via the Bohr – Sommerfeld quantization of actions, their global nonexistence manifests itself in
quantum mechanics as the nonexistence of global quantum numbers to assign the joint spectrum of
commuting operators that are the quantum analogues of the functions fi. Here Maslov indices
determine whether the actions are required to be integer or half-integer multiples of Planck’s
constant. From a geometric point of view, the Maslov index of a closed curve of Lagrangian planes
counts the number of intersections of such a curve with a chosen Maslov cycle Σ. Usually Σ is
induced by some Lagrangian vector subbundle V of the tangent bundle TM , and the curve of
Lagrangian planes is the one induced by a curve on some Lagrangian submanifold in the natural
way. One can think of V as a reference and then the Maslov index describes how the Lagrangian
planes rotate with respect to the reference along the curve. In particular, when M is the cotangent
bundle of another manifold N , V is usually taken as the vertical distribution of T ∗N = M .

For a regular value c0 of F , a set of closed curves {λ1, . . . , λn} on the Lagragian torus F−1(c0)

can be taken such that [λ1], . . . , [λn] constitute a basis of H1

(
F−1(c0)

) ∼= Z
n. Let ai be the Maslov

index of λi. The main result in [8] shows that, when it is nonzero, the vector of Maslov indices
(a1, . . . , an) is an eigenvector with eigenvalue 1 of the monodromy matrices MC for all loops C of
regular values of F based at c0. As is pointed out in [8], one implication of the result is that a
Hamiltonian S1 action exists on the space F−1(C). Moreover, it also imposes some restrictions on
the forms of the monodromy matrices.

A close look at the result in [8] suggests that there should be a more general underlying
structure. Namely, on the one hand, the monodromy matrices are determined solely by the foliation
F. On the other hand, however, the Maslov indices depend on the choice of the Maslov cycle,
or say, the Lagrangian subbundle V. A change of the reference may result in a change of the
triviality/nontriviality of the vector of Maslov indices, but it affects neither the foliation nor the
monodromy matrices. It is then natural to ask whether we could restate the result in [8] in terms
of the topology of M0 or F. This could then not only give a new interpretation in different terms,
but also a generalization of the result in [8] to a broader context.

It turns out that we are able to work this out for (the regular parts of) systems which are
integrable in a more general sense. These systems are called integrable non-Hamiltonian systems
in the literature (see, e. g., [2, 16]) and the precise definition will be given in the next section. Note
that the phrase “non-Hamiltonian” here means “not necessarily Hamiltonian”, and the notion
also includes all integrable Hamiltonian systems. No symplectic structure will be required for the
definition of such a system, and the M is not necessarily of even dimension.

2. BASIC SETTINGS AND LAYOUT OF THE PAPER

Since we are concerned with the toric foliation on the domain of compact regular orbits of Φ, we
make, for simplicity, some assumptions that lead to the following definition of a regular integrable
non-Hamiltonian system with compact orbits.

Definition 1. A regular (non-Hamiltonian) integrable system of type (k, n) with compact orbits
is a triple (M,F,Φ) where M is a (k + n)-dimensional smooth manifold, the integral map

F = (f1, . . . , fk) : M → R
k

is a submersion and Φ is an effective R
n action with compact orbits such that

F ◦ Φ(t1,...,tn)(p) = F (p).

Remark 1. By restricting a Hamiltonian integrable system to the set of regular values of the
integral map we get a regular integrable Hamiltonian system.

Remark 2. Without loss of generality, M is assumed in this article to be connected unless
otherwise stated.
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Since the orbits of Φ are compact, they are n−tori and thereby constitute a toric foliation F on
M . As mentioned earlier, the map F : M → R

n is in general not a torus bundle since a level set of
F may contain more than one orbit. In order to get a torus bundle, we introduce an orbit space OM
whose elements are the orbits of Φ. The bundle L of period lattices will play a central role in our
discussion. This is a bundle over the orbit space OM where the fibers are the isotropy subgroups of
the action Φ. Under Definition 1 both these spaces have nice structures and properties, and they
will be discussed in detail in Sections 3 and 4.

The definitions of monodromy maps and monodromy matrices will be formally introduced in
Section 5 along with their basic properties.

The main construction and results are given in Section 6. This comprises a bundle epimorphism
ρ = (ρ1, . . . , ρl) from L to Z

l for some integer l � n. This is a purely topological object associated
with the system (M,F,Φ), and as we will see in Section 7, ρ can be seen as a generalization of the
vector of Maslov indices. When l > 0, each component of ρ is a common eigenvector with eigenvalue
1 of the (transposed) monodromy matrices. This will have implications on the toric foliation F, and
in the case of n = 2, it implies the existence of a free S1 action on M which commutes with Φ. The
precise statements of these results form the main results of this paper: Theorem 5 and Theorem 6
in Section 6.

In Section 7, we revisit the case of integrable Hamiltonian systems. We show that the vector of
Maslov indices being nonzero implies the nontriviality of ρ, and then show how the result in [8]
follows from our construction and results. Moreover, with Audin’s conjecture (which has been
proved), our results imply that, for any integrable Hamiltonian system with a proper integral map
in R

4, each of the connected components of the regular part of the system admits a compatible free
S1 action. This is stated as Theorem 7.

The appendix is devoted to a technical proof of the local triviality of the lattice bundle L and
an illustration on how the monodromy matrix MC determines the torus bundle F−1(C) → C.

3. THE ORBIT SPACE OM AND THE LATTICE BUNDLE L
In this section we study the orbit space OM and the lattice bundle L associated to a regular

integrable system (M,F,Φ) of type (k, n) with compact orbits.

By ∼Φ we denote the equivalence relation on M such that p ∼Φ p′ if and only if p and p′ are
on the same orbit of Φ. The orbit space OM is the quotient space M

/
∼Φ, that is, each element of

OM represents an orbit of Φ. Then F factors as F = F̄ ◦ qΦ with qΦ : M → OM = M
/
∼Φ being

the quotient map and F̄ : OM → R
k.

Note that, for any open set W in M , q−1
Φ

(
qΦ(W )

)
= ΦR

n
(W ) is open. This implies that qΦ(W )

is open, and therefore qΦ is an open map. Since each orbit is compact, OM is Hausdorff. Since
F is a submersion, for any o ∈ OM and p ∈ o, there exists a local section σ of F over some
open neighborhood U of b = F (p) such that σ(b) = p. Then V = qΦ ◦ σ(U) = qΦ

(
ΦR

n ◦ σ(U)
)
is

an open neighborhood of o and qΦ ◦ σ : U → V is the inverse of F̄
∣∣
V
: V → U . Therefore, F̄ is a

local homeomorphism. Choose an open covering {Vα} of OM such that F̄α = F̄
∣
∣
Vα

: Vα → Uα is a

homeomorphism for each α. Then {(Vα, F̄α)} is a smooth structure on OM and naturally it makes
F̄ a local diffeomorphism. Since F = F̄ ◦ qΦ and F is submersive, such a smooth structure makes
qΦ a submersion. The discussion here yields the following proposition.

Proposition 1. There exists a unique smooth structure on OM such that qΦ is a submersion and
F̄ is a local diffeomorphism.

As in the case of the regular points of Hamitonian integrable systems, for any p ∈ M the isotropy
group Tp ⊂ R

n of Φ at p is a free Abelian group of rank n [5], and Tp = Tp′ if p and p′ are on the
same orbit. Hence, for any orbit o ∈ OM , define its period lattice to be Lo = Tp with any p ∈ o. The
lattice bundle is then defined as L =

⊔
o∈OM

Lo and then it holds naturally that L ⊂ OM × R
n.

Denote by πL the natural projection L → OM : (o, T ) → o and endow L with the subspace topology
inherited from OM ×R

n. The following basic fact holds and its proof is inherent in the proof of the
(Hamiltonian) Liouville theorem in [5]:
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Theorem 1. For any o ∈ OM , there exists a neighborhood U and smooth sections τi : U → U ×R
n

with i = 1, . . . , n, such that, for each o′ ∈ U , τ1(o
′), . . . , τn(o′) constitute a basis of Lo′. As a

consequence, there exists an isomorphism ρ : π−1
L (U) → U × Z

n.

Proof. See Lemma 2.8 in [11] for a complete proof. In Appendix A, we give an argument with a
similar idea, but different in technical details.

We call a neighborhood U such as in the theorem above a OM -neighborhood, and the sections
τ1,. . . ,τn a smooth local basis of L over U . Theorem 1 above actually shows that L is a smooth
submanifold of OM × R

n. As a corollary of Theorem 1, we have:

Corollary 1. The map πL : L → OM is a covering map of OM .

Since for each o ∈ OM the group Lo is a subgroup of the fiber {o} × R
n, we can define

an equivalence relation ∼L on OM × R
n given by (o, T ) ∼L (o′, T ′) if and only if o = o′ and

(o, T − T ′) ∈ Lo. We denote the quotient map of ∼L by qL.
The following non-Hamiltonian version of the Liouville theorem is a consequence of Theorem 1.

Theorem 2 ([16]). For any o ∈ OM , there exists some neighborhood U of o in OM with a

diffeomorphism φ :
(
U ×R

n
)/

∼L→ q−1
Φ (U). Moreover, the T

n action on q−1
Φ (U) induced by the

natural Tn action on
(
U ×R

n
)/

∼L∼= U ×T
n via this diffeomorphism commutes with the R

n action
Φ.

Proof. Choose a local section σ of qΦ : M → OM over some OM -neighborhood U of o. Define

φ̃ : U × R
n → q−1

Φ (U) as φ̃(c, T ) = ΦT ◦ σ(c). Then φ̃ factors as φ ◦ qL. It can be checked that φ is

a homeomorphism from
(
U × R

n
)/

∼L to q−1
Φ (U).

To show that
(
U ×R

n
)/

∼L is homeomorphic to U × T
n, one can resort to a smooth local basis

τ1,. . . ,τn of L over U and a rectifying map

rec : U ×R
n → U × R

n,

(c; t1, . . . , tn) → (c; t1τ1(c), . . . , tnτn(c)).

This descends to an isomorphism rec from U × T
n to

(
U ×R

n
)/

∼L. It can be checked that rec is
a bijective submersion, and thereby is a diffeomorphism.

Corollary 2. If the bundle qΦ : M → OM admits a global section, then it is isomorphic to the
bundle π̄O :

(
OM × R

n
)/

∼L→ OM with π̄O([o, T ]) = o.

Proof. The proof of Theorem 2 actually guarantees that π̄O :
(
OM × R

n
)/

∼L→ OM with
π̄O([o, T ]) = o being a locally trivial torus fibration. If qΦ : M → OM admits a global section

σ : OM → M , then the map φ̃M : OM ×R
n → M with φ̃M (c, T ) = ΦT ◦ σ(c) for any c ∈ OM factors

as φ̃M = φM ◦ qL with φM being a bundle isomorphism.

4. THE LATTICE BUNDLE L AND THE SHEAF R OF COMPATIBLE S1 ACTIONS

The sheaf R of compatible S1 actions over OM was first introduced in [14] in the context of
Hamiltonian integrable systems and then in [15] for the non-Hamiltonian case. We explain the
relation between the sheaf R and the lattice bundle L in this section.

Definition 2. For any open set U ofOM , an S1 action Θ : S1 × q−1
Φ (U) → q−1

Φ (U) acting on q−1
Φ (U)

is called a compatible S1 action over U if it commutes with the R
n action Φ and preserves qΦ

in the sense that qΦ ◦Θ(z, p) = qΦ(p) for all z ∈ S1 and p ∈ q−1
Φ (U).

For any open set U of OM , denote by RU the set of all compatible S1 actions over U .

From Proposition 2 it follows that, for any Θ,Θ′ ∈ RU and z, z′ ∈ S1, the identity Θz ◦Θ′z′(p) =

Θ′z′ ◦Θz(p) holds, and thus there is a natural Abelian structure on RU with the addition Θ + Θ′

given by
(
Θ+Θ′)z(p) = Θz ◦Θ′z(p).
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Definition 3. [15] For any pair of open sets U , V with U ⊂ V , denote by ρVU the restriction map

from RV to RU . Then R =
(
{RU}, {ρVU

∣∣U ⊂ V }
)
is a sheaf of Abelian groups and it is called

the sheaf of compatible S1 actions.

The following proposition characterizes the compatible S1 actions.

Proposition 2. Suppose Θ : S1 × q−1
Φ (U) → q−1

Φ (U) is a compatible S1 action. Then there exists

a unique continuous section σ : U → L such that Θ(ei·2πt, p) = Φt·σ◦qΦ(p)(p). Conversely, if σ is a

continuous section of L over U , then Θ(ei·2πt, p) = Φt·σ◦qΦ(p)(p) defines a compatible S1 action.

Proof. Let XΘ be the infinitesimal generator of the flow ψt(p) = Θ(ei·2πt, p) on q−1
Φ (U), i. e.,

XΘ(p) =
d
dt

∣
∣
t=0

Θ(ei·2πt, p). Let ∂
∂ti

∣
∣
p
= d

dti
Φ(0,..ti..,0)(p). Since Θ preserves qΦ, the following relation

holds:

XΘ(p) ∈ ker qΦ∗ = span{ ∂

∂ti

∣∣
p
, i = 1, . . . , n}.

Hence, there exist smooth functions a1, . . . , an on q−1
Φ (U) such that XΘ = Σn

i=1ai
∂
∂ti

. Moreover,

since Θ commutes with Φ, the functions ai are invariant on each orbit, and hence they can be seen
as functions on U . Note that the flow ϕ on q−1

Φ (U) with

ϕt(p) = Φt·a1◦qΦ(p),...,t·an◦qΦ(p)(p)

has the same infinitesimal generator as ψ, and hence ϕ = ψ. Since

Φa1◦qΦ(p),...,an◦qΦ(p)(p) = Θ(ei·2π, p) = p

for all p ∈ q−1
Φ (U),

(
qΦ(p); a1 ◦ qΦ(p), . . . , an ◦ qΦ(p)

)
∈ LqΦ(p). Hence, σ : o →

(
o; a1(o), . . . , an(o)

)

is the smooth section we are looking for. If there is another section σ′ on U satisfying the relation

Θ(ei·2πt, p) = Φt·σ′◦qΦ(p)(p) with σ′ : o →
(
o, a′1(o), . . . , a

′
n(o)

)
, then it holds that XΘ = Σn

i=1a
′
i
∂
∂ti

.

As a consequence, we have ai(o) = a′i(o) for all i = 1, . . . , n and o ∈ U , and thereby σ = σ′.

The argument for the converse direction is straightforward.

Accordingly, compatible S1 actions over U are in one-one correspondence with the continuous
sections of L over U , and this implies that L is the associated sheaf/etale space of R. The discussion
here amounts to the following corollary.

Corollary 3. The etale space of the sheaf R of compatible S1 actions is isomorphic to the lattice
bundle L.

If σ : OM → L is a global continuous section of L, then σ corresponds to a compatible S1 action

Θ on M by Θ(ei·2πt, p) = Φt·σ◦qΦ(p)(p). When it is nonzero, this is a nontrivial S1 action. Actually in
this case the section σ is nonzero everywhere and the corresponding S1 action Θ is thereby effective.
To see this, first note that OM × {0} is closed in OM × R

n and hence is closed in L. Moreover,
the fact that L is locally isomorphic to U × Z

n implies that OM × {0} is also open in L. Since we
assume M to be connected, OM × {0} is exactly one connected component of L. Hence, for any
continuous section σ : OM → L, as long as σ(c0) ∈ OM × {0}, we have σ(OM ) = OM × {0}. As a
consequence, if σ is nonzero somewhere, it is nonzero everywhere, and the induced S1 action Θ is
effective.

Note that σ being nonzero does not imply that Θ is free. However, the existence of a nonzero
section does imply the existence of a free S1 action compatible with Φ.

Proposition 3. The existence of a global nonzero continuous section of L implies the existence of
a free S1 action on M .
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Proof. First we show that, for any nonzero integer n, the map ∗n : (o, T ) �→ (o, nT ) defined on
OM × R

n induces an open and closed map on L. Note that ∗n is a diffeomorphism on OM × R
n,

and L is closed in OM × R
n with ∗n(L) ⊂ L. As a consequence, ∗n induces a closed map on L,

which is also denoted by ∗n. For the openness, first note that, for any continuous section σ of L over
some open set U in OM , σ(U) is open in L. Then, for any w ∈ L and its neighborhood W , there
exists some continuous section σ over U 	 c with c = qΦ(w) such that σ(U) ⊂ W and σ(c) = w.
Then ∗n ◦ σ is also a contiuous section of L over the open set U , and ∗n ◦ σ(U) ⊂ ∗n(W ). Therefore,
∗n(W ) is a neighborhood of ∗n(w) and this implies ∗n is an open map on L.

Now suppose that σ is a nonzero section. Then σ(OM ) is a connected component of L. Fix a
point c0 in OM . Choose w0 ∈ Lc0 such that ∗n(w0) = σ(c0) for some n ∈ Z, and R ·w0 ∩L = Z ·w0.
Suppose that Sw0 ⊂ L is the connected component of L containing w0. Then ∗n(Sw0) is another
component of L since ∗n is both an open and a closed map on L. Since σ(c0) = ∗n(w0) ∈ ∗n(Sw0),

it yields σ(OM ) = ∗n(Sw0), and therefore σ1 =
1
nσ is also a continuous section of L with σ1(OM ) =

Sw0 . It remains to show that, for any c ∈ OM , the identity R · σ1(c) ∩ L = Z · σ1(c) holds. That is,
σ1(c) is a generator of the subgroup R · σ1(c) ∩ L for each c ∈OM .

Suppose that w1 ∈ Lc is a generator of R · σ1(c) ∩ L . Then there exists some integer n1

such that n1w1 = σ1(c). Repeating the argument above yields another section σ2 =
1
n1
σ1. Since

σ1(c0) = w0 and R · w0 ∩ L = Z · w0, σ2(c0) =
1
n1
σ1(c0) =

1
n1
w0 ∈ R · w0 ∩ L = Z · w0. This implies

n1 = ±1. Hence, for any c ∈ OM , R · σ1(c) ∩ L = Z · σ1(c), and therefore the S1 action Θ on M

defined by Θ(ei·2πt, p) = Φt·σ1◦qΦ(p)(p) is free.

5. MONODROMY MAPS

Consider a loop C in the orbit space OM with a point c0 ∈ C. For convenience, we view C
both as a subset C ⊂ OM and a fixed parametrization C : [0, 1] → OM with C(0) = C(1) = c0. Let

MC = q−1
Φ (C) and let LC = π−1

L (C). Then qC = qΦ
∣∣
C : MC → C is a locally trivial torus fibration over

C. Since qC is a locally trivial fibration over a loop with connected fibers, it always admits a section
over C.

By replacing OM with C and M with MC , the same argument for Corollary 2 shows that there
is an isomorphism from π̄C :

(
C ×R

n
)/

∼L→ C to qC : MC → C. Recall that L → OM is a covering,
and denote by MC the monodromy action of C on Lc0 . MC is actually an isomorphism on the
lattice Lc0 . To see this, suppose γ1 and γ2 are the lifts of C with base points v1 and v2 , with
v1, v2 ∈ Lc0 . γ1 + γ2 is the lift of C at v1 + v2, which implies that MC is a group homomorphism. It
can be checked that MC is bijective. By fixing a basis w̄ = (u1, . . . , un) of Lc0 , MC is represented
by some element MC,w̄ ∈ SL(n,Z). Note that MC,w̄ ∈ GL(n,Z). To see that detMC,w̄ = 1, we
only need to show that detMC,w̄ > 0. For each i ∈ {1, . . . , n}, let τi : [0, 1] → L ⊂ OM × R

n be

the lift of C with τi(0) = ui. It holds that τi(s) =
(
Ct, τ ′i(s)

)
with τ ′i : [0, 1] → R

n being continuous

for each i ∈ {1, . . . , n}. Consequently, det[τ ′1(s), . . . , τ ′n(s)] is continuous and nonzero everywhere
with respect to s and hence its sign does not change. By the definition of MC,w̄, it holds that
[τ ′1(1), . . . , τ

′
n(1)] = [τ ′1(0), . . . , τ

′
n(0)] ·MC,w̄ and thereby detMC,w̄ > 0.

We call MC the monodromy map associated to C (or, of the fibration qC : MC → C), and MC,w̄
the monodromy matrix with respect to w. The monodromy map MC determines the structure of
qC : MC → C (see Appendix B).

6. THE MAIN CONSTRUCTION

In this section we construct a bundle morphism ρ : L → Z
l with l being an integer and show the

main results of this article.
Let o be an element in OM . For T ∈ Lo and x ∈ q−1

Φ (o), let λT,x : [0, 1] → q−1
Φ (o) be the closed

path on the torus q−1
Φ (o) with λT,x(s) = Φs·T (x). Denote by TorH1(M) the torsion subgroup of

H1(M). Define ρo : Lo → H1(M)
/
TorH1(M) by assigning to each T ∈ Lo the element [λT,x] in

H1(M)
/
TorH1(M). Note that such an assignment is independent of x since, for any x, x′ on q−1

Φ (o),

λT,x and λT,x′ are homotopic on q−1
Φ (o). The map ρo is a homomorphism between Abelian groups.
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Definition 4. The bundle morphism ρ : L → H1(M)
/
TorH1(M) is the one satisfying the identity

ρ
∣
∣
Lo

= ρo for each o ∈ OM .

We show that the value of ρ is invariant under parallel translation on L and, as a consequence,
ρ can be seen as a continuous bundle epimorphism from L to Z

l with l � n.

Theorem 3. For any path γ̃ : [0, 1] → L, ρ ◦ γ̃(t) = ρ ◦ γ̃(0) for all t ∈ [0, 1]. As a consequence, ρ
is locally constant, and its image Im ρ = Im ρo is a free Abelian group with rank l � n.

Proof. Let γ be the path in OM defined as γ = πL ◦ γ̃. Take a section σ of qΦ : M → OM over
γ. Then (t, ·) �→ λγ̃(t),σ◦γ(t)(·) gives a homotopy in M and hence ρ ◦ γ̃(t) = [λγ̃(t),σ◦γ(t) ] remains

invariant inH1(M)
/
TorH1(M). Since OM is path-connected, for any o, o′ ∈ OM , Lo′ can be obtained

via the parallel translation of Lo along some path connecting o and o′. Therefore, Imρo = Imρo′
and it is a finitely generated subgroup in H1(M)

/
TorH1(M) and thereby a free Abelian group with

rank no larger than that of Lo. Finally, ρ is locally constant since L is locally path-connected.

Corollary 4. The map ρ is a bundle epimorphism from L to Z
l with l � n. For any path γ in OM

with Mγ being the associated monodromy map, ρ ◦Mγ = ρ on Lγ(0).

Suppose l > 0, i. e., ρ is nontrivial. Then ρ = (ρ1, . . . , ρl) with ρi : L → Z being locally constant
and ρi ◦Mγ = ρi. This means:

Corollary 5. For o ∈ OM , the linear functionals ρi
∣∣
Lo

are common eigenvectors with eigenvalue 1

of the transposes of the monodromy matrices Mγ for all paths γ in OM with γ(0) = o.

Such a structure gives rise to a descending chain of lattice subbundles

L ⊃ ker ρ1 ⊃ ker(ρ1, ρ2) ⊃ . . . ⊃ ker(ρ1, . . . , ρl).

Since Z is free, on each fiber Lo the following short exact sequence splits:

0 → ker ρ1
∣
∣
Lo

→ Lo
ρ1−→ Z → 0,

and then ker ρ1
∣
∣
Lo

is isomorphic to Z
n−1.

Theorem 4. The sublattice bundle ker ρ1 is a smooth lattice subbundle of L. Moreover, ker ρ1
locally splits L. To be precise, for any point o ∈ OM , there exists some neighborhood U such that

L
∣
∣
U
= ker ρ1

∣
∣
U
⊕ L′′

U with L′′
U being some sublattice bundle of L

∣
∣
U

over U .

Proof. Since ρ1 is locally constant on L, it is contant on each of the connected components. Hence,
ker ρ1 consists of several connected components of L and is a submanifold of L.

For any c ∈ OM , we construct a local trivialization of ker ρ1 in the vicinity of c. Let U 	 c
be a connected neighborhood over which L admits a local trivialization. Then for each connected
component S of L

∣
∣
U
there exists a section σ : U → L such that S = σ(U). Due to the connectedness

of U , we have σ(U) ⊂ ker ρ1 if and only if σ(U) ∩ ker ρ1 is nonempty. Fix a basis w1, . . . , wn−1

of ker ρ1
∣∣
Lc

with local sections σ1, . . . , σn−1 over U such that σi(c) = wi. For each c′ ∈ U , the

linear independence of σ1(c
′), . . . , σn−1(c

′) follows from the fact that the zero section U × {0} is a

component of kerL
∣
∣
U
.

Now we show that for any w′ ∈ ker ρ1
∣
∣
Lc′

there exist integers k1, . . . , kn−1 such that Σikiσi(c
′) =

w′. Let σ′ : U → L be the section with w′ = σ′(c′). Then it holds that σ′(U) ⊂ ker ρ1 due to the

connectness of U , and in particular, σ′(c) ∈ ker ρ1
∣
∣
Lc
. Then there exist integers k1, . . . , kn−1 such

that
∑n

i=1 kiσi(c) = σ′(c) ∈ L′
c. Since τ =

∑
i kiσi is also a continuous section of L over U , it

yields τ(U) ⊂ ker ρ1 and thereby τ = σ′. Then w′ = σ′(c′) =
∑

i kiσi(c
′) with ki integers. Hence,

{σ1, . . . , σn−1} gives rise to a local trivialization of ker ρ1 over U .

REGULAR AND CHAOTIC DYNAMICS Vol. 27 No. 3 2022



LOOPS OF INFINITE ORDER AND TORIC FOLIATIONS 327

To see that ker ρ1 locally splits L, first note that, for every c ∈ OM , ker ρ1
∣
∣
Lc

splits Lc. Then

it holds that Lc = L′
c ⊕ Z · vc for some vc ∈ Lc. Let σ be a section over U such that σ(c) = vc.

For any c′ ∈ U and w′ ∈ Lc′ , there is a section σ′ of L over U such that σ′(c′) = w′. Since
σ′(c) ∈ Lc and σ1(c), . . . , σn−1(c), σ(c) constitute a basis of Lc, there exist integers b1, . . . , bn−1, b

such that σ′(c) =
∑n−1

i=1 biσi(c) + bσ(c). It then holds that
(∑n

i=1 biσi
)
(U) = σ′(U) since both of

them are connected components of L
∣∣
U
. Hence,

∑n−1
i=1 biσi(c

′) + bσ(c′) = σ′(c′) = w′. As a result,

L
∣∣
U
= ker ρ1

∣∣
U
⊕ L′′

U with L′′
U = Z · σ(U).

Corollary 6. ker ρ1 gives rise to an (n− 1)− toric foliation F(1) refining F. More precisely, for any

b ∈ OM , there exists a neighborhood U of b with a local trivialization ψ̄ : U × S1 × T
n−1 → q−1

Φ (U)

such that, for any (u, z) ∈ U × S1, ψ̄
(
(u, z)× T

n−1
)
is a leaf of F(1).

Proof. Denote by Vo the (n− 1)-dimensional subspace of {o} ×R
n spanned by ker ρ1

∣
∣
Lo
. Then, for

each p ∈ q−1
Φ (o), Tp = ΦVo(p) is an (n− 1)− torus. To see that F(1) = {Tp

∣
∣p ∈ M} is a foliation, it

only needs to be checked that there are local flat charts everywhere on M [10].

For any p ∈ M with o = qΦ(p), choose a neighourhood U over which it admits a section σ̃
of qΦ with σ̃(o) = p and trivializations of LU . Note that each component of LU takes the form
σ(U) with σ being a continuous section of L over U . Choose w1, . . . , wn−1 ∈ ker ρ1

∣
∣
Lo

and v ∈ Lo

such that {w1, . . . , wn−1, v} forms a basis of Lo and {w1, . . . , wn−1} forms a basis of ker ρ1
∣∣
Lo
. Let

σ1, . . . , σn−1, τ be sections of L over U such that σi(o) = wi and τ(o) = v. Then, for each c ∈ U ,
{σ1(c), . . . , σn−1(c), τ(c)} is a basis for Lc with {σ1(c), . . . , σn−1(c)} being a basis for ker ρ1

∣∣
Lc
.

Define a map ψ: U × R
n → M by

(u; s, t1, .., tn−1) → Φs·τ(c)+t1·σ1(c)+...+tn−1·σn−1(c) ◦ σ̃(c).

It factors as ψ = ψ̄ ◦ qZn with qZn : U ×R
n → U × T

n ∼= U × (Rn
/
Z
n) the quotient map and

ψ̄ = U × T
n → W = ψ(U × R

n) a diffeomorphism. For any p′ ∈ ψ(u′, s′, t′1, . . . , t
′
n−1),

ψ̄−1(Tp′ ∩W ) = ψ̄−1(Tp′) = {(u, s̄, t̄1, . . . , t̄n−1) ∈ U × T
n
∣
∣u = u′, s̄ = ei2π·s

′}.

Note that ρ is an epimorphism onto Z
l and therefore ker(ρ1, ρ2) is a lattice subbundle of ker ρ1

and has corank 1 in ker ρ1. Consequently, it induces an (n− 2)− toric foliation F(2) on M that

refines F(1). This process can be iterated for all i � l. Note that, when l is nonzero, the image of ρ
is nontrivial, which is equivalent to saying that there exists at least one loop on q−1

Φ (c0) which is
of infinite order in H1(M), and then the discussion here amounts to the following theorem.

Theorem 5. Let (M,F,Φ) be a regular integrable system of type (k, n) with compact orbits.
Suppose that M (or equivalently, its orbit space OM ) is connected. If for some point c0 ∈ OM

there exists a loop λ on q−1
Φ (c0) such that [λ] has infinite order in H1(M), then the lattice bundle

L of the system has a series of sublattice bundles L(1) ⊃ . . . ⊃ L(l) for some positive integer l no

more than n such that L(i) = ker(ρ1, . . . , ρl) has rank n− i for each i ∈ {1, . . . , l}, L(i+1) locally

splits L(i) for each i ∈ {1, . . . , l− 1} and L(1) locally splits L. As a consequence, such a sequence of

sublattice bundles gives rise to a sequence of toric foliations F(1), . . . ,F(l) such that F(i+1) refines

F(i) for i = 1, . . . , l − 1 and F(1) refines the fibration F. For each i ∈ {1, . . . , l}, the leaves of F(i)

are (n− i)− tori.

In the case n = 2, when ρ : L → H1(M)
/
TorH1(M) is nontrivial, Imρ is isomorphic to either Z

or Z
2, and then we at least get one nonzero linear functional ρ1 : L → Z. Then ker ρ1 is a lattice

subbundle with rank 1. Actually, ker ρ1 ∼= OM × Z and thus by Proposition 3 there is a free S1

action on M .
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Theorem 6. In the case n = 2, if ρ : L → H1(M)
/
TorH1(M) is nontrivial, there exists a compatible

free S1 action on M .

Proof. We only need to show that ker ρ1 ∼= OM × Z. Fix a point c0 in OM . For any other point
o ∈ OM , ker ρ1

∣
∣
Lo

can be obtained via the parallel transport of ker ρ1
∣
∣
Lc0

along any path joining

c0 and o. Choose a(n) (ordered) basis w = (u, v) of Lc0 and let z ∈ Z
2 with z =

(
ρ1(u), ρ1(v)

)
. For

any closed path γ in OM with γ(0) = γ(1) = c0, z · Mγ,w = z with Mγ,w being the monodromy

matrices. Hence, both of the eigenvalues ofMγ,w are equal to 1. Since ker ρ1
∣
∣
Lc0

is a one-dimensional

invariant space of the monodromy map Mγ , it holds that Mγ · T = T for all T ∈ ker ρ1
∣
∣
Lc0

. Due

to the arbitrariness of γ, this implies the triviality of the bundle ker ρ1 → OM .

7. MASLOV INDICES, MONODROMY MATRICES AND TORIC FOLIATIONS
WITH CORANK 1

Now we restrict to the Hamiltonian context and show how the results obtained in the previous
section are related to the work in [8].

Consider a regular integrable Hamiltonian system (M,ω,F ) with F = (f1, . . . , fn) being the
integral map. Let Xi be the Hamiltonian vector fields with dfi(·) = ω(Xi, ·). We assume that the
orbits of the Hamiltonian R

n action Φ are all compact. Denote by ΛM the bundle of Lagrangian
Grassmannians of M .

Fix an almost complex structure J compatible with the symplectic form ω, and let gJ (·, ∗) =
ω(J ·, ∗) be the compatible Riemannian structure. Recall that the Hamiltonian vector fields
X1, . . . ,Xn are independent everywhere by the assumption we made and spanR{X1, . . . ,Xn}
is a Lagrangian distribution. Apply the Gram-Schmidt process to obtain X ′

1, . . . ,X ′
n that are

orthonormal with respect to gJ . Note that spanR{X ′
1, . . . ,X ′

n} = spanR{X1, . . . ,Xn} and it is
Lagrangian. Then

{X ′
1, . . . ,X ′

n,J (X ′
1), . . . ,J (X ′

n)}
is a globally defined symplectic frame for the tangent bundle TM .

Recall that, for a symplectic manifold (M,ω), the symplectic form ω is a symplectic bilinear
form on its tangent bundle, and (TM,ω,M), as a vector bundle endowed with a symplectic
bilinear form, is a symplectic vector bundle (see page 79 in [12]). Then the argument above
shows that the symplectic vector bundle (TM,ω,M) is isomorphic to the trivial symplectic
vector bundle (M ×R

2n, ω0,M) with ω0

∣
∣
{p}×R2n = dxi ∧ dyi being the standard symplectic bilinear

form on {p} × R
2n. Therefore, there exists an isomorphism ΛM

∼= M × U(n)
/
O(n) associated

to such a trivialization. Let ΛMC → MC denote the restriction of ΛM to MC and then ΛMC
∼=

MC × U(n)
/
O(n). Let E : M → ΛM be a section, i. e., a Lagrangian vector bundle over M . Then,

for any p ∈ M , E(p) = [Ep] ∈ U(n)
/
O(n) with Ep ∈ U(n) being a representative.

For any section E, define mE : ΛM
∼= M × U(n)

/
O(n) → S1 with mE(p, [A]) =

(
detC(A ·

E−1
p )

)2
. Note that, for any p ∈ M , spanR

(
X1(p), . . . ,Xn(p)

)
∈ ΛM

∣∣
p
and hence there is a natural

embedding l̃ of M into ΛM by p �→
(
p, spanR

(
X1(p), . . . ,Xn(p)

))
.

Definition 5. The Maslov map for the integrable system (M,F,Φ) is the map m̃E = mE ◦ l̃.

Definition 6. The Maslov index μλ of a loop λ: S1 → M in the integrable system (M,F,Φ) with
respect to E is the degree of the map m̃E ◦ λ.

Definition 6 is slightly different from the usual definition of the Maslov indices in that we do
not require the loop λ to be on some Lagrangian submanifold, since the integrable system already
prescribes to each point in M a Lagrangian subspace. Yet this definition is consistent with the
usual one when λ lies on a Lagrangian submanifold.
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Note that, for any point x0 ∈ M , the homomorphism π1(M,x0) 	 [λ] �→ μλ ∈ Z factors through
H1(M)

/
TorH1(M) since Z is Abelian and torsionless. That is, there is a homomorphism μ :

H1(M)
/
TorH1(M) → Z such that, for any loop λ in M , μ([λ]) = μλ. The composition μ ◦ ρ : L → Z

is then a bundle morphism. Note that, for c ∈ OM , μ ◦ ρ(Lc) = nc · Z for some nonnegative integer
nc. nc is called the minimal Maslov number of the Lagrangian torus q−1(c). If the minimal Maslov

number on some Lagrangian torus q−1
Φ (c0) is nonzero, then μ ◦ ρ is nonzero, implying that ρ is

nontrivial. Then μ ◦ ρ
∣
∣
Lc0

is a common eigenvector with eigenvalue 1 for the transpose of the

monodromy maps Mγ of all the loops γ in OM with c0 ∈ γ. For a basis (u1, . . . , un) of Lc0 ,(
μ ◦ ρ(u1), . . . , μ ◦ ρ(un)

)
gives the corresponding vector of Maslov indices. In this way, it yields

Theorem 1 of [8].

We conclude this article with a result for integrable Hamiltonian systems in R
4.

Audin’s conjecture [1] asserts that, for any Lagrangian torus in (R2n, dx1 ∧ dy1 + · · ·+ dxn ∧ dyn),
the minimal Maslov number is 2 and this has been confirmed in [4] following a series of partial
results [3, 6, 9, 13] (see page 118 in [12] for a brief introduction to the results obtained in these
papers). Combining this result with Theorem 6 yields:

Theorem 7. Suppose that (R4, ω, F ) is a Hamiltonian integrable system (not necessarily regular)
with integral map F : R4 → R

2. Denote by R
4
reg the set of regular points of F . If M0 is a connected

domain of R4
reg within which the orbits of the Hamiltonian R

2 action are compact, then there exists

a free Hamiltonian S1 action on M0 which is compatible with the system.

A direct implication of Theorem 6 is that, for a proper integral map F , there is a compatible
free S1 action on each connected component of the regular part of the system. In particular, this
is the case when (R4, ω, F = (f1, f2)) is a polynomial system with the leading term of f1 (or f2)

taking the form of (x21 + y21 + x22 + y22)
k for some positive integer k.

APPENDIX A

Let (M,F,Φ) be a regular integrable system of type (k, n) with compact Φ− orbits. In this
appendix, we give a detailed argument for Theorem 1 in Section 3. For convenience, we state
Theorem 1 again.

Theorem 1. For any o ∈ OM , there exists some neighborhood Uo over which there are smooth
sections τi : U → U × R

n with i = 1, . . . , n, such that, for each c ∈ U , τ1(c),. . . ,τn(c) constitute
a basis of Lc. As a consequence, there exists an isomorphism (algebraically and topologically)

β : π−1
L (U) → U × Z

n.

Proof. As is shown in Proposition 1, qΦ : M → OM is a submersion. Hence, there exists some
smooth section σ : U → M over some open neighborhood U of o. Define Ψ : U × R

n → M as
Ψ(b, T ) → ΦT ◦ σ(b). According to Definition 1, Ψ is transversal to the submanifold σ(U) and
is a local diffeomorphism. Hence, S = Ψ−1

(
σ(U)

)
is an embedded submanifold of U × R

n with
the corank equal to that of σ(U), which is n. Note that S is also a subspace of L (and
therefore L is a submanifold of OM × R

n due to the arbitrariness of U). Moreover, S is closed
in U ×R

n. To see this, suppose that (ui, Ti) → (u, T ) with (ui, Ti) ∈ S and (u, T ) ∈ U ×R
n. Then

Ψ(u, T ) = limΨ(ui, T ) = lim σ(ui) = σ(u) ∈ S.
For any x ∈ S, the tangent map Ψ∗ maps TxS to TΨ(x)σ(U) and therefore TxS ∩ TxR

n = {0},
implying TxS ⊕ TxR

n = Tx(U ×R
n). As a result, πS = prU

∣∣
S : S → U is a local diffeomorphism

with prU : U ×R
n → U being the canonical projection. Note that U × {0} is closed in U ×R

n and
therefore is closed in S, while it is also open in S. Hence, U × {0} is a connected component of S.

Let z1,. . . ,zn be a basis of the the lattice Lo. Shrink U if necessary. Then there exist local
sections τi : U → S for i = 1, . . . , n such that τi(o) = zi. Note that {z1, . . . , zn} is also a basis of the
linear space {o} ×R

n, and that, for any w ∈ {o} ×R
n, w ∈ Lo if and only if w = a1z1 + · · ·+ anzn

with ai integers. Shrinking U again if necessary, one can make the determinant of the matrix
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[τ1(c), . . . , τn(c)] nonzero for each c ∈ U , and then {τ1(c), . . . , τn(c)} is a basis for {c} × R
n. Note

that this implies that, for each c ∈ U , Lc is of rank n.
Now we show that, for each c ∈ U , {τ1(c), . . . , τn(c)} is also a basis of the Z

n lattice Lc. Let

{zc1, . . . , zcn} be a basis of Lc. Then there exist intergers kj1, . . . , k
j
n such that τj(c) = kj1z

c
1 + · · ·+

kjnzcn. Taking the inverse of the matrix [kji ] shows that, for each w ∈ Lc, there exist p1, . . . , pn ∈ Q

such that w = p1τ1(c) + · · ·+ pnτn(c). Hence, it remains to show that, for each w, the corresponding

coeffients pi =
ki
mi

are integers.

Denote by Sw the component of S that contains w. Note that there exists some nonzero integer
m such that m · pi are integers for all i. By ∗m denote the map (c, T ) �→ (c,m · T ). Then ∗m is a
diffeomorphism on OM ×R

n and maps S to S. Hence, it is a local diffeomorphism on S. Moreover, as
shown above, S is closed in U ×R

n and therefore ∗m is a closed map on S. Hence, ∗m(Sw) is another
connected component of S which contains m · w. Meanwhile, τ : U → U × R

n: u → m ·
(
p1τ1(u) +

· · ·+ pnτn(u)
)
is also a section of S → U and hence τ(U) is a component of S which also contains

m ·w. As a result, τ(U) = ∗m(Sw). In particular, m · p1τ1(o) + · · ·+m · pnτn(o) = τ(o) = m ·w0 ∈
Lo for some w0 ∈ Sw ∩ Lo and hence w0 = p1τ1(o) + · · ·+ pnτn(o) = p1z1 + · · ·+ pnzn, implying
that the pi are integers.

Define β : U ×Z
n → π−1

L (U) with ρ−1(u; a1, . . . , an) = a1τ1(u) + · · ·+ anτn(u). Then β is a local
trivialization of L over U .

Corollary 7. The lattice bundle πL : L → OM is a locally trivial smooth Z
n bundle with the

transition group SL(n,Z).

Proof. Choose a covering {Uα} of OM with sections ταi : Uα → L forming a basis of L
∣
∣
Uα

. Reorder

{ταi
∣
∣i = 1, . . . , n} if necessary to fit the orientation of the vector bundle OM ×R

n → OM , and then

for any pair α,α′ with Uα ∩Uα′ being nonempty, ρα′ ◦ ρ−1
α should be a linear map on Uα ∩Uα′ ×Z

n

preserving the orientation and hence ρα′ ◦ ρ−1
α ∈ SL(n,Z).

APPENDIX B

In the following we give an illustration of how the monodromy map M determines the torus
fibration MC = q−1

Φ (C) → C.
Recall that C ⊂ OM is a loop with MC = q−1

Φ (C) → C being a torus fibration. Let c0 be a point in
C. The lift of C to L gives rise to a group isomorphism MC of Lc0 , which is called the monodromy
map. Note that it extends canonically and uniquely to an isomorphism of {c0} ×R

n, which we also
denote by MC . Fix a parametrization γ : [0, 1] → C with γ(0) = γ(1) = c0.

According to Corollary 2, MC = q−1
Φ (C) → C is isomorphic to π̄C :

(
C × R

n
)/

∼L→ C with
π̄C([c, T ]) = c. Choose an ordered basis w̄ = (u1, . . . , un) of Lc0 , and let τi : [0, 1] → L be the lift of γ
at ui for each i = 1, . . . , n and τ ′i : [0, 1] → R

n be the map such that τi(s) = (γ(s), τ ′i(s)). ThenMC is
the map mapping ui = τi(0) to τi(1). Denote by MC,w̄ the matrix representation of MC with respect

to w̄, i. e., MC(tiui) = (u1, . . . , un) ·MC,w̄ ·

⎡

⎢⎢
⎢
⎣

t1
...

tn

⎤

⎥⎥
⎥
⎦
. In other words, MC(uj) = (u1, . . . , un) ·Mj

C,w̄

with Mj
C,w̄ the jth column of MC,w̄, and hence (τ ′1(1), . . . , τ

′
n(1)) = (τ ′1(0), . . . , τ

′
n(0)) · MC,w̄.

Denote by ∼γ the equivalence relation on [0, 1] ×R
n that identifies (0, T ) with (1, T ) and by qγ

the corresponding quotient map from [0, 1]×R
n to C ×R

n. Define rw̄ : [0, 1]×R
n → [0, 1]×R

n by

rw̄(s;

⎡

⎢⎢
⎢
⎣

t1
...

tn

⎤

⎥⎥
⎥
⎦
) =

(
s, t1τ

′
1(s) + · · ·+ tnτ

′
n(s)

)
. (B.1)
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This is an isomorphism mapping [0, 1] × Z
n → γ∗(L). Hence, the map hw̄ = qγ ◦ rw̄ : [0, 1]× R

n →
C ×R

n is a bundle epimorphism mapping [0, 1] × Z
n to L

∣∣
C and it is a fiberwise isomorphism.

Moreover, hw̄ identifies {0} ×

⎡

⎢⎢
⎢
⎣

t1
...

tn

⎤

⎥⎥
⎥
⎦

with {1} ×M−1
C,w̄ ·

⎡

⎢⎢
⎢
⎣

t1
...

tn

⎤

⎥⎥
⎥
⎦
. To see this, first note that, since

qγ identifies (0, T ) with (1, T ) for every T ∈ R
n, qγ ◦ rw̄ identifies (0, T ) with (1, T ′) if and only if

rw̄(0, T ) = (0, T ′′) and rw̄(1, T ) = (1, T ′′). Then with T =

⎡

⎢⎢
⎢
⎣

t1
...

tn

⎤

⎥⎥
⎥
⎦

and T ′ =

⎡

⎢⎢
⎢
⎣

t′1
...

t′n

⎤

⎥⎥
⎥
⎦
, according to

Eq. (B.1), it holds that

t1τ
′
1(0) + · · ·+ tnτ

′
n(0) = t′1τ

′
1(1) + · · ·+ t′nτ

′
n(1) =

(
τ ′1(0), . . . , τ

′
n(0)

)
·MC,w̄ ·

⎡

⎢⎢
⎢
⎣

t′1
...

t′n

⎤

⎥⎥
⎥
⎦
.

Hence,

⎡

⎢⎢
⎢
⎣

t1
...

tn

⎤

⎥⎥
⎥
⎦
= MC,w̄ ·

⎡

⎢⎢
⎢
⎣

t′1
...

t′n

⎤

⎥⎥
⎥
⎦

and thus

⎡

⎢⎢
⎢
⎣

t′1
...

t′n

⎤

⎥⎥
⎥
⎦
= M−1

C,w̄ ·

⎡

⎢⎢
⎢
⎣

t1
...

tn

⎤

⎥⎥
⎥
⎦
.

Note that quo = qL ◦ hw̄ is a quotient map from [0, 1] × R
n to MC and it characterizes the

structure of the fibration MC → C. Denote by ∼ the equivalence relation induced by quo on
[0, 1] × R

n. MC → C is isomorphic to π∼ :
(
[0, 1] × R

n
)/

∼→ C with π∼([s, T ]) = γ(s). It can be

checked that, for each s ∈ [0, 1], (s, T ) ∼ (s, T ′) if and only if T − T ′ ∈ Z
n. Then quo (re)factors

as qη̄ ◦ qZn with qZn : [0, 1] × R
n → [0, 1] × T

n being the quotient map which sends (s; t1, . . . , tn)

to (s; ei2πt1 , . . . , ei2πtn ), and with qη̄: [0, 1] × T
n → MC being a bundle morphism which is a

fiberwise isomorphism. Denote by η the isomorphism (1, T ) → (hw̄
∣
∣
{0}×Rn)

−1 ◦ (hw̄
∣
∣
{1}×Rn)(1, T ) =

(0,MC,w̄ · T ) and by η̄ the isomorphism (1, z) → (qη̄
∣
∣
{0}×Tn)

−1 ◦ (qη̄
∣
∣
{1}×Tn)(1, z).

Then MC ∼=
(
[0, 1] × T

n
)/

∼η̄. Moreover, the following identity holds:

η̄ ◦ qZn = qZn ◦ η.
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