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ABSTRACT

We consider globally connected coupled Winfree oscillators under the influence of an external periodic forcing. Such systems exhibit many
qualitatively different regimes of collective dynamics. Our aim is to understand this collective dynamics and, in particular, the system’s
capability of entrainment to the external forcing. To quantify the entrainment of the system, we introduce the entrainment degree, that is, the
proportion of oscillators that synchronize to the forcing, as the main focus of this paper. Through a series of numerical simulations, we study
the entrainment degree for different inter-oscillator coupling strengths, external forcing strengths, and distributions of natural frequencies of
the Winfree oscillators, and we compare the results for the different cases. In the case of identical oscillators, we give a precise description of
the parameter regions where oscillators are entrained. Finally, we use a mean-field method, based on the Ott–Antonsen ansatz, to obtain a
low-dimensional description of the collective dynamics and to compute an approximation of the entrainment degree. The mean-field results
turn out to be strikingly similar to the results obtained through numerical simulations of the full system dynamics.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0113961

Coupled oscillators have been the paradigmatic model for
the study of synchronization since the works of Winfree and
Kuramoto. In this paper, motivated by the question of entrain-
ment with the daily dark–light cycle, we consider globally coupled
Winfree oscillators under the influence of a periodic external
forcing term. To describe the effect of the external forcing, we
introduce and study in detail the entrainment degree which is
the proportion of oscillators that synchronize to the forcing. The
numerical study of the entrainment degree reveals clear trends
on the influence of the strength of the external forcing that we
discuss in detail. These results are accompanied by a theoretical
study for the case of identical oscillators. In the case of non-
identical oscillators whose natural frequencies follow a Lorentz
distribution, to compute the entrainment degree, we apply the
Ott–Antonsen Ansatz to obtain a low-dimensional dynamical
description of the order parameter. However, the dynamics of the
order parameter does not provide direct information about the
entrainment degree. To overcome this problem, we simulate
the dynamics of individual oscillators in the time-dependent
mean-field predicted by the Ott–Antonsen Ansatz, and we use this

to estimate the proportion of oscillators that synchronize with the
external forcing.

I. INTRODUCTION

The Winfree model was introduced in Ref. 1 to describe the
synchronization of biological oscillators. It is the first paradigmatic
model proposed to study synchronization in large populations, and
it exhibits very rich dynamics. The dynamics of N coupled oscillators
is given by the first-order differential equations

θ̇i :=
dθi

dt
= ωi +

K

N

N
∑

j=1

R(θi)P(θj), (1)

for i = 1, 2, . . . , N, where the parameter K determines the strength
of the coupling between oscillators, the state of the i-th oscillator is
described by a phase θi ∈ S1 = R/2πZ (the interval [0, 2π] with its
endpoints identified), and its natural frequency is ωi ∈ R.
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The functions R(θ) and P(θ) are associated with the interaction
between oscillators. The response (sensitivity) function R(θ) signi-
fies how an oscillator responds to the effect of other oscillators or its
environment. The forcing (influence) function P(θ) represents how
each oscillator influences the others. Through this simple interac-
tion model, very rich dynamics of the system can appear even for
benign choices of the functions R(θ) and P(θ). Winfree showed that
the system can reach a synchronized state if the coupling strength is
large enough or if the width of the distribution of natural frequen-
cies is small enough. Other types of dynamics are also possible. For
example, for

R(θ) = − sin θ , P(θ) = 1 + cos θ , (2)

a choice of response and forcing functions that will be the basis also
for this work, other observed states include oscillator death, partial
locking, and partial death (see Ref. 2 and Sec. IV B).

Our work is motivated by problems related to circadian
rhythms and, in particular, the entrainment of organisms to the daily
dark–light cycle. Describing the pacer cells in the suprachiasmatic
nucleus as Winfree oscillators,1 we are interested in the effect of a
periodic external forcing on their dynamics. Thus, we consider the
forced Winfree system

θ̇i = ωi +
K

N

N
∑

j=1

R(θi)P(θj) + εRZ(θi)PZ(t), (3)

for i = 1, 2, . . . , N. The additional term, εRZ(θi)PZ(t), where “Z”
stands for “Zeitgeber,”3 represents the interaction of the i-th oscil-
lator with its environment. The parameter ε represents the strength
of this interaction. The external forcing function PZ(t) represents
the influence of the environment, while the external response func-
tion RZ(θ) represents how each oscillator responds to the external
influence.

This is a very general model and to proceed we make sev-
eral assumptions. First, we consider the interaction functions R(θ)

and P(θ) given in Eq. (2). Then, we assume that PZ(t) is a 2π-
periodic function of time t so that it models the periodic effect of the
dark–light cycle. Finally, we make the assumption that the response
function to the external forcing and to other oscillators is the same,
that is, RZ(θ) = R(θ), and that the external forcing function PZ has
the same form as the influence function P. Summarizing, we con-
sider the following model describing a system of forced Winfree
oscillators:

θ̇i = ωi −
K

N

N
∑

j=1

sin θi(1 + cos θj) − ε sin θi(1 + cos t), (4)

for i = 1, 2, . . . , N.
The main question we address in this work is the entrainment

of oscillators to the external forcing and the description of the collec-
tive dynamics of the system. An oscillator is entrained to the external
forcing when its motion is periodic with the same period as that of
the external forcing, equivalently, when its average frequency 〈θ̇i〉
equals the frequency of the external forcing. One important ques-
tion here is how to characterize the collective dynamics and quantify
entrainment. The latter is done through the entrainment degree de

which is defined as the ratio of oscillators that are entrained, to the
total number of oscillators. Specifically, we define

de =
Ne

N
, (5)

where Ne is the number of oscillators having rotation number ρ = 1,
that is, equal to the frequency of the external forcing. Recall that for
an oscillator with initial phase θi(0), the rotation number is defined
by

ρi = lim
t→∞

θi(t) − θi(0)

t
, (6)

provided that the limit exists.4 For numerical computations, we
consider the finite-time rotation number given by

ρi(T) =
θi(T) − θi(0)

T
. (7)

Oscillators with the same rotation number attain the same average
frequency (and thus an asymptotically constant phase difference)
after large enough time.

The order parameter, z = 1
N

∑N
j=1 eiθj , has been extensively

used in the literature to describe the collective dynamics.5 How-
ever, as we show in Sec. IV C, there is only a weak relation between
the dynamical behavior of the order parameter in our system and
the corresponding entrainment degree. In particular, there are a
few cases where one can deduce whether the system has a very
high or very low entrainment degree from specific types of dynam-
ical behavior of the order parameter. Nevertheless, there are also
many intermediate cases where a direct connection is not possible.
Our approach for connecting these two quantities is to consider the
order parameter predicted by the Ott–Antonsen Ansatz and use the
resulting low-dimensional dynamics to compute a corresponding
entrainment degree.

We consider three types of unimodal natural frequency distri-
butions. In all cases, the mean value � of the natural frequencies is
chosen to be � = 1, that is, equal to the frequency of the external
forcing. The more general problems of unimodal distributions with
mean value � 6= 1 and bimodal distributions will be considered in a
forthcoming paper.

The first, and simplest, case is that of identical oscillators, that
is, ωi = � = 1 for i = 1, . . . , N. Results for this case will serve as a
baseline with which to compare the results that we obtain for the
other two natural frequency distributions. The second case is the
uniform natural frequency distribution with support in [� − δ, �
+ δ]. The third natural frequency distribution that we consider in
this paper is the Lorentz distribution

g(ω) =
γ

π((ω − �)2 + γ 2)
, (8)

which has non-compact support and will allow us to use the
Ott–Antonsen Ansatz for the study of the system.

Winfree oscillators without external forcing have been consid-
ered in several earlier works. Ariaratnam and Strogatz2 considered
a Winfree model with interaction functions as in Eq. (2) and a
uniform distribution of natural frequencies in an interval [1 − γ ,
1 + γ ]. For this system, different types of dynamics are described in
Ref. 2, and the regions in parameter space (K, γ ) corresponding to
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each type are identified using a combination of numerical compu-
tations and theoretical analysis. In particular, all of the bifurcation
curves, except the one corresponding to transition from locking to
partial locking, were analytically determined in Ref. 2. We review the
types of dynamics in Sec. IV B. Quinn et al.6,7 continued this work
and used the Poincaré–Lindstedt perturbation method to under-
stand the transition from locking to partial locking. They have
shown that the corresponding bifurcation curve becomes singular
as N goes to ∞, while it remains well-behaved for finite N, establish-
ing that the transition to the continuum limit can be quite subtle.
Oukil et al.8 give criteria for the difference between any two phases
in a network of Winfree oscillators to be uniformly bounded in time.
Ha et al.9 consider the strong coupling regime of Winfree oscilla-
tors and prove convergence to an equilibrium solution—oscillator
death in the terminology of Ref. 2. In Ref. 10, the emergence of dif-
ferent types of dynamics is studied for Winfree oscillators on locally
connected networks.

The Ott–Antonsen Ansatz has also been used for the study
of dynamics of Winfree oscillators. We refer to work by Pazó
and Montbrió11 and Gallego et al.12 who have considered the
Ott–Antonsen Ansatz for a variety of pulse types and sinusoidal
response functions in Winfree oscillators. In particular, in Ref. 12,
two different synchronization scenarios are identified and distin-
guished via the “mutation” of a Bogdanov–Takens point. A gener-
alization of the Winfree model has been studied by Laing13 using
again the Ott–Antonsen Ansatz in the same spirit as in Ref. 11. We
also note here the existence of higher order exact low-dimensional
reduction schemes14 which generalize the Ott–Antonsen Ansatz.

We now give a brief outline of the paper. In Sec. II, we study
in detail the dynamics of a single oscillator under external forcing.
That is, we consider the case K = 0 where each oscillator decouples
from the rest but is still forced by the Zeitgeber. Moreover, we give
an analytic expression for the entrainment degree in the case K = 0.
In Sec. III, we consider the case of identical oscillators, we numer-
ically compute the entrainment degree that depends on parameters
(ε, K), and we give a theoretical explanation of the numerical results.
In Sec. IV, we describe the collective dynamics of the system in the
case of non-identical oscillators whose natural frequencies follow a
uniform or Lorentz distribution. After discussing numerical results
on the entrainment degree, we extend the classification scheme of
the types of dynamics from Ref. 2 to the new types of dynamics that
appear with the introduction of the external forcing. Moreover, we
consider the evolution of the order parameter and how it reflects
the different types of dynamics. In Sec. V, we report on the low-
dimensional dynamics of the system by applying the Ott–Antonsen
Ansatz. We study the bifurcations of the obtained dynamics and
we use these dynamics to establish a connection between the order
parameter (mean-field) and the entrainment degree. We conclude
the paper in Sec. VI.

II. SINGLE OSCILLATOR DYNAMICS

We first consider the dynamics of a single Winfree oscil-
lator interacting only with the environment and not with other
oscillators in the ensemble. The techniques we use to study this
simple case (e.g., Poincaré maps, circle maps, resonance tongues,
and entrainment degree) will carry over to the study of the general

system in Secs. III–V. The dynamics in this case is given by the
non-autonomous first-order differential equation

θ̇ = ω − ε sin θ (1 + cos t), (9)

that is, Eq. (4) with K = 0, where we have dropped the index i.
To study the dynamics of Eq. (9), we introduce the Poincaré

map fω,ε(θ), which for an initial condition θ ∈ S1 at t = 0, gives the
phase at time t = 2π , that is, after one period of the forcing.4 This
defines the Poincaré map as a function fω,ε : S1 → S1. However, it is

also convenient to work with a lift of the Poincaré map f̂ω,ε : R → R

defined by solving Eq. (9) with θ ∈ R,4 that is, a “phase-unwrapped”
version of Eq. (9).

The map fω,ε(θ) is a circle map and thus the corresponding the-
ory applies here.4 In particular, we expect to find resonance tongues
(Arnol’d tongues) in the (ω, ε) parameter plane. When the natural
frequency ω is inside the k:1 resonance tongue for a given value of
ε, the Poincaré map fω,ε(θ) has two fixed points, one stable and one

unstable. These correspond to points θp where f̂ω,ε(θp) = θp + 2kπ

for some k ∈ Z. Linear stability corresponds to |f̂′ω,ε(θp)| < 1 and

linear instability to |f̂′ω,ε(θp)| > 1. The boundaries of the resonance
tongues are determined by a saddle-node bifurcation where the sta-

ble and unstable fixed points collide and disappear, i.e., by f̂ω,ε(θp)

= θp + 2kπ and the additional condition f̂′ω,ε(θp) = 1.4 The main
resonance tongues 0:1 and 1:1, the boundaries of which have been
computed through the numerical continuation of the corresponding
saddle-node bifurcations, are shown in Fig. 1(a).

The graph of the lift f̂ω,ε for two values of ω with ε = 0.2 is
depicted in Figs. 1(b) and 1(c). In Fig. 1(b), corresponding to param-

eters in the 0:1 resonance zone, we have that f̂ω,ε(θp) = θp, implying
that the phase θ becomes constant after a sufficiently large time. In
contrast, in Fig. 1(c), corresponding to parameters in the 1:1 reso-

nance zone, we have that f̂ω,ε(θp) = θp + 2π . This implies that after
a sufficiently large time, the phase increase per period becomes 2π .
Even though in both cases we have a fixed point of the Poincaré map,
only in the latter case, corresponding to parameters in the 1:1 reso-
nance zone, we can say that the oscillator entrains to the forcing,
in the sense that the oscillator makes exactly one full cycle for each
cycle of the forcing. Applying the notion of rotation number ρ in
Eq. (6) to the context of the circle map fω,ε we note that the 1:1
resonance tongue corresponds to rotation number ρ = 1.

The entrainment degree de, Eq. (5), for K = 0 can be theoret-
ically determined by considering for a given distribution g(ω) and
given value of ε how many oscillators fall within the 1:1 resonance
zone. More specifically, let ω−(ε) < ω+(ε) be the two boundary
curves of the 1:1 resonance zone, see Fig. 1(a), and let g(ω) be the
natural frequency distribution of the oscillators. Then, for K = 0,
we have

de(ε) =

∫ ω+(ε)

ω−(ε)

g(ω) dω. (10)

The theoretically predicted values of de(ε) are shown together with
the entrainment degrees from numerical computations in Fig. 2 for
uniform and Lorentz distributions. The discrepancies between the
theoretically predicted and the numerically computed entrainment
degrees are due to the finite integration time.

Chaos 32, 103121 (2022); doi: 10.1063/5.0113961 32, 103121-3

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 1. (a) The two main resonance tongues, 0:1 and 1:1, for the single oscillator dynamics, Eq. (9). (b) Graph of the Poincaré map lift f̂ω,ε for ω = 0.05 and ε = 0.2.

Intersections with the dashed lines θ + 2kπ , k ∈ Z, correspond to fixed points θp of the Poincaré map fω,ε . (c) Graph of f̂ω,ε for ω = 1.05 and ε = 0.2.

We observe that for K = 0 the entrainment degree is an even
function of ε. This is a direct consequence of the fact that Eq. (9) is

invariant under the map (ε, θ) 7→ (−ε, θ + π).
Moreover, as the scale parameter of the distribution increases

the entrainment degree is decreased. The reason is that increasing
the scale parameter implies that a larger proportion of oscilla-
tors fall outside the resonance tongue. This is also the reason that
the degree entrainment for the Lorentz distribution is, in general,
smaller than that for the uniform distribution and, in particular, for
the non-compactly supported Lorentz distribution, we never have
de = 1.

III. IDENTICAL OSCILLATORS

We now turn our attention to the general case of coupled
oscillators, i.e., K 6= 0. As a baseline, we first consider here the case
of identical oscillators where ωi = 1 for all oscillators. The numeri-
cally computed entrainment degree as a function of the parameters
(ε, K) is shown for this case in Fig. 3(a). There are only two regions.
Either all oscillators are entrained to the forcing (red) or no oscil-
lators are entrained (dark blue). This is a result of the (numerically
verified) fact that for all values of ε and K all oscillators attain exactly
the same rotation number. However, the precise details are not the
same for all (ε, K) values.

FIG. 2. Entrainment degrees for different distributions and values of their scale parameter (δ for uniform distribution, γ for Lorentz distribution) for K = 0. The theoreti-
cally computed entrainment degrees (dotted curves) are shown together with the numerically computed ones (solid curves). (a) Uniform distribution. From top to bottom:
δ = 0.05, 0.1, 0.2, 0.3. (b) Lorentz distribution. From top to bottom: γ = 0.05, 0.1, 0.2, 0.3. In both figures, N = 1000 oscillators have been integrated for time T = 2000
with time-step dt = 0.1 using a fourth-order Runge–Kutta method. An oscillator is considered to be entrained if its finite-time rotation number ρ(T), Eq. (7), satisfies
|ρ(T) − 1| < 0.01.
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FIG. 3. (a) Numerically computed entrainment degree for N = 1000 identical oscillators with ωi = 1, i = 1, . . . ,N, and random initial phases θi(0) chosen uniformly
in [0, 2π). An oscillator is considered to be entrained if its finite-time rotation number ρi(T), T = 104, satisfies |ρi(T) − 1| < 10−3. The red color represents complete
entrainment, de = 1, and the dark blue color represents no entrainment, de = 0. The solid and dashed curves are as in (b). The entrainment degree has been computed for
parameters (ε, K) on a grid with dε = 0.01 and dK = 0.01. (b) Analytical boundaries of the 1:1 resonance tongue on the (ε, K)-plane for the synchronized dynamics and
the dashed curve Kn(ε) corresponding to loss of normal stability. The upper boundary of the tongue is represented by the thick black curve and the lower boundary by the
light gray curve. The gray area is the theoretically predicted area of entrainment for identical oscillators with ωi = 1. (c) Finite-time rotation number for ε = 0.2 and K close
to Kn(ε) = −ε computed for time T = 106.

The key to understanding the dynamics of this case is the
synchronized dynamics, taking place on the synchronized manifold,

6 = {θ ∈ (S1)
n

: θ1 = · · · = θN =: θs}.

The manifold 6 (which is diffeomorphic to S1) is invariant under
the dynamics induced by Eq. (4). In particular, the dynamics on 6

is given by

θ̇s = ω − sin θs [K(1 + cos θs) + ε(1 + cos t)] .

Therefore, the dynamics on 6 is that of an externally forced flow
on a circle. The corresponding Poincaré map is the circle map Fs :
6 → 6 obtained by following the flow of the synchronized dynam-
ics for a time of 2π . Similarly to the discussion in Sec. II, we are again
interested in the 1:1 resonance tongue, corresponding to entrain-
ment to the external forcing. In this case, the tongue is a subset of
the three-dimensional parameter space (ω, ε, K); however, we are
here interested only in the case with fixed ω = 1. The numerically
computed (see Ref. 15) tongue boundaries on the (ε, K)-plane are
shown in Fig. 3(b) by a black solid curve for K ≥ 0 and a gray
solid curve for K ≤ 0. The tongue is invariant under the mapping
(ε, K) 7→ (−ε, −K).

Let θs(t) be the periodic orbit of period T = 2π of the syn-
chronized dynamics, corresponding to the stable fixed point of the
Poincaré map Fs in the 1:1 resonance tongue. The linear stability of
θs(t) with respect to deviations in the direction of 6 (i.e., deviations
that correspond to synchronized states) is determined through the
variational equation

d(δθs)

dt
= (S(t) + K sin2 θs(t))(δθs),

where

S(t) = − cos θs(t) [K(1 + cos θs(t)) + ε(1 + cos t)]

and linear stability implies that

λs =

∫ 2π

0

(

S(t) + K sin2 θs(t)
)

dt < 0.

To determine the normal (transversal) stability of the periodic orbit
θs(t), let

ui = θi − θi+1, for i = 1, . . . , N − 1 and uN = θN.

On 6, we have ui = 0, i = 1, . . . , N − 1, and uN = θs. The vari-
ational equations for ui, i = 1, . . . , N − 1, representing deviations
from the synchronized manifold are given by

d(δui)

dt
= S(t)(δui), i = 1, . . . , N − 1,

and, therefore, the normal stability of the periodic orbit θs(t) is
determined by the sign of

λ⊥=

∫ 2π

0

S(t) dt = λs − K

∫ 2π

0

sin2 θs(t) dt.

The last relation implies that the stable periodic orbit of the synchro-
nized dynamics (λs < 0) is also normally stable for K > 0. However,
for K < 0, the last term in the previous equation can become large
enough to make λ⊥ > 0, that is, to make the periodic orbit θs(t) nor-
mally unstable. We have numerically computed for each value of ε

the value Kn(ε) of K where the stable periodic orbit θs(t) loses nor-
mal stability. The resulting curve Kn(ε) is shown by the black dashed
curve in Fig. 3(b).
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Remark 1. Determining the local stability of θs(t) that we
have been discussing is not sufficient to reach global conclusions.
In particular, it leaves open the possibility that the periodic orbit
θs(t) is linearly stable but not globally attracting. We have numer-
ically checked that when the system is in the 1:1 resonance tongue
of Fs and K > Kn(ε), that is, when θs(t) is linearly stable, random
uniformly distributed initial phases converge to θs(t) and thus all
oscillators entrain, see Fig. 3(a). This explains why the upper bound-
ary of the entrainment region is given by the upper boundary of the
1:1 resonance tongue of the synchronized dynamics while the lower
boundary is given by the curve K = Kn(ε). Note that this does not
exclude the possibility that there are other initial states which do not
converge to the synchronized state θs(t).

Remark 2. The obtained straight line Kn(ε) = −ε for ε > 0
can be easily explained. For K = −ε, the equation for θs becomes

θ̇s = 1 − ε sin θs(cos t − cos θs),

with the obvious (periodic) solution θs(t) = t, which can be shown
to be stable for ε > 0 and for which a straightforward computation
gives S(t) = 0 and thus λ⊥ = 0.

Remark 3. The match between the numerics and the curve
Kn(ε) seems to not be perfect for ε > 0, as shown in Fig. 3(a). This
turns out to be a numerical artifact. The computation of the entrain-
ment degree in Fig. 3(a) is done by integrating the dynamics for
time T = 2 × 104, which leads to an estimation error for the rota-
tion number of the order of 10−4. For this reason, we have set the
threshold to identify entrained oscillators to 10−3, that is, an oscilla-
tor is marked as entrained if |ρi − 1| < 10−3 and with this threshold,
we see the small mismatch in Fig. 3(a). A longer integration, which
allows for a more accurate estimate of the rotation number, indicates
that there is no mismatch. In particular, computing the rotation
number by integrating the dynamics for time T = 106 (and corre-
sponding estimation error of the order of 10−6) for fixed ε = 0.2
and K near Kn(ε) = −0.2 we obtain the picture in Fig. 3(c). The
longer integration indicates that the rotation number equals 1 for
K ≥ −0.2, and it falls slowly for K < −0.2; in particular, it becomes
0.999 at K u −0.28. Therefore, with threshold 10−3, all states with
K between K u −0.28 and K = −0.2 are erroneously considered
as entrained thus leading to the observed mismatch. Setting the
threshold to 10−4 would improve the result but only slightly: states
with K between K u −0.23 and K = −0.2 would still be erroneously
considered as entrained.

IV. NON-IDENTICAL OSCILLATORS

Moving beyond the case of identical oscillators, we now turn
our attention to oscillators whose natural frequencies follow either
a uniform or a Lorentz distribution with different values of scale
parameters (δ for the uniform distribution; γ for the Lorentz dis-
tribution). We first present the numerically computed entrainment
degree for these distributions. Then, we consider, state diagrams
showing for each oscillator in an ensemble the relation between its
natural frequency and the corresponding, numerically computed,
rotation number. Different types of dynamics are characterized in
terms of such diagrams. Finally, we consider the time evolution of

the order parameter

z = r eiφ = x + iy :=
1

N

N
∑

j=1

eiθj . (11)

Since the external forcing is 2π-periodic, we will plot both the con-
tinuous evolution z(t), t ∈ R, of the order parameter as a planar
curve, but also the discrete values z(tk), tk = 2kπ with k = 0, 1, 2, . . ..
In Sec. V, we will compare the evolution of the order parame-
ter in the case of a Lorentz distribution of natural frequencies to
the corresponding evolution obtained through the Ott–Antonsen
Ansatz.

A. Entrainment degree

We have performed a series of numerical simulations to com-
pute the entrainment degree de for different parameter values of the
system. Our simulations employed N = 1000 oscillators with initial
phases uniformly distributed in the interval [0, 2π], resembling an
incoherent state. After evolving the system for time T = 2 × 104,
using a fourth-order Runge–Kutta method with fixed time step
dt = 0.1, we compute the finite-time rotation number, Eq. (7). An
oscillator has been marked as entrained, and thus contributed to
the number of entrained oscillators, Ne, when |ρi(T) − 1| < 10−3.
The results of these computations are shown in Figs. 4(a)–4(d)
and 4(e)–4(h), for the uniform and the Lorentz distribution, respec-
tively, on the (ε, K) parameter plane and for different fixed values of
their respective scale parameters.

The first observation, mirroring the situation for K = 0
(see Sec. II and notice that the results in Fig. 2 correspond to the line
K = 0 in Fig. 4) is that de decreases as the scale parameter increases,
that is, as the distribution becomes wider. Moreover, while de attains
the values 1 (complete entrainment) and 0 (no entrainment) for
certain parameter values with the uniform distribution, this is not
the case for the Lorentz distribution. Both of these observations
should be expected since oscillators are more easily entrained when
their natural frequency is close to the forcing frequency. More-
over, the fact that the Lorentz distribution has non-compact support
implies that there are always going to be some oscillators that
can be entrained through the collective dynamics and, correspond-
ingly, some for which this does not happen. Therefore, for the
Lorentz distribution, we can never have the two extremes: complete
entrainment or no entrainment. For the most narrow distributions
(uniform with δ = 0.05 and Lorentz with γ = 0.05) that are closer
to the case of identical oscillators, we observe similarities with the
entrainment degree that we numerically computed for the latter, see
Fig. 3(a).

B. Dynamical states

Ariaratnam and Strogatz2 have considered the Winfree sys-
tem, Eq. (4), with a uniform distribution of natural frequencies in
the interval [1 − δ, 1 + δ] and no forcing, i.e., ε = 0. They have
identified five main different types of dynamics which they call inco-
herence, locking, oscillator death, partial locking, and partial death.
The classification of the dynamics is done in terms of state diagrams
depicting the functional dependence of the rotation numbers ρi on
the natural frequency ωi. In particular, incoherence corresponds to
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FIG. 4. Entrainment degree for uniform distribution (a)–(d) and the Lorentz distribution (e)–(h) in the parameter space (ε, K) for fixed values of the scale parameters. For the
uniform distribution, the scale parameter is (a) δ = 0.05; (b) δ = 0.1; (c) δ = 0.2; (d) δ = 0.3. For the Lorentz distribution, the scale parameter is (e) γ = 0.05; (f) γ = 0.1;
(g) γ = 0.2; (h) γ = 0.3. Lighter gray levels represent larger entrainment degrees. Contours are equally spaced with step 1de = 0.1. In the computations, N = 1000
oscillators were used; see the text for more details. The entrainment degree de is computed on grid with dε = 0.01 and dK = 0.01 and then is smoothed using a moving
average with the value of de at (ε0, K0) replaced by the average of the entrainment degree over the grid points with |ε − ε0| + |K − K0| ≤ 0.02.

the rotation number being a strictly increasing function of the nat-
ural frequency, Fig. 5(a); locking, to all oscillators having the same
rotation number ρi = ρ 6= 0, Fig. 5(b); oscillator death, to all oscil-
lators having rotation number ρi = 0, Fig. 5(c); partial locking, to
a mixed locking/incoherence state, Fig. 5(d) and partial death, to a
mixed death/incoherence state, Fig. 5(e).

This sharp classification of different states can be done for dis-
tributions with compact support, such as the uniform distribution,
but does not work equally well for distributions with non-compact
support, such as the Lorentz distribution. In particular, distributions
with compact support allow for the existence of pure states where
all oscillators have the same rotation number. In the classification
scheme above, locking and oscillator death are pure states, while
partial death and partial locking will be called mixed states.

The introduction of the forcing enriches the dynamics, result-
ing in several new types. The main change introduced by the external
forcing is the possibility of entrainment of the oscillators to the
forcing and also the possibility of states that mix entrainment with
locking, oscillator death, or incoherence. Note that, even though
entrained oscillators have the same rotation number ρi = 1, we dis-
tinguish here entrainment from locking: an oscillator is entrained
if ρi = 1, and it is locked if it belongs in a group of oscillators that
share a common rotation number, ρi = ρgroup 6= 1.

Some of the new states that appear for ε 6= 0 are shown in
Figs. 5(f)–5(i). In these examples, we have integrated the system
with N = 1000 oscillators for time T = 2000 with initial phases
θi(0) chosen uniformly in [0, 2π] and natural frequencies ωi cho-
sen uniformly (equally spaced) in the interval [1 − δ, 1 + δ]. In the
entrainment state in Fig. 5(f), all oscillators have been synchro-
nized to the external forcing, that is, they all have ρi = 1. In our
terminology, entrainment is also a pure state. Figure 5(g) shows
a mixed entrainment/locking state, while Fig. 5(h) shows partial
entrainment—here entrainment coexists with incoherence. Finally,
Fig. 5(i) depicts a mixed entrainment/death state. Note that the
mixed entrainment/locking and entrainment/death states also con-
tain intervals of incoherence. Because of the proliferation of new
types of dynamics, and the fact that sometimes the boundaries
between them are not well defined, we will refrain from giving a
more formal definition of these new states.

In the case of a Lorentz distribution, it is more difficult to
provide a meaningful distinction between states since there are no
pure states. The reason for the latter is that the distribution has a
non-compact support and, therefore, oscillators at the “tails” of the
distribution can have very different dynamical behavior to oscilla-
tors in the “bulk.” We present examples of different states for a
Lorentz distribution in the left picture of each panel in Fig. 6. In
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FIG. 5. Each panel shows a state for Winfree oscillators with uniform natural frequency distribution (left) and the corresponding evolution of the order parameter (right).
States without external forcing (ε = 0), as defined in Ref. 2, and corresponding evolutions are shown in panels (a)–(e). Panels (f)–(i) show states in the case of external
forcing (ε 6= 0). In the evolution pictures, dark gray curves represent the continuous time evolution (x(t), y(t)) of the order parameter while black points represent the
stroboscopic image (x(2kπ), y(2kπ)), k ∈ Z. The order parameter is constrained in the unit disk, represented here by light gray. The parameters for each panel are as
follows: (a) incoherence: K = 0.4, ε = 0, δ = 0.4; (b) locking: K = 0.6, ε = 0, δ = 0.1; (c) oscillator death: K = 0.9, ε = 0, δ = 0.2; (d) partial locking: K = 0.75, ε = 0,
δ = 0.21; (e) partial death: K = 0.75, ε = 0, δ = 0.4; (f) entrainment: K = 0.2, ε = −0.2, δ = 0.1; (g) mixed entrainment/locking: K = 0.6, ε = −0.18, δ = 0.2; (h)
partial entrainment: K = 0.6, ε = −0.2, δ = 0.4; (i) mixed entrainment/death: K = 0.4, ε = 0.5, δ = 0.3.

these examples, we have integrated again the system with N = 1000
oscillators for time T = 2000 with initial phases θi(0) chosen uni-
formly in [0, 2π]. The natural frequencies ωi are drawn from a
Lorentz distribution g(ω) with mean 1 and scale parameter γ . Even
in cases such as shown in Figs. 6(a) and 6(b) where most oscilla-
tors have been entrained or died, there are still smaller populations
outside the bulk that exhibit different behavior.

C. Order parameter evolution

The order parameter, Eq. (11), is often used to characterize the
degree of synchronization in a network of coupled oscillators.5 Even
though there is no direct correspondence between the evolution of
the order parameter and the entrainment degree, we briefly discuss
the situation in specific examples.

We first consider the case of a uniform distribution for which
we have discussed different types of state diagrams in Sec. IV B.
For the state diagrams presented in Fig. 5, we consider the
corresponding time evolution of the order parameter. We inte-
grate the dynamics of the system starting with the same initial

conditions as those used to produce the corresponding state dia-
grams in Sec. IV B. The time evolution of the order parameter
z = x + iy is shown in Fig. 5 for time from T = 1000 to 2000 as a
continuous gray curve. Moreover, we present in the same picture
the corresponding stroboscopic image of the evolution of the order
parameter, where the value of the order parameter is only shown at
times 2kπ , k ∈ Z, resembling a Poincaré map.

The comparison of the state diagrams and the evolution of the
order parameter in Fig. 5 reveals some interesting patterns. In the
case of incoherence, Fig. 5(a), the ensemble of motions with differ-
ent rotation numbers destructively interfere to produce an almost
constant order parameter. In the case of locking at a common rota-
tion number ρ, Fig. 5(b), the modulus of the order parameter is
close to 1 and its phase rotates with angular velocity ρ. In the stro-
boscopic image, we observe quasi-periodic motion depending on
the (ir-)rationality of ρ. In the case of oscillator death, Fig. 5(c),
the modulus of the order parameter is again close to 1 but its
phase is almost constant. In the case of partial locking, Fig. 5(d),
the order parameter almost fills out a disk which is a result of the
combination of destructive interference of the incoherent part and
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FIG. 6. Dynamics for Winfree oscillators whose natural frequencies follow a Lorentz distribution with scale γ . Each panel depicts the dynamic state diagram (ρi vs ωi ), the
corresponding evolution of the order parameter, and the evolution of the order parameter as obtained through the Ott–Antonsen Ansatz, see Eq. (20). In the order parameter
plots, dark gray curves represent the continuous time evolution (x(t), y(t)), while discrete points represent the stroboscopic image (x(2kπ), y(2kπ)). The order parameter
is constrained in the unit disk, represented here by light gray. The parameters and the corresponding entrainment degree de for each panel are as follows: (a) entrainment:
K = 0.2, ε = −0.5, γ = 0.01; de = 0.985; (b) oscillator death: K = 0.5, ε = 0.6, γ = 0.01; de = 0.006; (c) mixed entrainment/death: K = 0.18, ε = 0.74, γ = 0.01;
de = 0.558; (d) mixed entrainment/death: K = 0.23, ε = 0.64, γ = 0.01; de = 0.129; (e) mixed entrainment/death: K = 0.24, ε = 0.46, γ = 0.01; de = 0.398; (f) mixed
entrainment/locking/death: K = 0.39, ε = 0.51, γ = 0.01; de = 0.017.

the rotation induced by the locked part. Partial death, Fig. 5(e),
strongly resembles incoherence but the modulus of the order param-
eter is closer to 1. There does not seem to be a sharp criterion in
terms of the evolution of the order parameter that would allow us
to distinguish between the two cases. In entrainment, Fig. 5(f), the
order parameter evolves in a very similar way to locking but there is
only one point in the stroboscopic image, as a result of the fact that
ρ = 1 for all oscillators. In the last three panels, Figs. 5(g)–5(i), we
observe that the order parameter fills out an annulus. We note that
in the first two of the three panels, the annulus has winding number
1, while in the last one, it has winding number 0.

In the case of the Lorentz distribution, the corresponding evo-
lution of the order parameter is shown in Fig. 6 (middle picture
in each of the panels). In panel Fig. 6(a), the evolution for a state
where almost all oscillators are entrained (de = 0.985) is shown. We
observe that the stroboscopic image of the orbit consists of a sin-
gle point while the continuous-time orbit (dark gray curve) winds
around the origin and it lies very close to the unit circle. In panel
Fig. 6(b), the evolution for a state where almost all oscillators are

dead (de = 0.006) is shown. The stroboscopic image consists again
of a single point, however, we observe that the continuous-time orbit
makes very small oscillations along an arc close to the unit circle and
it does not wind around the origin.

In Figs. 6(c)–6(f), we depict four evolutions of the order
parameter that all correspond to mixed entrainment/death or
mixed entrainment/locking/death states but have different entrain-
ment degrees ranging from very small (de = 0.017) to significant
(de = 0.558). The evolution depicted in Fig. 6(c) is similar to the one
in the case of entrainment in Fig. 6(a). The difference between the
two cases is that in Fig. 6(c), the continuous-time orbit is not very
close to the unit circle.

From the discussion of the evolution of the order parameter
for the uniform and for the Lorentz distribution of natural fre-
quencies, we conclude that there are some evolutions that can be
easily recognized as (almost complete) entrainment or (almost com-
plete) death. These correspond to Figs. 5(f) and 5(c) for the uniform
distribution, and Figs. 6(a) and 6(b) for the Lorentz distribution.
However, we have also seen many intermediate cases where it is not
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straightforward to read the entrainment degree from the evolution
of the order parameter—we will return to this issue in Sec. V C where
we describe how to numerically compute the entrainment degree
from the time evolution of the order parameter.

V. LOW-DIMENSIONAL DYNAMICS

In this part, we analyze the system with a Lorentz distribu-
tion of natural frequencies using the Ott–Antonsen method.16 After
deriving the Ott–Antonsen equations for the system, we compare
the results of the Poincaré map with the numerical results for the
full system, observing striking similarities. Moreover, we perform
a bifurcation analysis of the limit cycles and fixed points of the
Poincaré map on the (ε, K) space for different values of the scale
parameter γ .

A. Derivation of the Ott–Antonsen equations

We consider the continuum limit where the ensemble of dis-
crete oscillators is replaced by a continuous distribution p(θ , t, ω)

expressing the conditional probability density that an oscillator of
natural frequency ω has phase θ at time t. The density p satisfies the
normalization condition

∫ 2π

0

p(θ , t, ω) dθ = 1,

and the continuity equation

∂p

∂t
+

∂

∂θ
(pv) = 0, (12)

representing the conservation of the number of oscillators. In the
continuity equation, v is the velocity of each oscillator, and it is given
by

v = θ̇ = ω − K sin θ〈1 + cos θ〉 − ε sin θ(1 + cos t), (13)

where we denote by

〈f(θ)〉 =

∫ 2π

0

∫ ∞

−∞

f(θ)p(θ , t, ω)g(ω) dθ dω,

the average value of f(θ). The order parameter, defined in the
discrete case by Eq. (11), is given in the continuum limit by

z(t) = 〈eiθ 〉 =

∫ 2π

0

∫ ∞

−∞

eiθp(θ , t, ω)g(ω) dθ dω,

thus

〈1 + cos θ〉 = 1 + <(z(t)). (14)

The distribution p(θ , t, ω) is 2π-periodic in θ . We assume that
p has a Fourier series expansion, given by

p(θ , t, ω) =
1

2π

∞
∑

n=−∞

cn(t, ω) einθ , (15)

where c−n = cn and c0 = 1. Substituting Eqs. (13) and (15) into the
continuity equation, Eq. (12), and using Eq. (14), we obtain the

evolution equation for the Fourier coefficients

∂cn

∂t
+ inωcn +

n

2
K(1 + <(z(t)))(cn+1 − cn−1)

+
n

2
ε(1 + cos t)(cn+1 − cn−1) = 0. (16)

Following the Ott–Antonsen Ansatz, we consider distributions
with cn(t, ω) = α(t, ω)n, for n ≥ 1. Consequently, cn = c|n| = α|n|

for n ≤ −1. Substituting the expression for cn into Eq. (16), we find

dα

dt
+ i ωα +

1

2
(K(1 + <(z(t))) + ε(1 + cos t)) (α2 − 1) = 0.

(17)

Using the Fourier series representation of ρ and the Ott–Antonsen
Ansatz, we find that

z(t) =

∫ ∞

−∞

c−1(t, ω)g(ω) dω =

∫ ∞

−∞

α(t, ω)g(ω) dω. (18)

Considering the case where g(ω) is the Lorentz distribution,
Eq. (8), we obtain by calculating the residue at the pole � − iγ of
g(ω) at the lower complex half-plane that

z(t) = α(t, � − iγ ).

Finally, considering the complex conjugate of Eq. (17) for ω = �

− iγ , we find that the evolution of the order parameter is given by

dz

dt
+ (γ − i �)z +

1

2
(K(1 + <(z)) + ε(1 + cos t)) (z2 − 1) = 0.

(19)

Writing z = x + iy and separating the real and imaginary parts
of Eq. (19), we obtain the equations

dx

dt
= −γ x − �y +

1

2

(

1 − x2 + y2
)

[K(1 + x) + ε(1 + cos t)] ,

(20a)

dy

dt
= �x − γ y − xy [K(1 + x) + ε(1 + cos t)] . (20b)

Remark 4. The Lorentz distribution is an example for which
we can explicitly compute the integral in Eq. (18). This computation
is not always feasible for other distributions and, in particular, it is
not feasible for the uniform distribution. For this reason, we restrict
the discussion in this section to the Lorentz distribution.

Remark 5. The relative simplicity of the equation for z
depends on the simplicity of the response and influence functions,
R and P, respectively, in Eq. (3). In the case where the influence
function P is a trigonometric polynomial in θ of the form P(θ)

= Q(cos θ , sin θ), the Ott–Antonsen Ansatz gives equations similar
to Eq. (20) with the term (1 + x) replaced by Q(x, y). However, when
R contains harmonics of degree n ≥ 2 the Ott–Antonsen Ansatz
does not produce a consistent set of equations on R2.

Equation (20) defines a two-dimensional non-autonomous
dynamical system on R2. For ε = 0, the Ott–Antonsen equations
agree with those obtained in Ref. 11 for the system without forc-
ing. Note that the equations make sense only on the (closed) unit
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FIG. 7. Bifurcation diagrams for the Poincaré map P for (a) γ = 0.05 and
(b) γ = 0.1. Solid black curves represent Neimark–Sacker (N–S) bifurcations,
solid gray curves represent fold (saddle-node, SN) bifurcations, and dashed gray
curves represent flip (period doubling, PD) bifurcations. Saddle-node bifurcations
marked by a prime (SN

′
) correspond to the collision of a saddle point with a stable

node; unmarked ones (SN) correspond to the collision of a saddle point with an
unstable node.

disk D = {x2 + y2 ≤ 1}, bounded by the unit circle
S = {x2 + y2 = 1} = ∂D. We compute that

d

dt

(

x2 + y2
)

∣

∣

∣

S
= −2γ < 0.

This implies that D is positively invariant under the flow ϕt defined
by Eq. (20), that is, for all x ∈ D and t ≥ 0, we have ϕt(x) ∈ D. This
implies that the 2π-flow of Eq. (20), ϕ2π , defines a Poincaré map
P : D → D.

We have compared the dynamics given by the low-dimensional
Ott–Antonsen description, Eq. (20), to the corresponding full net-
work dynamics, see Sec. IV C. Figure 6 shows the evolution of
the order parameter (x(t), y(t)) for different values of the parame-
ters, and the corresponding iterates of the Poincaré map g, given by
points (x(2kπ), y(2kπ)) with integer k. We have found that the evo-
lution of the order parameter in the numerical simulations (Fig. 6)

FIG. 8. Two bifurcation scenarios for γ = 0.05: (a) Scenario 1 with K = 0.8;
(b) Scenario 2 with ε = 0.1. The vertical axis depicts the distance r of the fixed
point(s) of the Poincaré map P from the origin on the (x, y)-plane. The legends
are SF (stable focus), SN (stable node), UF (unstable focus), UN (unstable node),
and X (saddle point).

and the one predicted by the Ott–Antonsen Ansatz (Fig. 6) are qual-
itatively similar, thus validating the use of the Ott–Antonsen Ansatz,
as also discussed in Refs. 17 and 18.

B. Bifurcations in the Ott–Antonsen equations

Brouwer’s fixed point theorem ensures that the Poincaré map
P : D → D defined by the 2π-flow of Eq. (20) has at least one fixed
point. As the parameters (K, ε, γ ) of the system change, the fixed
points of P can change stability and go through bifurcations. For
fixed γ , we expect to find in the (ε, K) parameter plane curves of
codimension-1 bifurcations such as fold (saddle-node), flip (period-
doubling), and Neimark–Sacker bifurcations.19

We have used MATCONT20 to compute the bifurcation curves
for the Poincaré map P induced by the Ott–Antonsen equations in
the parameter range −1 ≤ ε ≤ 1, −1 ≤ K ≤ 1. The bifurcations for
γ = 0.05 and γ = 0.1 are shown in Fig. 7. We have not found any
bifurcations in this parameter range for γ = 0.2 and γ = 0.3.

For γ = 0.05, there are four 1-parameter families of saddle-
node bifurcations, represented by solid gray curves and denoted
SN in Fig. 7(a). The pairs SN1, SN′

1 and SN2, SN′
2 each meet at a
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FIG. 9. (a)–(d) Entrainment degree as predicted by directly computing the rotation numbers of an ensemble of oscillators following the Ott–Antonsen mean field dynamics,
see Sec. V C 1. The parameter values are (a) γ = 0.05; (b) γ = 0.1; (c) γ = 0.2; (d) γ = 0.3. The entrainment criterion was chosen as |ρ − 1| < 10−3. Entrainment
degree contours are equally spaced with 1de = 0.1 and lighter grays correspond to higher de. The value of de on some contours has been indicated in the pictures. (e)–(h)
Comparison of contours in the top row (dashed lines) to those shown in Figs. 4(e)–4(h) (solid lines) computed by direct integration of the full dynamics. The parameter values
are (e) γ = 0.05, (f) γ = 0.1, (g) γ = 0.2, (h) γ = 0.3.

cusp bifurcation. Moreover, the families SN1 and SN2 each meet the
1-parameter of Neimark–Sacker (N-S) bifurcations, represented by
a black curve, at a 1:1 resonance. A family of flip bifurcations (PD),
represented by a dashed gray loop, has been also found along the
Neimark–Sacker curve. The main difference when γ = 0.1 is that
two of the families of saddle-node bifurcations (SN2 and SN′

2) are
no longer present.

The main common feature of these two cases is that there is a
parameter region enclosed by the Neimark–Sacker and parts of the
saddle-node bifurcations where the system does not have any stable
fixed points. We describe this in detail by considering two bifur-
cation scenarios for γ = 0.05—similar bifurcation scenarios also
occur for γ = 0.1.

a. Scenario 1. We fix K = 0.8 and increase ε, see Fig. 8(a). For
ε / −0.363, the map has a stable node fixed point. At ε u −0.363,
the map P goes through a saddle-node bifurcation SN2, where a
saddle point and an unstable node are created. The unstable node
almost immediately turns into an unstable focus. At slightly larger
ε u −0.345, the map goes through a second saddle-node bifurca-
tion SN′

2 where the saddle point and the stable node collide and
disappear while a stable closed invariant curve appears and the only
remaining fixed point is the unstable focus. This scenario repeats
in reverse between ε u −0.016 and ε u 0.071. First, a saddle-node
bifurcation SN′

1 on the invariant curve at ε u −0.016 gives rise to

a saddle point and a stable node. Then, just before the final saddle-
node SN1, the unstable focus becomes an unstable node, and then
it collides with the saddle point when ε u 0.071 for the saddle-node
SN1. This last bifurcation leaves the stable node as the only fixed
point of the Poincaré map for ε ' 0.071. Note, in particular, that for
−0.345 / ε / −0.016 the Poincaré map has no stable fixed points
and that the only stable invariant set is an invariant curve.

b. Scenario 2. We fix ε = 0.1 and increase K, see Fig. 8(b).
For K / 0.280, the map has a stable fixed point which changes sta-
bility between the stable node and stable focus. For K ' −0.045,
in particular, the fixed point is a stable focus and at K u 0.280 it
goes through a Neimark–Sacker (N–S) bifurcation and it becomes
an unstable focus while simultaneously a normally stable invariant
curve emanates from it. As K increases, a saddle-node bifurcation
SN′

1 takes place on the invariant curve at K u 0.722 and produces
a saddle point and a stable node. The unstable focus becomes an
unstable node and then at K u 0.775 it collides with the saddle point
in the saddle-node bifurcation SN1. For K ' 0.775, the Poincaré
map has only a stable fixed point. Again, note that for 0.280 / K
/ 0.722 the system has no stable fixed points and that the only stable
invariant set is the invariant curve generated at the Neimark–Sacker
bifurcation.

The bifurcation diagrams give a comprehensive picture of the
parameter regions where the Poincaré map has a stable fixed point.
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FIG. 10. (a)–(d) Entrainment degree as predicted by computing the width of the resonance tongues of the Ott–Antonsen mean field dynamics for the case that the
Ott–Antonsen Poincaré map has a fixed point, see Sec. V C 2. The parameter values are (a) γ = 0.05, (b) γ = 0.1, (c) γ = 0.2, (d) γ = 0.3. The black regions for
γ = 0.05 and γ = 0.1 correspond to parameter values for which there is no stable fixed point. Entrainment degree contours are equally spaced with1de = 0.1 and lighter
grays correspond to higher de. The value of de on some contours has been indicated in the pictures. (e)–(h) Comparison of contours in the top row (solid lines) to those
shown in Figs. 9(a)–9(d) (dashed lines) computed by finding directly how many oscillators entrain in the Ott–Antonsen mean field. The parameter values are (e) γ = 0.05,
(f) γ = 0.1, (g) γ = 0.2, (h) γ = 0.3.

This plays an important role in Sec. V C 2, where we use the exis-
tence of fixed points of the Poincaré map (i.e., 2π-periodic orbits of
the full system) to give an estimate of the entrainment degree.

C. Entrainment degree from the Ott–Antonsen mean

field

The Ott–Antonsen equations provide low-dimensional dynam-
ics for the evolution of the order parameter of the system. To recover
the entrainment degree from the Ott–Antonsen order parameter,
we may work as follows. We first compute the evolution zOA(t) of
the order parameter using the Ott–Antonsen equations for specific
values of the parameters (ε, K, γ ) by starting at a random initial
value. We call the obtained order parameter evolution zOA(t) the
Ott–Antonsen mean field. Then, we consider the dynamics of an
oscillator of natural frequency ω in the Ott–Antonsen mean field.
The dynamics of such an oscillator is given by

θ̇ = ω − F(t) sin θ , (21a)

where

F(t) = K(1 + <(zOA(t))) + ε(1 + cos t). (21b)

To compute the entrainment degree for an ensemble of oscillators in
the Ott–Antonsen mean field, we follow two different approaches,
the direct method and the resonance tongue method which we
describe and compare below.

1. Direct method

We consider a finite ensemble of N oscillators with natural fre-
quencies ωi, i = 1, . . . , N, drawn from a Lorentz distribution g(ω)

with mean value 1 and scale parameter γ , that is, the same Lorentz
distribution that gives rise to the Ott–Antonsen mean field zOA(t).
Then, the entrainment degree de can be computed as the percentage
of oscillators that have rotation number 1.

Practically, we compute the order parameter zOA(t) for time
0 ≤ t ≤ 103 · (2π) using a Runge–Kutta fourth order method with
fixed step size dt = 10−2 · (2π) and we simultaneously integrate the
dynamics of N = 200 oscillators, given by Eq. (21), that is interact-
ing only with the Ott–Antonsen mean-field, using the Euler method.
An oscillator with natural frequency ωi is considered to be entrained
if its rotation number ρi satisfies |ρi − 1| < 10−3.

The results of this computation are shown in Figs. 9(a)–9(d) on
the (ε, K) parameter plane for different values of the scale parameter
γ . They are strikingly similar to the results in Figs. 4(e)–4(h) that
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have been computed from the full dynamics without any theoreti-
cal approximations. This is clearly shown in Figs. 9(e)–9(h) where
the contours for the two methods (direct method and full dynam-
ics) are drawn together. These results further validate the use of
the Ott–Antonsen approximation to study the entrainment in this
system.

2. Resonance tongue method

When the Ott–Antonsen Poincaré map has a stable fixed point
we can estimate the entrainment degree using the theory of circle
maps. In this case, the Ott–Antonsen order parameter zOA(t), and
thus also F(t), are periodic with period 2π . Therefore, the dynamics,
given by Eq. (21) for an oscillator with natural frequency ω, gives rise
to a circle map whose 1:1 resonance tongue has boundaries ω−(F)

< ω+(F). The oscillator is entrained if ω ∈ (ω−(F), ω+(F)) and thus
the entrainment degree is given by

de =

∫ ω+(F)

ω−(F)

g(ω) dω,

where g(ω) is a Lorentz distribution with mean value 1 and scale
parameter γ , cf. the discussion in Sec. II.

The results from the resonance tongue method are shown
in Figs. 10(a)–10(d) on the (ε, K) parameter plane for different
values of the scale parameter γ . The black regions shown for
γ = 0.05 and γ = 0.1 correspond to parameter values for which
the Ott–Antonsen Poincaré map has no stable fixed points (cf. the
corresponding bifurcation diagrams in Fig. 7) and, therefore, the
resonance tongue method cannot be applied for these parameter
values. Outside these regions, the obtained values for the entrain-
ment degree are nearly identical to those obtained with the direct
method. This is depicted in Figs. 10(e)–10(h) where the contours for
the direct and the resonance tongue method are drawn together.

VI. DISCUSSION AND CONCLUSIONS

We have considered a system of periodically forced coupled
Winfree oscillators, and we have studied in detail its dynamics focus-
ing on the question of the entrainment of individual oscillators to the
external forcing. Through numerical simulations, we have shown
that the degree of entrainment decreases when the width of the nat-
ural frequency distribution increases while, in general, it increases
with the strength ε of the external forcing.

First, we have considered oscillators that are influenced by
external forcing, but they are not coupled with each other. We have
computed the 1:1 resonance tongue, and we have used it to obtain
the entrainment degree for non-interacting oscillators.

We have then considered the case of identical oscillators. Here,
we have given a theoretical explanation of the numerically obtained
results on the entrainment degree through a careful study of syn-
chronized states and their stability.

In the next step, we have considered non-identical oscillators
whose natural frequencies are drawn from a uniform or a Lorentz
distribution. For such oscillators, we have numerically computed the
entrainment degree, and we have presented typical state diagrams
(rotation number as a function of natural frequency) and the cor-
responding evolution of the order parameter. Moreover, we have

established a rough correspondence between the evolution of the
order parameter and the entrainment degree of the system.

In the last part, we focused on systems where oscillator fre-
quencies are drawn from a Lorentz distribution, and we have
derived the corresponding low-dimensional dynamics given by the
Ott–Antonsen Ansatz. The evolution of the order parameter given
by the Ott–Antonsen equations agrees well with the evolution com-
puted for the full dynamics. Then, we have given a description of
bifurcations of fixed points in the Ott–Antonsen equations. Finally,
we have used the dynamics of oscillators in the Ott–Antonsen mean
field to obtain an approximation for the entrainment degree. The
results match very well the results that we had earlier obtained,
while they can be computed much more efficiently. This pro-
vides a connection between the order parameter predicted by the
Ott–Antonsen Ansatz and the entrainment degree. A limitation of
this method is that the Ott–Antonsen Ansatz cannot be used in the
case of uniform distributions since they are not analytic. Moreover,
the question mentioned in the Introduction on whether one can
define an appropriate collective variable, similar to the order param-
eter, from which one can directly read off the entrainment degree
remains open.

One restriction of the current study is that it has focused on the
case of unimodal natural frequency distributions whose mean value
� equals the forcing frequency, i.e., � = 1. A natural question to
ask is what will be the effect of “detuning” the system, that is, having
� 6= 1. We expect that in this case entrainment will be weaker and
increasing the detuning will lead to fewer entrained oscillators. A
closely related question is to understand what will happen in the case
of bimodal distributions, symmetric with respect to � = 1. These
questions are being considered in a forthcoming work.

Before closing we remark that the effect of external forcing
has also been considered in the context of Kuramoto oscillators5 in
Refs. 21 and 22. Variations of this theme have also been considered
in Refs. 23–26. Closest to our approach, Childs and Strogatz22 use the
Ott–Antonsen Ansatz to derive bifurcation diagrams for the system
using the external forcing strength and the detuning as parame-
ters, while the coupling strength is kept fixed. Unfortunately, these
bifurcation diagrams cannot be directly compared with those in our
work. One reason is that the type of external forcing in Ref. 22 is dif-
ferent from ours—in particular, the Ott–Antonsen equations in the
former case do not explicitly depend on time, thus simplifying the
study of the Ott–Antonsen dynamics. Additionally, in our work, we
have kept the detuning at zero and studied the bifurcations using the
external forcing strength and the coupling strength as parameters.

Finally, we note that the entrainment degree, which quantifies
the effect of the external forcing as the proportion of oscillators that
have synchronized to the latter, has not been considered in previ-
ous works. The difficulty here is that the entrainment degree cannot
be predicted through analytical considerations except for the sim-
ple case of identical oscillators. We have overcome this issue by
bridging the dynamics of the order parameter that is predicted by
the Ott–Antonsen Ansatz with the entrainment degree by simu-
lating the dynamics of individual oscillators in the Ott–Antonsen
mean field. This allows us to make predictions about the entrain-
ment degree that do not necessitate the simulation of the full system
dynamics and gives us an alternative approach to understanding the
entrainment of oscillators to the external forcing.
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